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RESUMEN

La detección y clasificación de eventos sísmicos volcánicos son fundamentales para el

monitoreo de la actividad volcánica y la mitigación de desastres naturales. La identificación

temprana de señales sísmicas precursoras permite emitir alertas oportunas, con el potencial de

salvar vidas en zonas amenazadas por volcanes activos. En este trabajo, proponemos un

método automático de clasificación de eventos sísmicos basado en modelos tipo transformer,

con el fin de maximizar la clasificación de señales volcánicas en bruto, evitando cualquier

tipo de preprocesamiento de datos y retrasos en la clasificación.

El método propuesto se entrenó y validó mediante una estrategia de validación cruzada en el

conjunto de datos MicSigv1. El mejor modelo alcanzó una precisión, una puntuación F1 y un

valor AUC promedio de 96.4%, 96.5%, y 97.9%, respectivamente, en el conjunto de prueba.

El alto rendimiento obtenido en múltiples métricas demuestra la efectividad de la

metodología para la clasificación de eventos sísmicos volcánicos, evidenciando su potencial

para futuros sistemas de monitoreo en tiempo real.

Palabras clave: Clasificación de señales volcánicas, clasificación de eventos sísmicos,

modelos transformer, deep learning, procesamiento de señales, sismología.
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ABSTRACT

The detection and classification of volcanic seismic events are crucial for monitoring

volcanic activity and mitigating natural disasters. Early identification of precursor seismic

signals enables timely warnings, potentially saving lives in areas threatened by active

volcanoes. We propose an automatic seismic events classification method based on

transformer models to maximize the volcanic raw signal classification, avoiding any data

preprocessing and delayed classification. The proposed method was trained and validated

using a cross-validation strategy on the MicSigv1 dataset. The best model achieved an

average accuracy, F1-score, and AUC scores of 96.4%, 96.5%, and 97.9%, respectively, on

the test set. The high performance across multiple metrics indicated the effectiveness of the

proposed method for volcano seismic events classification, demonstrating its potential for

future real-time monitoring systems.

Key words: Volcano signal classification, seismic events classification, transformer models,

deep learning, signal processing, seismology.
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INTRODUCTION

The detection and classification of volcanic seismic events are essential for monitoring

volcanic activity and mitigating natural disasters (Ibáñez, 2022; Pérez et al., 2020). Active

volcanoes pose a significant threat to nearby populations, and early identification of precursor

seismic signals can save lives by enabling early warnings (Ibáñez, 2022; Lara-Cueva et al.,

2016). However, manual analysis of large volumes of seismic data is a laborious process

prone to human error (Malfante et al., 2017; Oliveira et al., 2020). Moreover, volcanic

seismic signals exhibit complex patterns and significant variations, making precise

classification difficult (Pérez et al., 2020).

Some machine learning-based approaches have been proposed using shallow and deep

learning models. For example, shallow learning methods have employed feature-based

techniques and traditional classifiers. Pérez et al. (Pérez et al., 2020) used Artificial Neural

Networks (ANN) and Random Forest (RF) models that relied on precomputed features,

achieving accuracies of 95% and 93%, respectively. Similarly, traditional statistical

techniques such as Gaussian Mixture Models (GMM) or Support Vector Machines (SVM)

demand careful feature extraction and selection, increasing the computational complexity

(Malfante et al., 2017; Pérez et al., 2020). Unsupervised approaches like the BFR clustering

algorithm used by Duque et al. (Duque et al., 2020) achieved an accuracy of 88%, yet still

relied on transformed data representations.

On the other hand, deep learning methods have also been explored to address these

challenges. Convolutional Neural Networks (CNNs) have been particularly prominent due to

their ability to process spectrogram representations of seismic signals (Salazar et al., 2020;

Calderón et al., 2020). Salazar et al. (Salazar et al., 2020) introduced DCNN-based
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architectures, achieving 95% accuracy and 98% AUC, while Calderón et al. (Calderón et al.,

2020) reported a 94% accuracy and 94% AUC. Furthermore, hybrid CNN-RNN models

(Salazar et al., 2020) have attempted to capture temporal dependencies, though they often

require extensive preprocessing and careful feature engineering. Overall, these traditional

pipelines—both shallow and deep—generally depend on transforming the original signal

space, computing and selecting features, and then classifying, which can be

memory-intensive and time-consuming.

The reliance on these extended workflows suggests that a more direct approach to

analyzing raw seismic signals could improve efficiency. The use of time-series data makes

methods capable of effectively capturing long-range dependencies and temporal patterns,

which are particularly desirable. In this regard, transformer models have recently been

explored for classifying seismic signals (Suzuki et al., 2024; Rinaldi et al., 2022). Unlike

recurrent neural networks (RNNs) or long-short-term memory neural networks (LSTMs),

which suffer from vanishing gradients and limited context understanding, transformers use

powerful self-attention mechanisms to capture long-range dependencies and complex patterns

in data (Vaswani et al., 2017). This capability is critical for analyzing raw seismic time series,

where patterns over extended periods are crucial. By directly handling raw signals without

extensive preprocessing and feature computation stages, transformers can potentially

streamline the classification process and mitigate delays associated with traditional

workflows.

For example, Rinaldi et al. (Rinaldi et al., 2022) proposed a transformer-based

classification system for volcanic seismic signals, combining convolutional layers, residual

connections, LSTM, and multi-headed self-attention (MHSA) parts. While their model

achieved an accuracy of 96.4% on filtered data and showed potential in analyzing raw
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seismic data without the need for extensive preprocessing, it came with significant

computational costs due to the inclusion of multiple convolutional layers and LSTM in its

architecture.

Therefore, we propose an automatic seismic events classification method based on

transformer models to maximize the volcanic raw signal classification, avoiding any data

preprocessing and delayed classification. The main contribution is to develop a model that

efficiently captures temporal dependencies in seismic signals through a self-attention

mechanism that analyzes and prioritizes the importance of each part of the data regardless of

temporal proximity, which is crucial in seismic signal analysis where significant relationships

may exist between distant events.

MATERIALS AND METHODS

A. Database

This study uses the MicSigV1 dataset, available in the ESeismic repository, which

contains 1,187 seismic records captured at the Cotopaxi volcano in Ecuador by the VC1 and

BREF stations. The seismic events are classified into five categories: Long Period (LP) with

1,044 samples, Volcano-Tectonic (VT) with 101, Regional (REG) with 27, Hybrid (HB) with

8, and Icequake (ICE) with 7. This database is available at:

https://www.igepn.edu.ec/eseismic_web_site/index.php
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B. Proposed method

We propose an automatic seismic events classification method based on transformer

models to maximize the volcanic raw signal classification, avoiding any data preprocessing

and delayed classification. It aims to capture temporal dependencies in seismic signals

through the implemented self-attention mechanism regardless of temporal proximity. This is

crucial in seismic signal analysis, where significant relationships may exist between distant

events, as shown in Fig. 1.

Figure 1. Transformer-based architecture of the proposed method

From Fig. 1, it is possible to observe one of the proposed single transformer-based

architectures. It comprises several connected parts, such as the initial convolutional layer that

applies a Conv1D operation with 64 filters, a kernel size of 3, and a padding type same to

guarantee the input signal meets the input dimension requirement of the model. The

MaxPooling1D layer with a pool size of 2 reduces the computed feature maps by half,

condensing relevant information and lowering the computational load for the subsequent

stages.
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Then, a learnable positional embedding is incorporated before the multi-head attention

system to identify the relative position of each data point within the sequence, which is

essential for capturing temporal relationships in parallel environments. Subsequently, the

multi-head attention module of the transformer block computes the queries (Q), keys (K), and

values (V) through linear projections of the input data. Having separate linear transformations

for Q, K, and V enables the model to learn different representations for querying, attending,

and aggregating information from the sequence, enhancing its ability to model complex

dependencies (Vaswani et al., 2017) while facilitating gradient propagation during training

without degradation problems (Ahmed et al., 2022). The last part of this block uses a

feed-forward module with two Conv1D layers with kernel sizes of 1 and ReLU activation

functions, introducing non-linearity and flexibility into the model without altering the original

data dimensions (He et al., 2016). Additionally, regularization mechanisms such as dropout

are applied to mitigate overfitting and improve the model's generalization.

Lastly, the GlobalAveragePooling1D layer summarizes the information in a global

vector that feeds two dense hidden layers with 128 and 64 ReLU neurons, respectively, and

an output layer with one sigmoid neuron for the binary classification.

We extended the proposed single architecture to create the dual transformer architecture

that augments one transformer block. It should be noted that for both transformer

architectures, the initial and feed-forward convolutional layers vary in the intervale 1 … 2

and 1 … 3, respectively. Also, a single max pooling layer is used in all configurations,

whether there are one or two initial convolutional layers. These configurations will allow

experimenting with 12 transformers (six per transformer block).
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C. Experimental setup

1) Dataset creation

For this work, only the LP and VT events were selected, as they represent the

categories with the largest number of samples in the dataset. A total of 1,123 samples were

utilized, with 80\% allocated for training (898 samples) and 20\% reserved for testing (225

samples). This division supports the creation and evaluation of a reliable classification model.

2) Signal processing

The selected signals underwent a preprocessing stage that included duration

adjustment. The decision to fix all signals to a duration of 74 seconds was based on statistical

analysis of their durations. A box plot analysis revealed that for both LP and VT events, the

upper whisker extends to 74 seconds, effectively separating the outliers. Outlier data beyond

this duration were excluded as they may represent noisy or anomalous data. By selecting this

duration, we ensured that most of the data could be used without any filtering or signal

modification, allowing us to work with the rawest data possible. Signals shorter than 74

seconds were adjusted by padding, adding zero values at the end of each signal until reaching

7400 samples. This procedure guarantees uniformity in signal length, which is crucial for

consistent input into the model (Suzuki et al., 2024). Finally, each signal was normalized to a

range between 0 and 1, standardizing their amplitudes for analysis in the model.

3) Training and test sets

Initially, the dataset was split into 80% for training and 20% for testing. The training set

was then used in a stratified 10-fold cross-validation scheme to determine the

best-performing model. The best model was selected by identifying the fold with the highest
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evaluation metrics. For this purpose, a model checkpoint callback was implemented, which

saved the model whenever the validation loss reached its minimum, ensuring that the best

model was retained for further evaluation. After selecting the optimal model, this model was

applied to the previously unseen 20% test set, allowing us to evaluate its performance on new

data and verify its generalization capability.

To evaluate the model, a stratified 10-fold cross-validation scheme was implemented,

ensuring consistent evaluation by calculating average metrics over multiple partitions of the

training set. This method divides the data into subsets, using one as the validation set while

training the model on the remaining subsets, and repeating the process across all possible

combinations (Salazar et al., 2020). This approach guarantees that the original class

proportions are reflected in both partitions, reducing classification bias and maximizing the

model’s generalization, as suggested in previous works (Salazar et al., 2020).

4) Model configuration

All models were trained for a maximum of 100 epochs, with early stopping

implemented to halt training after 20 epochs of no improvement in validation loss. We chose

a batch size of 16 to balance computational efficiency and stable convergence. To optimize

the parameters, we employed the Adam optimizer with a fixed learning rate of 1e-4, taking

advantage of its adaptive mechanisms for stable and effective updates (Kingma & Ba, 2015).

Additionally, we used a ReduceLROnPlateau scheduler to halve the learning rate whenever

validation loss did not improve after 4 consecutive epochs.

To combat overfitting and enhance generalization, we applied L2 regularization (0.01)

to the final dense layers and introduced a 0.1 Dropout rate following activation layers

(Srivastava et al., 2014). The multi-head attention mechanism was configured with 2 heads,
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each processing input features in subspaces of dimension 64. Additionally, all Conv1D layers

were configured with 64 filters to ensure dimensional consistency across layers.

5) Assessment metrics and selection criteria

The classification performance of the proposed model was evaluated using the average

results of a 10-fold cross-validation. Metrics considered include F1-Score, Accuracy,

Precision, Recall, Area Under the Curve. Additionally, the Wilcoxon test will be applied to

identify the model with the smallest significant performance difference across the evaluated

metrics.

The F1-score metric was prioritized due to the significant class imbalance in our

dataset, with 1044 samples for the LP class and 101 samples for the VT class. The F1-score

provides a more informative measure than accuracy by considering both precision and recall.

It is particularly suitable for imbalanced datasets as it balances the trade-off between false

positives and false negatives, ensuring that the model’s performance is accurately reflected

despite the uneven distribution of classes (He & Garcia, 2009). Subsequently, the F1-score

will be used to compare the model with the highest F1-score against the others, selecting the

one with the least significant difference and lower computational complexity in terms of

algorithmic performance.
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RESULTS AND DISCUSSION

A. Performance evaluation on the training set

Table 1. Average Performance Metrics for Different Model Configurations

Note. Conv1D:Convolutional 1D layer; FF: feed-forward; Metrics avg±std over ten folds;

F1-Score with * is the Wilcoxon pivot; Wilcoxon: test at α=0.05;

The results in Table 1 show that models integrating initial Conv1D layers and multiple

feed-forward Conv1D layers can achieve high classification performance across all metrics.

For instance, within the group with one Transformer block, the model featuring one initial

Conv1D layer and three feed-forward Conv1D layers achieved an F1-score of 0.964.

Similarly, in the group with two Transformer blocks, the model with two initial Conv1D

layers and three feed-forward Conv1D layers reached an F1-score of 0.969.

However, increasing the number of Transformer blocks from one to two did not lead to

substantial improvements in performance. While the two-block models achieved slightly

better results, the gain was minimal, as illustrated by the top F1-scores of 0.964 (one

Transformer block) and 0.969 (two Transformer blocks).
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To statistically assess performance differences between models, we conducted the

Wilcoxon signed-rank test with a significance level of p = 0.05. After applying the test, no

significant difference in performance was found between the top-performing models with one

and two Transformer blocks. Specifically, the model with one Transformer block, one initial

Conv1D layer, and one Conv1D layer in the feed-forward block did not show a statistically

significant difference compared to more complex architectures.

Given the lack of significant performance improvement and considering computational

efficiency, we selected this simpler model as our optimal architecture. Its reduced complexity

lowers computational cost, making it more suitable for practical applications without

compromising accuracy.

Figure 2. Average Loss Curves for the Selected Model (1 Transformer Block, 1 Initial

Conv1D Layer, 1 Conv1D Feed-Forward Layer) on the training set

The selected model's loss curves exhibit consistent optimization behavior, as shown in

Fig. 2. Both the training and validation loss curves display a general downward trend across

epochs, indicating effective learning. However, there are noticeable spikes in the validation

loss, particularly during the initial training epochs. These fluctuations are likely due to the
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imbalance in the dataset, which can cause temporary instability in the learning process.

Despite these spikes, the model demonstrates strong convergence as training progresses, with

both losses stabilizing effectively in later epochs. This behavior underscores the model's

capacity to generalize well, despite the challenges posed by the data imbalance.

B. Performance evaluation on the test set

To evaluate the generalization capability of the proposed model, we tested it on a

held-out test set comprising 20% of the dataset, which had been separated prior to the

cross-validation process. This approach ensures that the test set remains entirely unseen

during both training and validation, providing an unbiased assessment of the model’s

performance.

The selected model, configured as 1 Transformer Block, 1 Initial Conv1D Layer, and 1

Conv1D Feed-Forward Layer, was chosen based on its performance during training and

validation. During the training phase, the model with the lowest validation loss from each

fold was saved, resulting in multiple models across the folds. For the test evaluation, we

selected the model from the fold with the best overall validation metrics and applied it to the

test set.

Table 2. Performance Metrics of the Best Model from the Selected Architecture During

Training
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The evaluation results on the test set are summarized in Table 2. The model achieved an

F1-score of 0.965, along with consistent metrics across accuracy, precision, recall, and AUC.

These results are closely aligned with the training metrics reported in Table 1, reflecting the

model’s ability to generalize well to unseen data.

The consistency between the training and test metrics demonstrates the robustness of

the proposed model, highlighting its ability to maintain high classification performance

without overfitting. This level of generalization reinforces the model's suitability for

real-world applications, such as seismic signal monitoring and classification tasks, where

reliability on unseen data is critical.

Figure 3. Classification Visual Results of the Selected Model on the Test Set

As illustrated in Fig. 3, a sample of correctly and incorrectly classified signals is

presented. It is evident that the signals misclassified by the model share very similar shapes

and temporal structures, making them challenging to distinguish. This overlap in features
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contributes to the model's difficulty in accurately classifying these instances, underscoring the

complexity of the task.

C. State of art based comparison

The performance of the proposed Transformer-based model is evaluated alongside

state-of-the-art methods for seismic signal classification, as summarized in Table 3.

Table 3. Performance Metrics of the Best Model from the Selected Architecture During

Training

Note. ACC - accuracy; *values rounded to the closest integer

Although a direct statistical comparison with certain existing methods, such as those

presented in (Rinaldi et al., 2022), is not feasible due to varying experimental conditions, we

have compared our model based on the accuracy (ACC) scores reported in other studies, as

shown in Table 3.

As observed, the proposed Transformer based model achieves an accuracy of 96%,

which is on par with or exceeds many existing models in the literature. Models such as ANN

and Linear SVM (Lara-Cueva et al., 2016; Curilem et al., 2009; Pérez et al., 2020; Duque et

al., 2020) have achieved high accuracies around 94-97%, while traditional methods like
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HMM (Benítez et al., 2007), GMM (Venegas et al., 2019) and CNN-based (Salazar et al.,

2020; Calderón et al., 2020) achieved similar accuracies.

The proposed model demonstrates robust performance within the range of

state-of-the-art methods, indicating its effectiveness in accurately classifying volcanic seismic

events

Table 3 highlights the comparative performance of the proposed model and

state-of-the-art methods. Notably, the Transformer-based model achieves similar or superior

performance on a smaller labeled dataset, emphasizing its effectiveness in learning complex

temporal and spatial patterns from limited data
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CONCLUSIONS AND FUTURE WORK

In conclusion, we developed a model that effectively combines transformer

architectures with the feature extraction capabilities of CNNs to classify volcanic seismic

signals. By experimenting with different configurations, we identified a setup that achieved

high performance, with a F1-score of 96.5% and an AUC of 97.9%. The use of k-fold

cross-validation confirmed the robustness and generalizability of the model across different

data partitions. The results demonstrate that integrating transformers enhances the capture of

temporal dependencies, making it possible to analyze seismic signals directly from their raw

form. This direct utilization of unprocessed input data reduces the need for extensive feature

extraction and complex preprocessing steps, ultimately decreasing computational overhead

and potentially improving the model’s adaptability to various conditions

Future work will focus on incorporating additional layers for sequential analysis to

further improve the model's ability to capture complex temporal patterns.Exploring more

attention mechanism and larger datasets may enhance performance and generalization.

Implementing this model in real-time monitoring systems will be a significant step towards

practical application in volcanic activity surveillance.
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