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RESUMEN 

Esta investigación examina la modelización predictiva para abordar los retos de la 

deserción estudiantil y la matriculación en las instituciones de educación superior (IES), 

utilizando datos de una IES ecuatoriana. Se analizan 2.464 estudiantes para la predicción de 

abandono y 2.671 solicitantes para la predicción de matrícula, cubriendo varios años 

académicos e incorporando variables académicas, demográficas y económicas. Guiado por la 

metodología CRISP-DM, el estudio emplea algoritmos de aprendizaje automático como 

Regresión Logística, Máquinas de Vectores Soporte, Random Forest, XGBoost y Redes 

Neuronales Artificiales.  

El desequilibrio de clases se gestiona mediante técnicas como SMOTE y Random 

Under-Sampling, que garantizan conjuntos de datos equilibrados. XGBoost combinado con 

SMOTE logró la mayor precisión en la predicción del abandono (96%), mientras que la 

regresión logística destacó en la predicción de la matriculación (98%). Los principales factores 

de predicción del abandono son las ayudas económicas, el rendimiento académico y el 

programa de estudios, mientras que los factores de predicción de la matriculación se centran 

en la edad, el año de admisión, las calificaciones de los exámenes y el coste de la matrícula. El 

estudio subraya la importancia de la interpretabilidad de los modelos para obtener información 

práctica que ayude a las IES a tomar decisiones estratégicas para mejorar la retención y la 

captación de estudiantes. 

Palabras clave: Abandono estudiantil, Matriculación estudiantil, Instituciones de enseñanza 

superior, Aprendizaje automático, Modelización predictiva, Metodología CRISP-DM, Minería 

de datos, Logística, Regresión, XGBoost, SMOTE, Preparación de datos, Interpretabilidad de 

modelos.  
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ABSTRACT 

This research examines predictive modeling to address student dropout and enrollment 

challenges in higher education institutions (HEIs), using data from an Ecuadorian HEI. It 

analyzes 2,464 students for dropout prediction and 2,671 applicants for enrollment forecasting, 

covering various academic years and incorporating academic, demographic, and economic 

variables. Guided by the CRISP-DM methodology, the study employs machine learning 

algorithms like Logistic Regression, Support Vector Machines, Random Forest, XGBoost, and 

Artificial Neural Networks.  

Class imbalance is managed through techniques like SMOTE and Random Under-

Sampling, ensuring balanced datasets. XGBoost combined with SMOTE achieved the highest 

dropout prediction accuracy (96%), while Logistic Regression excelled in enrollment 

prediction (98%). Key dropout predictors include financial aid, academic performance, and 

program of study, while enrollment predictors focus on age, admission year, exam scores, and 

tuition costs. The study highlights the importance of model interpretability for actionable 

insights, supporting strategic decision-making in HEIs to enhance student retention and 

recruitment. 

Key words: Student dropout, Student enrollment, Higher education institutions, Machine 

learning, Predictive modeling, CRISP-DM methodology,  Data mining, Logistic, Regression, 

XGBoost, SMOTE, Data preparation, Model interpretability. 
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INTRODUCTION 

Student dropout and enrollment are two pivotal challenges confronting higher 

education institutions (HEIs), with profound implications for institutional performance and 

student success. Dropout rates reflect not only the academic and social integration of students 

but also broader socioeconomic factors. Similarly, enrollment trends are shaped by complex 

dynamics, including financial constraints, institutional reputation, and students' career 

aspirations. Understanding these factors and predicting their outcomes is vital for HEIs to 

optimize resource allocation, develop targeted interventions, and enhance overall student 

engagement. This study leverages machine learning techniques to address these challenges. 

Traditional statistical methods have provided foundational insights, but the advent of data-

driven approaches, such as machine learning, allows for more nuanced and accurate 

predictions. By applying models like Logistic Regression, Random Forest, and XGBoost, this 

research aims to predict student dropout and enrollment patterns effectively. The study also 

emphasizes the interpretability of these models, ensuring that the insights derived can inform 

actionable strategies. The research follows the CRISP-DM methodology, a structured approach 

that guides the entire data mining process, from understanding the business problem to 

deploying predictive models. 
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LITERATURE REVIEW 

Concepts 

Dropout  

To comprehensively understand the phenomenon of student dropout and the factors 

contributing to it, it is crucial to first define the concept of dropout, particularly in the context 

of Higher Education Institutions (HEIs). According to Kehm et al., (2020), student attrition can 

be understood as the difference between retention rates and graduation rates, providing a 

quantitative measure of dropout. However, Søgaard et al., (2013) argue that the term "student 

dropout" is frequently used to describe the situation in which a student withdraws from 

university without completing an academic degree. This concept, however, is multifaceted and 

open to various interpretations. 

In many cases, terms such as “withdraw”, “fail”, “incomplete”, or “not complete” are 

used as synonyms for student dropout (Behr et al., 2020). The term “withdraw” generally 

suggests a voluntary dropout. This decision is a disadvantageous action motivated by various 

causes, such as transfer to another university, career changes, attractive job offers, personal or 

family economic problems, as well as personal problems (Nicoletti, 2019). On the other hand, 

the terms “failing”, “incomplete” or “not finishing” are more associated with involuntary 

dropout, classified as “non-voluntary” (Nicoletti, 2019). This type of dropout may be related 

to insufficient academic integration, which manifests itself, for example, in obtaining low 

grades or in the perception that the HEI does not meet the student's academic expectations. 

There are various theoretical perspectives on student dropout, from which several 

theoretical models have been developed for its study. These theoretical models are divided into 

four main orientations: sociological, psychological, economic and phase models (Behr et al., 
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2020; Guzmán et al., 2021). Sociological models emphasize the importance of student social 

and academic integration (Nordmann et al., 2019). Psychological models focus on student 

behavior and attitudes in the dropout process (Korhonen et al., 2019). Economic models 

emphasize rational and logical decision making, considering the cost-benefit analysis of 

leaving HEI (Jüttler, 2020). Finally, phase models combine two or more of the above 

orientations (Aina et al., 2022). 

It is important to note that the aforementioned authors classify the factors according to 

their own criteria, since there is no standardization in this field. Likewise, the same factor may 

be present in two or more categories, depending on the focus of the study. The categories used 

by these authors to classify the factors leading to student dropout are presented in Table 16, 

which provides an overview of the estudies between 2020 and 2024 as can be seen in Appendix 

A. 

Enrollment 

The landscape of higher education institutions (HEIs) is undergoing significant 

transformation due to factors such as heightened competition among institutions, rapid 

economic changes, and evolving demands for professional skills. This dynamic environment 

presents considerable challenges for students, particularly those in their final year of secondary 

education, as they navigate the complex process of selecting a suitable HEI (Ab Ghani et al., 

2019). Traditionally, universities have employed two primary methods to manage student 

enrollment: (1) direct communication with prospective students to confirm their intent to 

enroll, and (2) verification of enrollment through payment status checks . However, these 

conventional approaches are increasingly inadequate in addressing the complexities of modern 

student recruitment and enrollment (L. Yang et al., 2021). A limited number of HEIs have 



15 

 

 

shown interest in delving deeper into the motivations behind students' choices to pursue higher 

education and in forecasting enrollment numbers. Gaining insights into these motivations 

enables institutions to make strategic decisions, such as introducing new academic programs 

and optimizing the allocation of internal resources, thereby enhancing their appeal to 

prospective students (Bousnguar et al., 2022). 

Student commitment within an educational environment encompasses a combination 

of cognitive, emotional, and behavioral components (Fredricks et al., 2004). Cognitive 

engagement refers to the student's efforts toward their education, including goal-setting and 

belief in the value of the HEI. Emotional engagement involves the student's sense of belonging 

and identification with the HEI, while behavioral engagement pertains to actions such as 

attendance and adherence to institutional rules (Christenson & Reschly, 2008; Reschly & 

Christenson, 2012). Academic engagement has been consistently identified as a critical factor 

in academic success, influencing students from elementary and middle school through to their 

selection of postsecondary education (Abbott‐Chapman et al., 2014). 

Approach to the problem 

Early studies have used traditional statistical methods to help institutions understand 

the reasons behind student dropouts and identify those at risk of leaving (Berger & Milem, 

1999; Forsman et al., 2015). Similarly, these methods have been applied to understand why 

applicants choose to enroll and to predict which applicants may be at risk of not enrolling 

(Mayer-Foulkes, 2002; Popov, 2019). Numerous studies have developed statistical models to 

identify the causal factors influencing both student dropout and enrollment (Burtner, 2005; Lee 

& Choi, 2013). Beyond the traditional literature on the topic, recent years have seen a growing 
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emphasis on analytical studies employing machine learning and data mining techniques 

(Álvarez-Pérez et al., 2024; Diaz Lema et al., 2024; Loder, 2024a; Oztekin, 2016). 

Machine Learning 

Machine Learning refers to the improvement of a computer program's performance over 

time as it gains experience with respect to specific tasks or performance measures (Jordan & 

Mitchell, 2015). The primary goal is to automate the process of building analytical models 

capable of performing cognitive tasks such as object detection, entity classification, or natural 

language translation (Z. H. Zhou, 2021). This is achieved through the application of algorithms 

that iteratively learn from training data related to the problem at hand (Bishop & Nasrabadi, 

2006). Machine learning is particularly effective for tasks involving high-dimensional data, 

such as classification, regression, and clustering, due to its ability to learn from past 

computations and extract patterns from large datasets, this enables the generation of reliable 

and repeatable decisions (Janiesch et al., 2021). Depending on the problem and the available 

data, there are three types of Machine Learning: (1) supervised learning, (2) unsuperviserd 

learning and (3) reinforcement learning (Morales & Escalante, 2022). 

Supervised learning, unsuperviserd learning and reinforcement learning 

Supervised learning requires a training dataset that includes both input examples and 

corresponding labeled responses or target values for the output. The input-output pairs from 

the training set are used to calibrate the open parameters of the machine learning model 

(Morales & Escalante, 2022). Once the model has been successfully trained, it can predict the 

target variable from new or unseen input features (X). Within supervised learning, two types 

of problems are commonly distinguished: regression, where the goal is to predict a numerical 
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value, and classification, which involves categorizing input data into predefined classes 

(Tiwari, 2022). 

Unsupervised learning occurs when the learning system is tasked with detecting 

patterns without the guidance of pre-existing labels or specifications (Morales & Escalante, 

2022). In this approach, the training data consist solely of input variables (X), and the objective 

is to discover structural information of interest. This may involve identifying groups of 

elements that share common properties (a process known as clustering) or generating data 

representations that project from a high-dimensional space to a lower-dimensional space 

(referred to as dimensionality reduction) (Naeem et al., 2023).  

In a reinforcement learning system, instead of providing input-output pairs, the current 

state of the system is described, a goal is specified, and a list of allowed actions along with 

their environmental constraints is provided. The machine learning model then learns through 

its own experience by applying the trial-and-error principle, aiming to reach the goal by 

maximizing a reward (Morales & Escalante, 2022; Silver et al., 2018). 

Machine Learningn Algorithms 

Depending on the learning task, the field offers several categories of algorithms, which 

can be broadly classified into machine learning, artificial neural networks, and deep neural 

networks, each with multiple specifications and variants, as can be seen in figure 1 in appendix 

B (Janiesch et al., 2021). 

The family of artificial neural networks is of particular interest due to its flexible 

structure, which allows for adaptation across a wide range of contexts within all three types of 

machine learning. Inspired by the principles of information processing in biological systems, 

artificial neural networks consist of mathematical representations of interconnected processing 
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units known as artificial neurons. Similar to synapses in the brain, each connection between 

neurons transmits signals, the strength of which can be amplified or attenuated by a weight that 

is continuously adjusted throughout the learning process (Abdolrasol, Suhail Hussain, et al., 

2021). 

Deep neural networks typically consist of multiple hidden layers, arranged in deeply 

nested network architectures. In contrast to simpler artificial neural networks, deep neural 

networks often incorporate more advanced neurons. These neurons can perform complex 

operations or utilize multiple activation functions, rather than relying on a single activation 

function (Borisov et al., 2024). 

Determining factors, models and interpretability 

Dropout 

Phan et al., (2023) identify three key aspects fundamental to the development of 

predictive models for understanding student dropout. These include: (1) the input data, (2) the 

models employed, and (3) the interpretability of the predictions generated by these models. 

This study rovides an overview of the literature reviewed from 2020 to 2024 concerning these 

three dimensions. 

The input data typically encompass several categories, as outlined above, and are 

generally derived from structured data sources collected by HEIs. Common categories within 

these data sets include academic performance, student background, and socioeconomic status 

(Behr et al., 2020). The Academic Performance category includes detailed academic 

information such as the student's identification, the program in which they are enrolled, the 

year of entry into the university, any transfers from other institutions, entrance exam scores, 

subjects taken, highest grades obtained in those subjects, overall grade point average (GPA), 
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admission format, among other relevant details (Delen et al., 2020; Kemper et al., 2020; 

Martins et al., 2023; Santos et al., 2024). This data is collected throughout all semesters in 

which the student remains active at the HEI. Delen et al., (2020) found that students with a 

GPA equivalent to an A have a 7.3% probability of dropping out, while those with a GPA 

equivalent to an F face a dropout probability of 87.8%. In a comparative study, Diaz Lema et 

al., (2024) determined that students who earn fewer than 10 academic credits in their first 

semester, and fewer than 40 credits in their second semester, have a higher likelihood of 

dropping out. Similarly, Kemper et al., (2020) reported that the likelihood of a student deciding 

to drop out increases the longer they delay the decision, with the highest dropout rates occurring 

during the 1st and 2nd semesters. The Student Background category includes 

sociodemographic information such as age, gender, province of origin, marital status, ethnicity, 

family situation, and employment status . This data is typically collected when a student first 

enters the HEI and generally remains stable throughout their academic journey (Diaz Lema et 

al., 2024; Phan et al., 2023; Realinho et al., 2022; Segura et al., 2022). Santos et al., (2024) 

found that the average dropout rate for women is 8.81% higher than for men, taking into 

account the geographic region in which they reside. Matz et al. (2023) demonstrated that 

ethnicity is a significant factor, with students of African descent showing a higher likelihood 

of dropout. Additionally, Kemper et al., (2020)concluded that older students tend to exhibit 

higher dropout rates. The Economic Situation category includes socioeconomic information 

such as access to financial aid, scholarships, the percentage of scholarship coverage, and the 

economic conditions of both the family and the country (Barramuño et al., 2022; Matz et al., 

2023; Olaya et al., 2020; Realinho et al., 2022). This data is collected by the HEI throughout 

all semesters during which the student remains active. Realinho et al., (2022) assert that the 
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availability of financial aid, scholarships, and family income levels significantly influence the 

likelihood of student dropout. 

The models employed shows that Random Forest emerges as the most frequently used 

model, appearing in 13.4% of the reviewed studies, followed closely by Logistic Regression at 

12.4%. It is important to note that Logistic Regression has demonstrated the most robust 

predictive performance in several cases. In particular, models such as Artificial Neural 

Networks (ANN), Bayesian Optimization, Random Forest, and Support Vector Machines 

(SVM) have achieved high levels of accuracy when predicting student dropout using datasets 

collected from student surveys over a 10-year period, with reported accuracies of 99% and 93% 

(Jiménez-Gutiérrez et al., 2024). Ensemble models, which combine multiple algorithms, tend 

to outperform individual models. For example, an ensemble model comprising Gradient 

Boosting, Random Forest, and SVM achieved accuracy rates ranging from 90% to 88%, 

whereas individual models exhibited accuracy rates between 79% and 88%. It is important to 

consider that the datasets used for these tests were assembled for each evaluation, and four 

different datasets were generated (Fernandez-Garcia et al., 2021). Notably, many previous 

studies have grouped students into a single, homogeneous cohort, predicting dropout behavior 

on a global level, rather than segmenting students into distinct groups for more targeted 

predictions. The various models used by authors in predicting student dropout are summarized 

in Table 17, which provides an overview of the literature reviewed between 2020 and 2024 as 

can be senn in Appendix C.  

The interpretability of prediction models is a critical factor in making informed 

decisions for managing student dropout, particularly from the perspective of data scientists. 

This interpretability is not inherently tied to a mathematical formula, but rather depends on the 

ability of human beings to understand and contextualize the algorithm's recommendations. 
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Interpretability is defined as the extent to which a human can comprehend the rationale behind 

an algorithm's decision and can be categorized into two types: global interpretability and 

segmental interpretability (Phan et al., 2023). It is important to highlight that many prior studies 

have treated students as a single, homogeneous cohort, making predictions at a global level. 

However, this approach may overlook the potential for more accurate predictions through 

segmentation, where students are grouped into distinct categories, allowing for more targeted 

and tailored dropout predictions. 

Enrollment 

In this literature review on student enrollment, we adopt the three key aspects outlined 

by Phan et al., (2023): (1) input data, (2) the models employed, and (3) the interpretability of 

the predictions generated by these models. This study presents an overview of the literature 

reviewed from 2019 to 2023 concerning these three dimensions. 

Input data generally encompass multiple categories, as previously mentioned, and are 

typically derived from structured data sources collected by HEIs. Common categories within 

these datasets include personal status, financial status, and institutional status (Ab Ghani et al., 

2019). The personal status category inclufes detailed information about the student such as 

age, gender, province of origin, ethnicity and family situation. This data is typically collected 

when a student first enters the HEI (Fernández-García et al., 2020; Fraysier et al., 2020; Ujkani 

et al., 2021). Fraysier et al., (2020) found that the average enorollment rate for women is 2.5% 

lower than for men, taking into account the geographic region in which they reside. The 

financial status category includes socioeconomic information such as access to financial aid, 

scholarships, and the economic conditions of both the family and the country. . This data is 

typically collected when a student first enters the HEI (Akmanchi et al., 2023; Goldhaber et 
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al., 2019; Nita et al., 2022). The more financial aid, scholarship percentage or economic 

stability the family has, the higher the probability that the student will enroll (Nita et al., 2022). 

Te institutional statuts category includes includes detailed academic information such as the 

program in which they want to be enrolled, the year of entry into the university, entrance exam 

scores, high school overall grade point average (GPA), admission format, among other relevant 

details. This data is collected when the student applies to the HEI (Ab Ghani et al., 2019; 

Alyahyan & Düştegör, 2020; Goldhaber et al., 2019). The probability of a student enrolling in 

a HEI increases with a higher high school GPA and a stronger performance on the entrance 

exam (Waldrop et al., 2019). 

The algorithms employed for predicting student enrollment have varied across studies, 

with certain models demonstrating higher predictive accuracy than others. The literature review 

conducted in this study identifies Random Forest and Decision Trees as the most frequently 

used algorithms, both of which have consistently shown robust performance in several cases. 

In particular, Decision Trees, Random Forest, and BP Neural Networks were applied to 

datasets containing information from prospective HEI applicants. The data used for training 

spanned three years, while data from one additional year was used for testing. Among these, 

Random Forest emerged as the superior model, achieving an accuracy of 62.78% (S. Yang et 

al., 2020). In another study, despite the use of multiple algorithms, including Random Forest, 

Gradient Boosting Classifier, Logistic Regression, Support Vector Machines, k-Nearest 

Neighbors, and Multilayer Perceptron, Random Forest continued to outperform the others, 

yielding an accuracy rate of 81.89% (Fernández-García et al., 2020). Furthermore, when 

structured databases with 10-fold cross-validation were utilized, Decision Trees demonstrated 

exceptional robustness, achieving an accuracy of 90.2% (Ujkani et al., 2021). Table 18 
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provides a summary of the predictive models used in the literature between 2019 and 2023, as 

detailed in Appendix D.  

As with student dropout (Phan et al., 2023) rediction, the interpretability of models used 

for predicting student enrollment is not solely reliant on mathematical formulas but rather on 

the capacity of individuals to comprehend and contextualize the model's recommendations . 

This interpretability is crucial for ensuring that the insights generated by the models can be 

effectively applied in decision-making processes. Additionally, it is important to highlight that 

most studies treat students as a single homogeneous cohort, making predictions at a global 

level. This approach, while common, may overlook the potential benefits of segmenting 

students into distinct groups, which could lead to more accurate and targeted predictions. 

DEVELOPMENT OF THE SUBJECT 

Methodology 

CRISP – DM 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is an industry-

independent process model designed to guide data mining activities. This method, widely 

recognized for its effectiveness, has two key aspects: (1) as a methodology, it provides detailed 

descriptions of the phases of a project, outlining the tasks required in each phase and explaining 

how these phases interrelate; (2) as a process model, it offers a comprehensive overview of the 

data mining life cycle. The CRISP-DM methodology consists of six iterative phases, beginning 

with business understanding and culminating in deployment. Table 19 provides a concise 

summary of the core concepts, tasks, and outcomes associated with each of these phases as can 

be seen in Appendix E. (Schröer et al., 2021). 
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The CRISP-DM methodology, now over 20 years old, was initially developed with a 

focus on data mining as can be seen in Figure 2 in Appendix F. In contrast, contemporary data 

science places a greater emphasis on data itself and exploratory analysis. CRISP-DM was 

designed from a goal-oriented perspective, emphasizing the processes, tasks, and functions 

within those processes. In this approach, data is viewed as an essential component for achieving 

the objective, but not the central focus. In other words, within data mining, the process is the 

main focal point, whereas in modern data science, data takes precedence. With this shift in 

mind, the methodology applied in this study is CRISP-DM, but with a clear focus on objectives 

(Martinez-Plumed et al., 2021). As can be seen in figure 3 in appendix G the Data Science 

Trajectories (DST) map illustrates this perspective, with exploratory activities represented in 

the outer circle, goal-directed activities (such as CRISP-DM) in the inner circle, and data 

management activities at the core. Table 20 provides a concise summary of the core concepts, 

tasks, and outcomes associated with each of these phases as can be seen in appendix H. In this 

study, we applied the CRISP-DM methodology with a focus on objectives, detailing the actions 

undertaken in each phase, as presented in Table 21 in Appendix I. 

 

Machine Learning Models 

The goal of the higher education institution is to predict the number of students likely 

to drop out and those likely to enroll, in order to better allocate its resources and efforts (Klein 

et al., 2014; Loder, 2024b). Since this is a classification problem, where the probability of a 

student being classified into one class or another is also of interest, it is most appropriate to use 

supervised machine learning, as historical data that has already been classified is available 

(Jiang et al., 2020). The selection of models was based on a literature review, focusing on how 
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frequently they were identified as yielding the best results in analyses, as well as their strengths 

in addressing classification problems, as shown in Table 22 of Appendix J. The selected models 

are: 

• Logistic Regression. – This algorithm is a technique used for binary 

classification, where the sigmoid function maps input variables to a probability 

value between 0 and 1. The sigmoid function is a mathematical tool that 

transforms any real-valued input into a range bounded by 0 and 1, creating an 

S-shaped curve, known as the sigmoid or logistic function. The output of 

logistic regression is always constrained to fall within this range, ensuring the 

prediction represents a valid probability. A threshold value is then applied to 

determine the final classification: values above the threshold are classified as 1, 

while those below it are classified as 0 (Nusinovici et al., 2020). For more 

information about the algorithm see appendix K. 

• Support Vector Machine. – This algorithm distinguish between two classes by 

finding the optimal hyperplane that maximizes the margin between the closest 

data points from each class. The number of features in the input data determines 

whether the hyperplane is a line in a 2-D space or a plane in an n-dimensional 

space. Since multiple hyperplanes could potentially separate the classes, SVM 

aims to maximize the margin between the points to identify the best decision 

boundary. This approach helps the algorithm generalize well to new data, 

making accurate classification predictions. The lines adjacent to the optimal 

hyperplane are known as support vectors, as they pass through the data points 
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that define the maximal margin (Pisner & Schnyer, 2020; Valkenborg et al., 

2023). For more information about the algorithm see appendix L. 

• Random Forest. – This algorithm is a powerful tree-based learning technique 

in machine learning. It works by creating multiple Decision Trees during the 

training phase. Each tree is constructed using a random subset of the dataset and 

measures a random subset of features at each partition. This randomness 

introduces variability among individual trees, reducing the risk of overfitting 

and improving overall prediction performance (Rigatti, 2017). During 

prediction, the algorithm aggregates the results of all the trees—either by voting 

(for classification tasks) or by averaging (for regression tasks). This 

collaborative decision-making process, supported by multiple trees and their 

individual insights, yields stable and accurate results (Biau & Scornet, 2016). 

For more information about the algorithm see appendix M. 

• XGBoost. – This algorithm is considered the gold standard in ensemble 

learning, particularly in the realm of gradient-boosting algorithms. The model 

builds a series of weak learners sequentially, with each learner improving on the 

predictions of the previous one to produce a reliable and accurate predictive 

model. Fundamentally, XGBoost creates a strong predictive model by 

aggregating the predictions of several weak learners, typically decision trees. It 

employs a boosting technique, where each weak learner corrects the mistakes 

made by its predecessors, resulting in an extremely accurate ensemble model. 

The optimization method used (gradient) minimizes a cost function by 

iteratively adjusting the model’s parameters in response to the gradients of the 

errors (Wade, 2020). For more information about the algorithm see appendix N. 
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• Artificial Neural Network. – Artificial Neural Networks (ANNs) can be 

conceptualized as weighted, directed graphs arranged in layers. Each layer 

comprises multiple nodes that mimic the function of biological neurons in the 

human brain. These nodes are interconnected and equipped with activation 

functions. The first layer receives raw input signals from the external 

environment, similar to how the optic nerve processes visual information. 

Subsequent layers process the output from the previous layers, resembling the 

way neurons deeper in the brain receive signals from those closer to sensory 

input. The output at each node is referred to as its activation or node value. The 

final layer generates the system’s output. ANNs are mathematical models 

designed to learn and adapt from data (Abdolrasol, Hussain, et al., 2021). For 

more information about the algorithm see appendix O. 

Evaluation Metrics 

Performance Measure 

Performance measures are essential for assessing the effectiveness of models, 

particularly in quantifying their generalization capability. Each task presents distinct 

requirements, which are reflected in the chosen performance measures. Consequently, model 

quality is a relative concept that depends not only on the algorithm and the data but also on the 

specific requirements of the task at hand (Janiesch et al., 2021). In prediction problems, which 

align with the objectives of this project, we work with a dataset 𝐷 =

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚) where y represents the dependent variable and x represents the 

independent variable (Z. H. Zhou, 2021). Among the most commonly used and accurate 
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performance measures are accuracy, precision, F1-score, recall, the receiver operating 

characteristic (ROC) curve and Area Under the Curve (AUC) (Flach, 2019). 

The accuracy is the proportion of correctly classified samples. Given the dataset D, the 

accuracy defines as 𝑎𝑐𝑐(𝑓;𝐷) =
1

𝑚
∑ (𝑓(𝑥𝑖) ≠ 𝑦𝑖)
𝑚
𝑖=1 , for example in the dataset 50 students 

were classified while the model classified 45, that means it will have an accuracy of 90%.  (Z. 

H. Zhou, 2021). The precision indicates the proportion of predicted positives that are correctly 

classified. In the context of this study, the precision metric helps determine, from the predicted 

number of students who are expected to dropout or enroll, how many were misclassified as 

dropouts or enrolls when they did not, in fact, drop out or enroll. Precision can defines as 𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 where TP represents true positives and FP represents false positives (Fernandez-Garcia 

et al., 2021). The recall indicates the proportion of actual positives that are correctly predicted 

as positives. In the context of this study, the recall metric determines how many students who 

dropped or enrolled out were correctly identified out of the total number of actual dropouts or 

enrolls. Alternatively, it can be viewed as the number of students who dropped out or enroll 

but were not identified by the model. Recall can defines as 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 where TP represents 

true positives and FN represents false negatives (Gutiérrez-De-Rozas et al., 2022). The F1 

score measures a model's accuracy. It combines the precision and recall scores of a model. This 

metric computes how many times a model made a correct prediction across the entire dataset. 

F1 score can defines as 𝐹1 =
2×𝑃×𝑅

𝑃+𝑅
 (Chicco & Jurman, 2020). The ROC curve is a probability 

curve, while the AUC measures the degree of separability between classes. A higher AUC 

indicates the model's enhanced ability to distinguish between different classes. In simpler 
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terms, a higher AUC reflects better model performance in correctly predicting class 0 as 0 and 

class 1 as 1 (Z. H. Zhou, 2021). 

Modeling 

Unbalanced dataset 

The defining feature of an unbalanced dataset is class imbalance, which occurs when 

certain data streams, especially those with fewer instances or lower priority, are overlooked in 

real-world problems (Wang et al., 2021). Typically, minority class instances are labeled as 

positive, while majority class instances are labeled as negative. This imbalance poses a 

significant challenge, as minority class instances are often under-represented. As a result, even 

if the overall classification model achieves high accuracy, its performance on the minority class 

may be poor (Li et al., 2018).  

When the minority class is especially important, special attention must be paid to ensure 

that it is accurately represented and predicted to solve this problem three techniques were 

implemented to balance the database: 

• ClassWeight. – The class_weight parameter automatically adjusts weights 

inversely proportional to the class frequencies in the input data, helping to 

balance the model’s attention across different classes (Bakirarar & Elhan, 

2023). 

• Syntetic Minority Over-sampling Technique (SMOTE). – This method 

creates synthetic samples by connecting existing minority class samples to their 

nearest neighbors in the feature space. The algorithm selects one of the k nearest 

neighbors at random and introduces a slight perturbation to the feature vector 

between the original sample and the neighbor. This generates new synthetic 
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samples that resemble the minority class but are not exact duplicates of any 

existing data points (Pradipta et al., 2021). 

• Random Under Samppler. – This method removes instances from the majority 

class. By reducing the number of majority class samples, the dataset becomes 

more balanced, improving the model's ability to learn from both classes equally 

(Hasanin & Khoshgoftaar, 2018). 

Hyperparameters 

Many parameters of machine learning algorithms are learned during training. However, 

most modern machine learning algorithms also have hyperparameters that are external 

configuration variables that must be set before training begins. Hyperparameters manage the 

training process and can be defined manually before training the model. The performance of 

an algorithm often depends on how well configured its hyperparameters are for a given task 

(Probst et al., 2018; Weerts et al., 2020). 

Hyperparameter tuning requires defining a search space, which includes the 

hyperparameters and their possible ranges. This process is computationally expensive, 

especially as the search space expands. Currently, there is no definitive evidence on which 

hyperparameters are crucial for tuning or which ones yield comparable performance when set 

to reasonable default values (van Rijn & Hutter, 2018; Weerts et al., 2020). 

Grid Search 

Grid search is a brute-force method used to identify the optimal set of hyperparameters. 

It involves generating all possible combinations of hyperparameters, training the model with 

each combination, and selecting the one that yields the best results. While grid search is a 

reliable way to find the optimal configuration, it has significant drawbacks. As the number of 
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hyperparameters and their possible values increases, the required computational power and 

processing time grow exponentially, making the process resource-intensive (Agrawal, 2021; 

Pirjatullah et al., 2021). 

Principal component analysis 

Principal Component Analysis (PCA) is a multivariate statistical technique that 

consolidates information from multiple observed variables into a smaller set of variables called 

principal components (PCs). The total variance of the original variables measures the 

information retained, with PCs designed to capture most of that variance. The geometric 

properties of PCs enable a structured and intuitive interpretation of the key features within a 

complex multivariate data set (Greenacre et al., 2022). PCA's primary objective is to optimize 

the variance while reducing the dimensionality of the feature space. As an unsupervised 

learning method, PCA helps simplify data without losing essential information (Salih Hasan & 

Abdulazeez, 2021). 

Interpretability 

Global interpretability provides an overarching view of model predictions across all 

observations, offering insights into the model's structure or internal statistics. This type of 

interpretation is applicable to all prediction models. In contrast, segmental interpretability 

focuses on specific groups within the data, revealing characteristics that may not be evident at 

the global level. Whether segmental interpretation is possible depends on the model's ability to 

create and analyze distinct segments (Gunning et al., 2019). 

RESEARCH PROCEDURE 

Difficult of gathering the data 
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To effectively implement a predictive model, a substantial amount of data is required. 

HEIs generate significant volumes of data related to student performance and background. 

When utilized properly, this data can provide valuable insights to inform decision-making in a 

timely manner. However, a key challenge arises from the fact that, in many instances, HEIs 

either do not store the data adequately, fail to collect comprehensive datasets, or collect data 

solely for specific, immediate purposes. Even when data is collected for necessary purposes, 

sharing it must adhere to strict security protocols, particularly in compliance with data 

protection regulations. While these regulations are essential for ensuring privacy, they can also 

complicate the process of accessing and sharing data for broader predictive analysis 

(Fernández-García et al., 2020). 

Dropout 

Data Understanding 

In this study, we analyzed real data from 2,464 students, provided by a leading higher 

education institution (HEI) in Ecuador. The dataset spans four consecutive academic years 

(2020 to 2024) and includes students from three faculties across 12 academic programs. The 

database comprises 164,446 records and 35 variables, categorized into 17 categorical and 18 

numerical variables. The data encompass information about students' sociodemographic 

characteristics, grouped into three categories: Academic Performance, Student Background, 

and Economic Situation, as detailed in Table 23 of Appendix P. 

Data Value Exploration 

392 students (15.91%) dropped out of the IES from the 2,464, while 2,072 (84.09%) 

remain actively enrolled. Among these students, 850 are enrolled in the Medicine program, 

making it the largest program in the dataset, followed by Dentistry with 415 students. 
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Additionally, there are 1,544 female students and 920 male students. This gender disparity 

becomes more significant when considering that male students have a 2.54% higher dropout 

rate compared to female students. Furthermore, the risk of dropout increases as the student's 

age increases, regardless of their GPA. However, when GPA is combined with the number of 

credits taken, the data shows that students with higher GPAs and more credits taken have a 

lower probability of dropping out, as detailed in Figures of Appendix Q. 

Data Preparation 

The data treatment process involves several steps. First, all duplicate values in the 

database are removed, meaning any identical records are eliminated. Second, missing values 

are either eliminated or imputed using the mean, depending on the specific variable. Third, 

outliers observations that differ significantly from others are removed, as their small number 

does not significantly affect the dataset. Finally, all categorical variables are converted into 

dummy variables for further analysis. (Ilyas & Chu, 2019; Oluleye, 2023; Sahoo* et al., 2019). 

Resulting in a dataset of 2464 entries and 26 variables. As detailed in Table 24 in Appendix R. 

Enrollment 

Data Understanding 

In this study, we analyzed real data from 2,671 students, provided by a leading higher 

education institution (HEI) in Ecuador. The dataset spans three consecutive academic years 

(2021 to 2023) and includes student applicants from three faculties across 12 academic 

programs. The database consists of 2671 records and 19 variables, classified into 8 categorical 

and 11 numerical variables. The data covers information on the sociodemographic 

characteristics of the students, grouped into three categories: academic performance, student 

background, and economic status, as detailed in Table 25 in Appendix S. 
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Data Value Exploration 

Out of 2,671 student applicants, 1,528 (57.2%) did not complete their enrollment at the 

IES, while 1,143 (42.8%) chose to enroll. Among these, 1,460 applied for the Medicine 

program, making it the most sought-after field, followed by Dentistry with 404 applicants. The 

majority of applicants were female, with 1,821 female and 848 male applicants. Despite this, a 

higher percentage of male applicants enrolled (48.34% compared to 40.14% of females). 

However, the overall number of female applicants remains significantly higher. Additionally, 

students with a higher grade point average (GPA) and strong entrance exam scores were more 

likely to enroll, likely due to the additional benefits offered by the IES. Even minimal financial 

aid appeared to increase the likelihood of enrollment, as shown in the figures in Appendix T. 

Data Preparation 

The data treatment process involves several steps. First, all duplicate values in the 

database are removed, meaning any identical records are eliminated. Second, missing values 

are either eliminated or imputed using the mean, depending on the specific variable. Third, 

outliers observations that differ significantly from others are removed, as their small number 

does not significantly affect the dataset. Finally, all categorical variables are converted into 

dummy variables for further analysis. (Ilyas & Chu, 2019; Oluleye, 2023; Sahoo* et al., 2019). 

Resulting in a dataset of 2669 entries and 16 variables. As detailed in Table 26 in Appendix U. 

Modeling 

The following artificial intelligence algorithms were employed in this study: Logistic 

Regression, Support Vector Machine (SVM), Random Forest, XGBoost, and Feedforward 

Neural Network. Each algorithm was tested with data balanced using ClassWeight, SMOTE, 

and Random Under Sampler. Additionally, data normalization and the Get Dummies method 
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were applied. Once the datasets were prepared, the models were executed using Google Colab, 

generating 10 functional models—5 for the attrition dataset and 5 for the enrollment dataset. 

The datasets were initially divided into three subsets: training, validation, and test sets. 

Subsequently, the GridSearchCV function was used to identify the optimal hyperparameters 

from a predefined list, as detailed in Table 27, Appendix V. It is important to note that all 

processes—including dataset splitting, balancing, and model training—were conducted using 

a random seed 42 to ensure the experiment's reproducibility. The following insights were 

derived from these models. 

RESULTS AND DISCUSSION 

In this study, we evaluated the performance of five machine learning models: Logistic 

Regression, Support Vector Machine, Random Forest, XGBoost, and Feedforward Neural 

Networks. Categorical data in the dataset was transformed using the one-hot encoding 

(Dummies) method. Additionally, each model was trained on a balanced version of the dataset, 

resulting in four sets of performance metrics for each model. The goal of this evaluation is to 

identify the model that best predicts student dropout and enrollment, determining the most 

effective algorithm for each task. 

Dropout dataset 

Table 1                                                                                                                                 

Logistic Regression. 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.94 0.93 0.94 0.85 

Recall 0.80 0.83 0.83 0.85 

Precision 0.78 0.73 0.77 0.50 
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Table 2                                                                                                                                 

Support Vector Machine. 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.93 0.92 0.93 0.85 

Recall 0.77 0.77 0.78 0.86 

Precision 0.76 0.71 0.75 0.51 

 

Table 3                                                                                                                                 

Random Forest 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.89 0.90 0.91 0.91 

Recall 0.28 0.35 0.45 0.80 

Precision 0.98 0.97 0.97 0.70 

 

Table 4                                                                                                                                 

XGBoost. 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.94 0.94 0.96 0.90 

Recall 0.65 0.68 0.85 0.85 

Precision 0.98 0.94 0.90 0.62 

 

Table 5                                                                                                                                 

Feedforward Neural Network 

Evaluation Metrics No balancing SMOTE Random Under Sampler 

Accuracy 0.93 0.94 0.77 

Recall 0.55 0.74 0.86 

Precision 0.97 0.80 0.38 
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Table 6                                                                                                                                 

Selection of the best fitting model 

Evaluation 

Metrics 

Logistic 

Regression 

Support 

Vector 

Machine 

Random 

Forest 
XGBoost 

Feedforward 

Neural Network 

(FNN) 

Accuracy 0.94 0.93 0.91 0.96 0.94 

Recall 0.83 0.77 0.80 0.85 0.74 

Precision 0.77 0.76 0.70 0.90 0.80 

 

Once it was determined that the best-fitting model was XGBoost balanced with 

SMOTE, due to its superior evaluation metric values, the next step involved identifying the 

variables the model considered important for decision-making. It is important to note that PCA 

was applied to this dataset, meaning the most significant variables are denoted as principal 

components (PCs). The analysis then focused on identifying the factors comprising these 

principal components. 

Table 7                                                                                                                                 

Importance of the principal components of the best-fitting model 

Principal 

Component 
Importance 

PC24 0.029653 

PC72 0.020676 

PC30 0.020206 

PC16 0.020044 

PC10 0.019671 

PC817 0.015055 

PC9 0.014079 

PC253 0.012648 

PC163 0.011252 

PC5 0.010231 

 

Table 8                                                                                                                                 

Importance of the variables of the best-fitting model 

Variable Importance 
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tipo_ayuda_financiera_Beca 0.007222 

periodo_materia_202310_Introducción a la 

Economía 
0.007034 

periodo_materia_202230_PASEM FIN 

MAY 2024 
0.006204 

etnia_Otra 0.005930 

carrera_ingreso_Medicina 0.005230 

colegio_ingreso_Escuela de Medicina 0.005230 

periodo_materia_202010_Emprendimiento 0.004571 

periodo_materia_202320_Cosmos 0.004527 

periodo_materia_202120_Digestivo/Hepato-

Imagen 
0.004461 

periodo_materia_202120_Digestivo/Hepato-

Prácticas 
0.004461 

 

Enrolment dataset 

Table 9                                                                                                                                 

Logistic Regression. 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.98 0.97 0.96 0.96 

F1 - Score 0.98 0.97 0.98 0.96 

 

Table 10                                                                                                                                 

Support Vector Machine. 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.81 0.84 0.85 0.83 

F1 - Score 0.74 0.80 0.82 0.79 

 

Table 11                                                                                                                                 

Random Forest 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.93 0.93 0.94 0.93 

F1 - Score 0.92 0.92 0.93 0.92 
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Table 12                                                                                                                                 

XGBoost. 

Evaluation 

Metrics 

No 

balancing 
ClassWeight SMOTE 

Random Under 

Sampler 

Accuracy 0.95 0.94 0.94 0.95 

F1 - Score 0.94 0.94 0.94 0.95 

 

Table 13                                                                                                                                 

Feedforward Neural Network 

Evaluation Metrics No balancing SMOTE Random Under Sampler 

Accuracy 0.96 0.95 0.95 

F1 - Score 0.95 0.95 0.94 

 

Table 14                                                                                                                                 

Selection of the best fitting model 

Evaluation 

Metrics 

Logistic 

Regression 

Support 

Vector 

Machine 

Random 

Forest 
XGBoost 

Feedforward 

Neural Network 

(FNN) 

Accuracy 0.98 0.85 0.94 0.95 0.96 

F1 - Score 0.98 0.82 0.93 0.95 0.95 

 

After determining that the best-fitting model was Logistic Regression without 

balancing, based on its superior evaluation metrics, the next step was to identify the variables 

that the model deemed significant for decision-making. 

Table 15                                                                                                                                 

Importance of the variables of the best-fitting model 

Variable Coefficient 

Edad 5.6572 

año_academico_admision -0.5273 



40 

 

 

nota_examen_ingreso 0.0057 

costo_carrera_semestral -0.0013 

 

CONCLUSIONS 

The phase that required the most development time was undoubtedly the analysis phase, 

which involved understanding the business data and performing subsequent data cleansing. 

Most of the execution time was spent in this phase, resulting in a reliable and structured 

dataframe. It is important to note that the success or failure of projects of this nature largely 

depends on the quality of the data obtained for analysis. During the implementation of the 

algorithms, several challenges were encountered and addressed. One notable challenge was the 

execution of different algorithms. Despite using the same dataset for all tests, each algorithm 

operates differently, employs distinct methodologies for processing data, consumes varying 

hardware resources, and required independent development efforts for each implementation. 

The diversity of algorithms tested led to variations in their evaluation metrics. This is expected, 

given the differences in their operations, mathematical foundations, and input variable 

handling. As a result, each algorithm produced unique outcomes. 

From the results obtained, it was determined that the XGBoost algorithm best fit the 

data, achieving a performance score of 0.94 and a recall of 0.85 for the attrition dataset. For 

the enrollment dataset, Logistic Regression emerged as the best model, with a performance 

score of 0.98 and an F1 score of 0.98. These metrics represent acceptable values, considering 

the complexity of the datasets. 

For the dropout dataset, the model identified several important variables, including the 

type of financial assistance provided, particularly scholarships, and the student's chosen field 
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of study, with medicine being a significant factor. Additionally, the model highlighted the 

importance of specific courses, underscoring the need for a more in-depth evaluation at the 

faculty level. For the enrollment dataset, key variables included the student's age, emphasizing 

the importance of early enrollment, and the academic year of admission, indicating that the 

broader context of that year may influence students' decisions to enroll. Exam scores also 

played a crucial role, demonstrating that students with higher scores are more likely to enroll. 

Finally, the cost of tuition per semester was identified as a factor, suggesting that financial 

considerations may influence enrollment decisions. 

It is important to highlight certain limitations in the dataset, primarily related to how 

information is stored. For instance, some students are listed under an initial major they never 

actually pursued. Additionally, percentage updates related to tuition costs are not accurately 

maintained as tuition rates increase. Variables such as ethnicity and college of origin also 

present potential biases due to a significant amount of missing data, which the university has 

not consistently collected.  
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APPENDIX A: CATEGORIES DROPOUTS 

Table 16                                                                                                                                 

Categories used for the classification of student dropout factors 

Authors Categories 

(Álvarez-Pérez et al., 

2024) 

Individual Sociodemographics (student profile), academic profile 

and related to academic engagement. 

(Barramuño et al., 

2022) 
Personal profile, academic profile, Socioeconomic profile. 

(Chopra et al., 2021) Student, Institutional, Family, Community, Social Networks. 

(Dervenis et al., 

2022) 

Demographics, Socioeconomic, Academic Profile, Interpersonal 

Relationships, Psychological Profile. 

(Diaz Lema et al., 

2024) 

Student's personal profile, academic profile in school, academic 

profile in university. 

(Fernandez-Garcia et 

al., 2021) 
Personal and admission data, Qualifications, Scholarships. 

(Jiménez-Gutiérrez et 

al., 2024) 

Individual Sociodemographic (student profile), related to academic 

profile, basic services, work, etc. 

(Martins et al., 2023) 
Demographics, Socioeconomic, Academic profile, 

Macroeconomic, etc. 

(Matz et al., 2023) Individual Sociodemographic (student profile), Academic Profile. 

(Morelli et al., 2021) 
Psychological profile, Organizational profile University profile and 

related profiles 

(Nikolaidis et al., 

2022) 

Student-university, student-teacher interaction interests, student 

drop-out beliefs 

(Niyogisubizo et al., 

2022) 
Academic profile 

(Realinho et al., 

2022) 

Demographic, Socioeconomic, Academic Profile, Macroeconomic, 

Academic Profile 1st and 2nd Semester. 

(Rodríguez-Pineda et 

al., 2021) 

Academic profile, environmental, socio-economic and voational 

data. 

(Santos et al., 2024) 
Geographical location, related to the student's profile, related to the 

academic profile. 

(Segura et al., 2022) 
Career, field of study, gender, academic level, scholarship, type of 

scholarship, reason for admission. 

Singh & Alhulail, 

2022 
Personal profile, academic profile, Socioeconomic profile 

(Ujkani et al., 2022) Individual Sociodemographic (student profile), Academic Profile 

(Zong & Davis, 

2022) 

Institutional Achievement, Student Engagement, Academic 

Record, Student Finances, Academic Environment, Social 

Environment 
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APPENDIX B: VENN DIAGRAM OF MACHINE LEARNING CONCEPTS AND 

CLASSES 

Figure 1                                                                                                                                            

Venn diagram of machine learning concepts and classes (Janiesch et al., 2021) 
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APPENDIX C: ML, DL, ANN MODELS USED FOR DROPOUT 

Table 17                                                                                                                                                                                                                      

ML, DL, ANN models, types of data used and best model performance for dropout 

Authors Data Type ML/DL/NN Models Used Best Performing Model 

(Findeisen et al., 2024) Quantitative (survey) Logistic Regression, Decision Trees Logistic Regression 

(Phan et al., 2023) 
Textual data (from institutional 

sources) 

Support Vector Machines, Random 

Forest 
Support Vector Machines 

(Fernandez-Garcia et 

al., 2021) 
Academic performance data 

Gradient Boosting, Random Forest, 

Support Vector Machine 

Ensemble (Gradient Boosting + 

Random Forest + SVM) 

(Santos et al., 2024) Enrollment and academic records Decision Trees, Logistic Regression Logistic Regression 

(Torok & Angeli, 2022) 
Dual and non-dual student 

performance data 

Bayesian Networks, Logistic 

Regression, Decision Trees 
Decision Trees 

(Ujkani et al., 2022) Survey and academic records Logistic Regression, Random Forest Logistic Regression 

(Jiménez-Gutiérrez et 

al., 2024) 
Academic data 

Neural Networks, Support Vector 

Machines, Logistic Regression 
Neural Networks 

(Cardona et al., 2023) Retention-related institutional data 
Neural Networks, Decision Trees, 

SVM, Logistic Regression 
Support Vector Machines 

(Delen et al., 2020) Freshman student dropout data 
Bayesian Belief Networks, Logistic 

Regression, Decision Trees 
Bayesian Belief Network 

(Furini et al., 2021) Video lecture usage data KNN, Random Forest, Decision Tree Random Forest + KNN 

(Oppong, 2023) Various educational data sources 
Neural Networks, Decision Trees, 

Naive Bayes 
Neural Networks 

(Kocsis & Molnár, 

2024) 

Various data from academic 

performance 
Decision Trees, Logistic Regression Logistic Regression 
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(Diaz Lema et al., 

2024) 

High school metrics, academic 

performance 
GLM, Lasso, RF, Classification Trees Random Forest 

(Revathy et al., 2022) Survey data 

SMOTE, Logistic Regression, KNN, 

PCA 

KNN with PCA-SMOTE 

(Okoye et al., 2024) 
Student retention and academic 

performance data 
SVM, Decision Tree, MLP, RF SVM 

(Segura et al., 2022) Demographic and academic data Neural Networks, SVM, Decision Trees Neural Networks 

(Martins et al., 2023) 
Demographic, socio-economic, and 

academic data 

Random Forest, SMOTE, SVM, 

RusBoost 
SMOTE + Random Forest 

(Waheed et al., 2020) 
Big data from virtual learning 

environment 

Deep Learning Models, Logistic 

Regression, SVM 
Random Forest + Deep Learning 

(Delogu et al., 2024) Enrollment and institutional data RF, GBM, Neural Networks, LASSO Random Forest 

(Realinho et al., 2022) Institutional data Random Forest, KNN, SVM Random Forest + KNN 

(Niyogisubizo et al., 

2022) 
Institutional data 

Random Forest, Gradient Boosting, 

Decision Trees 
Random Forest + Gradient Boosting 

(Dervenis et al., 2022) Academic performance data KNN, Naive Bayes, Neural Networks Neural Networks 

(Singh & Alhulail, 

2022) 
Data from student-teachers Logistic Regression, Decision Trees Logistic Regression 

(Barramuño et al., 

2022) 
University student data KNN, Decision Trees, Neural Networks Random Forest + KNN 

(Prasanth & Alqahtani, 

2023) 
Academic performance data SVM, Random Forest SVM + Random Forest 

(Olaya et al., 2020) 
Socio-demographic characteristics and 

engagement 
SMOTE, Random Forest, XGBoost Random Forest 

(Matz et al., 2023) Institutional data Random Forest, XGBoost, GBM Random Forest + XGBoost 
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APPENDIX D: ML, DL, ANN MODELS USED FOR ENROLLMENT 

Table 18                                                                                                                                                                                                                      

ML, DL, ANN models, types of data used and best model performance for enrollment 

Authors Data Type Models Used Best Performing Model 

(Nita et al., 2022) Case study GAN-based models, Deep Learning ICGAN-DSVM algorithm 

(L. Yang et al., 2021) HEI data 
Decision Tree, Random Forest, BP 

Neural Network 
Random Forest 

(Ujkani et al., 2021) HEI data 
Naive Bayes, KNN, Decision Tree, 

Logistic Regression 
Decision Tree 

(Boumi & Vela, 2021) HEI data Hidden Markov Model Hidden Markov Model 

(S. Yang et al., 2020) HEI data 
WOASVR (Whale Optimization 

Algorithm Support Vector Regression) 
WOASVR 

(Ab Ghani et al., 2019) Case Study 
Logistic Regression, Decision Tree, 

Naïve Bayes 
Decision Tree 

(Fernández-García et al., 2020) HEI data 

Random Forest, Gradient Boosting 

Classifier, Logistic Regression, Support 

Vector Machine, k Nearest Neighbors, 

Multilayer Perceptron 

Random Forest 

(Hieu et al., 2020) Enrollment Forecasting Fuzzy Time Series Fuzzy Time Series 

(P, 2020) Enrollment Forecasting ARIMA ARIMA (0,2,1) 
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APPENDIX E: CRISP – DM PROCESS MODEL 

Table 19                                                                                                                                 

CRISP-DM process model descriptions (Wirth & Hipp, 2000) 

Phase Description 

Business 

Understanding 

In this phase, it is essential to obtain a comprehensive overview of the 

business current situation, including an assessment of the resources 

required and those already available. The primary objective of this phase 

is to clearly define the goal of the data mining process, specifying the type 

of data mining to be performed and the criteria for measuring its success. 

Additionally, it is crucial to establish a well-defined project plan to guide 

the subsequent steps. 

  

Data 

Understanding 

In this phase, the collection of data from its source, along with its 

exploration, description, and quality assessment, are critical tasks. 

Employing statistical analysis, determining relevant attributes, and 

ensuring proper data matching are essential steps to ensure the integrity 

and usefulness of the data. 

  

Data 

Preparation 

In this phase, data selection should be carried out by establishing clear 

inclusion and exclusion criteria. Poor-quality data can be addressed during 

the cleaning process. Based on the model defined in the initial phase, 

derived attributes should be constructed as needed. Various data cleansing 

techniques and model types can be applied to ensure the data is properly 

prepared to fit the chosen models. 

  

Modeling 

This phase involves selecting the appropriate modeling technique, 

constructing the test case, and developing the model. Any data mining 

technique may be utilized during this process. Specific parameters must 

be configured to build the model effectively. To evaluate the model's 

performance, it should be assessed against predefined evaluation criteria, 

with the best-performing models being selected for further analysis. 

  

Evaluation 

In this phase, the results are compared with the predefined objectives to 

ensure alignment. The outcomes must be carefully interpreted, and new 

actions should be defined based on these findings. Additionally, a 

comprehensive review of the entire process is necessary to ensure 

consistency and to identify areas for improvement. 

  

Deployment 

In this phase, a final report or software component must be produced, 

marking the deployment of the solution. Additionally, plans for 

monitoring and maintenance should be established to ensure the ongoing 

functionality and effectiveness of the implemented model. 
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APPENDIX F: CRISP – DM PROCESS MODEL OF DATA MINING 

Figure 2                                                                                                                                               

The CRISP-DM process model of data mining (Martinez-Plumed et al., 2021) 
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APPENDIX G: TRAJECTORY THROUGH A DATA SCIENCE PROJECT 

Figure 3                                                                                                                                      

Trajectory through a data science project (Martinez-Plumed et al., 2021) 
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APPENDIX H: CRISP-DM GOAL-DIRECTED 

Table 20                                                                                                                                 

CRISP-DM goal-directed (Martinez-Plumed et al., 2021) 

Phase Description 

Goal 

Exploration 

In this phase, the objectives of the project are defined, including the goals 

to be achieved and the specific characteristics of the project. A thorough 

understanding of the problem is essential, as it establishes the foundation 

for the subsequent phases of the process. 

  

Business 

Understanding 

In this phase, it is essential to obtain a comprehensive overview of the 

business current situation, including an assessment of the resources 

required and those already available. 

  

Data 

Understanding 

In this phase, data collection from its source, along with its exploration, 

description, and quality assessment, are critical tasks. Conducting 

statistical analysis, identifying relevant attributes, and ensuring proper 

data matching are essential steps to guarantee the integrity and usability of 

the data. 

  

Data Value 

Exploration 

This phase focuses on exploring how the data can generate value for the 

organization or the research being conducted. The goal is to identify key 

variables or data segments that are most likely to yield actionable insights 

and inform decision-making processes.  

  

Data 

Preparation 

In this phase, data selection should be carried out by establishing clear 

inclusion and exclusion criteria. This process involve cleaning, 

transforming, integrating, and structuring the data to ensure it is suitable 

for modeling. 

  

Modeling 

This phase involves selecting the appropriate modeling technique, 

constructing the test case, and developing the model. To evaluate the 

model's performance, it should be assessed against predefined evaluation 

criteria, with the best-performing models being selected for further 

analysis  

Evaluation 

In this phase, the results are compared with the predefined objectives to 

ensure alignment. The outcomes must be carefully interpreted, and new 

actions should be defined based on these findings. 

 

Product 

Exploration 

This phase refers to how data-driven insights or models can be applied to 

develop or enhance business. The findings from the proyect will inform to 

the people who make the decisions on what to improve or what path to 

take with respect to the project. 
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APPENDIX I: CRISP-DM GOAL-DIRECTED IN THE STUDY 

Table 21                                                                                                                                 

CRISP-DM goal-directed based on (Martinez-Plumed et al., 2021) for this study 

Phase Description 

Goal 

Exploration 

The objective of this project is to predict the probability of student 

desertion and enrollment in a Higher Education Institute using Machine 

Learning and Deep Learning models. The aim is to provide critical 

information that supports decision-making to reduce the desertion rate and 

increase the enrollment rate. Among the specific goals is the use of six 

different classification models to label students and identify which model 

best fits the data for future analyses. 

  

Business 

Understanding 

The HEI is aware and considers that its dropout rate is high and that the 

student enrollment rate could be improved, they are clear that they have a 

somewhat structured database since 2020. 

  

Data 

Understanding 

The data were collected by a designated department and subsequently 

anonymized to ensure confidentiality during utilization. Following this, 

data cleaning was performed according to the steps outlined by Brownlee 

in (2020), and an exploratory data analysis was conducted according to 

the steps detailed by Camizuli & Carranza in (2018). 

  

Data Value 

Exploration 

This phase focuses on exploring how the data can generate value for the 

organization or the research being conducted. The goal is to identify key 

variables or data segments that are most likely to yield actionable insights 

and inform decision-making processes.  

  

Data 

Preparation 

In this phase, data selection should be carried out by establishing clear 

inclusion and exclusion criteria. This process involve cleaning, 

transforming, integrating, and structuring the data to ensure it is suitable 

for modeling. 

  

Modeling 

This phase involves selecting the appropriate modeling technique, 

constructing the test case, and developing the model. To evaluate the 

model's performance, it should be assessed against predefined evaluation 

criteria, with the best-performing models being selected for further 

analysis 

  

Evaluation 

In this phase, the results are compared with the predefined objectives to 

ensure alignment. The outcomes must be carefully interpreted, and new 

actions should be defined based on these findings. 

 

Product 

Exploration 

This phase refers to how data-driven insights or models can be applied to 

develop or enhance business. The findings from the proyect will inform to 
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the people who make the decisions on what to improve or what path to 

take with respect to the project. 
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APPENDIX J: SUPERVISED MACHINE LEARNING ALGORITHM 

Table 22                                                                                                                                                                                                                      

Brief description of supervised machine learning models 

Algorithm Description Strengths Limitations Reference 

Naive Bayes 

 

Naïve Bayes belongs to a family 

of generative learning algorithms, 

meaning it models the distribution 

of inputs within a given class or 

category. Unlike discriminative 

classifiers, such as logistic 

regression, it does not focus on 

identifying the most important 

features for distinguishing 

between classes. 

 

Naïve Bayes assumes that the 

predictors are conditionally 

independent, meaning each 

feature is unrelated to the others 

in the model. It also assumes that 

all features contribute equally to 

the outcome. Although these 

assumptions are often violated in 

real-world scenarios (e.g., the 

likelihood of a word in an email 

Lower complexity: Is considered 

a simpler classifier compared to 

others, as its parameters are easier 

to estimate. 

 

  

 

Zero-frequency issue: This occurs 

when a categorical variable is 

absent from the training set. For 

example, if we attempt to 

estimate the maximum likelihood 

for the word "sir" in the class 

“spam,” but "sir" is not present in 

the training data, the likelihood 

would be zero. Since Naïve Bayes 

multiplies all conditional 

probabilities, this would result in 

a posterior probability of zero. To 

address this issue, techniques 

such as Laplace smoothing or 

discounting can be applied.  

(Hemachandran et al., 

2022) 

Good scalability: It is a fast and 

efficient classifier, offering high 

accuracy when the assumption of 

conditional independence is met. 

Additionally, it requires minimal 

storage. 

 

Unrealistic assumption of 

independence: Although the 

assumption of conditional 

independence often performs well 

in practice, it is not always 
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depends on the preceding word), 

they simplify classification 

problems, making them more 

computationally efficient.  

 

This simplification reduces the 

problem to calculating a single 

probability for each variable, 

which, in turn, facilitates model 

computation. It is based on Bayes' 

theorem, which can be expressed 

as: P(A│B)=(P(A│B)P(A))/P(B) 

 

  

 

  

satisfied, which can lead to 

incorrect classifications. 

Handles high-dimensional data: 

Naïve Bayes can effectively 

manage high-dimensional 

datasets, such as those 

encountered in document 

classification, where other 

classifiers might struggle. 

  

  

Linear 

discriminant 

analysis 

Linear Discriminant Analysis 

(LDA, also known as Normal 

Discriminant Analysis (NDA) or 

Discriminant Function Analysis 

(DFA), follows a generative 

model framework. This means 

LDA models the data distribution 

for each class and applies Bayes' 

theorem to classify new data 

points. Bayes' theorem calculates 

conditional probabilities—that is, 

the probability of an event given 

that another event has occurred. 

LDA uses this approach to predict 

Simplicity and computational 

efficiency: LDA is a 

straightforward yet powerful 

algorithm, making it easy to 

understand and implement, 

especially for those new to 

machine learning. Its efficient 

computation allows for quick 

results.  

Shared mean distributions: LDA 

faces difficulties when class 

distributions have the same mean. 

In such cases, it struggles to find 

a linear axis that effectively 

separates the classes, making it 

less effective at distinguishing 

between groups with overlapping 

statistical properties.  

 

 

 

 

(Tharwat et al., 2017) 

Effective in high-dimensional 

spaces: LDA performs well when 

the number of features exceeds 

the number of training samples. 

This makes it particularly 

valuable in applications such as 

Limited to labeled data: LDA is a 

supervised learning algorithm, 

meaning it requires labeled data 

for classification or separation. In 

contrast, Principal Component 

Analysis (PCA), another 
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the likelihood that a given input 

belongs to a specific class. 

 

LDA identifies a linear 

combination of features that best 

separates or distinguishes two or 

more classes. It achieves this by 

projecting data from a higher-

dimensional space onto a single 

dimension, making classification 

simpler and more effective. 

 

  

text analysis, image recognition, 

and genomics, where high-

dimensional data is common. 

dimensionality reduction 

technique, does not rely on class 

labels and instead focuses on 

preserving variance in the data. 

Handles multicollinearity: LDA 

addresses multicollinearity—

when features are highly 

correlated—by transforming the 

data into a lower-dimensional 

space while preserving essential 

information. 

 

  

 

Logistic 

Regression 

 

Logistic regression is a technique 

used for binary classification, 

where the sigmoid function maps 

input variables to a probability 

value between 0 and 1. The 

sigmoid function is a 

mathematical tool that transforms 

any real-valued input into a range 

bounded by 0 and 1, creating an 

S-shaped curve, known as the 

sigmoid or logistic function. 

 

The output of logistic regression 

is always constrained to fall 

within this range, ensuring the 

Ease of implementation and 

interpretation: Logistic regression 

is simple to implement, easy to 

interpret, and highly efficient to 

train. 

Limitations with high-

dimensional data: Logistic 

regression should be avoided 

when the number of observations 

is smaller than the number of 

features, as this can lead to 

overfitting. 

(Nusinovici et al., 

2020) 

No distributional assumptions: It 

does not assume any specific 

distribution of classes in the 

feature space. 

Linear decision boundaries: It 

constructs linear boundaries, 

which limits its ability to model 

complex relationships. 

Extension to multiple classes: 

Logistic regression can be 

extended to handle multiple 

classes through multinomial 

regression and provides a natural 

Linearity assumption: A major 

limitation of logistic regression is 

the assumption of a linear 

relationship between the 

independent variables and the 
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prediction represents a valid 

probability. A threshold value is 

then applied to determine the final 

classification: values above the 

threshold are classified as 1, 

while those below it are classified 

as 0. 

probabilistic interpretation of 

class predictions. 

log-odds of the dependent 

variable. 

Interpretability of coefficients: 

The model not only estimates the 

magnitude of predictors 

(coefficients) but also indicates 

the direction of their association 

(positive or negative). 

Discrete outcomes: Logistic 

regression is designed to predict 

discrete outcomes, meaning the 

dependent variable must belong 

to a finite set of categories. 

Speed and efficiency: It classifies 

new data quickly, making it 

suitable for large datasets. 

Challenges with non-linear data: 

Logistic regression cannot solve 

non-linear problems because its 

decision surface is linear. 

However, linearly separable data 

is rare in real-world scenarios. 

Performance: Logistic regression 

achieves good accuracy for many 

simple datasets and performs well 

when the data is linearly 

separable. 

Multicollinearity: Logistic 

regression performs best when 

there is little to no 

multicollinearity among the 

independent variables. 

Feature importance: Model 

coefficients can be interpreted as 

indicators of feature importance. 

Limited modeling of complex 

relationships: It struggles to 

capture complex relationships in 

data. More advanced models, 

such as neural networks, often 

outperform logistic regression in 

these scenarios. 

Overfitting considerations: While 

logistic regression is less prone to 

overfitting, it may overfit in high-
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dimensional datasets. To address 

this, regularization techniques (L1 

and L2) can be applied. 

k-nearest 

neighbors 

(KNN) 

 

 

The k-nearest neighbors (KNN) 

algorithm is a non-parametric, 

supervised learning classifier that 

uses proximity to classify or 

predict the grouping of an 

individual data point.  

 

For classification tasks, the class 

label is assigned based on a 

majority vote—i.e., the label most 

frequently represented among the 

nearest neighbors of a given data 

point. Although this is technically 

referred to as "plurality voting," 

the term "majority vote" is more 

commonly used in the literature. 

The difference between these 

terms is that "majority voting" 

technically requires more than 

50% of the votes, which is most 

relevant when there are only two 

categories. 

 

 

Easy to implement: Due to its 

simplicity and accuracy, KNN is 

often one of the first classifiers 

that a new data scientist learns. 

 

 

Scalability issues: Since KNN is a 

lazy algorithm, it requires 

significant memory and data 

storage compared to other 

classifiers. This can be costly in 

terms of both time and resources. 

(Suyal & Goyal, 2022) 

Adaptable: As new training 

samples are added, the algorithm 

easily adjusts to accommodate the 

new data, since all training data is 

stored in memory. 

Curse of dimensionality: KNN is 

susceptible to the curse of 

dimensionality, meaning its 

performance deteriorates when 

handling high-dimensional data. 

Few hyperparameters: KNN 

requires only the selection of a k 

value and a distance metric, 

making it less complex in terms 

of hyperparameter tuning 

compared to other machine 

learning algorithms. 

Prone to overfitting: Due to the 

curse of dimensionality, KNN is 

more prone to overfitting. 

Although techniques like feature 

selection and dimensionality 

reduction can help mitigate this, 

the choice of k also plays a 

crucial role. Smaller values of k 

tend to overfit the data, while 
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larger values of k smooth the 

predictions by averaging over a 

larger neighborhood. However, if 

k is too large, the model may 

underfit the data. 

Support vector 

machine 

(SVM) 

 

 

Support Vector Machines (SVMs) 

are widely used for classification 

tasks. They distinguish between 

two classes by finding the optimal 

hyperplane that maximizes the 

margin between the closest data 

points from each class. The 

number of features in the input 

data determines whether the 

hyperplane is a line in a 2-D 

space or a plane in an n-

dimensional space. Since multiple 

hyperplanes could potentially 

separate the classes, SVM aims to 

maximize the margin between the 

points to identify the best decision 

boundary.  

This approach helps the algorithm 

generalize well to new data, 

making accurate classification 

predictions. The lines adjacent to 

the optimal hyperplane are known 

 

 

High-dimensional performance: 

SVM excels in high-dimensional 

spaces, making it particularly 

well-suited for tasks such as 

image classification and gene 

expression analysis. 

Slow training: SVM can be slow 

when dealing with large datasets, 

which can impact its performance 

in data mining tasks. 

(Pisner & Schnyer, 

2020) 

Nonlinear capability: By using 

kernel functions like RBF and 

polynomial kernels, SVM can 

effectively model nonlinear 

relationships. 

Parameter tuning difficulty: 

Selecting the right kernel and 

adjusting parameters, such as C, 

requires careful tuning, which can 

be challenging and affect the 

algorithm's performance.  
Outlier resilience: The soft 

margin feature allows SVM to 

tolerate outliers, improving its 

robustness in tasks like spam 

detection and anomaly detection. 

Noise sensitivity: SVM struggles 

with noisy datasets and 

overlapping classes, which can 

limit its effectiveness in real-

world applications. 

Binary and multiclass support: 

SVM is effective for both binary 

classification and multiclass 

classification, making it a 

Limited interpretability: The 

complexity of the hyperplane in 

higher-dimensional spaces makes 

SVM less interpretable compared 

to other models. 
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as support vectors, as they pass 

through the data points that define 

the maximal margin. 

versatile choice for applications 

such as text classification. 

Memory efficiency: Since SVM 

focuses on support vectors, it is 

more memory-efficient compared 

to other algorithms. 

Feature scaling sensitivity: Proper 

feature scaling is crucial for 

SVM; without it, the model's 

performance can degrade 

significantly. 

  

Decision Tree 

A decision tree is commonly used 

to model and predict outcomes 

based on input data. It consists of 

a tree-like structure, where each 

internal node tests an attribute, 

each branch corresponds to a 

possible attribute value, and each 

leaf node represents the final 

decision or prediction.  

 

The process of constructing a 

decision tree involves recursively 

partitioning the data based on the 

values of different attributes. At 

each internal node, the algorithm 

selects the best attribute to split 

the data, using criteria such as 

information gain or Gini impurity. 

This splitting process continues 

until a stopping criterion is met, 

Easy to interpret: The Boolean 

logic and visual representation of 

decision trees make them easier to 

understand and interpret. The 

hierarchical structure also makes 

it clear which attributes are most 

important, a feature that is not 

always as obvious with other 

algorithms, such as neural 

networks. 

Prone to overfitting: Complex 

decision trees are prone to 

overfitting and may not 

generalize well to new data. This 

issue can be mitigated through 

pre-pruning and post-pruning 

techniques. Pre-pruning stops tree 

growth when there is insufficient 

data, while post-pruning removes 

subtrees that lack adequate data 

after the tree is constructed. 
(Charbuty & 

Abdulazeez, 2021) 

Minimal data preparation 

required: Decision trees are 

highly flexible, handling various 

data types (discrete or 

continuous). Continuous values 

can be converted into categorical 

values through thresholds. 

Additionally, decision trees can 

manage missing values, which 

High variance estimators: Small 

variations in the data can lead to 

significantly different decision 

trees. Bagging, or averaging 

multiple estimates, can help 

reduce the variance of decision 

trees. However, this approach has 
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such as reaching a maximum 

depth or having a minimum 

number of instances in a leaf 

node. 

can be problematic for other 

classifiers.  

its limitations, as it may lead to 

highly correlated predictors. 

Flexible: Decision trees can be 

used for both classification and 

regression tasks, offering more 

versatility than some other 

algorithms. They are also less 

sensitive to the underlying 

relationships between attributes—

if two variables are highly 

correlated, the algorithm will 

choose only one to split on. 

  

Higher computational cost: 

Because decision trees use a 

greedy search approach during 

construction, they can be more 

computationally expensive to 

train compared to other 

algorithms. 

Random Forest 

The Random Forest algorithm is a 

powerful tree-based learning 

technique in machine learning. It 

works by creating multiple 

Decision Trees during the training 

phase.  

 

Each tree is constructed using a 

random subset of the dataset and 

measures a random subset of 

features at each partition. This 

randomness introduces variability 

among individual trees, reducing 

the risk of overfitting and 

Reduced risk of overfitting: 

Decision trees are prone to 

overfitting, as they tend to fit all 

samples in the training data. 

However, in a random forest, the 

risk of overfitting is reduced 

because averaging uncorrelated 

trees decreases overall variance 

and prediction error. With a large 

number of trees, the classifier is 

less likely to overfit the model. 

Time-consuming process: 

Although random forest 

algorithms can handle large 

datasets and provide more 

accurate predictions, they can be 

slow to process the data, as they 

compute information for each 

individual decision tree. 

(Rigatti, 2017) 

Provides flexibility: The random 

forest algorithm excels at both 

regression and classification tasks 

Requires more resources: Since 

random forests process larger 
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improving overall prediction 

performance. 

 

During prediction, the algorithm 

aggregates the results of all the 

trees—either by voting (for 

classification tasks) or by 

averaging (for regression tasks). 

This collaborative decision-

making process, supported by 

multiple trees and their individual 

insights, yields stable and 

accurate results. Random forests 

are widely used for both 

classification and regression 

tasks, known for their ability to 

handle complex data, reduce 

overfitting, and provide reliable 

forecasts in diverse environments. 

with a high degree of accuracy, 

making it a popular choice among 

data scientists. Additionally, its 

ability to cluster features makes it 

an effective tool for estimating 

missing values, maintaining 

accuracy even when a portion of 

the data is missing. 

datasets, they require more 

resources to store that data. 

Easy-to-determine feature 

importance: The random forest 

simplifies the process of assessing 

the importance or contribution of 

variables to the model. There are 

several methods to evaluate 

feature importance. Gini 

importance and the mean 

decrease in impurity (MDI) are 

commonly used metrics to 

determine how much the model's 

accuracy decreases when a 

particular variable is excluded. 

More complex: Predicting with a 

single decision tree is easier to 

interpret compared to using a 

forest of trees. 

Extreme 

Gradient 

Boosting 

 

XGBoost is a state-of-the-art 

machine learning algorithm 

renowned for its exceptional 

predictive performance. It is 

considered the gold standard in 

ensemble learning, particularly in 

User-friendly implementation: 

Gradient boosting decision trees 

are relatively easy to implement. 

Many implementations support 

handling categorical features, 

require minimal data 

Requires careful parameter tuning 

to achieve optimal performance: 

Proper tuning of parameters is 

essential to ensure the best 

performance of the model. 

(Wade, 2020) 
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the realm of gradient-boosting 

algorithms.  

 

The model builds a series of weak 

learners sequentially, with each 

learner improving on the 

predictions of the previous one to 

produce a reliable and accurate 

predictive model. Fundamentally, 

XGBoost creates a strong 

predictive model by aggregating 

the predictions of several weak 

learners, typically decision trees. 

It employs a boosting technique, 

where each weak learner corrects 

the mistakes made by its 

predecessors, resulting in an 

extremely accurate ensemble 

model. 

 

The optimization method used 

(gradient) minimizes a cost 

function by iteratively adjusting 

the model’s parameters in 

response to the gradients of the 

errors. The algorithm introduces 

the concept of "gradient boosting 

with decision trees," where the 

objective function is minimized 

preprocessing, and streamline the 

process of handling missing data. 
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by calculating the importance of 

each decision tree added to the 

ensemble. Additionally, by 

incorporating a regularization 

term and utilizing a more 

advanced optimization algorithm, 

XGBoost further enhances both 

accuracy and efficiency. 

  

Bias reduction: In machine 

learning, bias refers to systematic 

errors that can lead models to 

make inaccurate or unfair 

predictions. Boosting algorithms, 

including gradient boosting, 

sequentially add multiple weak 

learners to the larger predictive 

model. This technique is highly 

effective at reducing bias, as each 

additional weak learner iteratively 

improves the model. 

Can be prone to overfitting if not 

properly regularized: Without 

proper regularization, the model 

can overfit the training data, 

leading to poor generalization to 

new data. 

  

Improved accuracy: Boosting 

enables decision trees to learn 

sequentially, with new trees 

compensating for the errors made 

by previous ones. This iterative 

process results in more accurate 

predictions than any individual 

weak learner could achieve. 

May not perform as well with 

high-dimensional sparse data: The 

model might struggle with high-

dimensional sparse datasets, 

where many features have little or 

no meaningful information. 
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Additionally, decision trees can 

handle both numerical and 

categorical data types, making 

them versatile for a wide range of 

problems. 

  

Faster training on large data sets: 

Boosting methods prioritize 

features that increase the model’s 

predictive accuracy during 

training. This selectivity reduces 

the number of data attributes, 

resulting in computationally 

efficient models capable of 

handling large datasets. Boosting 

algorithms can also be 

parallelized to further speed up 

model training. 

Training can be computationally 

expensive, especially with large 

datasets: Training the model can 

be resource-intensive, particularly 

with large datasets, requiring 

significant computational power. 

   

Interpreting the model can be 

challenging due to its complexity: 

The complexity of the model can 

make it difficult to interpret and 

understand the individual 

contributions of features to the 

final prediction. 

Artificial 

Neural 

Networks 

(ANNs) 

Artificial Neural Networks 

(ANNs) can be best viewed as 

weighted directed graphs, 

commonly organized in layers. 

Artificial neural networks have 

the ability to process data in 

parallel, meaning they can handle 

multiple tasks at the same time. 

Artificial neural networks have 

the ability to process data in 

parallel, meaning they can handle 

multiple tasks at the same time. 

(Abdolrasol, Hussain, 

et al., 2021) 
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These layers consist of numerous 

nodes that imitate the biological 

neurons of the human brain. 

These nodes are interconnected 

and contain an activation 

function. The first layer receives 

the raw input signal from the 

external world, analogous to the 

optic nerves in human visual 

processing. Each successive layer 

receives the output from the 

preceding layer, similar to the 

way neurons further from the 

optic nerve receive signals from 

those closer to it. The output at 

each node is called its activation 

or node value. The final layer 

produces the system's output. 

ANNs are mathematical models 

capable of learning. 

They are resistant to failure, 

which means that the loss of one 

or more neurons does not 

significantly affect the 

performance of the network. 

Artificial neural networks are 

designed to store information 

within the network, so even in the 

absence of a data pair, the 

network can still generate results. 

Additionally, artificial neural 

networks are robust and gradually 

degrade over time, meaning they 

do not suddenly stop working. 

We can train ANNs to learn from 

past events and make decisions. 

They are resistant to failure, 

which means that the loss of one 

or more neurons does not 

significantly affect the 

performance of the network. 

Artificial neural networks are 

designed to store information 

within the network, so even in the 

absence of a data pair, the 

network can still generate results. 

Additionally, artificial neural 

networks are robust and gradually 

degrade over time, meaning they 

do not suddenly stop working. 

We can train ANNs to learn from 

past events and make decisions. 
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APPENDIX K: LOGISTIC REGRESSION 

The first mathematical model of logistic regression was proposed in the 1940s as a 

technique to address the limitations of ordinary least squares (OLS) regression when dealing 

with dichotomous variables. By the 1980s, logistic regression became available in statistical 

software packages, facilitating its widespread adoption (Geng et al., 2024). It has been 

extensively used in epidemiological research and continues to gain prominence in the social 

sciences, particularly in higher education (Peng & Nichols, 2003; Singh & Alhulail, 2022; 

Ujkani et al., 2022).   

The logistic regression model converts the continuous output of a linear regression 

function into a categorical output by using a sigmoid function. This function maps any set of 

real-valued independent variables to a value between 0 and 1 and is commonly referred to as 

the logistic function (Geng et al., 2024).   

Log odds can be challenging to interpret in logistic regression analyses. To simplify 

this, it is common to exponentiate the beta estimates, transforming them into odds ratios 

(OR). The OR represents the likelihood of an outcome occurring given a specific event, 

compared to the likelihood of the outcome in the absence of that event. An OR greater than 1 

indicates that the event is associated with higher odds of the outcome occurring, while an OR 

less than 1 suggests lower odds of the outcome (Geng et al., 2024; Z. H. Zhou, 2021). 

 

 

 

Figure 4                                                                                                                                      

Unit-step function and logistic function (Z. H. Zhou, 2021). 
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APPENDIX L: SUPPORT VECTOR MACHINE 

The fundamentals of Support Vector Machines (SVM) were introduced in the 1960s 

(Vapnik & Chervonenkis, 2015), but the theory continued to evolve over the following 

decades. In the 1990s, SVM gained significant attention from the scientific community due to 

two major advancements: the development of the kernel trick (Boser et al., 1992), which 

enabled SVM to handle non-linear classification problems, and the extension of SVM to 

solve regression tasks (Drucker et al., 1996). The mathematical foundation of SVM is 

complex, requiring a solid understanding of optimization theory, linear algebra, and learning 

theory (Valkenborg et al., 2023). 

Support Vector Machine (SVM) aims to maximize the margin of separation between 

two classes by identifying the optimal hyperplane. This hyperplane, also known as the 

maximum margin hyperplane or hard margin, is chosen to maximize the distance between 

itself and the closest data points from each class, known as support vectors (Pisner & 

Schnyer, 2020). When such a hyperplane exists, it ensures the greatest separation between 

classes. Additionally, SVM has the capability to handle outliers effectively, as it focuses on 

maximizing the margin while ignoring data points that do not significantly impact the 

decision boundary, making the algorithm robust to outliers (Valkenborg et al., 2023). 

 

 

Figure 5                                                                                                                                            

A and B illustrate the principle of the maximum-margin classifier. C and D demonstrate the 

introduction of the slack variable, which allows the support vector classifier to maximize its 

margin while disregarding the influence of nearby observations, even when the data is non-

separable (Valkenborg et al., 2023). 
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APPENDIX M: RANDOM FOREST 

This algorithm is a collaborative ensemble of decision trees working together to 

produce a single outcome, first introduced in 2001 by Breiman. Since Random Forest 

consists of multiple decision trees, it is helpful to briefly explain decision trees. A decision 

tree begins with a basic question, branching into additional questions to guide the decision-

making process. These questions form the nodes of the tree, splitting the data at each step. 

The final decision is represented by the leaf nodes (Costa & Pedreira, 2023). 

The Random Forest algorithm is made up of a collection of decision trees, each 

constructed from a randomly drawn sample of the training data, using a technique called 

bootstrapping. Approximately one-third of each bootstrap sample is reserved as test data, 

known as the out-of-bag (OOB) sample, which plays a crucial role in model evaluation. 

Another layer of randomness is introduced through feature bagging, which selects random 

subsets of features for each split, enhancing model diversity and reducing correlations 

between trees (Parmar et al., 2019). 

Depending on the problem type, the prediction method varies. For regression tasks, 

the predictions from individual trees are averaged to obtain the final result. In classification 

tasks, a majority vote—where the most frequently predicted class is chosen—determines the 

final output (Biau & Scornet, 2016). 

 

Figure 6                                                                                                                                            

Random Forest (Biau & Scornet, 2016). 
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APPENDIX N: XGBOOST 

This algorithm is an ensemble learning method that combines the predictions of 

multiple weak models to produce a stronger, more accurate prediction. Introduced in 2015 by 

Chen & Guestrin, XGBoost stands for “Extreme Gradient Boosting.” In this approach, 

decision trees are built sequentially, with each tree correcting the errors of the previous one. 

Weights play a crucial role in XGBoost. Initially, weights are assigned to all independent 

variables fed into the decision tree. If the tree incorrectly predicts certain outcomes, the 

weights of those variables are increased, emphasizing their importance in the next tree. This 

iterative process results in a collection of individual classifiers or predictors that, when 

combined, create a robust and accurate model (Arif Ali et al., 2023). XGBoost is highly 

versatile, capable of handling user-defined regression, classification, and prediction tasks, 

making it a powerful tool across a wide range of applications (Ferreira et al., 2021). 

 

Figure 7                                                                                                                                            

Boosting - sequential ensemble learning (Ferreira et al., 2021). 
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APPENDIX O: FEEDFORWARD NEURAL NETWORK (FNN) 

Artificial neural networks (ANNs) emerged in the 1940s as scientists attempted to 

replicate the functions of the human brain through physical models and program simulations. 

One of the simplest types of ANNs is the feedforward neural network, characterized by its 

unidirectional data flow—from the input nodes, through hidden nodes (if present), and finally 

to the output nodes, without any loops (Andina et al., 2007). A feedforward neural network 

comprises three types of layers: input, hidden, and output. Each layer contains units known as 

neurons, which are interconnected by weights. The network operates in two main phases: the 

Feedforward Phase and the Backpropagation Phase (X. Zhou et al., 2022). In the feedforward 

phase, data enters the network and propagates through it. The inputs pass through the hidden 

layers, where weighted sums are calculated, until they reach the output layer, where a 

prediction is made. In the backpropagation phase, after the prediction is generated, the 

network calculates the error. This error is propagated backward, and the weights are adjusted 

to minimize the error, improving the network's accuracy over time (Abdolrasol, Hussain, et 

al., 2021). 

 

Figure 8                                                                                                                           

Forward Propagation (X. Zhou et al., 2022). 
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APPENDIX P: LIST OF VARIABLES AND DESCRIPTION 

Table 23                                                                                                                                                                                                                     

List of all variables provided by the HEI with their detailed description. 

Category Variable Name Description DataType 

Academic 

Performance 

Number of Major 

Transfers 

Number of times the student has 

transferred majors within the 

university. 

int64 

Credits Taken 
Total credits completed by the student 

up to the year of analysis. 
int64 

Dropped Out 
Student's major or status after the year 

of analysis. 
int64 

Course Grade 

Equivalency 

Approval equivalency based on the 

course grade obtained. 
object 

Semester GPA 

Student's GPA for the semester 

mentioned in the "Registration Period" 

field. 

float64 

Course Name 

Name of the course the student took 

during the "Registration Period" 

semester. 

object 

Course Grade 

Grade received in the course taken 

during the "Registration Period" 

semester. 

object 

Major Transfer 

Period 

Semester in which the student changed 

majors. 
float64 

Transferred Major Major to which the student transferred. float64 

Transferred 

University 

University from which the student 

transferred. 
float64 

Economic 

Situation  

Semester Major Cost 
Cost associated with the student's 

major during the year of analysis. 
int64 

Financial Aid 

Percentage 

Percentage of financial aid received by 

the student during the "Registration 

Period" semester. 

int64 

Scholarship 

Percentage 

Percentage of the scholarship received 

by the student during the "Registration 

Period" semester. 

int64 

Future Payment 

Percentage 

Percentage of future payments for the 

student during the "Registration 

Period" semester. 

int64 
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Total Financial Aid 

Percentage 

Total percentage of financial aid 

received by the student during the 

"Registration Period" semester. 

int64 

Type of Financial 

Aid 

Type of financial aid the student 

received during the "Registration 

Period" semester. 

object 

Student 

Background 

Academic Year of 

Admission 

Academic year in which the student 

was admitted to the university. 
object 

Academic Year of 

Enrollment 

Academic year in which the student 

registered for courses. 
object 

Year of Analysis Academic year being analyzed. object 

Major 
Student's major during the year of 

analysis. 
object 

Admission Major 

Major in which the student was 

admitted during the academic year of 

admission. 

object 

School 
School the student is attending during 

the year of analysis. 
object 

High School of 

Origin 

High school where the student 

completed their secondary education. 
object 

Admission School 

University school in which the student 

was admitted during the academic year 

of admission. 

object 

Ethnicity Ethnicity to which the student belongs. object 

Date of Birth Student's date of birth.  

Gender Reported gender of the student. date 

High School GPA 
Final GPA with which the student 

graduated from high school. 
int64 

ID Student's unique identifier. int64 

Analysis Period Semester analyzed in the study. object 

Admission Period 
Semester in which the student was 

admitted to the university. 
object 

Registration Period 
Semester in which the student 

registered for courses. 
object 

Province Province to which the student belongs. object 
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APPENDIX Q: DROP OUT DATA EXPLORATION 

Figure 9                                                                                                                           

Percentage of students who drop out. 

 
 

Figure 10                                                                                                                           

Students by major. 
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Figure 11                                                                                                                           

Dropout rate by major. 

 
 

Figure 12                                                                                                                           

Relationship between student's GPA and credits taken by the student. 
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APPENDIX R: DROP OUT DATA CLEANING PROCESS 

Table 24                                                                                                                                                                                                                     

Data cleaning process. 

Process activity Activity description 

Elimination of duplicate data All duplicate data were removed.  

Processing of missing data from 

the column “nota_materia” 

It was decided to eliminate the Nan (Empty) values 

since they constitute 8.80% of the data, so they will 

not significantly affect the representativeness of the 

data set even though they are close to 10%. The 

second reason for eliminating them is that the data are 

from students who are in the current period of analysis 

and therefore do not yet have all the necessary 

information.  

Processing of missing data from 

the column “fecha_nacimiento” 

It was determined to eliminate the Nan (Empty) 

values since they constitute 0.11% of the data, so they 

will not significantly affect the representativeness of 

the data set.  

Processing of missing data from 

the column “provincia” 

It was determined to fill the missing values with 

“Other” since it is 0.05% of the data and filling it with 

“Other” will not significantly affect the 

representativeness of the data set.  

Processing of missing data from 

the column 

“colegio_procedencia” 

It was determined to fill the missing values with 

“Other College” since it is 0.26% of the data and 

filling it with “Other College” will not significantly 

affect the representativeness of the data set.  
Processing of missing data from 

the column 

“transferido_universidad” 

It was determined to fill the Nan (Empty) values with 

“Not transferred” since according to the database 

having a transfer name means that it was transferred. 

Processing of missing data from 

the column “gpa_semestral” 

It was determined to fill the missing values with 0 

since it is 0.28% of the data and filling them with 0 

will not significantly affect the representativeness of 

the data set. In addition, when reviewing the database, 

it was noted that the empty gpa values come from 

students who withdrew from the entire semester, but 

not from students who failed all of their subjects. (The 

gpa values of 0 will not be taken into account when 

the average semester gpa is taken).  

Processing of missing data from 

the column “transferido_carrera” 

It was determined to fill the Nan (Empty) values with 

“Not transferred” since according to the database 

having a transfer name means that it was transferred.  

Elimination the column 

“periodo_transferido_carrera” 

It was determined to eliminate the column since the 

empty data in this column constitutes 90.34% of all its 

data and cannot be linked to any type of data. In the 
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same way, it is not considered crucial since it has the 

same information in quantity_transferred. 

  

Processing of missing data from 

the column 

“nota_examen_ingreso” 

It was determined that the empty values of the exam 

grade are 0.84%, since it is a crucial value for the 

investigation, it was decided to treat the data, for this 

purpose it was joined with the outliers adding up to 

3.06% of the data. 06% of the data, these outliers 

became empty and once empty were filled with the 

average of the data according to the school of entry, 

this is done because they are a small amount of data 

and will not significantly affect the representativeness 

of the data set, in addition to reviewing the graphs can 

be noted that they follow a distribution close to 

normal so the filling of the average is adequate.  

Processing of missing data from 

the column “etnia” 

It was determined that the amount of empty data is 

90.15%, this is a large amount of empty data, these 

data are filled with “Other” to validate that if they 

belong to province, only that the university does not 

have that data.  

Processing of missing data from 

the column 

“costo_carrera_semestral” 

It was determined that the amount of empty data is 

0.57%, these data were eliminated since the career to 

which they were associated no longer exists, i.e., they 

are data that should not be in the database, so they 

were eliminated.  

Processing of missing data from 

the column “gpa_colegio” 

It was determined that the empty values of the test 

score are 0.75%, being a crucial value for the 

research, it was decided to treat the data, for this they 

were joined with the outliers adding 0.80% of the 

data. 80% of the data, these outliers became empty 

and once empty were filled with the mean of the data, 

this is done because they are a small amount of data 

and will not significantly affect the representativeness 

of the data set, in addition to reviewing the graphs can 

be noted that they follow a distribution close to 

normal so the filling of the average is adequate.  
Processing of missing data from 

the column “porcentajes” 

All 0 values in this column or missing values are 

correct since they should denote an absence.  

Processing of missing data from 

the column 

“tipo_ayuda_financiera” 

It was determined to fill in the values Nan (Empty) 

with “No Financial Aid” since according to the base 

of having this data empty means that the student is not 

receiving any type of financial aid.  

Treatment of outliers in the 

column “gpa_colegio” 

It was treated in the previous section, the outliers, 

being so few and of human input error, were changed 

to the correct values.  
Treatment of outliers in the 

column “fecha_nacimiento” 

Being 0.04% of the data, the decision was taken to 

change the age of the type values to 18, since 
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according to Stefos in 2019 this is the age at which 

they are in college.  

Treatment of outliers in the 

column “nota_examen” 

It was treated in the previous section, the outliers, 

being so few, were transformed to the average of all 

the non-outliers.  

Treatment of outliers in the 

column “porcentaje_total” 

It was treated in the previous section, the outliers were 

eliminated as they gave results greater than 100% and 

when reviewing the database from which the data was 

extracted, it was noted that they were erroneous.  

Treatment of outliers in the 

column “cantidad_transferido” 

According to the creation of the base it shows us that 

each time it is within a run it counts so when taking 

the amount of data from amount_transferred, 2 would 

be equal to 1 and 3 would be equal to 2.  

Treatment of outliers in the 

columns “materia”, 

"nota_materia", 

"equivalencia_materia" 

Within the database, there are subjects that have the 

grade equivalence as “Pass if the subject is from 

general school / Fail if it is not from general school” 

so a function was created after doing a manual search 

of which general school subjects appear and the 

students obtained a grade of “D”. Those with more 

letters other than “A - B - C” are considered as 

“Failed”.  

Treatment of outliers in the 

column “transferido_universidad” 

This column does not have incorrect values in its 

writing, it has many shortened words so we proceeded 

to write the complete text and replace it with the 

previous one, all this to have a better handling of the 

data.  
Treatment of outliers in the 

column “carrera” 

This column does not have incorrect values in its 

writing.  
Treatment of outliers in the 

column “colegio” 

This column does not have incorrect values in its 

writing.  
Treatment of outliers in the 

column “provincia” 

This column does not have incorrect values in its 

writing.  
Treatment of outliers in the 

column “etnia” 

This column does not have incorrect values in its 

writing.  

Treatment of outliers in the 

column “genero” 

This column does not have incorrect values in its 

writing, it only has a letter indicating the value, so it is 

changed to the full name to have a better data 

management.  
Treatment of outliers in the 

column “colegio_ingreso” 

This column does not have incorrect values in its 

writing.  
Treatment of outliers in the 

column “carrera_ingreso” 

This column does not have incorrect values in its 

writing.  

Treatment of outliers in the 

column “tipo_ayuda_financiera” 

This column does not have incorrect values in its 

writing, it has many shortened words so we proceeded 

to write the complete text and replace it with the 

previous one, all this to have a better handling of the 

data.  



102 

 

 

Treatment of outliers in the 

column “colegio_procedencia” 

This column has incorrect values in its writing, many 

of them for some letter or abbreviation, a manual 

review is made, followed by the use of the fuzzy 

function that allows to see the similarity in the whole 

column and thus to be able to fix the values that are 

wrongly entered.  

Elimination of the columns  

"año_academico_registro", "nota_materia", 

"fecha_nacimiento", "estatus_estudiante", 

"porcentaje_asistencia_financiera", 

"porcentaje_beca", "porcentaje_pago_futuro" These 

columns are eliminated because they contain the same 

information as other columns and become redundant. 

Integration of the columns 

"equivalencia_materia" a 

"materia_aprobado" y 

"materia_reprobado" 

The subject equivalence column was eliminated since 

the aim is to reduce the dimensionality and give more 

weight to the numerical variables, so the number of 

subjects passed and the number of subjects not passed 

were created. 

Integration of the column 

"total_pagado" 

In order to better understand how the economic part 

affects the student, a column was created to see how 

much he/she has actually paid in comparison to the 

value of the career.  

Integration of the column 

"cantidad_periodos" 

In order to better understand whether it affects the 

time students are studying within the university, we 

thus have an additional numerical variable. 

Columns "deserto", 

"transferido_universidad", 

"transferido_carrera", "genero" 

value settings 

The values of “Yes” are changed to 1 and “No” to 0 

Elimination of the columns  

"periodo_analisis", "año_academico_ingreso", 

"año_analisis" These columns are eliminated because 

they contain the same information as other columns 

and become redundant.  

The column "periodo_materia" is 

created 

This column is created to make effective the creation 

of dummy variables and also to be able to aggregate 

the data by period.  

Elimination of the columns  
The "periodo_registro" column is eliminated , since it 

served as an anchor for grouping the data.  

Grouping data by id 
The records are grouped according to the id of the 

student to have now one record per student.  

Expansion of columns 

The period_subject column is expanded and now we 

will have a column for each period and subject that 

has been taken in it.  

Dummy variables are created 
Dummy variables of the categorical variables are 

created.  

Data standardization 
The numerical values are normalized since they 

follow a normal distribution and this will allow the 
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models to give the same weight to each numerical 

variable regardless of the extent of the variable. 

  

PCA is performed 

A principal component analysis is performed to 

reduce the dimensionality of the database, thus 

making it ready for analysis. 
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APPENDIX S: LIST OF ENROLLMENT VARIABLES AND DESCRIPTION 

Table 25                                                                                                                                                                                                                     

List of all variables provided by the HEI with their detailed description. 

Category Variable Name Description DataType 

Academic 

Performance 

ID Previously coded student identifier int64 

Admission Period 
Semester in which the student 

applied to the University. 
int64 

Admission Career 
Career to which the student applied 

within the University. 
object 

Admission College 
College to which the student applied 

to 
object 

Admission Score Student's entrance exam score int64 

Transfer University 
University from which the student 

transferred 
object 

Academic Year of 

Admission 

Academic year associated with the 

student's admission period. 
float64 

Economic 

Situation   

Completed 

Registration 

If the student completed the 

registration process, that is, if the 

student entered the university. 

object 

AF Percentage 

Percentage of Financial Attendance 

of the student in the semester 

“Registration Period”. 

int64 

Scholarship 

Percentage 

Student's Scholarship Percentage 

for the “Registration Period” 

semester. 

int64 

Future Payment 

Percentage 

Student's Future Payment 

Percentage for the “Period of 

Record” semester. 

int64 

Total Financial Aid 

Percentage 

Percentage of total financial aid 

(Scholarship + Financial Aid + 

Future Payment) of the student in 

the “Registration Period” semester. 

int64 

Semester Career 

Cost 

Cost associated with the student's 

career for the year of analysis. 
int64 



105 

 

 

Student 

Background 

School of origin 
School where the student attended 

high school. 
object 

High School Grade 
Final grade with which the student 

graduated from high school. 
int64 

Sex Reported gender of the student object 

Province Province of residence of the student object 

Date of Birth Date of birth of the student date 

Ethnicity 
Ethnicity to which the student 

belongs. 
object 
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APPENDIX T: ENROLLMENT DATA EXPLORATION 

Figure 13                                                                                                                           

Percentage of students who enroll the HEI. 

 

 
 

Figure 14                                                                                                                           

Percentage of enrollment by major 

 

 
 

Figure 15                                                                                                                           

Relationship between the grade point average of the school and the grade achieved in the 

admission exam. 
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APPENDIX U: ENROLLMENT DATA CLEANING PROCESS 

Table 26                                                                                                                                                                                                                     

Data cleaning process. 

Process activity Activity description 

Elimination of duplicate 

data and rename columns 

All duplicate data has been removed and columns have been renamed 

to be similar to the dropout database.  

Processing of missing 

data from the column 

“nota_examen_ingreso” 

It was determined that the empty values of the exam grade are 6.40%, 

since it is a crucial value for the investigation, it was decided to treat 

the data, for this purpose it was joined with the atypical data adding 

up to 7.60% of the data. 60% of the data, these outliers became empty 

and once empty were filled with the average of the data according to 

the school of entry, this is done because they are a small amount of 

data and will not significantly affect the representativeness of the data 

set, in addition to reviewing the graphs can be noted that they follow a 

distribution close to normal so the filling of the average is adequate.  
Processing of missing 

data from the column 

“transferido_universidad” 

It was determined to fill the Nan (Empty) values with “Not 

transferred” since according to the database having a transfer name 

means that it was transferred.  

Processing of missing 

data from the column 

“gpa_colegio” 

It was determined that the empty values of gpa_colegion are 0.11% 

these data were filled with the mean of the data, this is done because 

they are a small amount of data and will not significantly affect the 

representativeness of the data set, also when reviewing the graphs it 

can be noted that they follow a distribution close to normal so the 

filling of the average is adequate.  
Processing of missing 

data from the column 

“provincia” 

It was determined to fill the missing values with “Other” since it is 

0.41% of the data and filling it with “Other” will not significantly 

affect the representativeness of the data set. 

Processing of missing 

data from the column 

“fecha_nacimiento” 

This column was used as an anchor to create a new column called 

“edad”. 

Processing of missing 

data from the column 

“edad” 

It was determined that the empty values of age are 57.28%, being a 

crucial value for the research, it was decided to treat the data, taking 

into account that according to a study conducted in undergraduate 

students in Ecuador, the average age at which they enter university is 

18 years, it was decided to fill the empty data with 18.  

Processing of missing 

data from the column 

“etnia” 

It was determined that the amount of empty data is 90.15%, this is a 

large amount of empty data, these data are filled with “Other” to 

validate that if they belong to province, only that the university does 

not have that data. 

Processing of missing 

data from the column 

“porcentajes” 

All 0 values in this column or missing values are correct since they 

should denote an absence. It was determined to eliminate outliers 

(greater than 100%) since they constitute 0.03% of the data, so they 

will not significantly affect the representativeness of the data set.  
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Treatment of outliers in 

the column 

“gpa_colegio” 

It was determined that there is a value that is incorrectly entered, with 

the value of 5.57, since in Ecuador the minimum grade for graduation 

is 7/10, the value was changed to 7.57.  

Treatment of outliers in 

the column “edad” 

It was determined that the empty values of age are 0.22%, being a 

crucial value for the research, it was decided to treat the data, for this 

they were filled with the average of the same, this because they are a 

small amount of data and will not significantly affect the 

representativeness of the data set, in addition to reviewing the graphs 

it can be noted that they follow a distribution close to normal so that 

filling the average is adequate.  
Treatment of outliers in 

the column 

“nota_examen” 

It was treated in the previous section, the outliers, being so few, were 

transformed to the average of all the non-outliers. 

Treatment of outliers in 

the column 

“porcentaje_total” 

It was treated in the previous section, the outliers were eliminated as 

they gave results greater than 100% and when reviewing the database 

from which the data was extracted, it was noted that they were 

erroneous.  

Treatment of outliers in 

the column 

“transferido_universidad” 

This column does not have incorrect values in its writing, it has many 

shortened words so we proceeded to write the complete text and 

replace it with the previous one, all this to have a better handling of 

the data. 

Treatment of outliers in 

the column 

“carrera_admision” 

This column does not have incorrect values in its writing. 

Treatment of outliers in 

the column 

“colegio_admision” 

This column does not have incorrect values in its writing.  

Treatment of outliers in 

the column “provincia” 
This column does not have incorrect values in its writing.  

Treatment of outliers in 

the column “etnia” 
This column does not have incorrect values in its writing.  

Treatment of outliers in 

the column “genero” 

This column does not have incorrect values in its writing, it only has 

one letter indicating the value, so it is changed to the full name to 

have a better data management.  

Treatment of outliers in 

the column 

“colegio_procedencia” 

This column has incorrect values in its writing, many of them for 

some letter or abbreviation, a manual review is made, followed by the 

use of the fuzzy function that allows to see the similarity in the whole 

column and thus to be able to fix the values that are wrongly entered. 

Elimination of the 

columns  

"fecha_nacimiento", "porcentaje_asistencia_financiera", 

"porcentaje_beca", "porcentaje_pago_futuro" These columns are 

eliminated because they contain the same information as other 

columns and become redundant. 

Columns "matriculo", 

"transferido_universidad" 

value settings 

The values of “Yes” are changed to 1 and “No” to 0 
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Data standardization 

The numerical values are normalized since they follow a normal 

distribution and this will allow the models to give the same weight to 

each numerical variable regardless of the extent of the variable. 

Dummy variables are 

created 

Dummy variables of the categorical variables are created.  thus 

making it ready for analysis. 
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APPENDIX V: HYPERPARAMETERS 

Table 27                                                                                                                                                                                                                     

Model’s Hyperparameters 

Algorithm Hyperparameters Values Reference 

Logistic 

Regression 

C 0.001, 0.01, 0.1, 1, 10, 100 (Ahmed Arafa et al., 

2022; Ambesange et 

al., 2020) 

Penalty l1', 'l2' 

Solver liblinear', 'saga' 

Support Vector 

Machine 

C 0.001, 0.01, 0.1, 1, 10, 100 (Kalita et al., 2020; 

Thanh Ngoc et al., 

2021) 

Kernel linear', 'rbf' 

Gamma scale', 'auto' 

Random Forest 
n_estimators 50, 64, 100, 128, 150, 200 (Oshiro et al., 2012; 

Probst et al., 2019) max_depth None, 10, 15, 20, 30 

XGBoost 

learning_rate 0.05, 0.1, 0.15 
(Dalal et al., 2022; 

Xiong et al., 2022) 
n_estimators 100, 128, 150 

max_depth 5, 7, 9 

 


