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RESUMEN
Este artículo presenta un estudio centrado en la clusterazión de ‘climas’ de evapotranspiración (ETo)
en un subconjunto de las regiones de los Andes y Amazonía Ecuatorianos, utilizando datos climáticos

desde el año 2017 al 2022. Los datos se obtuvieron a través del modelo Weather Research and
Forecasting (WRF). El modelo de clusterizacion para el ETo ‘clima’ se basa en histogramas para
cada píxel geográfico derivados de clusterizaciones iniciales de ETo ‘tiempo’. Ambas técnicas de

clusterización implementadas utilizando un modelo de red neuronal artificial (ANN) denominado
Mapas auto organizados (SOM por sus siglas en inglés). Este sistema ofrece una comprensión más

profunda de la variabilidad de ETo ‘tiempo’ en las regiones analizadas y proporciona una base para
mejorar la toma de decisiones en la gestión del riego, al ofrecer información repetible del ETo ‘climas’

por ubicación.

Palabras clave:Evapotranspiración, ETo clima, ETo tiempo, mapas auto organizados SOM,
Clusterización, Modelo Weather Research and Forecasting (WRF)
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ABSTRACT
This paper presents a study focused on evapotranspiration (ETo) ‘climate’ clustering in a subset of

the Ecuadorian Andes and Amazon regions, using data from 2017 to 2022 obtained through the
Weather Research and Forecasting Model (WRF). The ETo ‘climate’ model is based on histograms
for each geographic pixel, derived from an initial clustering of ETo ‘weather’. Both techniques are
implemented using an artificial neural network (ANN) unsupervised model called Self-Organizing

Maps (SOM). Repeatable clustering results provide a deeper understanding of ETo variability across
regions, offering a foundation for improved irrigation decision-making.

Key words: Evapotranspiration, ETo climate, ETo weather, Self-Organizing Maps, SOM, Clustering,
Weather Research and Forecasting Model (WRF).
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WRF Modeling and Analysis Using Self-Organizing
Maps

Luis Marcial, Scott Williams, and Israel Pineda

Abstract—This paper presents a study focused on evapo-
transpiration (ETo) ‘climate’ clustering in a subset of the
Ecuadorian Andes and Amazon regions, using data from
2017 to 2022 obtained through the Weather Research
and Forecasting Model (WRF). The ETo ‘climate’
model is based on histograms for each geographic pixel,
derived from an initial clustering of ETo ‘weather’.
Both techniques are implemented using an artificial
neural network (ANN) unsupervised model called Self-
Organizing Maps (SOM). Repeatable clustering results
provide a deeper understanding of ETo variability across
regions, offering a foundation for improved irrigation
decision-making.

Index Terms—Evapotranspiration, ETo climate, ETo
weather, Self-Organizing Maps (SOM), Clustering,
Weather Research and Forecasting Model (WRF).

I. Introduction

ONE of the greatest challenges that agriculture has
faced since its beginnings is the management of water

resources for irrigation [1]. Globally, vast areas of land
remain uncultivable due to insufficient rainfall compared
to the evapotranspiration of their soils [2]. Furthermore,
other regions face an increasing risk of becoming arid
as climate change threatens their agricultural potential
and disrupts the balance of their ecosystems. Knowledge
is a powerful tool, and having a deep understanding of
the specific periods of the year when rainfall can be
optimized for irrigation purposes is of vital importance
for agricultural communities that do not have access to
advanced technological resources [3].

A. Evapotranspiration
Evapotranspiration abbreviated as ETo until the end of
this document, is a concept that represents the combined
process of water loss through soil and plant surface evapo-
ration along with crop transpiration. This phenomenon is
commonly expressed in millimeters per day, quantifying the
depth of water lost over a given area. Mathematically, ETo
can be calculated using the Penman-Monteith equation [4],
shown above.

Luis P. Marcial is a Data Science Master’s degree student at
Universidad San Francisco de Quito, Quito, Ecuador.

Scott L. Williams was with New Mexico State University, Las
Cruces, New Mexico, USA - retired.

Israel Pineda is with the College of Sciences and Engineering,
Universidad San Francisco de Quito, Quito, Ecuador.

Manuscript received November 25, 2024. Revised November 28,
2024. Modified November 30, 2024.

ETo =
0.408∆(Rn − G) + γ 37

T +273 u2(es − ea)
∆ + γ(1 + 0.34u2) (1)

Where:

ETo: Evapotranspiration per hour
Rn: Net Radiation
G: Ground Heat Flux
T: Air Temperature
∆: Vapor Pressure Curve
γ: Psychometric Constant
es: Saturation Vapor Pressure
ea: Actual Vapor Pressure
u2: Wind Speed

This equation provides the clustering model used in this
study with the necessary variables to identify ETo trends
and develop a repeatable pilot system that offers valuable
information for decision-making in irrigation management.

B. ETo ‘weather’ and ETo ‘climate’
To expand the previous analysis, it is essential to dif-
ferentiate between ETo ‘weather’, which refers to short-
term processes that can be analyzed temporally, and
ETo ‘climate’, which focuses on long-term, geographically
distributed trends.

This paper proposes the determination of ETo ‘climate’
clusters in the Andes and Amazon regions. ETo ‘climate’
is defined by the frequency of occurrence of ETo ‘weather’
clusters within every geographic pixel, and then the
histograms formed altogether are clustered across the whole
area of study, defining sectors with similar behavior of
evapotranspiration [5]. These geographical pixels can be
translated into square kilometers in the real world which
also then can be plotted using heat-map techniques for
visualization of ETo ‘climate’ clusters distribution in a
single non-temporary graphic.

C. Weather Research and Forecasting Model (WRF)
The Weather Research and Forecasting Model, abbreviated
as WRF, will be referred to by this acronym throughout the
rest of the document, is an open-source software based in
FORTRAN, C++, C, and Shell environments designed for
numerical atmospheric prediction, with different versions
tailored to specific atmospheric phenomena. Before its
execution, the system interacts with the following key
components [6]:
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Geographical and topographic input data: This
is also known as static and includes coordinates for
the area of interest.
Meteorological and atmospheric input data:
This is also known as dynamic and includes variables
for ETo calculation like air temperature or wind speed.
WPS (WRF Preprocessing System): where the
module called GEOGRID preprocesses the static data,
and the module called UNGRIB preprocesses the
dynamic data. Both outputs are then used as inputs
for the module called METGRID.

Once the preprocessing is done and the output of the WPS
is ready, it is used in the WRF model as input. If the WRF
model uses real data and not simulations as in this study,
a final step in the REAL module is required before the
WRF starts processing data.

REAL: Module for interpolations of WPS output.
WRF Model: Software that solves specific equations
using numerical calculations.

Once WRF finishes running, the output is a NetCDF file,
which requires postprocessing for analysis and visualization:

Visualization: Dedicated software for visualization
of NetCDF files like Ncview are used to display the
model output.
Python: Postprocessing of information like analysis,
unsupervised machine learning clustering, predictions,
plots and more.

D. Self-Organizing Maps (SOM)
A SOM model is a type of artificial neural network used for
unsupervised tasks, such as clustering and dimensionality
reduction.

A key feature of SOM, in contrast to other machine learning
clustering techniques like k-means, is its progressively
decreasing learning rate, which adjusts weights until model
convergence. These decay and update actions occur in
each iteration presenting a resource challenge in terms of
computational processing power.

SOM was chosen for this project due to its successful
application in related works and its compatibility with
Python libraries, such as Scikit-learn, which offer various
configuration and implementation options.

The primary inputs required for the implemented classes
of this model include:

Input data columns: Features.
Input data rows: Registers.
m: Neural net grid weight
n: Neural net grid height
lr: Learning rate starting point.
dim: Number of input features
max_iter: Maximum number of iterations.
sigma: Decay function starting point.

The expected outputs of the model called labels, usually
consist of one column with a numerical indicator from cero
to “k” representing the neuron with a minor distance from
its centroid to an input register.

Given a SOM with parameters “m” per “n”, there are a
total of “k” neurons distributed on a two-dimensional grid.
Each neuron is connected to all input features through a
weight vector. The “dim” parameter represents the number
of input features. Then each neuron will have a weight
vector of size equal to “dim” resulting in a weight matrix
of shape: (“dim”, “k”) which means “k” columns by “dim”
rows. The operations followed by the SOM algorithm in
each iteration can be summarized in the following steps:

1. Weight matrix values assignation: Initialization
of the weight matrix with random values.

2. BMU determination: For each neuron in the SOM,
the distance between a selected input vector and the
neuron’s weight vector is calculated. The neuron with
the smallest distance is identified as the ”winning
neuron” or Best Matching Unit (BMU). Generally,
the calculation of the winning neuron follows the
Euclidean equation:

BMU = min
i=0,...,N

M∑
j=0

(
∥wji − xj∥2)

(2)

Where:
N : number of neurons.
M : number of input features.
xj : component j of input vector.
wij : component i,j of weight matrix.

3. Updating the neighboring neurons: The weights
of the BMU and its neighboring neurons are updated
to move closer to the input vector following an update
rule based on the distance and the learning rate.
This rule can be a linear approximation or given
by a function, both ways are decreasing. The linear
approximation for weight update is governed by the
equation:

wij(t + 1) = wij(t) + α(t)(xj(t) − wij(t)) (3)

Where:
α(t) = 0,7
α(t + 1) = 0,5 * α(t)

In the second case, the decreasing extended mathe-
matically function follows the next expressions [7]:

wij(t + 1) = wij(t) + θ(t) · L(t) (xj(t) − wij(t)) (4)

Where:
wij(t): component i,j of weight matrix at time t.
xj(t): component j of input vector at time t.
θ(t): neighborhood function that decreases over
t.
L(t): is the learning rate that decreases over t.
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4. Neighborhood function: This parameter deter-
mines how the weight of the neuron will be modified
if that neuron is closer to the BMU:

θ(t) = e
−BMU
2σ(t)2 (5)

Where:
σ(t) = σ0 · e

−t
λ

σ0 = initial radius of the map.
λ = max_iter ⁄ σ0

5. Learning rate: This parameter initializes with the
value given but decays over time with the equation:

L(t) = lr · e
−t
λ (6)

Where:
L(t): Learning rate
lr: Learning rate starting point.

6. Repetition of the cycle: This process is repeated
for all neurons and inputs across multiple iterations
(training cycles). This is called .fit operations in
Scikit-learn SOM.

7. Determination of weights for each register:
With the weight matrix updated until the max
iteration number, the distance from each input vector
(horizontal shape) to each neuron centroid also called
the weight vector (vertical shape) must be calculated
with the Euclidean equation. The result is a matrix of
shape: (“k”, number of input vectors). This operation
is called .transform in Scikit-learn SOM.

8. Clustering of input data: After training, each
neuron becomes specialized in a subset of the input
data. The data are grouped by assigning them to
the closest neuron in the grid. This process is called
.predict in Scikit-learn SOM.

E. ETo weather and climate clustering using SOM
The primary goal of this study is to determine daily ETo
‘weather’ clusters using an initial SOM model. Once ETo
weather clusters are obtained and labeled, their frequency
of occurrence is counted for each geographical pixel to
generate a histogram. This histogram serves as an input
signal to a final SOM, which groups the data into a single,
temporally aggregated result to identify the ETo ‘climates’.

II. Prior Works
Previous classifications of interest to the present study,
have established relationships between evapotranspiration,
climate, and land type [6]:

Very humid and humid: ETo is lower than precipi-
tation for most of the year, with no severe deficit.
Subhumid: ETo is lower than precipitation for much
of the year, with seasonal deficits.
Semiarid: ETo exceeds precipitation, with a deficit
for most of the year.
Arid: ETo exceeds precipitation, with a deficit for
almost the entire year.

As reviewed in earlier sections of this document ETo can
be calculated using the Penman-Monteith equation [4], but
in this study, the SOM model is the one with the task
of finding trends using those same variables and forming
clusters along the time of ETo ‘weather’. This idea was
first studied by co-authors of the present project and their
collaborators. The results were published in the article
“Evaluation of Evapotranspiration Classification using Self-
Organizing Maps and Weather Research and Forecasting
Variables” [8].

The actual investigation aims to develop a repeatable pilot
system for the determination of ETo ‘climate’ clusters
that provides valuable information for decision-making in
irrigation management. For its conceptualization, other
ideas were previously explored like the followed by the
Köppen climate classification [9].

Studies on ETo ‘climate’ in the Ecuadorian Andes and
Amazon region are relatively new; however, data acquisition
and storage to make possible this project have been ongoing
since 2017, anticipating its future use in evapotranspiration
analysis. Artificial neural network models such as SOM for
non-supervised uses like clustering operations, combined
with systems like WRF also have been successfully applied
in previous studies of ETo ‘climate’ by co-authors of the
present project and their collaborators.

The results were published in the article “Meso-Scale
Standard Evapotranspiration ‘climate’ Classification De-
rived from Numerical Weather Prediction Models and
Artificial Intelligence” [5]. This development enhanced the
accuracy and repeatability of these clustering operations
using repeatable ‘climate’ runs with distinct weather classes
to characterize ETo across the Andes and Amazon region
starting from the year 2017 and finishing in the year 2021.

III. Materials and Methods
The ETo ‘climate’ clustering followed the methodology
summarized in Figure 1 and can be reproduced as long as
a similar amount of data is used.

A. Static/ geographical data
A key starting point for any climate analysis is defined
by the geographical area of study, secondly is a quality
meteorological source of data and finally the correct
format to manage and save this data. This experiences
are referenced in previous related works [8], [5]. In this
project, the area as shown in Figure 2 has a size of 171 by
171 pixels defined as follows:

Initial Latitude: 0.60000
Initial Longitude: -79.000000
Initial Coordinates: 0°36’00.0"N,79°00’00.0"W
Pixel dimensions: 3.3 km x 3.3 km
Final Latitude: -4.466667
Final Longitude: -73.916667
Final Coordinates: 4°28’00.0"S,73°55’00.0"W
Projection: Mercator
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Figure 1. Block diagram of project implementation

These parameters are located in a file called “namelist.wps”
in the WPS directory and can be set up by editing the
“ref_lat” and “ref_lon” variables, which represent the
initial latitude and longitude. The area is determined by
the number of pixels variable. The parametrization of WPS
modules, directory paths, and the setup of the domains
can also be done by editing the “namelist” file.

B. Dynamic/ meteorological Data
The National Centers for Environmental Prediction
(NCEP), under the National Oceanic and Atmospheric
Administration (NOAA), provides access to global weather
and climate data through various tools and models such

Figure 2. Study area of the Andes and Amazon regions

as GFS (up to 16-hour Hindcasting) and GDAS (up to
9-hour Hindcasting), both sampled every 6 hours, with
delays in data availability. Global Forecast System (GFS)
has been chosen for the study of ETo on related works
and is one of the most widely used models across the
world because of the generation of weather hindcasts and
forecasts for the entire globe. These forecasts are produced
four times a day at 0:00, 6:00, 12:00, and 18:00 hours,
predicting a range of atmospheric variables, including
temperature, wind speed, air pressure, and precipitation,
at various altitudes. NCEP hosts a public repository where
GFS data is made available, which can be accessed at
ncep.noaa.gov/pub/data/nccf/com/gfs/prod. This repos-
itory is invaluable for researchers, and professionals who
require accurate, up-to-date weather data.

The GFS production directory (/prod) contains the output
files generated by the GFS model runs, typically updated
four times daily. This data is critical for running models like
WRF, which uses the data as input for weather predictions,
forecasting, and climate modeling in diverse geographical
regions, such as the Andes and Amazon.

C. NetCDF output file generation via HPC
Custom WRF was installed on the HPC of San Fran-
cisco University to handle large-scale data processing for
the evapotranspiration variable calculations. Due to the
limitations of typical home computers regarding memory
and CPU power, a high-performance infrastructure was
essential. Data from 2017 to 2022 was provided by the
authors from a previous project, while new data for specific
months in 2024 was computed for exercising purposes. The
challenges encountered included:
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Linux-based system infrastructure and programming.
Remote access to HPC via virtual machine and SSH
protocol.
Custom WRF installation on HPC and management
of Linux versioning troubles.
Python integration with server-side computing.

D. NumPy data cube
The transformation of the NetCDF format into a NumPy
file has been done by a Python script developed by one of
the authors under GNU license for this project. Once the
data had been processed and saved in a file on memory
disk, it was implemented a Jupiter notebook where the
structure of the data was analyzed and encountered that
it has a distribution across three dimensions:

First dimension: ddd*yyy.
Second dimension: xxx
Third dimension: Starting date variables
(v1, . . . , v8)00h00, . . . , (v1, . . . , v8)23h00 to ending
date variables (v1, . . . , v8)00h00, . . . , (v1, . . . , v8)23h00.

Where:

ddd: number of days of the data analyzed.
yyy: number of geographical pixels in Y.
xxx: number of geographical pixels in X.
v1: Rn Net Radiation
v2: G Ground Heat Flux
v3: T Air Temperature
v4: ∆ Vapor Pressure Curve
v5: γ Psychrometric Constant
v6: es Saturation Vapor Pressure
v7: ea Actual Vapor Pressure
v8: u2 Wind Speed

For exercise purposes, it first was tested with data from
April of the year 2024 which has 30 days. The following
shape was obtained: (5130, 171, 192). After investigation
and analysis, it was determined that this shape represents
the following information:

The first dimension represents each geographic pixel
position in the “Y” direction, sorted in ascending order
for each day. For the example analyzed of April 2024,
it is equal to 5130 obtained by the product of the total
number of days (30) by the total number of positions
of the geographical pixels in the “Y” axis (171).
The second dimension captures the geographic pixels
on the “X” axis. For the example, the value is 171
and it goes alone.
The third dimension holds the eight variables for ETo
calculation in the 24 hours of each day. The example
is 192 which represents the values of the 8 variables
over the 24 sequential hours.

This transformation is necessary to handle the temporal
and spatial dimensions of the data efficiently, along with
the eight weather variables recorded for each hour.

The training of the model to determine the ETo weather
was done over two years: 2021 and 2022 and its shape is
the following: (124830,171,192), representing two years of
365 days each multiplied by 171 pixels in the “Y” axis at
the first dimension.

E. NumPy data flattened
First, the flattening was done using the Pandas library
with multiple-loop comparison and reorganization of the
data in columns to get the following structure:

Index 1: Pixel in Y
Index 2: Pixel in X
Index 3: Day
Column 1: Net Radiation 00h00
Column 2: Ground Heat Flux 00h00
Column 3: Air Temperature 00h00
Column 4: Vapor Pressure Curve 00h00
Column 5: Psychometric Constant 00h00
Column 6: Saturation Vapor Pressure 00h00
Column 7: Actual Vapor Pressure 00h00
Column 8: Wind Speed 00h00
...
Column 185: Net Radiation 23h00
Column 186: Ground Heat Flux 23h00
Column 187: Air Temperature 23h00
Column 188: Vapor Pressure Curve 23h00
Column 189: Psychometric Constant 23h00
Column 190: Sat. Vapor Pressure 23h00
Column 191: Actual Vapor Pressure 23h00
Column 192: Wind Speed 23h00

This flattening experiment was effective but consumed
significant computational resources, making it suitable only
for a one-month duration. For the two-year training period,
this method was not viable. As a result, the efficient matrix
computation capabilities provided by the NumPy library
in Python were employed.

The reshape method of the NumPy library was used to
change the shape of the original array until the final
flattened shape was obtained, for demonstration purposes
here is the analysis of an example sample of April 2024:

Table I
Reshaping operations.

Structure Example
Original shape ddd ∗ yyy, xxx, 24 ∗ 8 5130, 171, 192

Reshape ddd ∗ yyy ∗ xxx, 24 ∗ 8 877230, 192

The initial structure was transformed from a 3D data
cube into a 2D array, where each daily geographic pixel
(“Y”, “X”) contains 24 hours of data with eight variables
recorded per hour. Reshaping the data is essential for
efficient management and for meeting the mandatory input
format requirements of machine learning models. The steps
implemented for this transformation are summarized as
follows:
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1. Original Data Shape: The data initially comes in
a 3D format. However, to handle time (days) and
spatial data (y and x coordinates) for multiple vari-
ables (such as temperature or wind speed), we need
to reshape it into a more descriptive 2D structure.

2. Flattening: This operation uses the reshape capa-
bilities of NumPy and as a result, it gives a 2D array
whose dimensions represent the following information:

The first dimension represents each geographic
pixel position combination in the “Y” and “X”
directions, sorted in ascending order for each day.
For the example analyzed of April 2024, it is
equal to 877230 obtained by the product of the
total number of days (30) by the total number
of position combinations of geographical pixels
in the “Y” and “X” axes (171*171).
The second dimension holds the eight variables
for ETo calculation in the 24 hours of each day.
The example is 192 which represents the values
of the 8 variables over the 24 sequential hours.

The final flattened array enables easier analysis and
modeling, with each row representing a combination
of hours and variables per geographical “Y” and “X”
pixels. This approach optimizes the structure of the
data for further processing, such as inputting it into
machine learning models like SOM.

F. HPC with Custom WRF
A custom version of the WRF model, provided by Scott
Williams under the GNU license, was installed and tested
first on a local machine running Linux Mint and later on
the high-performance computing (HPC) cluster at San
Francisco University, which runs on Ubuntu Server. The
WRF exercises performed included the following steps:

On the HPC: Accessing the HPC via a VPN
from a Windows machine using a secure shell (SSH)
connection.
Downloading dynamic data: A Python script
named getdata_gfs.py was used to retrieve dynamic
atmospheric data.
WRF execution: A script was run with system-
atic execution of GEOGRID, UNGRIB, METGRID,
REAL, and WRF.

This version was tailored to calculate eight essential
variables for evapotranspiration (ETo) estimation, covering
a geographical region that includes the Andes and Amazon
areas of Ecuador and parts of Peru. The grid for this area
consists of 171 by 171 geographical pixels.

Due to the nature of the dynamic data repository, which
only allows access to information from the last 12 days, the
data from the years 2017 to 2022 was generously provided
by one of the authors from his repository for training and
testing the SOM model. Additional WRF computations
were conducted for selected months and dates in 2024 for
further training and learning purposes.

G. Storage
For data storage, Google Drive service was utilized due to
its seamless integration with Google Colab, offering easy
access and management of files during the experiments.
The cloud storage space allocated was 200 GB, sufficient
for handling the large datasets involved in the study.

H. Cloud computing
Initially, each year of transformed data in NumPy format
exceeded 7 GB, and with labels, the size grew to over 13
GB. During model training, the required RAM reached
approximately 30 GB per year, resulting in a total memory
demand of around 86 GB for training the model with data
from the years 2021 and 2022. Given these requirements,
a high-RAM computing unit was essential for the model’s
implementation.

Google Colab text processing unit known as TPU and high
RAM CPU run-times were chosen to solve computational
power demand for its accessible cloud resources, connec-
tivity with Google Drive storage, and scalability between
them, ensuring sufficient capacity for handling the data
and training the model efficiently. The main characteristics
of the run-times used are specified in the next table:

Table II
Cloud computing runtime types used

RAM Disk Cost
Runtime CPUs (GB) (GB) per hour

Units
TPU V2-8 96 334.6 225.3 1.76

CPU high RAM 8 56.0 225.8 0.30

I. Scikit-learn SOM
SOM were chosen because they are more robust in iden-
tifying patterns in data compared to other unsupervised
machine learning models like K-Means. While K-Means
is based on partitioning the data into k clusters by
minimizing the within-cluster variance, SOM maps high-
dimensional data onto a lower-dimensional grid, preserving
the topological structure of the data.

The implementation of SOM using the library Scikit-learn
SOM had limitations when it was necessary to evaluate the
quality of the clusters formed. Distortion is a key metric in
unsupervised machine learning models, especially in cluster-
ing methods that utilize neural networks, used to assess how
accurately the formed groups reflect the underlying data
patterns. To address the absence of this functionality in the
original Scikit-learn SOM implementation, it was necessary
to customize and extend it using the BaseEstimator and
ClusterMixin libraries.

The distortion metric implemented in the Scikit-learn
Custom SOM is calculated as the sum of the squared
Euclidean distances between each data point and its
closest cluster centroid. Mathematically, distortion can
be expressed as:
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Distortion =
M∑

j=0
( min
i=0,...,N

∥wji − xj∥2) (7)

Where:

N is the total number of neurons or clusters.
M is the total number of data points.
xj : component j of input vector.
wij : component i,j of weight matrix.

This modification provides a quantifiable method to assess
cluster cohesion and can be used to fine-tune the model for
improved performance. The hyperparameters of the SOM
in ETo ‘weather’ and ‘climate’ models were optimized using
this metric.

J. Train-Validation-Test Split
All the available WRF output data were used for ETo
‘weather’ clustering, with two years allocated for training,
one month for validation, and four years for testing. This
approach was chosen because the cluster labels would be
used to generate the input signal for the ETo ‘climate’ SOM
model. Consequently, ensuring a large number of validated,
tested, and high-quality predictions was prioritized over
the risk of developing an over-fitted model.

On the other hand, two years of the generated data
were used to train the ETo ‘climate’ SOM model, and
another two years were used for validation. The test dataset
consisted of two years of data created using labels predicted
by the training data of the ETo ‘weather’ model. Therefore,
for the ETo ‘climate’ SOM model, this test data is entirely
new and unknown.

Table III
Train-Validation-Test Split and Data Types

Train Validation Test Type
ETo 2021 to April 2024 2017 to NetCDF

weather 2022 2020 WRF output

ETo 2017 2018 2021 to NumPy ETo
climate 2019 2020 2022 weather clusters

This ensured that neither under-fitting nor over-fitting
occurred while also allowing the study to cover a significant
period. This is particularly important given that, in
Ecuador, there are climatic phenomena like the “Niño”
whose frequency of occurrence ranges from four to seven
years [10].

IV. Results and Discussion
A. ETo ‘weather’
The initial training and tuning of the custom SOM model
were carried out using a series of “m” by “n” grids, com-
bined with different “lr” and “max_iter” values. Training
data from January 2024 and validation data from April

2024 were used and distortion was assessed as the score
metric.

The optimal number of clusters, denoted as “k,” was
determined to be 36 after multiple training iterations.
Consequently, the SOM grid was configured with “m” set
to 6 and “n” set to 6, as shown in figure 3 .

Figure 3. Determination of the optimal number of clusters

The optimal number of clusters was updated to 36 and the
model was trained for multiple values of maximum number
of iterations “max_iter”, see figure 4:

Figure 4. Determination of the maximum number of iterations

An optimal maximum number of iterations was determined
to be 400 and updated in the model. Similarly, the learning
rate hyperparameter was optimized, yielding the results in
figure 5:

Figure 5. Determination of the optimal learning rate
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The learning rate with the lowest distortion was determined
to be 2. These hyperparameter values were slightly adjusted
over the two years of training in the final model to ensure
consistent results. The final optimal hyperparameter values
are presented as follows:

m: 6.
n: 6.
lr: 2.
max_iter: 390.

The training of the ETO ‘weather’ main model was
performed in 2021 and 2020 using the fit method on the
TPU provided by Google Colab. Serial processing was
employed due to the nature of the task, which required
iterating through epochs across all points and weights. This
restricted the use of parallel computing and limited the
utilization of the total CPU power. However, the RAM’s
storage capacity was fully utilized to allocate the weight
matrix during processing.

The model was saved to Cloud Storage using the “Joblib”
library. Cluster labels were generated using the prediction
method of the custom Scikit-learn SOM on data from 2017
to 2020, using the TPU and parallel computing in Python.
The pre-flattened and normalized data for these years was
divided into 96 batches, matching the number of available
CPUs, and processed in parallel using the “Parallel” and
“Delayed” functions of the “Joblib” library. Once all batches
were predicted, their outputs were merged in the original
data order.

As the final step in this section, the labels were saved
independently in Cloud Storage for later use in ETo climate
determination and plotted as shown in figure 6.

Figure 6. ETo weather clusters on January 1st from 2017 to 2019

From the evaluation of the model trained for two years,
it is determined that the predictions maintain the same
behavior in terms of distortion as the model evaluated
during training and validation in the initial one-month
testing phase, see figure 7.

Figure 7. Evaluation of ETo ‘weather’ distortion in training and
testing respectively

B. ETo climate
The concept of ETo ‘climate’ represents the groups formed
in the study area that have similar distributions of a series
of ETo ‘weathers’ per geographical pixel across time.

A new SOM clustering model was implemented to form
the ETo ‘climate’ groups. The input data consisted of a
table with 29 241 registers, derived from the multiplication
of 171 by 171 pixels, and 38 columns described as follows:

Coordinate “Y” of the pixel analyzed.
Coordinate “X” of the pixel analyzed.
A histogram was calculated based on the number of
times each ETo ‘weather’ cluster was repeated in the
pixel with coordinates “Y” and “X”, analyzed across
all days during the study period. This process resulted
in an additional 36 columns, one for each cluster.

The determination of the hyperparameters for the ETo
climate SOM model was conducted by splitting the data
into two years for training and two years for validation.
The chosen scoring criteria were based on repeatability
and were calculated as the pixel difference by coordinate
between two models with the same hyperparameters, but
with random initialization. The optimal number of clusters
was determined to be 12, resulting in “m = 3” and “n =
4” grid (see trends shown in Figure 8).



20

Figure 8. Determination of the optimal number of clusters

Multiple evaluations of the models were conducted to
determine the maximum number of iterations and the
learning rate by searching for the best results through
continuous model feedback, producing the outcomes in
figure 9 and 10 respectively:

Figure 9. Determination of the maximum number of iterations

Figure 10. Determination of the optimal learning rate

The training operations continued with fine-tuning to
achieve repeatability across multiple evaluations in pairs of
models. From this analysis, the following hyperparameters
were obtained to be the best:

m: Neural net grid weight of 3
n: Neural net grid height of 4
lr: 0.25
max_iter: 9e8

C. Repeatability

Repeatability was evaluated by comparing identical models
with different random states to ensure reliability. Random
states affect weight initialization, influencing convergence to
a global solution. While SOM clusters maintain consistent
shapes, their labeling varies, complicating label mapping
and unification.

Mapping (see results in figure 11) was conducted by sorting
column distributions based on the total sum of their
registers, complemented by the Hungarian algorithm which
solves assignment problems by minimizing or maximizing
total costs. It operates on a cost matrix, iteratively
adjusting it through row and column reductions, covering
zeros with lines, and modifying uncovered values until an
optimal assignment is achieved. In this implementation,
the cost matrix was calculated using the sum of squared
differences between centroids, followed by the search of the
optimal assignment, and label mapping based on it.

Figure 11. ETo ‘climate’ heatmap for two different initializations
with matched labels.
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Finally, the cluster label values between the two models
were subtracted and plotted for repeatability analysis. A
heatmap using a red, white, and blue color scale is shown
in Figure 12. In this heatmap, white indicates that both
models share the same cluster for the analyzed pixel, while
red and blue represent differences.

Figure 12. Differences of models in figure 11 with 2.99% of error.

If cluster labels do not match in a pixel, the difference is
a nonzero value. The total number of pixels with nonzero
differences, divided by the total number of pixels, gives the
error percentage for repeatability evaluation.

For this study, a goal of 10% of error is considered
acceptable in terms of repeatability [11]. Finally, the
evaluation was done with the test dataset for other pairs of
previously trained models with the same hyperparameters
but different initialization, obtaining the plots in figure 13.

V. Conclusion
The results of the SOM clustering for ETo ‘climate’
data have provided a robust framework for analyzing
evapotranspiration patterns in the Andes and Amazon
regions.

A learning rate higher than the chosen one in the ETo
‘climate’ model results in perfect repeatability with only
one cluster (under-fitting) and a minor “lr” result in clusters
with more details but very different from each other (over-
fitting).

From the twelve ETo ‘climate’ clusters identified, it can
be observed that the Andean highlands share a common
cluster across all mountain ranges. Distinct groups are also
noticeable in the transition zones between the highlands
to the Amazon and coastal regions. Additionally, similar
patterns are evident in the Amazon and coastal areas.
Finally, unique clusters emerge parallel to the Andes
Mountain range within the Amazon region, despite the
absence of geographical elevation differences.

Figure 13. ETo ‘climate’ repeatability evaluation for the train and
test datasets with pixel differences of 4.90% and 5.34%, respectively.

This study highlights the critical importance of advancing
climate research, especially in the context of growing
global challenges related to climate variability and change.
Understanding evapotranspiration (ETo) is crucial for
sustainable water resource management and agricultural
planning. To promote collaboration in this field, the scripts
used to reproduce this study, and the associated data are
publicly available online [12].
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