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RESUMEN

La clasificación de microseísmos volcánicos es crucial para identificar el tipo de evento en
situaciones potencialmente peligrosas. No obstante, el etiquetado de estos eventos es una tarea
dificultosa y costosa en cuestion de tiempo, ya que requiere de expertos en el área. Para reducir la
dependencia de grandes conjuntos de datos etiquetados, se propone un enfoque semi-supervisado
que incorpora dos algoritmos: Self-Training con múltiples clasificadores base y Label Spreading.
Adicionalmente, se implementa técnicas avanzadas de reducción y transformación de características
para optimizar la representación de los datos de entrada. Todos los experimentos se realizaron
utilizando la misma base de datos proporcionada. Los resultados indican que los modelos basados en
Random Forest y SVM, empleando solo el 10% de los datos etiquetados, superan el rendimiento de los
algoritmos supervisados tradicionales. Sin embargo, encontramos resultados menos satisfactorios con
Naive Bayes, debido a la ausencia de ajuste de hiperparámetros, y con Label Spreading, atribuible a
las limitaciones intrínsecas del propio algoritmo. Estos hallazgos destacan el significativo potencial de
los enfoques semi-supervisados, especialmente cuando se seleccionan y optimizan adecuadamente los
algoritmos base y las características utilizadas.

Palabras clave: Microseísmos,Clasificación semisupervisada,Análisis sísmico,Aprendizaje
automático,Volcán Cotopaxi.



8

ABSTRACT
The classification of volcanic microseismic events is crucial to identify the type of event in

potentially hazardous situations. However, labeling these events is a difficult and time-consuming
task, as it requires experts in the field. To reduce the dependency on large labeled datasets, a
semi-supervised approach is proposed that incorporates two algorithms: Self-Training with multiple
base classifiers and Label Spreading. Additionally, advanced feature reduction and transformation
techniques are implemented to optimize the representation of the input data. All experiments were
performed using the same database provided. The results indicate that Random Forest and SVM
based models, employing only 10% of the labeled data, outperform traditional supervised algorithms.
However, we found less satisfactory results with Naive Bayes, due to the absence of hyperparameter
fitting, and with Label Spreading, attributable to the intrinsic limitations of the algorithm itself.
These findings highlight the significant potential of semi-supervised approaches, especially when the
base algorithms and features used are properly selected and optimized.

Key words: Microseisms, Semi-supervised classification,Seismic analysis, Machine learning, Cotopaxi
Volcano.
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Classification of Cotopaxi Volcano Seismic Events
using Semi-Supervised Learning

Pavel Estrella, Felipe Grijalva, Senior Member, IEEE

Abstract—The classification of volcanic microseismic
events is crucial to identify the type of event in
potentially hazardous situations. However, labeling
these events is a difficult and time-consuming task,
as it requires experts in the field. To reduce the
dependency on large labeled datasets, a semi-supervised
approach is proposed that incorporates two algorithms:
Self-Training with multiple base classifiers and Label
Spreading. In addition, advanced feature reduction and
transformation techniques are implemented to optimize
the representation of the input data. All experiments
were performed using the same database provided.
The results indicate that Random Forest and SVM
based models, employing only 10% of the labeled data,
outperform traditional supervised algorithms. However,
we found less satisfactory results with Naive Bayes,
due to the absence of hyperparameter fitting, and with
Label Spreading, attributable to the intrinsic limitations
of the algorithm itself. These findings highlight the
significant potential of semi-supervised approaches,
especially when the base algorithms and features used
are properly selected and optimized.
Index Terms—Microseisms, Semi-supervised classifi-
cation,Seismic analysis, Machine learning, Cotopaxi
Volcano.

I. Introduction

VOLCANIC eruptions are one of the most destructive
geological events on the planet, since they generate

diverse consequences depending on the intensity with which
they occur. These eruptions affect not only the populations
near the volcano, but also more distant communities due
to factors inherent to the eruptive activity. It is known that
about 800 million people live within 100 km of an active
volcano, 226 million live within 30 km and 29 million live
within 10 km in 86 different countries [1].
Inhabitants near the eruption may experience different
risks, such as gas emissions, ash fall, lahars on the flanks
of the volcano, lava flows, seismic activity, climate change,
among others. According to [2], volcanic eruptions in
the twentieth century have claimed the lives of about 80
thousand people around the world, this figure is limited not
only to the eruptive event but also to the secondary risks
that affected the population. Therefore, it is necessary
to constantly monitor volcanoes with different sensors
that capture their behavior, in order to prevent complex
scenarios that could be triggered by an eruption.
In Ecuador, the entity in charge of the surveillance and
monitoring of volcanic activity is Instituto Geofísico de la
Escuela Politécnica Nacional (IG-EPN) since 1983, which
observes volcanoes inside and outside the continent, and
has classified them according to their last eruptive activity

as: extinct, active, and erupting. According to [3] and data
from Instituto Nacional de Estadística(2010), at least 35%
of the Ecuadorian population lives in these regions and
could be affected by volcanic activity.
In 2021, the IG-EPN had 266 stations installed in the 20 vol-
canoes of the continent and Galapagos [3]. It is important
to note that it has strategically installed sensors to monitor
the specific risks of each volcano. In continental territory,
the Guagua Pichincha, Tungurahua, Reventador, Cotopaxi,
and Sangay volcanoes are continuously monitored. In the
Galapagos archipelago, monitoring covers the Sierra Negra,
Fernandina, Cerro Azul and Wolf volcanoes [4].
The IG-EPN has short-period, broadband and lahars
seismic sensors, geodetic sensors that include inclinometers,
GPS, geochemical and remote sensors that are thermal
cameras for the observation of national volcanology. One of
the main interests are seismic sensors, since an increase in
this activity is associated with possible internal changes of
the volcano, which could provide the necessary information
to timely alert risk management institutions and even the
public.
Seismicity analysis is the most widely used method to
determine the current state and future activity of a volcano,
since it provides insight into magma and gas movements.
Seismicity is evaluated by analyzing microseisms and other
vibrations recorded in the ground by the seismometers of
the monitoring network. The recovered seismic events are
classified as Volcano-Tectonic (VT) type seismic events
that can occur due to rock stress caused by the movement
of magma and other fluids through preexisting cracks,
Long-Period (LP) events caused by cracks that resonate
as fluids move towards the surface, Tremors (TR), which
is continuous seismicity [5], Hybrid (HYB) events are a
mix between Long-Period (LP) and Volcano-Tectonic (VT)
events [6], among others.
Microseism-related data is recorded on a daily basis,
generating a significant volume of information, which
cannot be processed efficiently since they require an expert
to categorize them. Therefore, it is opts for the use of
Machine Learning to classify behaviors and/or generate
new structures from the data obtained. Currently, there
are works that use supervised learning models [7], [8] to
classify these events. However, this approach has significant
disadvantages, one of which is the reliance on fully labeled
databases, which ideally should be selected and validated by
subject matter experts and require considerable evaluation
time. Another significant disadvantage is the considerable
increase in model training time when handling large
volumes of data, potentially delaying the development
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process.
The proposed solution is to use semi-supervised learning
with the objective of classifying seismic events through the
knowledge of a fraction of labeled data, which contains
structural information that is used to compare with the
characteristics of unlabeled data, making possible the
extension of labels [9]. The Semi-Supervised Learning
approach to be used is particularly suitable for microseism
data, since they are highly detailed, allowing one to take
full advantage of the approach provided by these models.
This is particularly valuable since semi-supervised learning
does not rely on a large number of labels, thus facilitating
the analysis of daily collected data, the manual labeling of
which would be a complex and costly task.
The existence of research focused on the classification of
microseisms by means of these algorithms is very low, for
example, the one developed by [10]. In this study, the
following signals of seismic systems of type “VT” and
“LP” were analyzed using a single semi-supervised model.
The present work contributes with a broader approach
to the Self-Training Algorithm, since not only a base
classifier will be used, but its implementation with different
types of classifiers is explored. In addition, the Label
Spreading Algorithm is integrated to extend the analysis
and maximize the use of the available data.
Among the base classifiers used is one of each Machine
Learning approach: Symbolists, Bayesians and Analogizers
in combination with different proportions of labeled data.In
addition, a Label Spreading approach is implemented,
exploring its performance in data-limited scenarios. This
paper analyzes the impact of labeled data proportions on
model performance, using metrics such as Area Under the
Curve (AUC), F1-Score, and Accuracy, in order to provide
practical recommendations for the integration of unlabeled
data in volcanic microseism classification problems.
The main contributions of this work include the devel-
opment of a comparative methodology that evaluated
semi-supervised techniques against traditional supervised
methods, highlighting their advantages and limitations
in the problem domain. A preprocessed and structured
data set including labeled and unlabeled information is
presented. In addition, semi-supervised learning approaches
adapted to the specific characteristics of the problem are
optimized. Finally, a detailed analysis of the effect of
the percentage of labeled data on model performance is
provided, providing key insights for applications in resource-
constrained contexts with high uncertainty.

II. Methodology

This section presents the implementation that was carried
out for the development of this project. First, in II-A, we
describe the additional features of the database used for the
model. Then, in II-B, a simple cross-validation technique is
explained to obtain an optimality for the reduction of the
number of features to be used. In the following section II-C,
the Semi-Supervised Learning approach is explained and,
finally, the experimental conditions II-D are detailed.

Fig. 1, shows the block diagram that explains the implemen-
tation process of the approach used. A database containing
records of various micro-earthquake characteristics of the
Cotopaxi Volcano is used. Then, a dimension reduction
and transformation are applied on the same characteristics.
Finally, the processed database, which contains records
classified as VT and LP independently, is trained on the
semi-supervised learning model to finally evaluate the
metrics and compare the results.

Figure 1. Block Diagram of the Methodological Stages

A. Database
It was proposed to use one of the databases that were
collected from the BNAS, BREF, BTAM and BVC2 seismic
sensors belonging to the Cotopaxi volcano, which we will
call D, containing 22, 640 observations of different micro
earthquakes such as VT, LP, TR, HYB, among others, as
detailed in the following table I.

Table I
Frequency of Volcanic Microseisms by Type.

Type Frequency
LP 11, 553
VT 8, 756
HB 533

TRE 252
OTHERS 1, 546

This database contains 88 characteristics that are dis-
tributed in 1 type of earthquake, 3 related to data capture,
and 84 related to the properties of the earthquake, as can
be seen in table II. In the 84 characteristics, there are 13
in the time domain, 21 in the frequency domain, and 50
in the scale domain.
The extraction of Volcano-Tectonic (VT) and Long-Period
(LP) type earthquakes was carried out, since these are
the main ones that can inform of the beginning of an
eruptive activity. As cited in [11] the document consulted,
the “VT” earthquakes are in the frequency spectrum and
can reach up to 15 Hz, and “LP” is of low frequency,
compared to the “VT” events, it is between 2 to 5 Hz,
reflecting a different dynamic behavior, possibly related
to volcanic fluid interactions. This frequency distinction is
crucial for classification and is a key tool for monitoring
and minimizing volcanic hazards.
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Table II
Seismic Event Features Table.

Feature Name Description Columns
Type Type of microseism 1

Channel Seismic event capture chan-
nel 1

Event Identifier Unique identifier of the seis-
mic event 1

Station Station of origin of the seis-
mic event 1

Time (t) Time-related features, iden-
tified by “t” 13

Frequency (f) Frequency-related features,
identified by “f” 21

Scale (w) Scale-related features, iden-
tified by “w” 50

Subsequent to the extraction of a subset of D, composed
only of two seismic events, this is divided into two sets: D1
and D2. The former was used for data training, while the
latter was intended for the testing phase. Thus, D1 has
16, 248 records and D2 has 4, 061 records.

B. Preprocessing
For the development of this analysis, a Feature Reduction
and Transformation Process was used using the Feature
Selection process with mutual information. The data is
scaled using the Standard Scaler tool to standardize
the different scales of the characteristics, and, finally,
a reduction in dimensionality is performed using PCA,
preserving 95% of the variance. This allows the algorithm to
simplify the processing of the data without losing significant
information. Feature selection requires the specification of
a k value, which it selects a maximum number of relevant
features from the data set. In order to identify the optimal
number, k, of the characteristics that will best contribute to
the model, different values were taken. This made it possible
to identify and select the most relevant characteristics for
the performance of the model [12].
For optimization of the value of k in feature selection,
an iterative procedure was implemented in which a base
classifier is trained by varying the number of selected
features [13].This process identifies the value of k that
offers the most stable Area Under the Curve (AUC)
metric, guaranteeing a balance between performance and
consistency. Finally, we obtain the optimal value of k to
be used in subsequent implementations, the evolution of
this k is shown in Fig. 2.
We chose k = 42 as the optimal number of features out
of the original 84, based on the observed performance of
the ROC AUC, in this supervised classifier we used. This
filtering helps in balancing model complexity and predictive
reliability. In addition, it was considered to decrease
the dimensionality by 50%, to optimize computational
efficiency while retaining high predictive performance. This
value was also estimated to be taken as k, since a balance

Figure 2. ROC AUC as a function of the number of selected features

between performance and simplicity is sought. If higher
performance is desired, k values greater than 50 can be
chosen.

C. Semi-Supervised Learning
In this section we detail the Semi-Supervised Learning
models that were used, these models facilitate learning
using labeled and unlabeled data sets. As mentioned above,
the process of labeling earthquakes is very complex, so it
is proposed to use this type of algorithm because it does
not need a large amount of labeled data for training. Two
approaches are used, Self-Training and Label Spreading.
1) Self-Training: For the Self-Training approach, it is
necessary to have a base classifier to predict unlabeled
data and select the most confident predictions and retrain
the classifier [14]. Different classifiers are used to compare
the results of their methods and obtain the classifier that
best fits the data.
For the implementation of the Self-Training algorithm it is
necessary to obtain a subset of the main database of labeled
data L and unlabeled data U . From the labeled data we
proceed to train a classifier f , which runs a hyperparameter
optimizer using a cross-validation technique, and obtain
the model with the best set of them. The optimized model
serves as the basis for use in the Self-Training algorithm,
where both labeled and unlabeled data are input. The
whole procedure is shown in the flow of Fig. 3.
The input data consists of 84 characteristics, of which
the data preprocessing mentioned in the previous section
will be applied and where it was obtained that for the
selection of features by mutual information a k = 42
characteristics, which are relevant, will be used. These
relevant characteristics will go through a standardization
process and finally the application of PCA to reduce
dimensionality. These data will go through the Self-Training
Algorithm procedure, referred to in the previous paragraph,
and the output is a trained model that can predict the
labels corresponding to VT and LP.
Regarding the f classifier, Random Forest, SVM and
Naive Bayes are used. These algorithms are frequently
used as binary classifiers, given their easy implementation,
robustness, and efficiency, they are well adapted to high-
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Figure 3. Self-Training Process Flow

dimensionality numerical variables, which makes them ideal
for this dataset. These classifiers are trained and optimized
using k-fold cross-validation to evaluate combinations of hy-
perparameters, we specify five times, and upon completion,
we retrain the model with the best values obtained from
the search on the entire data set labeled L. The metric
selected to optimize is the negative log loss, as in [15],
and this function is particularly effective to evaluate the
precision of probabilistic prediction algorithms. The above
development was carried out in order to obtain a base
classifier to be used in Self-Training. The configuration of
hyperparameters is performed for Random Forest and for
SVM, these values can be verified in the tables III and IV,
for the case of Naive Bayes, the search of hyperparameters
is not performed due to its simplicity.

Table III
Hyperparameter Grid for Random Forest.

Hyperparam. Description Values

n_estimators Number of trees in the
forest

10, 20,
50,
100

max_depth Max. depth of the tree 1, 2,
..., 10

min_samples_split Min. samples to split a
node 2

Table IV
Hyperparameter Grid for Support Vector Machine(SVM).

Hyperparam. Description Values

C Regularization parameter 0.1, 1,
10, 100

gamma Kernel coefficient
1, 0.1,
0.01,
0.001

kernel Kernel type ’rbf’

With the base algorithm already trained, it is implemented
in Self-Training, where the only parameter that is fixed
is the threshold, which in this case is 0.8. This threshold
determines the confidence level required for a classifier
prediction to be considered as a valid label for the unlabeled
data set, U . As the algorithm progresses, high-confidence
instances are automatically labeled and incorporated into
the training set, allowing the classifier to iteratively improve
its performance as it processes more data.
2) Label Spreading: This uses label propagation from
a small set of labeled data to a much larger set of
unlabeled data. The algorithm constructs a graph based on
the similarity between the data points, generally using
a base kernel, to model the relationships between the
instances [16].
In the algorithm, labeled data is used as the source, while
unlabeled records are initialized with uniform probabilities.
Through an iterative process, Label Spreading propagates
the labels to the unlabeled instances according to the
similarity relations. During each iteration, the probability
of the labels is adjusted according to the similarity of the
points in the network, and the process is repeated until
the labels converge.
The input data consists of 84 features from which the data
preprocessing mentioned above will be applied. Unlike Self-
Training, this algorithm does not use a base classifier, so
it does not go through a hyperparameter optimization
process, and therefore the total number of records (labeled
L and unlabeled U ) is input to the algorithm, Fig. 4, and
performs the process described in the previous paragraph.
For algorithm initialization, certain hyperparameters need
to be adjusted to avoid under- and overfitting, thereby
improving model performance.

Figure 4. Label Spreading Process Flow

One of the most important hyperparameter to fix is the
kernel, we used the radial basis function, “rbf”, which
is a Gaussian function that measures the similarity of
the Euclidean distance between points, it is ideal for
capturing nonlinear relationships in the data, avoiding
linear assumptions about the data, and we allow the model
to capture more complex patterns. Tie to the kernel, we
have the value of gamma(γ) which is set as an inverse
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ratio to the square of the median of the distances between
all pairs of points in the data, which reflects the actual
structure of the data, avoiding being too wide (loss of local
detail) or too narrow (lack of generalization). This value
will avoid both overfitting and underfitting as it ensures
the similarity of the data.
A value of alpha(α) is set at 0.30, which determines the
weight given to the initial labels versus the propagated
labels in each iteration of the algorithm, the value given
gives as a rule that 30% importance is given to the original
labels and 70% to the labels propagated in the training.
This prevents the model from excessively depending on the
propagated labels and also from depending too much on
the initial labels, which would limit the propagation.
Likewise, we define the maximum number of iterations
(max_iter = 100) and the tolerance (tol = 1e − 4) values
that allow the algorithm to converge correctly, ensuring
that the model has enough time and accuracy to assign
labels reliably.

D. Experiments
As described, for the Semi-Supervised Learning approach,
both labeled and unlabeled data are needed, so, since the
base D1 is fully labeled, a percentage was simulated to be
unlabeled, and thus the database is obtained to have L
and U (i.e., labeled and unlabeled data).
To train each algorithm, we performed variations on the
initial size of L ranging from 10% to 90%, note that U is
the remaining data in the database. On the one hand, in
the Self-Training model, each classifier is trained using the
set L, adjusting their respective hyperparameters each time
we increase the labeled set. The size of L was selected and
the experiment was repeated 10 times employing different
subsets of the same size. To ensure a fair comparison
between the base classifiers, both the size and the content
of the data were kept constant by setting a random seed.
On the other hand, in the Label Spreading model, the
same procedure is performed in the same way, obviating
the training of the base classifier, in this case passing the
data set L and U , with their respective sizes directly to the
model training. As mentioned, the inputs to the trainings
were the features obtained by preprocessing dimensionality
reduction and transformation.
The trained models were subjected to a testing phase
that consists of using the D2 data set to evaluate various
performance metrics. For this purpose, the Self-Training
and Label Spreading models were selected in their different
variants, which have been trained using between 10%
and 90% of the set L, performing 10 repetitions for each
percentage. The corresponding metrics were then calculated
and a confidence interval was applied. Finally, the results
obtained were compared between the different classifiers
and configurations to determine their performance. This
process is based on a variant of Monte Carlo-based cross-
validation, as described [17], [18], having different data
randomization of L and U , and repeating the process 10
times to average evaluation metrics.

For self-training-focused models, the semi-supervised ap-
proach was compared in terms of the area under the curve
(AUC) and F1-Score metrics against a Supervised Learning
scheme. On the one hand, AUC allows us to evaluate the
ability of the model to discriminate between classes, while
F1-Score is especially useful in unbalanced data sets, which
is the case studied. In addition, the ROC curve and its
corresponding AUC are used in the plots for clear and
accurate visualization and comparison. In [14] it is argued
that these metrics provide robust evaluations for these
methods. For supervised training, the same hyperparameter
search setup with k-fold cross-validation with k = 5 is used
to evaluate performance. The same preprocessing setup
was performed to achieve fair comparisons. For the Label-
Spreading approach, only comparisons are made within
experiments of the different experienced ratios of L.
In addition, the best results obtained by each classifier
were compared to determine which classifier was best
suited to the data set. The classifiers that achieved optimal
performance using the least amount of labeled data are
considered the most important, highlighting their ability
to adapt and train efficiently with a minimum amount of
labeled data and to the same data structure.
To obtain a more organized work, a preprocessing, training
and evaluation flow tracking and orchestration tool, Prefect,
was used. It allowed detailed tracking of each stage of
the pipeline, managing dependencies between tasks and
recording key performance metrics and failures, as well as
enabling multitasking, optimizing time. This was especially
relevant to ensure the reproducibility of the experiments
and the analysis of intermediate results.

III. Results
In this section, the results of the Semi-Supervised Learning
approach used for the binary classification of Cotopaxi
Volcano microseisms are presented. The performance ob-
tained with the limited use of data, in comparison with
the Supervised Learning that uses the whole base, is
highlighted, thus demonstrating the effectiveness of these
approaches. Additionally, it is appreciated that the search
for hyperparameters for the base model in the Self-Training
approach improves the performance metrics.
For performance evaluation, we focused on 4 metrics, AUC
as a global metric, F1-Score and Accuracy, including the
ROC AUC curve for visual interpretation. The ROC AUC
curve is a graphical representation that evaluates the
ability of a model to discriminate between positive and
negative classes. The curve plots the true positive rate
(TPR) versus the false positive rate (FPR) for different
decision thresholds. An AUC closer to 1 indicates better
performance, reflecting a superior ability to distinguish
between classes. While the AUC provides a numerical
value summarizing its overall performance, a higher value
indicates that the model is more effective in terms of
sensitivity and specificity simultaneously.
Furthermore, the F1-Score allows us to assess the bal-
ance between accuracy and sensitivity, which is especially
relevant in scenarios with unbalanced classes. However,
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accuracy provides an overview of the percentage of correct
predictions, although its effectiveness may be limited in
unbalanced datasets. For this reason, in this study, precision
is complemented with more robust metrics, such as AUC
and F1-Score, to provide a more complete and accurate
assessment of the performance of the models analyzed.
Therefore, for each model, a graph of the ROC-AUC curve
is developed for a clear interpretation, and additionally
different tables are made to summarize the results obtained
by performing 10 training repetitions of the algorithm with
different database percentages. For each percentage, we
have a mean, a minimum, and a maximum value of the AUC
for confidence intervals of 95%. Finally, the AUC result
of the supervised learning algorithm, obtained under the
same conditions as those used during training, is included
in the table.

A. Results of the Naive Bayes Self-Training Model
It can be seen in Fig. 5, that since the algorithm was
trained with higher percentages of data it has a higher
accuracy, but it does not outperform a Supervised model.
Therefore, Naive Bayes Self-Training does not obtain good
results with small proportions of labeled data.

Figure 5. ROC Curves of Naive Bayes Self-Training and Supervised
Learning Algorithms using LP events as Positive Class

The results of the self-training model, with the Naive-Bayes
base classifier, in which no hyperparameter optimization
was performed, are shown in Table V. It can be seen that
the AUC value when trained using 90% of labeled data is
close to the AUC of the Supervised model, suggesting that
Self-Training performs acceptably well with less labeled
data. From 50% of the labeled data, the confidence intervals
become narrower, indicating stability and less sensitivity
to the initialization data.

B. Results of the Random Forest Self-Training Model
It can be observed in Fig. 6, that since the algorithm was
trained with higher percentages of data, it has a higher
accuracy, and from a minimum amount of labeled data,
which is 10, it manages to outperform the supervised model.
Therefore, by using Random Forest in the Self-Training it
manages to take advantage of the unlabeled data in a high

Table V
Performance Evaluation: AUC Metrics Obtained from Naive

Bayes Self-Training Across Dataset Splits (95% CI)

Training
Dataset

Utilization (%)
Mean Confidence Intervals

10% 0.86554 [0.85873, 0.87235]
30% 0.88249 [0.87901, 0.88597]
50% 0.88793 [0.88232, 0.89353]
70% 0.89143 [0.88752, 0.89535]
90% 0.90287 [0.90172, 0.90401]

AUC
SUPERVISED 0.90389

Figure 6. ROC Curves of Random Forest Self-Training and Supervised
Learning Algorithms using LP events as Positive Class

capacity. The curves are stable, suggesting the robustness
of the model.
In table VI, the results for the Self-Training model, with
Random Forest base classifier, are shown, in which a search
is carried out for the best hyperparameters to be the base
model of Self-Training, it is clearly distinguished that the
AUC value when trained only with 10% of labeled data
exceeds the AUC of the Supervised model, suggesting
that the base model is effective in scenarios with different
amounts of labeled data, particularly only with 10% of
labeling. Because of the tightness of the confidence intervals
in all cases, it fits the data set well, achieving excellent
stability.

Table VI
Performance Evaluation: AUC Metrics Obtained from

Random Forest Self-Training Across Dataset Splits (95% CI)

Training
Dataset

Utilization (%)
Mean Confidence Intervals

10% 0.92100 [0.91603, 0.92597]
30% 0.93732 [0.93520, 0.93944]
50% 0.94594 [0.94466, 0.94723]
70% 0.94939 [0.94778, 0.95099]
90% 0.95049 [0.94977, 0.95120]

AUC
SUPERVISED 0.87215
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C. Results of the SVM Self-Training Model
As can be seen in Fig. 7, as with Random Forest, training
with higher percentages of data yields higher accuracy and
outperforms Supervised with only training 10% of labeled
data. The curves are stable and much closer to the perfect
value.

Figure 7. ROC Curves of SVM Self-Training and Supervised Learning
Algorithms using LP events as Positive Class

The table VII shows the results for the Self-Training model,
with SVM base classifier, as the previous model, a search
is performed for the best hyperparameters to be the base
model of self-training; likewise the AUC value when trained
only with 10% of labeled data exceeds the AUC of the
supervised model. The remarkable thing about this base
model is the confidence intervals that are even narrower
than when using Random Forest, describing a greater
stability.

Table VII
Performance Evaluation: AUC Metrics Obtained from SVM

Self-Training Across Dataset Splits (95% CI)

Training
Dataset

Utilization (%)
Mean Confidence Intervals

10% 0.94442 [0.94196, 0.94687]
30% 0.94948 [0.94743, 0.95153]
50% 0.95271 [0.95127, 0.95416]
70% 0.95582 [0.95416, 0.95748]
90% 0.95748 [0.95630, 0.95867]

AUC
SUPERVISED 0.93079

D. Results of the Label Spreading model
It can be observed in Fig. 8, that the curves are closer
to each other, indicating that despite training the model
with larger amounts of labeled data, no improvement in
prediction is achieved. Additionally, the curves are closer
to the Random Classifier straight line, which shows that
the algorithm has low performance and fails to identify
significant patterns in the data.
In table VIII, the results for the Label Spreading model
are shown, in this approach the AUC value does not
exceed the value of 0.89, and there are no significant
changes when increasing the amount of data with which the

Figure 8. ROC Curves of Label Spreading using LP events as Positive
Class

models were trained. The confidence intervals are narrow,
suggesting good stability. Since the approach relies on
label propagation using a graph, it may have limitations,
especially for our type of data.

Table VIII
Performance Evaluation: AUC Metrics Obtained from Label

Spreading Across Dataset Splits (95% CI)

Training
Dataset

Utilization (%)
Mean Confidence Intervals

10% 0.88040 [0.87381, 0.88698]
30% 0.88781 [0.88407, 0.89155]
50% 0.88638 [0.88410, 0.88866]
70% 0.88668 [0.88450, 0.88886]
90% 0.88730 [0.88522, 0.88935]

E. Comparative Analysis
In this subsection, to refer to self-training models with their
different base models, only the name of the base model is
mentioned to simplify the wording and avoid unnecessary
repetitions.
In general, it can be seen that the Random Forest and
SVM base models obtain outstanding results with a
minimum amount of labeled data; in particular, SVM
showed consistency in its ROC curve and narrow confidence
intervals, which is reflected, on the one hand, in the
consistency of its ROC curve and, on the other hand, in its
narrow confidence intervals, which translates into greater
robustness and reliability in the face of possible variations
in the data. In contrast, when Naive Bayes is used as
a basis, it does not present a substantial improvement
when compared to its supervised version. Finally, Label
Spreading has even more restrictions, since in spite of
increasing the training data, the AUC metric remains in
similar ranges, but it does not outperform the Supervised
and Self-Training approaches.
The gradual increase of the labeled data leads both
SVM and Random Forest to have constant improvement
until they reach maximum with the data labeled at 90%,
where SVM reaches a maximum AUC of 0.9600 and
Random Forest 0.9520. However, Naive Bayes does not
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exceed a limit, which is approximately 0.9044, and shows
no noticeable improvement with different percentages of
labeled data. Label Spreading remains virtually unchanged
around 0.8919, indicating a possible lack of significant
relationship between labeled and unlabeled samples.
The table III-E was constructed to group relevant informa-
tion and add additional metrics, providing a comparative
summary of the four analyzed models. The results show
that SVM and Random Forest consistently outperform the
supervised model, while Naive Bayes and Label Spreading
present significant limitations. In terms of AUC, SVM
obtains the best overall performance, followed by Random
Forest. On the other hand, both Naive Bayes and Label
Spreading fail to achieve competitive results.
In addition, metrics such as F1-Score were included in the
table III-E , which confirms the results. Similarly, SVM
and Random Forest stand out with outstanding values,
particularly SVM, reflecting an excellent balance between
accuracy and sensitivity. In contrast, Naive Bayes and Label
Spreading do not exceed the 0.85 threshold, evidencing a
low performance in this metric. Accuracy yields similar
results, where SVM and Random Forest continue to lead.
In the case of a supervised model, Naive Bayes stands
out with acceptable metrics, although it continues to be
outperformed by Self-Training models. When comparing
the robustness of the models, both SVM and Random
Forest demonstrate narrow confidence intervals and high
stability to variations in the data. In contrast, Naive Bayes
shows lower robustness, with moderately wide intervals,
while Label Spreading offers moderate robustness but does
not reach the levels of the other two main models.

IV. Discussion
In this work, we were able to evaluate and compare four
Semi-Supervised Learning models, three of them based on
Self-Training but based on different algorithms Naive Bayes,
Random Forest, and SVM, and one based on graphs which
is Label Spreading. The results obtained allow analyzing
their capabilities and limitations in contexts of different
percentages of labeled data, providing a broader view of
performance, since key metrics such as AUC, F1-Score
and Accuracy were compared, and confidence intervals
are considered to estimate aspects such as robustness and
sensitivity to the amount of labeled data.
The SVM and Random Forest-based models demonstrated
outstanding performance in terms of AUC and F1-Score.
SVM led in AUC, reaching maximum values of 95.75%
at 90% of the labeled data and maintaining outstanding
performance with only 10% of the labeled data (94.44%).
This implies that it has a high ability to generalize
adequately, even with a minimal amount of labeled data.
On the other hand, Random Forest obtained an AUC close
to that of SVM (95.05% at 90% and 92.10% at 10%),
also showing robustness against scenarios with little labeled
data. It should also be noted that the confidence intervals
for the metric are extremely narrow, which translates into
greater robustness and reliability in the face of possible
variations in the data. These characteristics reinforce the

Table IX
Comparison of Semi-Supervised Models

Feature Naive B. R.
Forest SVM

Label
Spread-

ing

AUC (%)
(90% L) 90.29 95.05 95.75 0.88730

AUC (%)
(10% L) 86.55 92.10 94.44 0.88040

Supervised
AUC(%) 90.39 87.22 93.08 Not

reported

F1 (%)
(90% L) 85.61 89.83 90.93 0.84927

F1 (%)
(10% L) 80.01 86.44 89.67 0.77548

Supervised
F1 (%) 85.42 80.67 61.40 Not

reported

Acc.(%)
(90% L) 83.56 88.39 89.90 0,80823

Acc.(%)
(10% L) 78.53 84.51 88.42 0.67057

Supervised
Acc.(%) 83.21 79.09 67.87 Not

reported

Exceeds
Super-
vised?

NO YES YES NO

Impact
more L Moderate High High Low

Confidence
Intervals

Moderately
wide Narrow Narrow Moderately

wide

Robustness Low High High Moderate

notion that both models are highly adaptive and effective
within this data set.
In contrast, Naive Bayes performs less well, achieving a
maximum AUC of 90.29% on 90% labeled data, which
barely matches its supervised performance (90.39%). To a
large extent, it may be because the hyperparameters were
fixed and the model was not optimized to enhance Self-
Training. Furthermore, since the experiment was performed
for the different percentages with the hyperparameters
fixed, it is highly likely that despite increasing labeled data
it fails to capture more information, resulting in relatively
low AUC values for any proportion of the training set.
With Label Spreading, poor performance is also evident.
Label Spreading was the lowest performing model, with
AUC values remaining nearly constant regardless of the
percentage of labeled data, indicating a lack of significant
improvement when labeled data were incorporated. This
behavior can be attributed to the dependence of Label
Spreading on the structure of the similarity graph and the
quality of the relationships between labeled and unlabeled
samples.



20

In table III-E, additional metrics were added to verify
the performance of the models. Thus, similarly both F1-
Score and Accuracy confirm that Self-Training based on
SVM and Random Forest has exceptional performance
and superior accuracy. Since there will be an imbalance in
the “VT” and “LP” classes, as can be seen in the table I,
the “LP” earthquakes have more records than the “VT”,
therefore validating the F1-Score is extremely important
and in these models it has promising results. In terms of
Accuracy, the trend is maintained, so we can affirm that
both Self-Training based on SVM and Random Forest stand
out as an approach with high effectiveness and accuracy
for Semi-Supervised Learning scenarios. Their ability to
maintain high levels of accuracy with limited labeled data
is ideal for our data set since manual labeling is very costly.
These models are not only robust but also efficient, showing
a balance between performance and resource usage.
From the metrics obtained and their comparisons, it is
important to note that when performing the hyperparam-
eter search for the Self-Training base algorithm, better
results are obtained. This confirms what was pointed out
in [10] regarding the performance of the base classifier when
optimized. In addition, the present work contributes to the
study of more base classifiers for Self-Training, highlighting
the SVM and Random Forest classifiers as the best options
for the classification of microseisms. Likewise, different
from [10] work, a dataset with a larger number of records
was used, which allowed extending the approach to larger
amounts of data, and another different approach was added
with respect to the Semi-Supervised Algorithm, which is
the use of Label Spreading.
Although Random Forest was effective in the scenarios we
ran, it has significant challenges in terms of computational
complexity, as the increase in the number of trees and fea-
tures results in long training times. Similarly, SVMs, when
applied to very large datasets, have a high computational
cost and the effectiveness of SVMs is highly dependent
on proper kernel selection. However, Naive Bayes shows
limited applicability in complex tasks due to its assumption
of independence between features, which degrades its
predictive power. On the other hand, Label Spreading
requires meticulous adjustments in the construction of
the similarity graph to be competitive, which implies
additional complexity and the need for deep domain-specific
knowledge.
To extend the scope of the present study, we propose
exploring the use of Self-Training with neural networks as a
base classifier. Incorporating more complex models, such as
neural networks, could potentially improve generalization
ability and performance in microseism classification tasks.
One could also opt for research with hybrid approaches
that combine SVM or Random Forest with semi-supervised
methods to take advantage of their combined strengths. In
addition, it is essential to optimize the hyperparameters
of both Label Spreading and Naive Bayes to maximize
their performance. Optimization of these hyperparameters
will allow for better adaptation of the models to the
specific characteristics of the data, which could result in

significant improvements in the accuracy and efficiency of
the classification process.
Furthermore, it is recommended to evaluate the proposed
models on different datasets to validate the robustness and
generalization of the techniques employed. Diversification
of data sets will facilitate the identification of the strengths
and weaknesses of each model in different contexts and
conditions. However, with respect to the dimensionality
reduction techniques used, it is suggested to investigate
and apply other methodologies to determine their impact
on the performance of the classifiers. The combination of
various dimensionality reduction techniques with varied
base models and hyperparameter optimization may lead
to a more robust and versatile approach to microseism
classification.

V. Conclusion

By selecting SVM and Random Forest as base models and
also through hyperparameter optimization, both models
consistently outperform the supervised model in all met-
rics evaluated. SVM shows the best overall performance,
especially in AUC and F1-Score, highlighting its ability to
balance accuracy and sensitivity. Random Forest, although
slightly behind in performance, demonstrated exceptional
robustness and stability, making it suitable for scenarios
with noise or unbalanced data.
While using Naive Bayes, and even more so when using
fixed hyperparameters, it fails to capitalize on labeled data
effectively, barely matching its supervised performance.
Label Spreading, on the other hand, shows stagnant
performance, with no significant improvement with more
labeled data, indicating a critical dependence on the quality
of the similarity graph.
Both SVM and Random Forest are scalable, achieving
excellent performance even with 10% labeled data. This
makes them ideal for this data set, which is expensive
to label manually. In contrast, Naive Bayes and Label
Spreading quickly reach a performance limit, limiting their
practical usefulness.
When analyzing the confidence intervals of SVM and
Random Forest, they are narrow and decrease as the
number of labeled data scales, reflecting high reliability
and lower sensitivity to variations in the data. These
attributes position them as preferred choices in real-world
environments.
In summary, this study confirms that SVM and Random
Forest are the best choices in semi-supervised learning,
while Naive Bayes and Label Spreading require significant
adjustments to be competitive in more complex problems.

Acknowledgment

The authors thank the Escuela Politécnica Nacional for
providing the data set utilized in this investigation. Their
support and contribution were essential for the development
and success of this work.



21

References
[1] M. Auker et al., “Global volcanic hazards and risk,” in Global

Volcanic Hazards and Risk. Cambridge University Press, 2015,
pp. 81–173.

[2] V. Kirianov, “Environmental impacts of volcanic eruptions,” in
Natural and Human Induced Hazards. UNESCO-EOLSS, 2004,
vol. I.

[3] P. Ramon, S. Vallejo, P. Mothes, D. Andrade, F. Vásconez,
H. Yepes, S. Hidalgo, and S. Santamaría, “Instituto Geofísico –
Escuela Politécnica Nacional, the Ecuadorian Seismology and
Volcanology Service,” Volcanica, vol. 4, no. S1, pp. 93–112, 2021.

[4] S. Hidalgo, A. Robles, D. Andrade, B. Bernard, P. Ramón,
P. Mothes, J. Ordoñez, and G. Ruiz, Los volcanes activos
y potencialmente activos del Ecuador continental y sus
redes de monitoreo. Quito, Ecuador: Instituto Geofísico
– Escuela Politécnica Nacional, 2014. [Online]. Available:
https://www.igepn.edu.ec

[5] United States Geological Survey (USGS), “Monitoring volcano
seismicity provides insight to volcanic structure,” https://ww
w.usgs.gov/programs/VHP/monitoring-volcano-seismicity-
provides-insight-volcanic-structure, 2024, [Accessed: Oct. 12,
2024].

[6] S. Petrosino and P. Cusano, “Low frequency seismic source
investigation in volcanic environment: the mt. vesuvius atypical
case,” Advances in Geosciences, vol. 52, pp. 29–39, 2020.

[7] R. A. Lara-Cueva, D. Benitez, E. Carrera, M. Ruiz, and J. Rojo-
Alvarez, “Automatic recognition of long period events from
volcano tectonic earthquakes at cotopaxi volcano,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 54, no. 9, pp.
5247–5257, 2016.

[8] R. A. Lara-Cueva, A. S. Moreno, J. C. Larco, and D. S. Benítez,
“Real-time seismic event detection using voice activity detection
techniques,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 9, no. 12, pp. 5533–5542,
2016.

[9] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised
Learning. Cambridge, MA: MIT Press, 2006.

[10] C. Brusil, F. Grijalva, R. Lara-Cueva, M. Ruiz, and B. Acuña,
“A semi-supervised approach for microseisms classification from
cotopaxi volcano,” in 2019 IEEE Latin American Conference
on Computational Intelligence (LA-CCI). Guayaquil, Ecuador:
IEEE, November 11–15 2019, pp. 1–6.

[11] D. A. R. Carrillo, “Implementación de un método de agrupación
de señales sísmicas generadas por el volcán cotopaxi basado en
aprendizaje automático no supervisado utilizando el modelo de
mezcla gaussiana,” Master’s thesis, Escuela Politécnica Nacional,
Quito, Ecuador, febrero 2022.

[12] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, 2003.

[13] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324,
1997.

[14] X. Zhu and A. B. Goldberg, Introduction to Semi-Supervised
Learning, ser. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2009.

[15] V. Vovk, “The fundamental nature of the log loss function,”
arXiv preprint arXiv:1502.06254, 2015.

[16] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised
Learning, ser. Adaptive Computation and Machine Learning.
MIT Press, 2006.

[17] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
2nd ed. New York: Springer, 2009.

[18] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Intro-
duction to Statistical Learning: With Applications in R. New
York: Springer, 2013.

https://www.igepn.edu.ec
https://www.usgs.gov/programs/VHP/monitoring-volcano-seismicity-provides-insight-volcanic-structure
https://www.usgs.gov/programs/VHP/monitoring-volcano-seismicity-provides-insight-volcanic-structure
https://www.usgs.gov/programs/VHP/monitoring-volcano-seismicity-provides-insight-volcanic-structure

	Introduction
	Methodology
	Database
	Preprocessing
	Semi-Supervised Learning
	Self-Training
	Label Spreading

	Experiments

	Results
	Results of the Naive Bayes Self-Training Model
	Results of the Random Forest Self-Training Model
	Results of the SVM Self-Training Model
	Results of the Label Spreading model
	Comparative Analysis

	Discussion
	Conclusion
	References

