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RESUMEN

Los ataques de malware han aumentado en cantidad y calidad en los últimos años, lo que
cuestiona la necesidad de mejorar las técnicas que utilizan los defensores para intentar hacer frente a
las innovaciones y esfuerzos de los atacantes. El aprendizaje automático ya se ha aplicado en este
campo: detección y clasificación de malware, detección de intrusiones basada en anomalías y análisis
de amenazas, solo por nombrar algunas aplicaciones. Este documento se centra en la clasificación
de malware, explorando el trabajo previo en el conjunto de datos CIC-MalMem-2022 para construir
dos clasificadores de malware: 4 clases y 16 clases, donde las 16 clases son subclases de las 4 clases,
mezclando varios clasificadores con varias técnicas de selección de características que dieron como
resultado herramientas de preprocesamiento efectivas para el conjunto de datos. Los resultados
obtenidos demostraron que los algoritmos de eliminación de características recursivas, información
mutua y Boruta son técnicas de selección de características efectivas para este conjunto de datos, lo
que permite la eliminación de características redundantes, favoreciendo la eficiencia y la simplicidad
del modelo e incluso aumentando las puntuaciones de las métricas de clasificación como F1. También
realizamos una prueba de hipótesis para validar que existe una diferencia real entre nuestros resultados
con selección de características y las versiones sin selección de características. Finalmente, ejecutamos
un experimento haciendo predicciones con los modelos de 16 clases, agrupando las probabilidades
resultantes por clase padre y obteniendo las métricas de clasificación comparando los resultados con los
obtenidos con las 4 clases padre originales. El objetivo es verificar si podemos ganar rendimiento en la
clasificación utilizando una capa complementaria de inferencia que ve los datos desde una perspectiva
diferente, más atómica.

Palabras clave: Ciberseguridad, clasificación de malware, algoritmos de selección de características.
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ABSTRACT

Malware attacks have increased in quantity and quality in the last years, questioning the
necessity of enhancing the techniques that defenders use to try to cope with attackers innovations and
efforts. Machine learning has already been applied in this field: malware detection and classification,
anomaly-based intrusion detection and threat analysis, just to name a few applications. This document
focuses on malware classification, exploring upon previous work on the CIC-MalMem-2022 dataset
to build two malware classifiers - 4-class and 16-class, where the 16 classes are sub-classes of the
4-class - mixing various classifiers with various feature selection techniques which resulted in effective
pre-processing tools for the dataset. The obtained results demonstrated that the Recursive Feature
Elimination, Mutual Information and Boruta algorithms are effective feature selection techniques for
this dataset, allowing redundant feature elimination, favoring efficiency and model simplicity and even
increasing scores of classification metrics like F1. We also perform hypothesis test to validate there is
actual difference between our feature selection based results and the all-features versions. Finally, we
run an experiment by doing predictions with the 16-class models, grouping the resulting probabilities
by parent class and obtaining the classification metrics for them with the test data and comparing
them with the 4 parent classes’. The goal is to see if we can gain classification performance by using a
complimentary layer of inference that sees the data in a different, more atomic perspective.

Key words: Cybersecurity, Malware Classification, Feature Selection Algorithms
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Feature Selection in Malware Classification
Bryan Calisto, Felipe Grijalva

Abstract—Malware attacks have increased in quantity
and quality in the last years, questioning the necessity
of enhancing the techniques that defenders use to
try to cope with attackers innovations and efforts.
Machine learning has already been applied in this
field: malware detection and classification, anomaly-
based intrusion detection and threat analysis, just
to name a few applications. This document focuses
on malware classification, exploring upon previous
work on the CIC-MalMem-2022 dataset to build two
malware classifiers - 4-class and 16-class, where the 16
classes are sub-classes of the 4-class - mixing various
classifiers with various feature selection techniques
which resulted in effective pre-processing tools for the
dataset. The obtained results demonstrated that the
Recursive Feature Elimination, Mutual Information
and Boruta algorithms are effective feature selection
techniques for this dataset, allowing redundant feature
elimination, favoring efficiency and model simplicity
and even increasing scores of classification metrics
like F1. We also perform hypothesis test to validate
there is actual difference between our feature selection
based results and the all-features versions. Finally, we
run an experiment by doing predictions with the 16-
class models, grouping the resulting probabilities by
parent class and obtaining the classification metrics
for them with the test data and comparing them with
the 4 parent classes’. The goal is to see if we can gain
classification performance by using a complimentary
layer of inference that sees the data in a different, more
atomic perspective.

Index Terms—Cybersecurity, Malware Classification,
Feature Selection Algorithms.

I. Introduction

THE cybersecurity field is a broadly explored field
where creativity primes on the attacker and defender

sides. Systems are continuously enhanced to decrease their
susceptibility to being compromised by attackers; defenders
always are trying to innovate to protect lifelong flaws in
fundamental software. Attackers do the opposite, aiming
to bypass software protections to get ownership of data
or entire systems for their own interests. The malicious
software that attackers use is generically called malware.
There are a lot of types of malware: rootkits, spyware,
viruses, worms, ransomware and trojan horses, just to name
a few [1]. Each type has its own common characteristics, but
some characteristics are shared too. Some are destructive,
some favor stealthy, some are intelligent, some are deceptive,
some are very clever, some are very hard to get rid of, some
are hard to detect and practically invisible [2]. There is a
broad range of techniques and philosophies that lead the
development of malware together with economic, social,
political and a variety of objectives. Every now and then a
brand new technique is developed and the defenders must

be able to respond with protections against those threats
as soon and as effectively as possible. Their job can easily
become overwhelming as bad behavior patterns can be hard
to detect in malware that has been intentionally built to
make difficult its detection and the detectors themselves can
be less effective when using only conventional techniques
like signature checking because it is trivial for the motivated
attacker to generate dynamic clever malware that bypasses
these kind of static protections, specially in expert systems
manually setup for this task by programmers [1].

In recent years, machine learning has been used as a means
to detect and categorize malware in order to determine
strategies to apply against it [3]. An approach to evaluate
the characteristics of a piece of running software is to
capture a memory dump of it to obtain resource usage
information (e.g. network sockets, file handles, threads),
sub-processes information and any other aspect that’s
available through the operating system’s API to collect.
Then, those features can be fed into a machine learning
model that can classify the software as a sample that
belongs to a specific malware category or as benign [4].

This research elaborates upon previous work on the CIC-
MalMem-2022 dataset done by Cevallos-Salas et al. [4].
We build two classifiers: a 4-categories and a 16-families
classifier. Both are trained by using SMOTE to augment
data inspired by Cevallos-Salas et al. [4] demonstrated
effectiveness. We introduce the usage of multiple feature
selection methods to pre-process the data with the goal of
getting rid of possible highly correlated and unimportant
features to save memory resources, enhance classification
performance metrics and improve training and inference
times. Statistical hypothesis tests are performed to compare
the all-features versions against each feature selection
version. The experiments are run with three classification
algorithms: a fully connected neural network, a support
vector machine and a random forest algorithm.

II. Prior Works
Multiple machine learning techniques have been applied
to the CIC-MalMem-2022 dataset.

Cevallos-Salas, et al. [4] use classic machine learning
algorithms like Decision Trees, Random Forest and Support
Vector Machines, as well as artificial neural networks.
They use SMOTE for data balancing achieving increased
accuracy values [5].

Talukder, et al. [6] use a combination of machine and
deep learning algorithms together with pre-processing
techniques like feature selection with XGBoost with the
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goal of eliminating superfluos features, reducing dimensions
and complexity and improving the models accuracy overall
to surpass other approaches. They use SMOTE too [5].

Kraskov, et al. [7] describe a filter feature selection method
based on mutual information that considers the joint and
marginal probability distributions of two random variables
to measure the amount of information obtained from one
random variable by observing another random variable.

Guyon, et al. [8] show a feature selection method that
wraps the estimator and recursively fits and re-fits it,
ranking the features and eliminating the less important
one (highest rank) after each fit. This process repeats until
an predetermined number of features is reached.

Jankowski, et al. [9] present the boruta algorithm. It is
based on random forest and it works by creating what they
call a "shadow feature" for each original feature. The shadow
features are copies of the existing features, but shuffled
between rows. Then the wrapped model is fit to both
versions, original and shadow-merged, feature importance
is calculated and the importance of each original feature is
compared with the highest importance from the shadow
features; if the original feature has higher score, it is kept.
These comparisons are made with hypothesis testing. The
algorithm iterates until all the features have been evaluated
or until a predetermine amount of iterations.

LASSO (Least Absolute Shrinkage and Selection Operator)
is a commonly known regularization method that is able
to set coefficients to zero due to the constraints it puts
into the conventional residual squared error calculations by
adding the L1 norm of the model coefficients, penalizing
large coefficients [10].

III. Materials and Methods
A. Dataset
The dataset we use is CIC-MalMem-2022 [11]. It was
authored by researchers from the University of Canada.
It consists of 58,596 records with 29,298 benign and
29,298 malicious; the malicious subset is formed by records
corresponding to Trojan Horse, Spyware and Ransomware
types. More details about the malware samples used to
build the dataset is detailed in Table I. The features consist
of mostly numerical data related to the memory dumps that
were taken from running pieces of software (benign and
malicious) in a controlled environment running Windows
10. Later, the memory dumps would be processed with
the VolMemLyzer tool [12] in a Kali Linux environment
to extract the final features from them.

The data contains 57 features where the Class and
Category fields determine whether the software is be-
nign or malicious and the corresponding family it be-
longs to, respectively. Some of the numerical features
present in the dataset are pslist.nproc (amount of sub-
processes), pslist.avg_threads (average threads in the
process), pslist.nprocs64bit (amount of 64 bit subprocesses),
pslist.avg_handlers (average handlers, i.e. open resources

Figure 1. Experiments pipeline block diagram

like files, ports, etc), dlllist.ndlls (amount of DLLs), dl-
llist.avg_dlls_per_proc (average amount of DLLs per
subprocess), handles.avg_handles_per_proc (average han-
dlers, i.e. open resources like files, ports, etc), handles.nport
(amount of ports), handles.nfile (amount of files), han-
dles.nevent (amount of event handles used for event syn-
chronization), handles.ndesktop (amount of desktop han-
dles associated to graphical user interfaces), handles.nkey
(amount of registry key handles), handles.nthread (amount
of thread handles), handles.ndirectory (amount of direc-
tory handles), handles.nsemaphore (amount of semaphore
handles used for synchronization), psxview.not_in_pslist
(number of subprocesses not present in the pslist pro-
gram output, which means they are potentially hidden),
psxview.not_in_ethread_pool (number of subprocesses
not found in the ethread pool, i.e. data structures that
store thread information [13]), psxview.not_in_session
(number of processes not associated with any session),
svcscan.kernel_drivers (number of kernel-mode drivers),
svcscan.fs_drivers (number of file system drivers.).

B. Experimental Setup
Multiple experiments were made by combining feature
selection techniques with classification algorithms (Random
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Table I
Malware samples used to generate the dataset

Malware Category Malware Family Count

Trojan Horse

Zeus 195
Emotet 196
Refroso 200

Scar 200
Reconyc 157

Spyware

180Solutions 200
Coolwebsearch 200

Gator 200
Transponder 241

TIBS 141

Ransomware

Conti 200
MAZE 195
Pysa 171
Ako 200

Shade 220

Forest, Support Vector Machine and a Fully Connected
Artificial Neural Network) together with some data pre-
processing techniques like train-test split, SMOTE and
feature scaling and methods to evaluate the performance
of our model and the quality of the used feature selection
algorithm. For instance, one experiment consists of splitting
the data into training and test subsets, applying SMOTE
to balance the training samples, applying standard scaling
on the training features, fitting the feature selection
algorithm to the training data and removing the non-
selected features, passing those selected features into the
classifier to train it, using the trained classifier to get the
predicted classes for the test subset and finally getting
the F1, recall, precision and AUC-ROC classification
macro-average metrics for them. This same structure is
utilized for all the feature selection and classification
algorithms combinations (including the combination of
absence of feature selection step and classifier), for 4 classes
and for 16 classes, respectively, following a k-fold cross-
validation structure with multiple hyperparameters for
each feature selection and classification algorithm. After
all the experiments were run, we applied a statistical
hypothesis test by means of Wilcoxon signed-rank test [14]
to determine whether there was a statistically significant
difference between the F1 scores of the all-features version
against each of the feature selection algorithms for a same
classifier; each of all the k-folds’ F1 scores were used for the
Wilcoxon test. A block diagram illustrating the pipeline
flow of these experiments can be seen in Figure 1 .

The classification algorithms we use are Random Forest,
Support Vector Machine and a fully-connected neural
network. We chose these algorithms to have variety of
behavioral nature to test our feature selection methods
and because these algorithms were also used in previous
work from Cevallos, et al. [4] which we wanted to research
upon.

The feature selection algorithms we use are Mutual In-
formation, Recursive Feature Elimination, Boruta and
LASSO. We chose this ones to comply with some of the

most popular feature selection algorithm categories: filter,
wrapper, hybrid and LASSO categories [15].

Mutual information is a filter method as it ranks features
based on importance metrics, independent of any down-
stream classification algorithm (which fits perfectly with
our goals). Then the least important features are filtered
out from the dataset [7].

Recursive Feature Elimination is a wrapper method as
it trains the classifier, assigns weights to the features
indicating their importance in making predictions, then
it removes the least important feature and it repeats
the operation (training the classifier, evaluating feature
importance and so on), but with the reduced dataset, until
reaching an specific number of selected features determined
by hyperparameter. As it can be seen, it wraps the classifier
(e.g. Random Forest in our experiments), controlling the
data that it passes to it and evaluating its results while
operating [8].

Boruta plays the role of hybrid method as it acts as a filter
method without relying on the underlying classifier, but
at the same time it wraps a Random Forest classifier (in-
dependent of the actual classifier used in each experiment)
that it uses for its operation [9].

The dataset was divided into training and test subsets,
keeping 80 percent for the training group and the rest
for test. The dataset is shuffled before splitting, to get a
balanced distribution of classes in the training set. SMOTE
was used as a data balancing technique to overcome this
limitation [5].

For the feature scaling phase we run standardarization
(i.e. z-score normalization) by substracting the mean and
dividing to the standard deviation for each feature’s values
[16].

For the cross-validation, we use a combination of k-fold with
10 folds and a grid search to find the best parameters and
perform cross-validation on different subsets of our training
data, ensuring we have balanced target variable ocurrences
in each fold, thanks to the stratified characteristic of the
k-fold setup [17].

The hyperparameter usage for the experiments is detailed
in Table II.

In addition to the mentioned experiments we also wanted
to try a variation of the data aggregation technique seen
in the work of [18] to enhance the inference performance of
the 4-class classification relying on the results of inferencing
on the 16 sub-classes. Generalizing [18] to our problem in
hand, the decomposition of the inference classes (the 4
Benign, Ransomware, Spyware and Trojan classes) into
training classes (the 15 malware families plus benign)
and the subsequent training on those 16 more atomic,
locally related, classes, which cause the 16-class classifier
model to be fit differently than the 4-class version, allows
to develop a more versatile embedded-like model which
combines the 4-class and 16-class models into one pipeline
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Table II
Algorithms and their hyperparameters

Algorithm Hyperparameters

Mutual
Information

- K features: 40, 50.

Recursive Feature
Elimination

- N features to select: 40, 50.

Boruta
- Random Forest N estimators: 100.
- Random Forest criterion: entropy.
- Random Forest max depth: 10.

LASSO - LinearSVC penalty: l1.
- Max iterations: 1000.

Random Forest
- N estimators: 100.
- Criterion: entropy.
- Max depth: 10.

Support Vector Ma-
chine

- Kernel: linear.
- Gamma: 1.
- C: 1.
- Max iterations: 1000

Neural Network
- # hidden layers: 1, 2, 3.
- # neurons: 64, 128 (all the hidden layers
have the same number of neurons).
- Regularizer lambda: 1e-4.

to enhance inference effectiveness by adding an additional
metric -the sum of the 16-class predicted probabilities
grouped into each of the 4-class (e.g. if we consider the
Ransomware as our inference class, sum the predicted prob-
abilities for the Ransomware-Conti, Ransomware-MAZE,
Ransomware-Pyza, Ransomware-Ako, Ransomware-Shade
training classes)- that tells the probability that the eval-
uated data corresponds to Ransomware, but based on a
different model (16-class). We perform this experiment for
the best 4-class model (based on F1 score) only and its
corresponding 16-class model, where we compare the test
data subset’s F1-score, precession, recall and AUC-ROC
scores of the original 4-class model and the 16-class model,
grouping the latter’s predicted probabilities previous to
obtain its classification metrics.

C. Tools
The tools used to develop the experiments were scikit-
learn, imbalanced-learn, scikeras, Boruta, scipy, pandas
and numpy. The models were trained without using a GPU
due to the limitations of scikit-learn. The GridSearchCV
was run with unlimited jobs to allow parallelized and faster
training.

All of our experiments code can be seen in
https://github.com/bryancalisto/feat-sel-in-malware-
classif .

IV. Results and Discussion
The main goal in our study is not to compare scores between
different classifiers, but between different feature selection
methods (or the absence of feature selection) with the
same classifier, so our results analysis is based on that
premise. Additionally, even though we captured multiple
classification metrics, we are specially interested in F1 and
will use it for our analysis. However, we also present the
results for the other metrics as well as a complement.

A. 4-class classification

Table III
F1 Metric Across Models and Feature Selection Methods in

Test Set (4-class)

Feature Selection Model F1

All Features
RF 0.725856
NN 0.602816

SVM 0.420526

Mutual Information
RF 0.726526
NN 0.640779

SVM 0.430813

Recursive
RF 0.732269
NN 0.683575

SVM 0.444486

Boruta
RF 0.720154
NN 0.613263

SVM 0.471411

LASSO
RF 0.725121
NN 0.674727

SVM 0.420526

Table IV
Recall and Precision Metrics Across Models and Feature

Selection Methods in Test Set (4-class)

Feature Selection Model Recall Precision

All Features
RF 0.727311 0.741130
NN 0.629287 0.697934

SVM 0.519167 0.552629

Mutual Information
RF 0.727514 0.739113
NN 0.652594 0.681140

SVM 0.517640 0.560247

Recursive
RF 0.732990 0.742910
NN 0.686293 0.708917

SVM 0.526450 0.570583

Boruta
RF 0.721634 0.733689
NN 0.635701 0.692483

SVM 0.540250 0.575724

LASSO
RF 0.726251 0.737169
NN 0.676002 0.675237

SVM 0.519167 0.552629

Table V
Accuracy and AUC-ROC Metrics Across Models and Feature

Selection Methods in Test Set (4-class)

Feature Selection Model Accuracy AUC-ROC

All Features
RF 0.815700 0.945923
NN 0.748464 0.923855

SVM 0.673038 0.840189

Mutual Information
RF 0.815785 0.946680
NN 0.764164 0.921840

SVM 0.672355 0.836179

Recursive
RF 0.819625 0.947284
NN 0.787201 0.934807

SVM 0.678669 0.839803

Boruta
RF 0.811945 0.944982
NN 0.752901 0.922223

SVM 0.688567 0.836468

LASSO
RF 0.815017 0.946101
NN 0.781655 0.925626

SVM 0.673038 0.841938

After executing all the experiments for the 4-class classi-
fication, we came up with the scores for the test dataset
shown in Table III, Table IV and Table V.

For Random Forest we can see there is minimal differences
between all the models scores in the test dataset. The
highest F1 score was obtained by the model with Recursive
Feature Elimination followed by the model with Mutual
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Table VI
F1 scores, number of used features and statistical

significance summary (4-class)

All feats MI RFE Boruta LASSO

RF 0.722172 0.726347*
(40/55)

0.729295*
(40/55)

0.724516*
(47/55)

0.725397
(52/55)

SVM 0.427190 0.438032
(50/55)

0.422077
(50/55)

0.439070
(47/55)

0.427190
(52/55)

NN 0.628682 0.643054
(50/55)

0.646367
(40/55)

0.635604
(47/55)

0.574272*
(20/55)

Information, LASSO, Boruta and finally the model without
feature selection.

Table VII
Random Forest F1 Hypothesis Tests Results (4-class)

Feature Selection Method p-value

All Features (pivot) –
Mutual Information 0.01953125*
Recursive Feature Elimination 0.00390625*
Boruta 0.048828125*
LASSO 0.064453125

The hypothesis test results for this classifier (Table VII)
tells us there is no statistical difference between the model
without feature selection F1 and the model that uses
LASSO F1, so it’s slightly higher score is not definitive.
Nevertheless, that model selected and used 52 out of
55 features, marking an advantage over the all-features
model in terms of, at least, efficiency. The model with
Recursive Feature Elimination, with Mutual information
and with Boruta differed statistically significantly from the
all-features model. They have not only a higher F1, but also
used less features than the latter (40 for RFE and MI and
47 for Boruta), which demonstrate these feature selection
methods prove effective for 4-class classification in our
dataset [15]. Using these methods leverages considerably
less features to obtain a simpler, more efficient and accurate
model [15]. The amount of selected features per method
for the 4-class models is shown in Table VI in parentheses.

For SVM we see there is no statistically significant differ-
ence between the models with feature selection and the
model without it (Table VIII) F1 scores, but, still, the
models managed to use less features, which results in a
simpler and efficient to train model [15]. For the models
that applied Mutual Information and Recursive Feature
Elimination, 50 features were selected. Boruta selected 47
features and LASSO selected 52.

Table VIII
SVM F1 Hypothesis Tests Results (4-class)

Feature Selection Method p-value

All Features (pivot) –
Mutual Information 0.625
Recursive Feature Elimination 1.0
Boruta 0.625
LASSO 1.0

The Neural Nework best models were the ones with 2 hid-
den layers (the max allowed according to hyperparameters)
and 128 neurons per layer (the max allowed according to
hyperparameters).

For the Neural Network we see slightly higher F1 scores for
all the feature selection methods, except for LASSO, which
fell notably under the all-features mark. However, according
to the hypothesis test, the only method that presents a
statistically significant difference when compared against
the all-features version is LASSO. Mutual Information,
Recursive Feature Elimination and Boruta selected 50, 40
and 47 features, respectively, while not showing a statistical
difference with respect to all-features on F1, which positions
them as good alternatives for selecting features with this
type of classifier.

Table IX
Neural Network F1 Hypothesis Tests Results (4-class)

Feature Selection Method p-value

All Features (pivot) –
Mutual Information 0.16015625
Recursive Feature Elimination 0.10546875
Boruta 0.556640625
LASSO 0.013671875*

Figure 2. AUC-ROC for RF with all features (4-class)

According to the obtained AUC-ROC values presented in
Table V, all the models are above the random prediction
threshold, being Random Forest the best models, followed
by the Neural Network models and the SVM. The Random
Forest AUC-ROC scores for the 4 different classes, including
macro and micro averages, are shown in Fig IV-A, 3, 4, 5
and 6.

B. 16-class classification
The 16-class classification is expected to have lower scores
than the 4-class due to the presence of less data of each
class [4].
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Figure 3. AUC-ROC for RF with Mutual Information (4-class)

Figure 4. AUC-ROC for RF with RFE (4-class)

Figure 5. AUC-ROC for RF with Boruta (4-class)

Figure 6. AUC-ROC for RF with LASSO (4-class)

Table X
RF removed features counts (4-class)

Feature Count

0 pslist.nprocs64bit 4
1 handles.nport 4
2 svcscan.interactive_process_services 4
3 psxview.not_in_eprocess_pool 3
4 psxview.not_in_eprocess_pool_false_avg 3
5 svcscan.fs_drivers 3
6 callbacks.nanonymous 3
7 callbacks.ngeneric 3
8 psxview.not_in_pslist 2
9 psxview.not_in_ethread_pool 2
10 psxview.not_in_pspcid_list 2
11 psxview.not_in_csrss_handles 2
12 psxview.not_in_session 2
13 modules.nmodules 2
14 psxview.not_in_deskthrd 1
15 psxview.not_in_pslist_false_avg 1

Figure 7. Confusion Matrix for RF with RFE (4-class)

After executing all the experiments for the 16-class classi-
fication, we came up with the scores for the test dataset
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Table XI
F1 Metric Across Models and Feature Selection Methods in

Test Set (16-class)

Feature Selection Model F1

All Features
RF 0.412597
NN 0.351370

SVM 0.125989

Mutual Information
RF 0.416351
NN 0.364812

SVM 0.114743

Recursive
RF 0.416839
NN 0.405771

SVM 0.132116

Boruta
RF 0.404174
NN 0.393597

SVM 0.133433

LASSO
RF 0.414658
NN 0.358329

SVM 0.125989

Table XII
Recall and Precision Metrics Across Models and Feature

Selection Methods in Test Set (16-class)

Feature Selection Model Recall Precision

All Features
RF 0.430129 0.442082
NN 0.353597 0.435550

SVM 0.155490 0.226638

Mutual Information
RF 0.432787 0.445293
NN 0.366505 0.447298

SVM 0.146662 0.226485

Recursive
RF 0.432251 0.444261
NN 0.413525 0.444199

SVM 0.158313 0.233446

Boruta
RF 0.421060 0.429688
NN 0.398698 0.445034

SVM 0.159543 0.230190

LASSO
RF 0.431286 0.442612
NN 0.355404 0.442045

SVM 0.155490 0.226638

Table XIII
Accuracy and AUC-ROC Metrics Across Models and Feature

Selection Methods in Test Set (16-class)

Feature Selection Model Accuracy AUC-ROC

All Features
RF 0.689249 0.927255
NN 0.647440 0.908472

SVM 0.544369 0.823399

Mutual Information
RF 0.690529 0.928260
NN 0.653925 0.914767

SVM 0.540700 0.827369

Recursive
RF 0.690700 0.927782
NN 0.679096 0.927028

SVM 0.542406 0.819787

Boruta
RF 0.684642 0.926734
NN 0.670734 0.924390

SVM 0.544625 0.821569

LASSO
RF 0.690017 0.927768
NN 0.647696 0.912434

SVM 0.544369 0.821888

shown in Table XI, Table XII and Table XIII.

For Random Forest we can see there is no statistically
significant difference between the F1 scores of the models
that use feature selection and the all-features model. MI,
RFE, Boruta and LASSO all selected less features than
available; 40, 50, 51 and 52, respectively, which means they
can get results equivalent to the all-features model, but
more efficiently [15]. The p-values can be seen in Table

Table XIV
F1 scores, number of used features and statistical

significance summary (16-class)

All feats MI RFE Boruta LASSO

RF 0.406580 0.407123
(40/55)

0.406296
(50/55)

0.405808
(51/55)

0.404551
(52/55)

SVM 0.122998 0.121775
(50/55)

0.123194
(50/55)

0.123272
(51/55)

0.120626
(52/55)

NN 0.365893 0.379989
(50/55)

0.379290
(40/55)

0.375245
(51/55)

0.322607*
(20/55)

XV.

Table XV
Random Forest F1 Hypothesis Tests Results (16-class)

Feature Selection Method p-value

All Features (pivot) –
Mutual Information 0.625
Recursive Feature Elimination 0.556640625
Boruta 0.6953125
LASSO 0.193359375

The SVM models, similarly to the Random Forest models,
registered no statistically significant differences in F1. MI
and RFE selected 50 features, Boruta 51 and LASSO 52,
meaning we can get equivalent results to the all-features
model by using less features [15]. Can see the p-values in
Table XVI.

Table XVI
SVM F1 Hypothesis Tests Results (16-class)

Feature Selection Method p-value
All Features (pivot) –
Mutual Information 0.76953125
Recursive Feature Elimination 0.921875
Boruta 0.556640625
LASSO 0.375

The Neural Network models, similar to their corresponding
4-class version, present statistically significance difference
only in LASSO, and the F1 score is considerably low
compared with the all-features; it selected 20 features out
of 55 due to a possibly too high alpha [19]. MI, RFE and
Boruta selected 50, 40 and 51 features, respectively, which
allow obtaining a more efficient and simpler model with
equivalent F1 scores [15]. The p-values can be seen in Table
XVII.

Table XVII
Neural Network F1 Hypothesis Tests Results (16-class)

Feature Selection Method p-value

All Features (pivot) –
Mutual Information 0.193359375
Recursive Feature Elimination 0.275390625
Boruta 0.275390625
LASSO 0.037109375*

According to the obtained AUC-ROC values presented
in Table XIII, all the models are above the random
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Figure 8. AUC-ROC for RF with all features (16-class)

Figure 9. AUC-ROC for RF with Mutual Information (16-class)

Figure 10. AUC-ROC for RF with RFE (16-class)

Figure 11. AUC-ROC for RF with Boruta (16-class)

Figure 12. AUC-ROC for RF with LASSO (16-class)

prediction threshold, being Random Forest the best models,
followed by the Neural Network models and the SVM.
The Random Forest AUC-ROC scores for the 16 different
classes, including macro and micro averages, are shown in
Fig 8, 9, 10, 11 and 12.

C. Grouping 16 classes probabilities into 4 classes
The best 4-class model was Random Forest with Recursive
Feature Elimination. We took the 16-class equivalent
model and used it for our inference probability grouping
experiment. The results of grouping the 16-class test
dataset predicted probabilities by category, getting their
classification metrics and comparing them to the ones from
the original 4-class can be seen in Table XIX.

F1, Recall, Precision and Accuracy are slightly lower in
the grouped scores. In general we expected to have lower
classification scores in the grouped version as the 16-
class classifier is expected to have lower scores due to
the higher amount of classes and the reduced number of
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Figure 13. Confusion Matrix for RF with Mutual Information (16-
class)

Table XVIII
RF removed features counts (16-class)

Feature Count

0 pslist.nprocs64bit 4
1 handles.nport 4
2 svcscan.interactive_process_services 4
3 psxview.not_in_eprocess_pool 3
4 psxview.not_in_eprocess_pool_false_avg 2
5 psxview.not_in_pslist 1
6 psxview.not_in_ethread_pool 1
7 psxview.not_in_pspcid_list 1
8 psxview.not_in_csrss_handles 1
9 psxview.not_in_session 1
10 psxview.not_in_deskthrd 1
11 modules.nmodules 1
12 svcscan.fs_drivers 1
13 callbacks.nanonymous 1
14 callbacks.ngeneric 1

instances of each class which compromises the training
process quality [20]. AUC-ROC got a bit higher value,
which represents a potential contribution from the 16-class
predictions grouped and used as a complement for the 4-
class classifier when inferencing, but this is not conclusive as
we are not doing statistical comparison between the AUC-
ROC scores. A more exhaustive investigation is needed to
confirm the veracity of these conclusions.

Table XIX
Classification metrics comparison between the 16 classes

grouped into 4 classes and the 4 original classes

16 grouped into 4 4 original

F1 0.724013 0.732269
Recall 0.725003 0.73299
Precision 0.730546 0.74291
Accuracy 0.814164 0.819625
AUC-ROC 0.9482 0.947284

D. Removed Features
Table X and Table XVIII show counts for the removed
features of 4-class and 16-class Random Forest, respectively.
Both share similar removed features at the top of the
counts, like pslist.nprocs64bit, handles.nport and
svcscan.interactive_process_services. Specifically, these
3 features have the characteristic of being zero for most
of the dataset records. There is also a pattern with
psxview features where they are apparently removed
due to having high correlation with other features [15].
The high correlation can be seen in the correlation
matrix included in our source code notebooks and it is
not included here due to visualization limitations. For
instance, psxview.not_in_pslist_false_avg, which is a
removed feature in the 4-class RF models (see Table
X), has high correlation with psxview.not_in_pslist,
psxview.not_in_pspcid_list, psxview.not_in_session,
psxview.not_in_pspcid_list_false_avg and
psxview.not_in_session_false_avg.

V. Conclusions
The obtained results revealed feature selection techniques
are definitely effective in the CIC-MalMem-2022 dataset.
Specifically, Recursive Feature Elimination and Mutual
information showed rather useful with Random Forest, with
the first one not only removing 15 out of the 55 features, but
also increasing the F1 score in the 4-class, and the second,
although it did not increase the target scores significantly,
it removed 15 out of 55 features without causing significant
changes in the scores with respect to the all-features version
which helps from an efficiency and simplicity perspective.
Most of the removed features were high correlated features
and others were features with low variance, where most
of the rows had the same values (e.g. zero). The SVM
and NN had similar feature selection patterns, but did
not get statistically significant differences in classification
scores, except for NN with LASSO which resulted in
lower classification performance due to regularization alpha
hyperparameter influence. Grouping probabilities did not
result in notable benefits; nevertheless, as stated, there
is still more research to be done to confirm whether it is
beneficial or not.
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