
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Supervised Learning for Failure Detection in an Engine Generation Unit
Leveraging Data Infrastructure, Feature Engineering and Monitoring

through a Machine Learning Dashboard

Proyecto de Titulación

Jonathan Vinicio Espín Martin

Israel Pineda, Ph.D.

Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Magíster
en Ciencia de Datos

Quito, 02 de diciembre 2024

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ
COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN
Supervised Learning for Failure Detection in an Engine Generation Unit

Leveraging Data Infrastructure, Feature Engineering and Monitoring
through a Machine Learning Dashboard

Jonathan Vinicio Espín Martin

Nombre del Director del Programa: Felipe Grijalva
Título académico: Ph.D. en Ingeniería Eléctrica
Director del programa de: Maestría en Ciencia de Datos

Nombre del Decano del Colegio Académico: Eduardo Alba
Título académico: Doctor en Ciencias Matemáticas
Decano del Colegio: Ciencias e Ingenierías

Nombre del Decano del Colegio de Posgrados: Dario Niebieskikwiat
Título académico: Doctor en Física

Quito, diciembre 2024

3

© DERECHOS DE AUTOR
Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la

Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y
estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente

trabajo quedan sujetos a lo dispuesto en esas Políticas.
Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el

repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del
Ecuador.

Nombre del estudiante: Jonathan Vinicio Espín Martin

Código de estudiante: 00339306

C.I.: 1803933660

Lugar y fecha: Quito, 02 de diciembre de 2024

4

ACLARACIÓN PARA PUBLICACIÓN
Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como

una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio
institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el

Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on
best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT
Note: The following graduation project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be
considered a publication. This statement follows the recommendations presented by the Committee

on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best
practice for issues around theses publishing available on http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

DEDICATORIA
A Dios y mi familia

6

AGRADECIMIENTOS
A Dios. A mi familia por su apoyo. A la Universidad San Francisco de Quito mi alma mater. A mi

tutor de titulación y cada profesor.

7

RESUMEN
Detectar fallos en maquinaria industrial con alta precisión y exactitud es crucial para extender los

ciclos de vida operativos y garantizar la fiabilidad del sistema. Esta investigación tiene como objetivo
desarrollar e implementar el uso de modelos de Machine Learning supervisado con resultados
probabilístico para predecir fallos en un generador eléctrico industrial de gran capacidad. El

generador es un componente crítico en un campo remoto de extracción de petróleo y gas en Ecuador,
que alimenta los subsistemas con la energía principal necesaria para garantizar la continuidad de la

seguridad industrial y la producción. Este estudio implementará la detección de fallos basada en
aprendizaje supervisado para clasificación binaria, utilizando un conjunto de datos de 8 millones de

muestras con datos en tiempo real e históricos. Se extraen aproximadamente 90 características a
partir de variables del proceso: temperatura, presión, potencia, entre otras métricas operativas.

La recopilación y almacenamiento de datos se llevan a cabo mediante el sistema SCADA Ignition de
Inductive Automation. Ignition interactúa fácilmente entre los protocolos del controlador del

generador y los servidores de bases de datos basados en SQL. Por lo tanto, el software actúa como
capa intermedia e integración en la recopilación, estructuración y procesamiento de datos para

análisis predictivos. En esta investigación se proponen tres algoritmos de ML: Random Forest (RF)
como método base, XGBoost como un modelo más robusto y escalable, y Redes Neuronales

Artificiales (ANN) multicapa de perceptrones (MLP) como representante de enfoques avanzados de
aprendizaje profundo. Se aplica ajuste de hiperparámetros para optimizar el rendimiento del modelo

y lograr las mejores predicciones posibles de la probabilidad de fallos.
Los modelos de Machine Learning entrenados se implementan posteriormente a través de Ignition,
que ejecuta scripts de Python para realizar predicciones tanto en tiempo real como históricas. Esta

integración permite que se analice constantemente los datos entrantes y proporcione resultados
probabilísticos que pueden visualizarse mediante una interfaz de ML hecho con Ignition. El

dashboard o interfaz en intuitiva en cuanto a las probabilidades de fallo previstas y la importancia de
las características para facilitar la toma de decisiones operativas. Con modelos de ML explicables y

supervisados, este sistema proporcionará información procesable con la que los usuarios podrán
predecir y prevenir fallos potenciales. Además, mejora la fiabilidad del motor generador eléctrico y

aumenta su eficiencia operativa, demostrando así el valor de integrar ML en los sistemas de
monitoreo y control industrial.

Palabras clave: Aprendizaje de Máquina, Predictor de Fallas, Motor Genedor Eléctrico, Aprendiza
Supervisado, Random Forest, XGBoost, ANN, SCADA-Ignition, Dashboard

8

ABSTRACT
Detecting faults in industrial machinery with high precision and accuracy is crucial to extend

operational life cycles and ensure system reliability. This research aims to develop and implement the
use of supervised Machine Learning models with probabilistic results to predict failures in a large

capacity industrial electrical generator. The generator is a critical component in a remote oil and gas
extraction field in Ecuador, feeding the subsystems with the main power necessary to ensure the

continuity of industrial safety and production. This study will implement supervised learning-based
fault detection for binary classification, using a dataset of 8 million samples with real-time and

historical data. Approximately 90 characteristics are extracted from process variables: temperature,
pressure, power, among other operational metrics.

Data collection and storage are carried out using Inductive Automation’s SCADA Ignition system.
Ignition easily interfaces between generator driver protocols and SQL-based database servers.

Therefore, the software acts as an intermediate layer and integration in collecting, structuring and
processing data for predictive analytics. In this research, three ML algorithms are proposed: Random
Forest (RF) as a base method, XGBoost as a more robust and scalable model, and Artificial Neural

Networks (ANN) multilayer perceptron (MLP) as a representative of advanced deep learning
approaches. Hyperparameter tuning is applied to optimize model performance and achieve the best

possible failure probability predictions.
The trained Machine Learning models are then deployed through Ignition, which runs Python scripts

to make both real-time and historical predictions. This integration allows incoming data to be
constantly analyzed and provides probabilistic results that can be visualized using an ML interface

made with Ignition. The dashboard or interface is intuitive in terms of the expected failure
probabilities and the importance of the characteristics to facilitate operational decision making. With
explainable and supervised ML models, this system will provide actionable insights with which users

can predict and prevent potential failures. Furthermore, it improves the reliability of the electric
motor generator and increases its operational efficiency, thus demonstrating the value of integrating

ML into industrial monitoring and control systems.

Key words: Machine Learning, Failure Prediction, Engine Electric Generator, Supervised Learning,
Random Forest, XGBoost, ANN, SCADA-Ignition, Machine Learning Dashboard

9

TABLE OF CONTENTS

I Introduction 12

II Related Work 14

III PROBLEM STATEMENT 14
III-1 Ignition SCADA Overview and Machine Learning Integration 14
III-2 Electrical Generator Bore Engine and Failure Events and SCADA . . 15
III-3 Orchestration data flows, models and dashboard using Ignition . . . 16

IV Methodology 16
IV-1 Dataset Gathering and Training Environment 17
IV-2 Random Forest Classifier, Review & Training Script 18
IV-3 Extreme Gradient Boosting (XGBoost), Review & Training Script . 19
IV-4 Artificial Neural Network Multi Layer Perceptron (ANN - MLP),

Review & Training Script . 20
IV-5 Machine Learning Prediction using Ignition Orchestration 21

V Results 22
V-1 Random Forest Performance and Feature Importance 22
V-2 XGBoost Performance and Feature Importance 22
V-3 ANN MLP Performance and Feature Importance 23
V-4 Results Overview . 24
V-5 Machine Learning Dashboard using Ignition 25

VI Conclusions 26

References 27

10

TABLES INDEX

I Important variable grouping of features. 16
II Results Summary Evaluation Report and Feature Importances 24

11

FIGURES INDEX

1 Wärtsilä 16V32 Bore Engine . 15
2 PI&D Visualization Standard Scada of the Machine (top view). Green dots shows some

of the monitoring variables . 16
3 Data Flow Orchestration for Trained Model Utilization. 21
4 Random Tree Decision Tree Summarized by impurity. 22
5 Feature Importance Results by Random Forest. 22
6 XGBoost Decision Tree Summarized by impurity. 23
7 Feature Importance Results by XGBoost. 23
8 Performance Score and Loss over Epoch by ANN. 24
9 Feature Importance Results by ANN. 24
10 Main Machine Learning Dashboard about Failure Prediction of Available Models and

Feature Importance History. 25
11 History Explorer and Entire Feature Importance. 25
12 Model Attributes Visualizer on Training. 25
13 Live Predictions from Actual Data In and Predictions Out. 26

12

Supervised Learning for Failure Detection in an
Engine Generation Unit Leveraging Data

Infrastructure, Feature Engineering and Monitoring
through a Machine Learning Dashboard

Jonathan Espín Martin, Member, IEEE Universidad San Francisco de Quito

Abstract—An accurate and high precision predictor
for industrial machine failure detection is crucial to
enhancing its operational lifecycle. This research shows
the results of various Machine Learning (ML) models
in classifying a target feature, upon observations and
evaluation metrics that better predict failure events.
A bore industrial electrical engine generator and its
failures over time are the focus of analysis for develop-
ing and implementing a probabilistic ML predictor.
Gathered process variable information, as features,
alongside operational data over time as observations,
represents the source of the tabular dataset. These
features correspond to various monitoring variables
such as temperatures, pressure, power, and similar
metrics, with about 90 characteristics analyzed. A
set of 8 million samples is used to train and test a
supervised machine learning model for binary classifica-
tion, capable of predicting failure probability events
with real-time or the latest historical values. This
data was collected from a specific engine generator
used as the main electrical power unit supply for a
remote Oil & Gas extraction field in Ecuador. Data
storage and extraction are hosted and managed by a
Supervisory Control and Data Acquisition (SCADA)
software server-agnostic system, Ignition by Inductive
Automation, which handles Structured Query Language
(SQL) clauses for data acquisition from database servers.
The runtime operability of this engine generator is
critical, as it provides energy to the subsystems that
maintain industrial safety and production operations.
This leads to the need for probabilistic predictions that
deliver valuable information to operational control and
monitoring of the generator itself. Furthermore, the
deployment of a user-friendly dashboard is useful as
a visualization tool for analysis and decision-making,
offering insights into the probability of failure events and
feature importance. The ML classification algorithms
used in this research include Random Forest (RF) as
a standard method, Extreme Gradient Boosting (XG-
Boost) as a more robust strategy, and Artificial Neural
Network (ANN) as a more sophisticated approach.
Once the best model hyperparameters are obtained
via tuning, Ignition is used as a task orchestration
system to gather process variables either from current
process values or from the historical database source,
and to make predictions. In both cases, Ignition acts as
middleware between the driver and protocol gathering
information on the production field and the database,
using its Open Database Connectivity (ODBC) ca-
pabilities. Additionally, it loads trained ML models
into memory, executes Python scripts, and delivers
predictions based on the latest data points. This system

also hosts the ML dashboard, deploying the output of
the predictors as explainable visual insights through
graphics that help users understand input changes in a
clear and interpretable manner.

Index Terms—Machine Learning, Failure Prediction,
Engine Electric Generator, Supervised Learning, Ran-
dom Forest, XGBoost, ANN, SCADA-Ignition, Machine
Learning Dashboard.

I. Introduction

THIS research analyzes how Machine Learning (ML),
as a prediction technique, is applicable to any task

and process. The Oil & Gas Ecuadorian industry is not
the exception, data generation from this industry processes
and production areas, enables to obtain data information
to perform analytics capable to deliver valuable insights
to enhance productivity for efficiency expectations and
to mitigate possible downtime events with predictions.
Industrial Electrical Generators fuel-based engines are an
important component in the hydrocarbons sector due to its
capacity to provide electrical energy to various sub-systems
for petroleum extraction processes. The operational time of
these systems is meant to be continuous and reliable since
they are usually located in remote locations that may not
be connected to the national electrical systems. This means
that these electrical power generator systems are the main
power source for production, personnel sustainability and
safety. The engine-generator system may be sliced into two
functional sections, the combustion engine and electrical
generator; mechanical wear is a key factor to inspect when
the goal is to keep these operations maximized overtime
without harming the lifespan of the engine or generator.
Furthermore, various trackable variables like temperature,
pressure, oil, water, fuel, and vibrations at the engine
generator or even system is complementary electronics
may lead into a failure event when abnormal behavior
happens. Intrinsically, any variable as independent variable
or as a conjunction of values that follows explainable
regressions, are utilized for predictions of a system failure
[1]. In ML terminology, these are the correlations of a
labeled target and data context itself within a supervised
learning scope, aimed at obtaining probabilistic prediction
results for binary classification.
Future events are inherently impossible to predict with

13

absolute precision or accuracy. A machine learning model
provides quantified predictions suggesting the likelihood
of a failure occurring. The advantages of suggesting provi-
sional maintenance towards productivity and mitigating
long-term downtimes are not only important from the
productivity point of view, but also important because
it collects valuable information prior, while or after a
failure event. This information is in fact the most valuable
information overall since it contains values from features
that are important for understanding failure/non-failure
behavior events [2].
The strategy for this machine failure prediction aims to
use Supervised Learning techniques that leverage labeled
dataset usage for training, testing and even validating. This
enables the model to recognize patterns by establishing
the relations between the inputs and outputs as well to
predict outcomes. Hyperparameters tuning is important
since it keeps the best possible model attributes by testing
multiples ML strategies like balancing, regularization,
Principal Component Analysis (PCA), learning rates and
more [3], [4].
With about 90 features, the analysis of the correlation
between variables its importance, may provide hints of
data characterization that suggests more relevance of some
features against others. Feature importance engineering
is performed as part of this research to obtain valuable
information toward features observation, aiming to the
utilization of this information to users to emphasize
attention to specific features that are more relevant when
failure probabilistic prediction is the goal.
For classification, Random Forest algorithm is used as
a standard method due to its capacity to handle high
dimensional datasets and excels in complex decisions
boundaries. The idea behind this algorithm is based on
building decision trees in training phase and it uses majority
voting to determine the class label correspondence. Another
good reason to use this algorithm is because it supports
nonlinearity and offers a way to extract features importance
[5].
Extreme Gradient Boosting, as a robust strategy, is
highly efficient for binary classification tasks and it is
suitable because it has some characteristics, ideal for
binary classification. It builds decision trees where further
depth tree is a corrected version of the prior tree. It also
supports imbalanced data, which is common for binary
classification, by setting a parameter in the model definition.
Regularization L1 and L2 and depth control are also
supported and it is important to avoid overfitting. It
also offers a way to extract features importance, which
is important to accomplish the purposes of this research
[6].
Artificial Neural Network is a more general approach, it
excels on capturing non-lineal relationships in the dataset
by using some known classification functions like ReLU or
Sigmoid. This algorithm offers the capacity of hierarchical
feature learning automatically, letting it capture important
patterns without necessarily doing feature engineering
manually. It also provides the possibility to perform transfer

learning and its scalability due to its capacity to be
executed on (Graphical Processing Unit) GPU [7].
The strategy to evaluate the model performanace is by
using F2 score. This is a variation of F1 score, but it em-
phasizes recall more than precision [8]. This is particularly
useful in a binary classification analysis for imbalanced
target features. Thus, sensitivity has higher weight on F2,
which means it penalizes the model less for false positives
but more for false negatives [9]. With this asseveration, it is
established that the scoring strategy will not tolerate false
negatives, in other words, it is not acceptable to categorize
an event as non-failure when its probability to be a failure
is high.
Before starting, a series of steps must be carried out to
get a pathway aimed at obtaining probabilistic prediction
models for a particular engine generator machine failure
event. Firstly, data acquisition strategy, which is based on
SQL, was defined and used as the mechanism to obtain
and analyze the dataset. Variables collection is based
on a series of sensors and signals on field, connected to
the engine-generator machine, publishing data values into
the advanced SCADA Ignition system. Regarding data
historization, this software performs batch insertion to
a structured partitioned tables upon a system hosting
SQL engine. In addition, it provides Python scripting
functions to sinuously extract historical data information,
solving historical calls by executing SQL clauses against
the self-managed table’s structure database. Afterwards,
data preprocessing was necessary to build this structured
file holding all the key information for this analysis into
a comma-separated value (csv) file. For instance, the
dataset was split into separate .csv files due to the size
of observation and features counts for portability and
operability purposes. The range of information for this
analysis contains a historical range of 26 months overall
that contains around 11 gigabytes of raw plain information.
Afterwards, an Exploratory Data Analysis (EDA) provided
insights to enable the best set of information. Cleaning
and transforming data is necessary to obtain a labeled
dataset. This means that failure detections on a time basis
are not part of data information metrics itself, and they
handled manually on real scenarios. Thus, it is necessary
to integrate these failure events into the historical dataset
and the Ignition platform offers a scripting mechanism to
push data in place specifying the value and the timestamp
of occurrence. Keeping in might that this system manages
the database through pre-configured queries, it is suitable
to generate and obtain the labeled dataset as expected,
further details are described below. Ones desired data is in
place, as mentioned before, a scripting function command
executed historical variables information was specified in
desired in a specific range and in a controlled time span.
For this implementation, ten seconds sample time was
used against all variables associated with the monitoring
of the engine generator, separated on daily groups across
two years of information. As data is important, so is the
framework to perform the model training, using an in-
place folder structure holding input and output file storing

14

the execution plans as a Machine Learning repository. As
follows, high specs hardware was required to perform data
processing and training in manageable times. As referential
mentions, a hardware system capable of delivering at
least 150GB of RAM and 30GB of GPU is recommended
for dataset operations and training steps. Those values
are mentioned after a series of shared experiences when
dealing with the size of the mentioned dataset into the
Python 3 runtimes using Pandas, NumPy and Scikit-learn
frameworks, just to mention a few. Subsequently, it is
crucial to properly perform programing strategies aimed
at avoiding unexpected exceptions while executions and
model characterization on phases of loading, cleaning,
training, evaluation and feature importance observations.
After completing all the phases to obtain a probabilistic
prediction model, those models were saved as serializable
files. As the system that will run the models is apart from
the environment where training was taking place. Finally,
Ignition as a SCADA system capable of performing Python
calls, performs prediction orchestration taking process
data variables from raw driver protocols, historize data
changes into a database and pull back the information into
those calls where the probabilistic prediction response is
expected. Hence, this research shares a proposal of how a
live predictions dashboard should expose prediction and
insights upon data changes using trained models.

II. Related Work

Recent researches in supervised learning for failure detec-
tion in engine generation units have been influenced by
studies focusing on data infrastructure, feature engineering,
and monitoring through machine learning dashboards. For
example, Vago et al. [10] conducted an industrial case study
predicting machine failures from multivariate time series,
underlining the impact of reading and prediction window
sizes on model performance. Their findings indicate that
deep learning methods are especially good in classifying
data with a variety of time-dependent patterns before
failures. In the same manner, the work of Amaya-Sanchez
et al. [11] discusses the application of machine learning
models for fault diagnosis in power generators. Their study
emphasis the importance of feature engineering and robust
data infrastructure. Also, it presents an overview of the
performance of different supervised learning techniques for
the considered operating conditions. Moreover, practical
applications, such as the truck failure detection project
by Wang [12], show how machine learning algorithms
combined with real-time monitoring through dashboards
work, therefore proving the practical utility of supervised
learning in failure detection. Other major contributions
include sensor-based failure detection systems presented
by Meenatchi et al. [2], which demonstrate an innovative
monitoring framework applied for predictive maintenance.
Also, in the review of generative AI models for fault
detection [1], the advantages of generative AI in traditional
failure prediction systems has been discussed.

All these collectively point to the importance of data
infrastructure, feature engineering, and monitoring tools
in the development of effective supervised learning models
for failure detection in engine generation units. However,
none of this related work shows significant progress in
the dashboard visualization platform to perform runtime
predictions. This is where Ignition excels as the right tool
to execute the models, gather data, store it in a database,
and display insights using a dashboard with the latest
technology.

III. PROBLEM STATEMENT
In this section, issues related to the use of electric gener-
ator engines as energy provision systems for the oil and
extraction sector are addressed, as well as how their high
availability is necessary to maximize production. The early
detection of potential failures will enable immediate actions
to prevent major damage. Monitoring various variables and
standard Piping and Instrumentation Diagram (P&ID)
schematics, along with human inspection, are not sufficient
to predict failures, which is why a supervised machine
learning model is used to create failure prediction models
with low tolerance for false negatives. Additionally, the
sensitivity of data extraction and processing methods is
discussed. Furthermore, it describes how Ignition is the
appropriate tool to orchestrate and synchronize information
to utilize trained models integrated within the same
production platform of the oil extraction company in
Ecuador.
1) Ignition SCADA Overview and Machine Learning Inte-
gration: Ignition, by Inductive Automation, is a software
that excels in many tasks for the latest industrial operations
demands. Likewise, the utilization of Machine Learning
algorithms is not the exception since this platform can
manage model executions via Jython commands. The core
engine of this software runs over Java Virtual Environ-
ment (JVM), this brings significant advantages like cross-
platform compatibility and a large set of development
toolkits over Java and Python libraries and languages
classes. Ignition can seamlessly connect to a wide range of
devices, using self-embedded protocols, and enabling the
creation of unlimited tags, and provides this information
across the entire platform scope. A tag is referenced as
an object within the system that its main role is to hold
data point values in real-time or historical mode, it also
contains a set of configurations such engineering units,
datatype, historization configurations, alarming, Jython
based scripting, just to mention a few. The platform’s
versatility extends the customization of the solution upon
applications design, connectivity and integration. Ignition
acts as a central controller hub, integrating plant-floor
equipment data, NoSQL or SQL databases and bridging the
gap between production OT and IT layers. Using languages
such as SQL clauses and Jython, and protocols such: Open
Platform Communications Unified Architecture (OPC-UA),
Modbus TCP/RTU, Allen-Bradley Ethernet/IP, Siemens
S7, and Message Queuing Telemetry Transport (MQTT).

15

Regarding SQL databases, Java Database Connectivity
API (JDBC) drivers are required to accomplish historiza-
tion and transactional operations, supported by a wide
range of well-known databases. Custom historization can
be configured against each tag or set of tags like deadband,
times between samples and high-level configuration like how
often should table partitions time span and the age of data
to keep. This system offers a wide range of custom scripting
functions implemented with Jython. These functions are
easy to use and are well documented. The framework where
this function gets executed is in a Jython 2.7 interpreter.
Within this set of functions, there is a dedicated package
for data historization and extraction. The goal of these
functions is to provide an easy way to request historized
data. This is desired because internal operations perform
well structured queries against the tables structure while
we only need to specify the time frames to request historical
data. There are a lot of possible functions to work with
that Ignition supported natively.
However, this is not enough when it is desired to perform
Machine Learning tasks, and it is required to rely on
another programming approach. The main reason why
it is required to relay in the capabilities of external Python
calls is because Ignition, on its current version supports
Jython version 2.7, which represents a challenge when
dealing with libraries compatibility and Machine Learning
implementations that are mostly developed and supported
on dependencies of version 3 of CPython, known as Python.
Nevertheless, it is totally possible and easy to invoke
side .py codes written in CPython from the Ignition
framework via subprocess or API calls [13]. These calls
can be executions of predictions requests to a serialized
Machine Learning model file, further details are described
in the following section. Moreover, Ignition has a web-based
visualization module that supports the foundation of web
technologies used to set structure, style, and interactivity
to modern websites. This web-based visualization module
supports modern frontend implementations in HTML5,
CSS3, JavaScript and a graphical designer tool based on
React components that allows the development of views
as desired and effortless deployment. Ideal for dashboards
development, it allows instant web access to a Machine
Leaning Dashboard application across various industrial
clients or sessions systems from web browsers, desktops,
mobile devices and more. With these features, relevant
information that runs in a backend, like model predictions
and feature importance selection, shows using modern
frontend techniques.

2) Electrical Generator Bore Engine and Failure Events
and SCADA: To provide electrical energy to an industrial
process of Gas & Oil extraction field in a reliable way and
in low-maintenance times. The Wärtsilä 16V32 is a suitable
solution, it is a recurrently performing main engine that
belongs to the family called Wärtsilä 32, known for its high-
power density, low fuel consumption and long proven record.
This engine machine supports multiple fuel types, meaning
it performs well in a wide range of applications with various

fuels. However, its primary focus is on the main uses such
as Heavy Fuel Oil (HFO), Marine Diesel Oil (MDO), and
liquid biofuels. All of this makes the engine more flexible
to several types of energy sources in various productive
sectors. For remote locations like offshore/marine platforms
or extraction fields in the Ecuadorian Amazon Rainforest,
this engine is ideal and important in that, it provides
electrical energy supply to extraction platforms, drilling
rigs, and security and mission critical systems. This is
the reason why it is imperative to avoid failure events by
making predictions to maximize the runtime hours and
productivity. Wärtsilä 16V32 is a very great energy source
for this operational type, considering its performance under
high loaded operations, and where it powers mechanical
tools, auxiliar sub-systems, and an electrical generator.[14]

Figure 1. Wärtsilä 16V32 Bore Engine

Despite its strength and capabilities, there are several
factors that could lead to unplanned downtime. A common
example of how failure can occur is that low-quality fuel
may grow on or block the fuel system due to corrosion,
whereas a disturbance in the cooling system may lead to
overheating causing damage to engine components such as
pistons or cylinder heads. The turbocharger, pistons, and
crankshafts are particularly important components, any
failure in these can spoil the working of the engine and it
will require a major repair within downtime of weeks. The
manufacturer has made the engine in such a way that it can
be neglected for maintenance periods up to 24,000 hours
and hence condition-based maintenance, which is essentially
repairs before the problem might appear, it in turn will
minimize the risk of sudden halts. Nevertheless, human
inspection by visual and sonorous methods, is not capable
of providing an advanced diagnostic of a failure event that is
likely to occur. That is the reason why a probabilistic failure
predictor model, designed and implemented with machine
learning strategies, is more useful and advanced for these
predictions. Furthermore, displaying features and failure
events on a dashboard interface enhances the operability
of the electrical energy generator system. According to the
specifications of the engine, Wärtsilä 16V32 withstands
tests designed to work, without failure-indicative data for
the given period of years. This reliability makes the first
step in the validation process more feasible, where the
failure occurrences are measured by the criteria of engine
downtime, which is used for continuous monitoring. For the
high-level operational activities, the key metrics related to
the engine insulation of fuel efficiency, power generation,
thermal conditions, and some other performance-related
key indicators are aggregated into a control system.

Ignition, the SCADA system uses communication protocols

16

to enable multiple devices connection capabilities, including
the sensor unit devices of the Wärtsilä 16V32 engine.
The collected data information can be distributed across
the system in any desired manner and purpose such
historization or operations of any flavor. The relevance
of the system is that it can provide diagnosis of downtimes.
In fact, this system is capable to show when the failure
event had happened, as it is configured based on the alarms
control logics, but this is not a predictive operation. Thus,
the integration of Machine Learning models working side
by side with field device data and SCADA systems is
possible, this means that enhanced tasks can be developed
powered with this integration. This promotes faultless
motor management and discharge of the maximum up
time. For instance, a regular visualization (top view) of a
real production system visualization of the engine is shown
fellow. Implemented in Ignition, this visualization shows
some of the data variables and perhaps shows a high-level
monitoring for process monitoring but limited on regard
with any failure prediction insight.

Figure 2. PI&D Visualization Standard Scada of the Machine (top
view). Green dots shows some of the monitoring variables

The previous visualization lacks explainability for the
user, as it does not display any information on feature
importance or the probability of a failure event. In fact,
it only intends to display all available data in one sight,
which can be hard to manage and visually overloaded. For
this research, some logical grouping of this engine generator
process variables or features are shown as follows. Further
results show the importance of these features agnostic to
the corresponding model.

Table I
Important variable grouping of features.

Category Variables
Control Cooling water freq. conv. control value
Current Generator phase current L1, L2, L3

Flow Fuel oil consumption from flow rate, Fuel oil
inlet flow, Fuel oil outlet flow

Frequency Generator frequency
Position Actuator position %
Power Generator reactive power, Maximum allowed

power, Generator active power, Generator ap-
parent power, Generator power factor

Pressure Receiver press. control, setpoint, sp. max. limit,
HT-water pressure jacket inlet, CA pressure
engine inlet, etc.

Speed Engine speed, Turbo A speed, Turbo B speed
States Engine stopped

Temperature Main bearing temp., HT-water temp. jacket
inlet, Exhaust gas temp., LT-water temp. CAC
inlet, etc.

Voltage Generator main voltage U12, U23, U31

3) Orchestration data flows, models and dashboard using
Ignition: When it is required to perform orchestration data
flows and deliver production data to a prediction model
object in real-time while on production, a series of steps
are carried on achieve this. The purpose of making this
information available to the Machine Learning model is
to enable the generation of failure prediction results as a
probabilistic output as the productions happen. To start
with, data source information on production operations is
delivered to a Machine Learning model input. To accom-
plish this, it is important to select a tool that is capable
of casting process data as utilizable information. Ignition,
with its embedded driver’s compatibilities and a series
of industrial protocols, is capable to accomplish this. By
connecting devices protocols to the system, the utilizable
information lies on tags objects. These objects hold data
values as the production happens. For instance, if a driver
connected to a Transmission Control Protocol (TCP) device
transmitting temperature in an analog signal, Ignition
connects to this device and set the value input in a tag
object and see the value changes live as its changes. So far,
data values are available in the SCADA system. With its
historization capabilities described before, this information
can be stored as it changes. Therefore, data information
records are stored and available as a source of consultation.
Additionally, Ignition offers and wide variety of operations
like scripting under timers and cronjobs that lead to
gather process values, these are important to accomplish
predictions as it enables execution pipelines. On its own,
Ignition does not offer predictor models, expected from a
Machine Learning system standard. However, it has Jython
libraries that are capable of interacting with the operative
system seamlessly. In this manner, data streams can be
forwarded to a specialized model on memory and obtain
predictions. This information can be easily collected back
and whatever is required with it, like historization, reports
or informative dashboards. For instance, the data flow is
completed, and the remaining step involves deploying a
dashboard that helps the end user to see information about
the predictions and feature importance at a glance.

IV. Methodology
This section discusses the handling of the dataset and
the structuring process required to make it available as a
training object. It describes the requirements for obtaining
data from a private oil extraction company. The dataset’s
characteristics, such as time intervals and sampling, are
detailed, along with a general description of the training
environment. Subsequently, the three failure prediction
algorithms for engines Random Forest, XGBoost, and ANN-
MLP are discussed. In general, all procedures have followed
a strategic order of execution, including data cleaning
and organization accompanied by normalization. Stratified
training with cross-validation of some parameters is then
applied, depending on the model, taking into account
performance metrics and regularization [15].
Once this is completed, using the best parameters and the
highest score, a results evaluation is performed through

17

learning evolution analysis or by reviewing confusion
matrices. Next, the models are exported as serializable
files, and, in the case of using Compute Unified Device
Architecture (CUDA) - Graphics Processing Unit (GPU),
instructions are given on saving these files with device
index 0. Once this is done, the models are loaded from the
serialized files to test the model’s correct functionality in
memory. From there, feature importance is extracted, and
depending on the model type, one strategy or another can
be applied.
Finally, it is discussed how this can be achieved with
Ignition, and a distributed architecture is proposed, starting
from field signals, the database for historical data collection,
and the visualization of the model. Furthermore, the most
important aspect of the system continuous predictions is
highlighted, which sends information based on requests
from the system management platform, Ignition.

The performance score metric utilized for this research is
F2 that emphasis on recall [8] and is given by:

Fβ = (1+β2)· P · R

β2 · P + R

∣∣∣∣∣
P = Precision = TP

TP + FP

R = Recall = TP

TP + FN
β ∈ R, β > 0

(1)

Note: TP (True Positive), FP (False Positive), FN (False
Negative)

1) Dataset Gathering and Training Environment: A private
Oil & Gas company, with operations in the Ecuadorian
Amazonic Forest, has been leveraging petroleum extraction
for decades. This process demands high electrical energy
and it is self-provided by a Wärtsilä 16V32 Bore engine
generator. Ignition is the system that monitors and controls
the operations of this machine. During machine runtime,
a wide set of information has been produced, compounded
by failures events that led to electrical backouts in the past.
Ignition has been the system that manages information
storage in a production MySQL database. To avoid over-
loading the production systems by crashing the servers
and to minimize the risk of data loss and downtimes,
the path for data extraction was stablished to gather
information straight from the database. This has two mayor
benefits, avoids the dependency of the SCADA system and
obtains the raw data stored into the database. To recall,
Ignition is capable to query the historical data against the
database by its embedded functions which its simple and
straight forward to do. However, this method has two mayor
problems in these circumstances, data interpolation and
the risk of overloading the SCADA server due to the time
span of information desired of 28 months between 2019-05
and 2021-11. Therefore, the implementation of an advanced
query is required to gather data information straight from
the database as stored. To achieve the objectives of this
investigation, a set of tasks were taken in the acquisition
of the dataset phase:

• Privacy agreement and approval plan.
• Development of an advanced query, agnostic to the

table structure given by the Ignition historization
engine, developed and tested in a sandbox environment
for data extraction.

• Query testing in production, failover plan, kill-switch,
and approval pipeline.

• Query execution in controlled timeframes and database
health monitoring; the query saves a .csv file with raw
table information.

• Physical data extraction and transportation via hard
drive. Extraction via internet tunneling was not per-
mitted by the company.

A set of plain files .csv format is the result of the previous
acquisition phase. Failure events were recorded manually
and kept separately from the database in .xlsx files.
Therefore, programming operations were required to merge
this data information with the information previously
collected. Merging this information is critical since it is
the target feature value utilized for supervised learning.
In Addition, merging failure events on a timestamp basis
needs to happen under the Ignition context because data
migration implements in a development environment. This
means that, once data has been successfully merged into
plain files by simple Python scripts, it needs to be pushed
back into a development database under the historical table
structure managed by Ignition. This historization context
is capable to return a symmetrical tabular dataset, this
is especially important because raw data operations are
sampled in different and individual rated as defined by the
operation. For instance, the samples taken from the engine
generated frequency are higher than a level tank. Overall,
the steps taken can be described as:

• Merging manual failure events with production his-
torical values in plain files; 1 indicates a failure, 0
indicates no failure.

• Preparation of a development environment with Igni-
tion and a MySQL database.

• Insert information into the database using the Ig-
nition context via its scripting dedicated to man-
ual history insertions. This function is called and
available in the Ignition Designer framework as
system.tag.storeTagHistory().

• Extraction of the desired symmetrical dataset
with all the required features, including the tar-
get feature, in the desired time sample using
system.tag.queryTagHistory().

• Loading the dataset files in the training environment
and preparing them for data processing.

• Implement a supervised machine learning execution
plan to obtain a predictor model with feature impor-
tance and insights.

These steps were taken to obtain the dataset to further
operations such training and results analysis. Daily interval
files at 10 second sample rate produced 8.1 million observa-
tions spread in 945 plain files and exactly with 89 features

18

to train. A High-Performance Computing (HPC) unit is
required to handle the dataset size and procedures like
Exploratory Data Analysis (EDA), training with hyper-
parameters tunning and feature selections information for
each model in the scope of this research. A CPU with 250
GB of RAM and four 32GB RAM GPU per unit make up
the training environment, which is capable to perform tasks
within manageable times. As reference, with Randomized
Search Cross-Validation operation on each model with
about 8 to 15 hyperparameters distribution tuning, the
training time took around 4 to 6 days, using measured
capacity of the environment to not overload the kernel.
Further details about training methodology are described
hereafter.

2) Random Forest Classifier, Review & Training Script:
In Machine Learning applications that search for atypical
events, such as machine failures within high dimensional
datasets, Random Forest (RF) provides benefits in terms of
regularization and robustness. Regularization is inherently
achieved using randomized feature selection for each deci-
sion tree generated. This minimizes correlations between
trees and reduces overfitting, this is a critical advantage
when handling complex datasets with large observations
and feature counts [5], [16]. By doing this, the model
effectively manages its complexity, this makes it suitable
for detecting failure patterns that are challenging to predict
[17], [18]. The criterion for RF helps to split quality, gini
for binary classification tasks was used for this research.
This setting lets the model evaluate the purity of each split,
enhancing its ability to differentiate between failure/no-
failure states by favoring splits that maximize class binary
separation [19]. Alternatively, entropy criterion that is
gain-wise may be used in scenarios that require enhanced
precision for split decisions [20]. Another regularization
technique for RF is its use of a validation technique that
estimates the predictive performance of the model based
on samples dropped during tree construction, offering an
unbiased, this minimizes overfitting [21], [22]. With boot-
strapping included, helps to sample using replacement, this
introduces additional randomness and reduces sensitivity
to noise.
Additionally, bagging known as Bootstrap Aggregation, lets
the RF to gain model stability by creating independent
decision trees based on randomly sampled subsets of data.
Through majority voting by classification or averaging by
regression, bagging aggregates the outputs of individual
trees to achieve the final prediction, as result it reduces
variance and improves predictive accuracy [23]. Regarding
diversity, each tree building is based on distinct data
samples, which helps in avoiding overfitting and ensures
that the model property generalizes [24]. Furthermore, RF
is known for handling missing values and providing feature
importance insights, which are beneficial for features
hierarchical observance [25].
This model is capable of handling categorical and contin-
uous data types of underscores, therefore is applicable to
diverse utilizations, in this case, for anomaly detection of a

failure in a generalized prediction task [26]. These algorithm
characteristics make it adaptable due to its validations
and flexibility techniques with split criteria that make it
an adaptable and effective choice of a failure event and
generate valuable operability operation.
The methodology of the script execution for this Machine
Learning algorithm is by executing a Python (3.10.12) code
against the HPC in a Jupyter notebook file. It follows a
workflow that the main goal is to obtain a serializable
model for the failure prediction of this engine-generator.
The first task is to read the dataset that is spread in
several .csv files and load the dataset in memory. Doing
this lets for perform a standard Exploratory Data Analysis
(EDA) by doing data cleaning, filling in missing values and
clipping negative values for consistency. Also, verification of
missing or infinite values as well as removing features with
zero variance to avoid redundancy dimensions. Onward, no
further operations over the dataset are performed because
it is desired to conserve data natural changes for accurate
catch of information behavior. The dataset is divided into a
training set and a test set through stratified sampling. This
is important because it helps that train and testing set to
have a balanced target feature value on each. A pipeline is
created as an execution plan, starting with SMOTE for han-
dling class imbalance by oversampling the minority class,
then SelectKBest to select the top 20 most informative
features, MinMaxScaler for feature normalization that is
key for this type of dataset where the target is binary. PCA
for dimensionality reduction of the components. Finally at
the pipeline, the utilization Random Forest Classifier class
for modeling. Them, it performs hyperparameter tuning
with RandomizedSearchCV using stratified K-fold cross-
validation. The performance metric is F2 score to maximize
recall and minimize false negatives tolerance. After cross-
validation cycles with best hyperparameters tunning such:

• SMOTE sampling strategy with values near 0.8 to re-
duce bias by creating synthetic values for the minority
class.

• Number of neighbors for SMOTE sampling can remain
low; synthetic data are created around this number,
not exceeding 10.

• Establish the depth of the Random Forest (RF) tree
to avoid overfitting. For this research, explainability
is achieved with a depth not greater than 10.

• The estimator will enhance the RF model’s perfor-
mance and precision. It is used to manage training
times, with values not exceeding 100 established for
this research.

• Principal Component Analysis (PCA) for information
control measured by the variance of the principal com-
ponents. Both "None" and 0.95 are used to determine
if reducing components is beneficial.

After model evaluation, the model runs the test set to
get metrics such as the F2 score, confusion matrix, and
classification report for performance assessment, then best
parameters are assigned in the pipeline and into the model

19

so it can be saved as a serializable .pkl or .pth file. Also,
loading friendly feature names from a reference .csv file to
map feature names so that results can be more interpretable
when displaying. The newly stored model is dump back
and perform feature importance analysis. This is executed
to understand which variables have the most influence
for failure event predictions. Also, a decision tree from
the Random Forest is visualized by Graphviz library to
illustrate the model’s decision-making process.

3) Extreme Gradient Boosting (XGBoost), Review & Train-
ing Script: XGBoost is an advanced Machine Learning
algorithm and highly efficient, it was developed to be
robust in performance for classification and regression tasks.
Unlike standard Random Forest, XGBoost utilizes the
gradient boosting an ensemble technique that is corrected
by gradient descents from previous errors sequences [6].
XGBoost is especially good at handling non-linear and
complex relationships, applicable to the nature of the
dataset of this research, and is better in accuracy compared
to standard methods, especially where high-dimensional is
present in the dataset.
XGBoost has various hyperparameters available to enhance
regularization and control model complexity to avoid
overfitting. Regularization parameters are lambda, which
is L2 regularization, and alpha, that is L1 regularization,
resulting in a penalty on the weights of features. This makes
the model more conservative which benefits generalization
[27]. The learning rate, which controls how much each new
tree contributes to the ensemble, balances again accuracy
versus the risk of overfitting. Smaller values of learning
rates slow down learning but increase model stability.
Speaking of performance, this model has a parameter
for the decision-tree method that allows to use the GPU
acceleration taking advantage of devices with CUDA for
faster training times. The histogram-based tree method is
optimized for execution on a GPU, hence is part of the
strategy of improved training [28]. Another characteristic of
XGBoost is capable of handling imbalanced data by using
the scale_pos_weight parameter, which weighs negative
and positive classes to make the performance more balanced
for skewed target’s dataset distributions. In addition, to
control the portion of data by features it gets subsampled
for training set of each tree by using colsample_bytree.
These add regularization because it reduces the dependence
on any specific sample or set of features [29].
For the training script phase, it follows a workflow to
predict the failure of an engine-generator, using the ap-
proach of using GPU acceleration with CUDA devices
enhancement. To start, the dataset is loaded memory
via various files reads in an appended data-frame for
cleaning using first filling in missing values and clipping
negative data to remove unreal noisy data. Perform Quick
EDS for check of missing and infinite values and remove
features with zero variance to eliminate redundancy or
weight-less component. Then, split the dataset into training
and testing sets utilizing stratified sampling to keep class
distribution. Next, it’s required to initialize a Dask CUDA

Cluster to distribute the computations load across all
GPUs while training. For these steps, it was configured
for specific CUDA devices available. This helps to use
dynamic allocation and therefore allows the model to
move across different CUDA devices during processing.
This is crucial for optimizing resource utilization in shared
hardware environments. Finally, all gets pushed to device
to CUDA 0 before saving the model, because most devices
are very likely to have at least one CUDA enabled GPU,
this means it was compatible when loaded is a separated
hardware with different system specifications. As follows,
a pipeline is created including SMOTE for class balanc-
ing by oversampling the minority class, MinMaxScaler
for feature normalization, this is important because as
mentioned before, it improves the convergence and control
dominant features. PCA for reducing the dimensions, and
an XGBoost Classifier optimized for GPU computation.
Hyperparameter tuning such:

• The number of neighbors for SMOTE sampling can
remain low; synthetic data is created nearby these
numbers, not exceeding 10 in this research.

• PCA analysis for information control measured by
the variance of the principal components. "None" and
0.95 was used to determine if reducing components is
beneficial.

• Establish the depth of the tree to avoid overfitting. For
this research, explainability is achieved with a depth
not greater than 10.

• The estimator will enhance the Random Forest (RF)
model’s performance and precision. It is used to
manage training times, with values not exceeding 100
established for this research.

• Learning rates of 0.007 or 0.01 balance the trade-off
between the speed of convergence and the impacts on
the accuracy of the model. A smaller learning rate
slows down learning but can lead to a more accurate
model.

• Alpha (L1 regularization), set to 0 for no regularization
and 0.1 to apply a penalty to overfitting behaviors.

• Lambda (L2 regularization), set to 1 and 1.1, with a
base regulation of 1 and 1.1 as a stronger penalty to
overfitting.

As follows, using RandomizedSearchCV with repeated
stratified K-fold cross-validation for the F2 score metric
that as mentioned before, emphasizes the recall and reduces
tolerance to false negatives. An important observation
is that the imbalance target data is managed by the
XGBoost class library itself, that is the reason why a
sampling strategy is not required for this approach. After
getting the best parameters and inspecting the evaluation
of the model using metrics such the evaluation of the score,
confusion matrix and classification report understand the
model performance. The best model parameters sets to the
pipeline and exported for later use as a .pkl file. However,
before saving its crucial no move the model to CUDA
0 because most of external hardware to load the model

20

may at least the one. This avoided leading errors. Then,
reading friendly feature names from a reference file helped
to talk about feature importance. Followed by visualization
plotting a decision tree from the XGBoost model helps
to understand the classifications paths. Finally, influential
feature observation analysis and plot that the model object
has an attribute generated in the training phase under the
hood.

4) Artificial Neural Network Multi Layer Perceptron (ANN
- MLP), Review & Training Script: Artificial Neural Net-
works (ANN) fully connected with Multi-Layer Perceptron
(MLP) is the foundation of the ANNs variations. This type
of network is the most sophisticated for binary classification
problems. An MLP consists of multiple layers of nodes or
neurons, including an input layer, one or more hidden
layers, and an output layer. The network learns to model
the relationship between the input data and target labels
through a process called backpropagation, which optimizes
the weights in the network’s connections to minimize errors
in prediction. MLPs are sufficient for binary classification,
as they can model complex nonlinear relationships between
input features and the binary target simply by iteratively
adjusting the weights to make them adaptable to various
types of classification problems [30].
The reason being that MLPs are considered sophisticated
models is mainly because they can approximate any
continuous function at any level of accuracy with enough
hidden neurons and training data. This allows MLP to learn
complex patterns from data sources, making it much more
powerful in comparison with simpler models like logistic
regression or decision trees. In addition, MLPs allows the
usage of functions like ReLU or sigmoid, which introduce
non-linearity in the model to learn and model generalization
compared to linear models. This is particularly important
when there is a highly non-linear relationship between
inputs and outputs, as often happens with failure events
of engine-generator from this analysis [31].
Using PyTorch for Python, the MLP can be implemented
easily by inheriting the class torch.nn.Module. PyTorch’s
Sequential model allows users to stack layers of neurons.
Each layer is a fully connected layer, with activation
functions applied between the layers. PyTorch is built on a
framework that allows efficient training and computation
hardware by enabling CUDA GPUs. Training MLPs is
hence much faster, especially for big datasets. This capabil-
ity is very important to allow the training of deep networks,
efficiently using the computational power hardware [32].
The flexibility and simplicity of the implementation of
MLP in PyTorch make it a suitable tool to deal with
binary classification, allowing to experiment and deploy
machine learning models swiftly [33].
For the scripting methodology phase some steps are
followed. First, it configures the computation environment,
listing the availability of CUDA-enabled GPUs and setting
the appropriate device while printing out the device type
along with the number of CPU cores for processing. After
that, several .csv files are loaded and appended in a data-

frame. Straight forward simple EDA process is done by
filling in missing values with zeros and clips negative
values. Thereafter, features and the target variable of
machine failure are separated and drops the rows containing
missing or non-finite values, this avoids problems in the
training phase. After that, stratified splitting of the data
into training, validation, and test sets to maintain class
distribution in all three sets, is performed. Then, features
removal by having zero variance, this helps to reduce
redundancy and remove undesired contributions. Next,
scaling the rest of the features using MinMaxScaler to
normalize these between zero and one, useful when target
feature its binary as well. To handle class imbalance,
SMOTE algorithm is used upon training data to oversample
the minority class. Then, it instantiates an ANN model in
PyTorch using class inheritance, with tunable numbers of
hidden layers and dropout rates for regularization, wrapped
into a scikit-learn-compatible classifier. With that, it is
possible to execute stratified hyperparameter optimization
by RandomizedSearchCV. Some hyperparameters tuning
are:

• Hidden layers with dimensions not larger than 5 and
not more than 40 neurons per layer. Some architectures
like balanced and bottleneck were tested.

• Dropout rates not exceeding 0.2, used as a regular-
ization technique to randomly drop neurons during
training.

• Learning rates not exceeding 5 × 10−5, used to control
the gradient steps. Smaller values result in significantly
longer training times.

• No more than 100 epochs for model convergence, com-
bined with early stopping. This ensures stabilization
of performance scores and loss values.

• Batch size not exceeding 64, determining the number
of samples processed before updating model param-
eters. This is beneficial for memory constraints and
introduces stochasticity to escape local minima.

• Patience not exceeding 35, which is lower than the total
number of epochs. This parameter is used to prevent
overfitting by waiting for validation loss improvement
before moving to the next epoch.

• Accumulation steps not exceeding 8, which accumulate
gradients of this size before model updates. This
effectively increases the batch size, providing better
stability while overcoming hardware constraints.

On the training step, an early stops training phase has
been added to avoid overfitting using a validation loss. It
subsequently calls for the evaluation of the best model,
trained on the test set for emphasis on recall with F2
score. Before saving the model, it is advisable to move the
model to CUDA device 0 to increase compatibility across
different hardware setups. When training is completed, and
the evaluation scores look acceptable then the model is
saved as a serializable file, this allows make the model
portable. As further steps, plotting the metrics of training
and validation along epochs for visualization of performance

21

metric. This is followed by the substitution of feature
names with descriptive labels for easy interpretation names.
Finally, a feature importance analysis is performed by using
Integrated Gradients that attributes the output of the
model to its features ingress by integrating the gradients
along a path from based on baseline input to an actual
input. A plot helps to see the importance of the features.
5) Machine Learning Prediction using Ignition Orchestra-
tion: As mentioned earlier, Ignition provides the main
dataflow control, as it has capabilities that allow the
deployment of the explanatory Machine Learning dash-
board for machine failure predictions. For a better under-
standing of the platform, it’s important to mention that
this software offers comprehensive digital transformation
tools as a solution for industrial operations, allowing
unlimited connectivity, data collection, and application
design capabilities. It also empowers users to streamline
processes, increase productivity with compatibility and
flexibility [34].
Scripting in Jython is a key characteristic that allows to
easily accomplish and leverage a predictor model from
real-time or historical data. These data values are being
generated and stored by the system in a configurable and
automated way. With a server-centric model and cross-
platform compatibility, various architectures configurations
can be deployed to fit specific requirements. The following
architecture proposal fulfills the scope of the research
and can be applied for a standalone architecture on-
premises capable of SCADA operation with an active and
integrated Machine Learning phase. The reference is based
on spread-out server services with a dedicated server for
each operational role.
Any compatible database engine, ML Server Machine
and the Ignition hub orchestration system; this server’s
disposition may have variations if required. For example,
the database server might be separated but the Ignition
system and the Machine Learning unit might be on the
same server. In another proposal, all the services can
coexist on the same server as separated services, though
this is a possible configuration, it’s recommended only
for development and testing environmental purposes. For
deployment in the production environment, it is better to
have these services separated into isolated by hardware or
virtualization.

Having mentioned all the capabilities of integration, flex-
ibility and compatibility of this software, it’s crucial
to understand how this system is capable of handling
data orchestration. When data values are collected and
connected using industrial driver protocols, it can be
published into the internal OPC-UA server. These data
values are available via tags subscripting, allowing to build
a Unified Name Space (UNS) upon data structures and
data points that are available in the system’s gateway
scope. These tag objects not only contain the operation
value on their own, but they also provide quality and
timestamp as part of a qualified value. This means that
the data information is not only the value of any type, but

Figure 3. Data Flow Orchestration for Trained Model Utilization.

it also has the metadata related to any value changes. More
information and configurations are available as properties,
an important property is the enable of the historization
option and the source place to store. The source place
is known as the history provider that it’s attached to a
database connection. Under the hood, the Ignition platform
does the hard job that prepares the corresponding queries
against the customizable structured tables. This means
that data values, qualities and timestamps are available to
be customizable as the developer needs. It only requires
specifying which variables are required in a specific range
of time and sample rate. This information is essentially
variables in a script runtime and can be managed in any
possible way. Ignition has more features, where combined
developments can bring in customizable data flows as
complex as required. In this case, the executions of scripts
under a clock frequency is used. The intention of these
timers’ scripts is to pull in historical information as required
and expose it to a side subprocess call where historical data
sends as JavaScript Object Notation (JSON) files to the
Machine Learning Phase. This side script takes information
from the input and performs executions that load the model
in memory and the probabilities of failures are obtained.
This information is pulled back to the platform and allows
that the prediction made by the model can be exposed and
evaluated immediately. The execution rate of the timer
script are configured as decided cycles, it’s recommended
to allow the current process to complete before making a
new call with the Fixed Delay. With each cycle, predictions
serve as updates for a Machine Learning dashboard with
probabilistic failure values and feature importance analysis.

22

V. Results
The analysis of results is closely tied to the origin of the
data for the specific use case. There is a certain degree of
generalization, but it is not expected that these models
will perform optimally for similar study cases. The strategy
for obtaining results was based on retaining the best
parameters for the highest performance metric.

Please visit the Git Repository to access the source code
and results of the implementation [35]. The source dataset
is not shared due privacy policy agreement.
1) Random Forest Performance and Feature Importance:
The model obtained from Random Forest algorithm train-
ing on failure detection in the engine-electric generator
showed satisfactory results, especially when the concern is
not to miss any event of a failure. For the model training,
data inconsistencies in terms of missing or infinite values
were handled to ensure clean and robust training. Strat-
ification into training and testing sets shows a balanced
representative in non-failure and failure events with better
results. This is because failure events from actual data is
naturally imbalanced. This balance preparation in data
has ensured that the model learns from the identification
of failure patterns with no tolerance of missing any failure
from target [36]. The pipeline includes important steps,
including SMOTE for oversampling the minority class for
the model that requires enough data of the failure to learn.
Then there are feature sections with SelectKBest for the
best 20 features and MinMaxScaler for data normalization.
Although PCA was used for dimensionality reduction,
the model score turns out better without it, therefore
retaining all selected features enhance performance metric.
The RandomForestClassifier best parameters were given
by max_depth equal to 8 and n_estimators equal to 70
obtained by RandomizedSearchCV with stratified cross-
validation to balance precision and recall.
This model was then evaluated on a confusion matrix show-
ing 1,417,214 true negatives (TN), 91,005 false positives
(FP), 239 false negatives (FN), and 124,502 true positives
(TP). This is further supported by a value of the F2 score of
0.9450, showing that this model is very good at minimizing
false negatives. Thus, its reliability to capture failures is
satisfactory. The recall for failures was 1.00, with no events
of failure being missed. However, the precision of the failure
class was 0.58, this means several false positives. This might
result in occasional false alarms while in operations, this is
the reason why probabilistic outputs are shown in the ML
dashboard operation. The decision tree path is wide and
hard to visualize. By feature importance observation and
low impurity values, a summarized tree is shown below.

The feature importance analysis showed that the main
predictors of engine-generator events show interesting
results. The most important for this model is the "Actuator
position % feature", whose importance scores were 0.355
that is the most important in predicting failures. This
feature is related to the control of the voltage delivery
and frequency while the load changes. This is like the

Figure 4. Random Tree Decision Tree Summarized by impurity.

acceleration system of any bore engine. This shows that
the load is too large for the engine, or the control of this
actuator is poor causing failure events. Other important
features to observe from insights given by this model
are "generator phase current L2" with 0.139, "generator
apparent power" with 0.119 and "fuel oil consumption from
flow rate" with importance score of 0.106. These form the
basis of pointing out control mechanisms that monitor
and provide for power stability and fuel flow, which act
as predominant indicators toward the early detection of
potential issues of an engine.
However, this has a direct relationship with the shutdown
phase of an engine, meaning that, in a way, it is somewhat
expected. On the other hand, there are other characteristics
that are not highly representative but are still worth
observing among the most important ones, those are. "Fuel
oil consumption from flow rate", "Lube oil pressure A and
B" and even the "hot water pressure on jacket inlet". The
image below shows the 20 most important features from
the model output meaning that those are worth monitoring
in that order in the ML Dashboard.

Figure 5. Feature Importance Results by Random Forest.

Potential improvements are focus on the parameters opti-
mization using alternative oversampling methods to better
handle the imbalance. This might help to improve precision
by reducing false positives and avoid the “crying wolf” effect.
Additional feature engineering and fine-tuning parameters
with a larger stratified fold value and adjustment of some
parameters given by the class.

2) XGBoost Performance and Feature Importance: The
XGBoost model was trained using a pipeline, to handle

https://github.com/Jonathan-Espin-Martin/DataScience-Master-Degree-Project

23

imbalance SMOTE was used for balancing the classes and
show satisfactory results. Using k_neighbors equal to 9
and sampling_strategy equal to 0.8. Then MinMaxScaler
for feature data normalization, followed by PCA to reduce
the level of dimensionality. Again, using dimension compres-
sion given by principal component analysis did not make
a positive contribution to the model, better performance
metric score was obtained without this algorithm.
By using RandomizedSearchCV for hyperparameter tuning
applied to XGBoost model was done through a grid
search over a range of parameters. The results of this
implementation from which the most adequate parameters
values obtained are max_depth equal to 8, n_estimators
equal to 150, learning_rate equal to 0.01, alpha equal
0, and lambda equal 1. Some observations about these
results are than the values of this estimator and max deep
are the highest offered as a selection which means those
values could be larger but leading to overfitting. Regarding
the learning rate, it was observed that reducing this value
did not show a significant improvement in the score and
increased the training time significantly, therefore the value
provided seems to be adequate. Regarding regularization,
the model reacted by avoiding penalties and the slight
increase in these parameters was rejected. The best hyper-
parameters were chosen, taking into consideration not only
better performance but the least amount of false negatives
tolerance to be considered in this failure detection task.
Stratified cross-validation ensured classes to be balanced
while training and testing with better results.
The confusion matrix provides a summary of the perfor-
mance of classification. These values are 1,493,314 true
negative (TN), 14,905 false positive (FP), 37 false negative
(FN), and 124,704 true positive (TP). The F2 score was
0.9908, showing performance of this model was in finding
just a few errors and essentially making sure not to miss
any potential failures. Precision on the positive class was
0.89, while the recall was 1.00, showing that there were no
missed failures but still some false alarms, like RF. Also,
the decision path of a summarized tree is shown below
based on the selection of the less impure values of features.
This shows a cascade effect that describes a failure event
learned by the model.

Figure 6. XGBoost Decision Tree Summarized by impurity.

Feature importance analysis from the trained XGBoost

model, used as top contributing features investigation,
shows consistency as the ones obtained in RF. The most
important feature was "Actuator position %" with an
important score of 0.544, followed by "generator apparent
power" of 0.112, "exhaust gas temperature for cylinder B1"
of 0.050 and "fuel oil consumption from flow rate" with
0.042. These are ranked high because those are highly
influential in predicting possible engine failures. These
features have a tight relation with control mechanisms,
power metrics, and temperature indicators. This gives
information on which parameters are highly informative
regarding the health of the engine, thus guiding monitoring
and preventive actions upon these observations. Further
analysis indicates that some features are expected, but
others seem to be more interesting like temperatures. This
suggests that temperatures observation is important against
a failure event [37].

Figure 7. Feature Importance Results by XGBoost.

Some improvements are focus on oversampling and avoiding
overfitting. This could provide fewer false positives and
get a performance score more realistic and generalizable.
Moreover, more feature engineering could be impremented
to make the model learn even more complex relationships.
Fine-tuning over max_depth and n_estimators would
further allow get a more generalization for this model.

3) ANN MLP Performance and Feature Importance:
The proposed ANN model for detection includes an input
layer with 86 features, three hidden layers with each unit
composed of 15 units, and one neuron in the output layer.
ReLU has been applied as an activation function in the
hidden layers, while dropout is used at a rate of 0.2 to
avoid network overfitting. The model is trained by using
the Adam optimizer, learning rate 5 × 10−5 for 100 epochs.
Early stopping is set to a patience of 35, which allows it
to stop training when performance on the validation set
has stabilized.
The next step was to do hyperparameter tuning with
RandomizedSearchCV. The best parameters were patience
35, epochs 100, learning rate 5 × 10−5 as now improvement
was seen with any lower value, the number of hidden layers
was 3, units in each layer 15, dropout 0.2, batch size 64, and

24

accumulation steps equaled 8. Train on GPU CUDA must
be performed previous monitoring system status and use an
available device; this is being used for faster computation.
The F2 score plot shows training stabilization around 0.98,
while the validation F2 score increased gradually to 0.95,
hence strong model performance on training data and a
good generalization for validation data.

Figure 8. Performance Score and Loss over Epoch by ANN.

The loss plots are an indicative of a decrease in both
training and validation losses quite stably over epochs.
The initially high loss decreases rapidly in the first few
epochs and then starts to converge. There is not much
difference between the losses of training and validation,
which is a good indication that the model is avoiding.
This demonstrates that dropout and early stopping as
regularization techniques took effect and hence this a
sophisticated model with high performance score.
The feature importance scores extracted using Integrated-
Gradients draw attention to the important inputs consid-
ered by the model for predictions. In particular, "generator
reactive power" has the highest importance, close to 260,
followed by "generator phase current L1" and "fuel oil
inlet flow," both close to 250. Other features are "fuel
oil consumption from flow rate" and "generator apparent
power," both close to 230. These highly important features
provide critical insight into what the model is focusing
on to identify possible failures. Moreover, when giving a
more detailed observation to features importance beyond
the direct relation of an engine stopping, the following
observations are found. Features like “Main bearing 6 &
8 temperatures” are shown, other like “Gen. ND- bearing
temperature”. Ones again, domain professional observation
suggests that temperatures are an important variable to
observe that might suggest a failure event.

Some improvements could be aimed at using larger or
additional hidden layers to model to catch more complex
relationships. A learning rate scheduler can dynamically
adjust the learning rate through training, hence enhancing
convergence while training. Further regularization can be
carried out by combining L2 regularization and dropout
may reduce risks of overfitting. Ensemble methods, by

Figure 9. Feature Importance Results by ANN.

stacking this ANN with other classifiers, may combine
diverse strengths and improve robustness model. This
would also involve additional analysis variables by feature
importance and enable to increase interpretability and
predictive capabilities for critical failure indicators.
4) Results Overview: In general, it is observed that the
performance metrics results are adequate. It can be seen
that, in all cases, each algorithm achieves the expected
results for predicting failures in the generator engine. Some
aspects can be refined, and a deeper evaluation of the
models’ overfitting can be conducted. However, the applied
regularization provides a certain degree of confidence that
the results obtained, within the scope and context of this
research, are the desired ones.

Table II
Results Summary Evaluation Report and Feature Importances

Algorithm Evaluation
Report

F2
Score Top 3 Feature Impor-

tances
Random
Forest

False
Negatives:

239
0.945 Actuator position %, Genera-

tor phase current L2, Gener-
ator apparent power

XGBoost
False

Negatives:
37

0.9908 Actuator position %, Genera-
tor apparent power, Exhaust
gas temp. cyl. B1

ANN
MLP

Training
Loss: 0.037 0.98 Generator reactive power,

Generator phase current L1,
Fuel oil inlet flow

The observation of the most important features shows
consistency and some similarity among the models’ results.
By removing the direct relationship between failure and
certain features, others become more noteworthy, such as:

• Fuel oil consumption flow rate
• Lube oil pressure TC A inlet
• Exhaust gas temperature cylinder A4
• Cooling water frequency converter

25

• Main bearing 8 temperature
• Generator ND-end bearing temperature

By observing these features, which are not directly re-
lated to the occurrence of an engine shutdown, they are
still important to consider, although their importance,
according to the model, is lower than that of directly
related features. The machine learning dashboard provides
a visual aid by running the models based on the real-
time field variable data that continuously flows in. This
information is processed, and probabilistic predictions are
displayed. This allows certain observations to be made.
That simultaneous increase in exhaust gas temperature
and bearing temperatures could suggest excessive loading
or problems in the cooling system. Also, a decrease in
lubricating oil pressure along with an increase in main
bearing temperature could indicate a failure in the lubri-
cation system. These observations are based on a deep
analysis of feature observations and domain expertise.

5) Machine Learning Dashboard using Ignition: With
trained models available as serialized files, a Machine
Learning Dashboard hosted by Ignition displays crucial
information about failure events. The workflow operation to
obtain probabilistic predictions occurs as soon as new data
comes to the system in real-time and predictions executes.
On a configurable time-rate or crontab operation, in this
case 2 second unlimited loop, it uploads these features
data information from the Ignition system to the Machine
Learning backend and from back to Ignition. The Ignition
system performs this execution using a subprocess task
script library or API calls with bottle or flask libraries
that manages and triggers a script command for prediction
results. For this implementation, the subprocess was used.
With that information in place, some of the visualizations
read and show these values on the main dashboard for
failure predictions. Some other visualizations, such the
history explorer with sorted feature importance, also takes
information from the Machine Learning layer to deploy
visualizations. In addition, the attributes explorer for
advanced users, lets access further information of the
training phase and the models obtained as attributes
summary. Finally, a live input/output predictor, that lets to
visualize data input and analyses probabilistic predictions
outputs live.
To recall, the information returned by the Machine Layer
system is displayed as follows. The main dashboard is meant
to show the probability of failure events given the current
data. Those predictions are shown by the three models
trained before: the Random Forest, XGBoost and ANN. On
the chart below, there’s also a dynamic feature importance
chart that helps to monitor the values as it changes
overtime. This lets to see the feature importance and the
prediction probability in a glance of what’s happening with
the operation in term of event failure prediction results.

The history explorer has a menu available to extract and
see all the historization data that it’s been stored as it
changes in a database using the historization engine of

Figure 10. Main Machine Learning Dashboard about Failure Predic-
tion of Available Models and Feature Importance History.

Ignition. The table on the right gives crucial information
about real-time value changes and the current value of
operation for that variable.

Figure 11. History Explorer and Entire Feature Importance.

The attributes analyzer enables exploration and retrieval
of important information of the trained model, interest-
ing values to visualize are for instance, best score, best
parameters and further model details. This information
is shown in a JSON format that is easy to read and may
be the foundation base of further training if desired. This
information has been gathered using Python attributes
extractor of the object, in this case a Machine Learning
Model.

Figure 12. Model Attributes Visualizer on Training.

As follows, the following visualization of its data describes
while doing the predictions. It shows data-values on real-
time of all the features used for the training as it changes

26

as output, shown in JSON format. This “Predict Data”
it’s the information that would be delivered to the model
and a little timer on screen shows the time running until
a probabilistic response it received.

Figure 13. Live Predictions from Actual Data In and Predictions
Out.

All these visualizations let the user navigate and explore
the state of the predictions plan while in production. These
applications support unlined visualization sessions without
overheating the predictor system, since it is only executed
by the core system called the gateway. This gateway
executes the probabilistic operations and publishes the
same calculations to the session as a single source of truth.
Additionally, motor generator data can occur once in each
time frame, ensuring that this is the same live data for all
users connected to the application.

VI. Conclusions
The comprehensive framework through which this research
uses Supervised Machine Learning to detect and predict
failures for an engine-generator unit will integrate machine
learning methodologies, along with data infrastructure,
feature engineering, and operational monitoring through
a machine learning dashboard. The insights provided by
this research through data science along with industrial
operations techniques provided technical and practical
solutions for the efficient operation and Machine Learning
foundations for this industry.

Data acquisition journey, which was facilitated by the
Ignition SCADA platform, shows that this phase is critical
for this research goal. Data extraction over 8 million data
points across 89 features of 26 months of operational history,
it’s easily supported with Ignition. The failure events were
labeled with care by hand and merged with the historical
data, enabling to obtain a labeled tabular dataset on a
separated development environment apart from production
framework.

This research underlines the importance of feature en-
gineering and processing in Machine Learning Pipelines.
Some techniques to handle imbalance were employed to
remove bias due to the nature of the target feature. This
is necessary due to the nature of data as it shows a high
non-failure occurrence against failure events. Therefore,
some considerations have to be implemented in the dataset

so that the models could learn effectively from failure and
non-failure events. Further tunning techniques were tested
and integrated like Principal component analysis that, for
this dataset type and problem statement, did not offer
a contribution. Some other algorithms like the Selection
K-Best were beneficial for models such as Random Forest.
This enabled the identification of those variables that are
most crucial for the engine generator’s performance. These
processes not only serve to enhance model performance but
also provide actionable insight into which the operational
parameters that are most correlated with failures.

Three machine learning models were used comparatively as
binary classification algorithms Random Forest, XGBoost,
and ANN. Regarding Random Forest, as standard and
easy to interpret, model, obtained strong recall scores to
avoid missing any failure events. Since it gives a ranking
for feature importance. There was adequate insight into
which variables were critical in the determination of failures.
About, XGBoost as a robust method, its gradient boosting
technique gave it the most accurate delivery with minimal
false positives and without substantially losing recall.
However, having a high score, may lead to the “Crying
Wolf” effect as false failure predictions alarms may involve
unnecessary warning while on operations. However, since
the goal is to be not tolerant with false negative events,
this might be manageable. Regarding Artificial Neural
Networks, a sophisticated method, the ability to capture
nonlinear and complex interactions in the data enabled it
to model complex feature interactions. Performing feature
importance analysis through Integrated Gradients allowed
more insight into the underlying pattern that exists within
the data and the failure events[38]. The F2 score harmonic
mean metric emphasizes recall over precision, this is a
more accurate performance metric due to the nature of the
problem statement. Hence, the Random Forest gave an F2
score of 0.945, while XGBoost performed best overall in
terms of precision with an F2 score of 0.9908, thus assuring
it to deliver reliable predictions with very low levels of false
negatives. ANN, being flexible and robust in architecture,
strikes a good balance in performance on recall and
precision of view for interaction of features and dynamics
of failure F2 score of 0.98. An interesting observation about
ANN is that a symmetric layer’s architecture shows better
performance scores.

This research important contribution is the development
of a Machine Learning Dashboard hosted on Ignition
SCADA platform. It serves as a link between analytics
and predictions layer and industrial operations, converting
model predictions outputs into accessible and actionable
insights for the production stage on decision making
and observance of features. The integration of real-time
monitoring dashboard with probabilistic predictions and
a feature importance visualization within this dashboard
enhances the users to make informed decisions, early actions
and even prioritize maintenance activities. This research
emphasizes how a well-structured pipeline of data, ad-
vanced analytics, can work out failure predictions for these

27

Oil & Gas operations, highly dependent on the availability
of an engine generator operability. The application of
supervised learning models on historical and real-time data
shows the relation between data science and operational
management. Furthermore, the deployment of the Machine
Learning Dashboard ensures proper communication of these
insights between technical analysis and operational decision-
making.

The applied methodology shows commitment to rigor and
innovation in the study, there is not a clear proposal on
the literature of how to accomplish a Machine Learning
system fully integrated with Ignition. From the complexity
of data acquisition process to the strategic selection of
adequate Machine Learning models, all these elements in
the study were driven toward providing maximum relia-
bility and applicability of the findings. Advanced methods
like hyperparameter tuning and cross-validation ensure
that the performance for all models was optimized for
generalization applied to this engine-generator. Moreover,
interpretability thought feature importance is relevant
for this research. For instance, the feature importance
analyses show in general that direct relations between a
stopped engine and parameters that inheritably describe
a stopped motor, are highly related. Been this a positive
sight of model learning is not a considerable contribu-
tion. This means that intermediate nondirected relations
with a stopped motor are more interesting to observe
as temperatures. Another contribution of this research
is to provide a foundation aimed to better industrial
operations powered by Machine Learning insights. This
means that the probabilistic predictions from the models
may inform maintenance schedules, reducing downtime
and optimizing resource allocation. Perhaps, the most
adequate step would be a further model sharpness for
building and testing ensembles of alternative algorithms.
Also, the incorporation of transfer learning integration with
predictive models would enhance predictive performance
for real-time operations and monitoring.

This therefore shows what kind of change supervised
learning can bring about in industrial applications via
advanced SCADA systems such Ignition. With the full
utilization of data infrastructure, feature engineering, and
deep machine learning models, the problem of failure
detection might be solved with this solid foundation approx-
imations. This deployment unsured that translation of data
into decision making practices was effectively connected
to the analytics phase operations and back. This research
moves the frontier in predictive failure events and raises the
expected results regarding machine learning applications
in industrial processes as Oil & Gas in Ecuador.

References

[1] A. Shaheen et al. (2024) Machine failure prediction using joint
reserve intelligence with feature selection technique. Taylor &
Francis Online. [Accessed: Mar. 3, 2024]. [Online]. Available:
https://www.tandfonline.com/doi/epdf/10.1080/1206212X.20
23.2260619?needAccess=true

[2] M. V. T., S. Gnanambal et al., “Comparative study and
analysis of classification algorithms through machine learning,”
International Journal of Computer Engineering and Applications,
vol. 9, no. 1, pp. 247–252, 2018.

[3] Z. Jaadi. (2024) A step-by-step explanation of principal
component analysis (pca). Builtin. [Accessed: Feb. 29, 2024].
[Online]. Available: https://builtin.com/data-science/step-step-
explanation-principal-component-analysis

[4] H. Tatsat, S. Puri, and B. Lookabaugh. (2020) Machine
learning and data science blueprints for finance. O’Reilly
Media, Inc. [Accessed: Mar. 1, 2024]. [Online]. Available:
https://www.oreilly.com/library/view/machine-learning-
and/9781492073048/ch04.html

[5] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: https://link.springer.com/ar
ticle/10.1023/A:1010933404324

[6] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp.
785–794. [Online]. Available: https://dl.acm.org/doi/10.1145/2
939672.2939785

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[8] I. Cingillioglu, “Detecting ai-generated essays: the chatgpt
challenge,” International Journal of Information and Learning
Technology, vol. 40, no. 3, pp. 259–268, 2023. [Online]. Available:
https://doi.org/10.1108/IJILT-03-2023-0043

[9] J. Davis and M. Goadrich, “The relationship between precision-
recall and roc curves,” in Proceedings of the 23rd International
Conference on Machine Learning (ICML), 2006, pp. 233–240.

[10] N. O. P. Vago, F. Forbicini, and P. Fraternali, “Predicting
machine failures from multivariate time series: an industrial
case study,” arXiv, Feb. 2024, [Accessed: Dec. 1, 2024]. [Online].
Available: https://arxiv.org/abs/2402.17804

[11] Q. Amaya-Sanchez, M. J. de M. Argumedo, A. A. Aguilar-
Lasserre, O. A. R. Martinez, and G. Arroyo-Figueroa, “Fault
diagnosis in power generators: A comparative analysis of machine
learning models,” Big Data and Cognitive Computing, vol. 8,
no. 11, p. 145, Nov. 2024, [Accessed: Dec. 1, 2024]. [Online].
Available: https://www.mdpi.com/2504-2289/8/11/145

[12] Z. Wang. (2016) Truck aps failure classification using machine
learning - ida 2016. GitHub. [Accessed: Dec. 1, 2024]. [Online].
Available: https://github.com/zhendong3wang/kaggle-truck-
failure-detection

[13] K. McClusky, “Python in ignition,” Inductive Automation
Support, 2023, [Accessed: Oct. 11, 2024]. [Online]. Available:
https://support.inductiveautomation.com/hc/en-us/articles/
360056397252-Python-In-Ignition

[14] W. Corporation. (2024) Wärtsilä 16v32 bore engine. [Accessed:
Feb. 28, 2024]. [Online]. Available: https://www.maritimeinform
ed.com/w-rtsil-16v32-prime-mover-technical-details.html

[15] Z. Zhang, Y. Lei, X. Mao, M. Yan, and L. Xu, “A study of the
effectiveness of deep learning in locating real faults,” Information
and Software Technology, vol. 137, p. 2021, 2021. [Online].
Available: https://yanmeng.github.io/papers/IST202.pdf

[16] A. Liaw and M. Wiener, “Classification and regression by
randomforest,” R News, vol. 2, no. 3, pp. 18–22, 2002. [Online].
Available: https://www.researchgate.net/publication/228451484
_Classification_and_Regression_by_randomForest

[17] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer Science & Business Media, 2009. [Online]. Available:
https://link.springer.com/book/10.1007/978-0-387-84858-7

https://www.tandfonline.com/doi/epdf/10.1080/1206212X.2023.2260619?needAccess=true
https://www.tandfonline.com/doi/epdf/10.1080/1206212X.2023.2260619?needAccess=true
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://www.oreilly.com/library/view/machine-learning-and/9781492073048/ch04.html
https://www.oreilly.com/library/view/machine-learning-and/9781492073048/ch04.html
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://dl.acm.org/doi/10.1145/2939672.2939785
https://dl.acm.org/doi/10.1145/2939672.2939785
https://doi.org/10.1108/IJILT-03-2023-0043
https://arxiv.org/abs/2402.17804
https://www.mdpi.com/2504-2289/8/11/145
https://github.com/zhendong3wang/kaggle-truck-failure-detection
https://github.com/zhendong3wang/kaggle-truck-failure-detection
https://support.inductiveautomation.com/hc/en-us/articles/360056397252-Python-In-Ignition
https://support.inductiveautomation.com/hc/en-us/articles/360056397252-Python-In-Ignition
https://www.maritimeinformed.com/w-rtsil-16v32-prime-mover-technical-details.html
https://www.maritimeinformed.com/w-rtsil-16v32-prime-mover-technical-details.html
https://yanmeng.github.io/papers/IST202.pdf
https://www.researchgate.net/publication/228451484_Classification_and_Regression_by_randomForest
https://www.researchgate.net/publication/228451484_Classification_and_Regression_by_randomForest
https://link.springer.com/book/10.1007/978-0-387-84858-7

28

[18] F. Pedregosa et al., “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011. [Online]. Available: https://jmlr.org/papers/v12/pedregos
a11a.html

[19] C. Chen, A. Liaw, and L. Breiman, “Using random forest to
learn imbalanced data,” University of California, Berkeley, Tech.
Rep., 2004. [Online]. Available: https://statistics.berkeley.edu/si
tes/default/files/tech-reports/666.pdf

[20] T. K. Ho, “Random decision forests,” in Proceedings of
the 3rd International Conference on Document Analysis and
Recognition, vol. 1. IEEE, 1995, pp. 278–282. [Online]. Available:
https://ieeexplore.ieee.org/document/598994

[21] A. Vidhya. (2024) Understanding random forest algorithm with
examples. [Online]. Available: https://www.analyticsvidhya.co
m/blog/2021/06/understanding-random-forest/

[22] I. R. König et al., “On safari to random jungle: A fast
implementation of random forests for high-dimensional data,”
Bioinformatics, vol. 26, no. 14, pp. 1752–1758, 2010. [Online].
Available: https://academic.oup.com/bioinformatics/article-
abstract/26/14/1752/177075

[23] G. Biau and E. Scornet, “A random forest guided tour,”
TEST, vol. 25, no. 2, pp. 197–227, 2016. [Online]. Available:
https://link.springer.com/article/10.1007/s11749-016-0481-7

[24] J. C. Quiroz, M. R. Mehrjou, M. Izadi et al., “Fault
detection of broken rotor bar in ls-pmsm using random forests,”
Measurement, 2018. [Online]. Available: https://www.sciencedir
ect.com/science/article/pii/S0263224117307066

[25] L. Auret and C. Aldrich, “Unsupervised process fault detection
with random forests,” Industrial & Engineering Chemistry
Research, vol. 49, no. 21, pp. 10 359–10 369, 2010. [Online].
Available: https://pubs.acs.org/doi/abs/10.1021/ie901975c

[26] N. Amruthnath and T. Gupta. (2019) Factor analysis in
fault diagnostics using random forest. arXiv preprint. [Online].
Available: https://arxiv.org/abs/1904.13366

[27] T. Chen and C. Guestrin. (2016) Xgboost documentation.
[Online]. Available: https://xgboost.readthedocs.io/en/stable/p
arameter.html

[28] X. Li, L. Wang, and Z. Li, “Exploring the performance of
xgboost for large scale data analysis,” in IEEE International
Conference on Big Data, 2018, pp. 2002–2008. [Online]. Available:
https://ieeexplore.ieee.org/document/8622255

[29] J. Brownlee. (2016) How to configure xgboost for imbalanced
classification. Machine Learning Mastery. [Online]. Available:
https://machinelearningmastery.com/xgboost-for-imbalanced-
classification

[30] S. A. Shafiq, M. Izhar, R. Sawhney et al. (2024) Investigating
the influence of ages on the preparation and validation
performance of mlp. ResearchSquare. [Online]. Available:
https://www.researchsquare.com/article/rs-3848073/latest.pdf

[31] K. D. Toennies. (2024) Multi-layer perceptron for image
classification. [Online]. Available: https://link.springer.com/ch
apter/10.1007/978-981-99-7882-3_7

[32] T. Yu, W. Guo, J. C. Li et al. (2022) Mctensor: A high-precision
deep learning library with multi-component floating-point. arXiv
preprint. [Online]. Available: https://arxiv.org/pdf/2207.08867

[33] S. Sharma, V. Narayan, R. Sawhney et al. (2023) A comparative
assessment of artificial intelligence models for early prediction
of chronic kidney disease. [Online]. Available: https://www.scie
ncedirect.com/science/article/pii/S2772662223000097

[34] I. University. (2024) Ignition scada training courses online.
Inductive Automation. [Accessed: Mar. 3, 2024]. [Online].
Available: https://www.inductiveuniversity.com/

[35] J. E. Martin, “Supervised learning for failure detection in engine
generators,” 2024, [Accessed: Jul. 21, 2024]. [Online]. Available:
https://github.com/Jonathan-Espin-Martin/DataScience-
Master-Degree-Project

[36] S. E. R. (2024) Understand random forest algorithms with
examples (updated 2024). Analytics Vidhya. [Accessed: Mar. 13,
2024]. [Online]. Available: https://www.analyticsvidhya.com/bl
og/2021/06/understanding-random-forest/

[37] M. Filho. (2024) How to get feature importance in xgboost
in python. Forecastegy. [Accessed: Mar. 15, 2024]. [Online].
Available: https://forecastegy.com/posts/xgboost-feature-
importance-python

[38] S. Ray. (2024) Top 10 machine learning algorithms to use in 2024.
Analytics Vidhya. [Accessed: Mar. 2, 2024]. [Online]. Available:
https://www.analyticsvidhya.com/blog/2017/09/common-
machine-learning-algorithms/

https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://ieeexplore.ieee.org/document/598994
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://academic.oup.com/bioinformatics/article-abstract/26/14/1752/177075
https://academic.oup.com/bioinformatics/article-abstract/26/14/1752/177075
https://link.springer.com/article/10.1007/s11749-016-0481-7
https://www.sciencedirect.com/science/article/pii/S0263224117307066
https://www.sciencedirect.com/science/article/pii/S0263224117307066
https://pubs.acs.org/doi/abs/10.1021/ie901975c
https://arxiv.org/abs/1904.13366
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://ieeexplore.ieee.org/document/8622255
https://machinelearningmastery.com/xgboost-for-imbalanced-classification
https://machinelearningmastery.com/xgboost-for-imbalanced-classification
https://www.researchsquare.com/article/rs-3848073/latest.pdf
https://link.springer.com/chapter/10.1007/978-981-99-7882-3_7
https://link.springer.com/chapter/10.1007/978-981-99-7882-3_7
https://arxiv.org/pdf/2207.08867
https://www.sciencedirect.com/science/article/pii/S2772662223000097
https://www.sciencedirect.com/science/article/pii/S2772662223000097
https://www.inductiveuniversity.com/
https://github.com/Jonathan-Espin-Martin/DataScience-Master-Degree-Project
https://github.com/Jonathan-Espin-Martin/DataScience-Master-Degree-Project
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://forecastegy.com/posts/xgboost-feature-importance-python
https://forecastegy.com/posts/xgboost-feature-importance-python
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/

	Introduction
	Related Work
	PROBLEM STATEMENT
	Ignition SCADA Overview and Machine Learning Integration
	Electrical Generator Bore Engine and Failure Events and SCADA
	Orchestration data flows, models and dashboard using Ignition

	Methodology
	Dataset Gathering and Training Environment
	Random Forest Classifier, Review & Training Script
	Extreme Gradient Boosting (XGBoost), Review & Training Script
	Artificial Neural Network Multi Layer Perceptron (ANN - MLP), Review & Training Script
	Machine Learning Prediction using Ignition Orchestration

	Results
	Random Forest Performance and Feature Importance
	XGBoost Performance and Feature Importance
	ANN MLP Performance and Feature Importance
	Results Overview
	Machine Learning Dashboard using Ignition

	Conclusions
	References

