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Código: 00334301

Cédula de indentidad: 1724745698

Lugar y fecha: Quito, 02 de diciembre del 2024



4

Aclaración para publicación

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe
ser considerado como una publicación, incluso a pesar de estar disponible sin restric-
ciones a través de un repositorio institucional. Esta declaración se alinea con las
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Resumen

Esta tesis explora la teoŕıa de las cuerdas en el ĺımite de tensión cero. Se estudiarán
las simetŕıas de la teoŕıa y su dinámica. Se considerará a la teoŕıa como un ĺımite
de la teoŕıa de cuerdas, aunqe también se estudiarán las cuerdas con tensión cero
entendiéndolas como objetos fundamentales. Se encontró que las ecuaciones de
movimiento para las cuerdas bosónicas y supercuerdas sin tensión se alinean con el
Álgebra Conformal Galileana (GCA) y su contraparte supersimétrica (SGCA).

La cuantización canónica reveló caracteŕısticas únicas: las cuerdas bosónicas sin
tensión exhiben un vaćıo de estado de frontera de Neumann, mostrando que las
cuerdas abiertas emergen de cuerdas cerradas, con todos los estados sin masa. Para
las supercuerdas sin tensión, las transformaciones de Bogoliubov conectan los vaćıos
con y sin tensión, integrando modos fermiónicos y bosónicos en el vaćıo. Además,
se propone un método basado en el álgebra su(1,1) para calcular estos vaćıos.
Palabras clave: cuerdas sin tensión, vaćıo, modos fermiónicos y bosónicos
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Abstract

This thesis explores the theory of tensionless strings, examining their symmetries
and dynamics as both a limit of tensile string theory and fundamental objects. It
was found that the equations of motion for tensionless bosonic and superstrings
align with the Galilean Conformal Algebra (GCA) and its supersymmetric counter-
part (SGCA). Canonical quantization revealed unique features: tensionless bosonic
strings exhibit a Neumann boundary state vacuum, showing that open strings
emerge from closed strings, with all states being massless. For tensionless su-
perstrings, the Bogoliubov transformation connect tensile and tensionless vacua,
with the vacuum incorporating fermionic and bosonic modes.Additionally, a method
based on the su(1,1) algebra is proposed for calculating these vacua.
Key words: tensionless strings, vacuum, fermionic and boson modes.
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Introduction

String theory has long been regarded as one of the most promising frameworks
for unifying quantum mechanics and general relativity. At its core, string theory
replaces point particles with one-dimensional extended objects known as strings.
The tension of these strings, a fundamental parameter inversely proportional to the
square of the characteristic length, determines their dynamical behavior. In the limit
of infinite tension, string theory simplifies to the point-particle description. On the
other side, in the tensionless limit, string theory enters into a regime that probes its
ultra-quantum nature, offering insights into phenomena at extremely high energies.

The tensionless limit of string theory has been studied extensively since its incep-
tion in the 1970s, with foundational work by Schild [19] and subsequent refinements
by Gross and Mende in the context of string scattering amplitudes [12]. This limit
reveals an emergent symmetry structure far richer than that of the tensile theory.
For bosonic strings, the familiar Virasoro symmetry on the worldsheet transitions to
the Bondi-Metzner-Sachs algebra, or equivalently, its 2D Galilean Conformal Alge-
bra counterpart [1]. For superstrings, the symmetry extends to the Super-Galilean
Conformal Algebra, with further differentiation into homogeneous and inhomoge-
neous variants [4, 7].

The study of tensionless strings provides a novel perspective on addressing sev-
eral fundamental problems in theoretical physics. First, this regime highlights its
connection to higher-spin symmetries, as the disappearance of tension renders all
string states massless, allowing higher-spin fields to dominate the spectrum [20].
All these characteristics help to establish links between string theory and Vasiliev’s
higher-spin theories, as well as with holographic dualities that connect gravitational
and quantum field descriptions [23].

Lastly, the Hagedorn transitions represent another key application of the tension-
less regime. At temperatures near the Hagedorn temperature, the effective tension
of the string decreases to nearly zero, making the tensionless string theory an essen-
tial framework for describing this critical phase. In this phase, long strings emerge
as the dominant objects, offering a natural explanation for the breakdown of the
usual perturbative description of string theory and enabling the study of associated
phase transitions,[3, 2]. The tensionless limit, therefore, not only provides a window
into exploring ultra-relativistic aspects of string theory but also establishes profound
connections between symmetries, dualities, and thermal phenomena, opening new
possibilities for understanding the fundamental structure of the theory.

The quantum regime of tensionless string theory is crucial for improving our
understanding of the phenomena at very high energes. In the tensionless limit,
superstring theory seeks to capture these highly energetic phenomena and generalize
them to include fermions alongside bosons.

At the heart of quantum string theory, vacua play a central role in shaping and
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defining the state space. Specifically, the vacua that emerge from the free open
string are tied to the conditions at the free ends of these strings. Similarly, the
vacua of closed strings are linked to the absence of free ends. In the tensile theory,
the vacua of free closed strings and free open strings are not related. However,
under the tensionless limit, closed string vacua become connected to open string
vacua, as the closed string behaves like a quantum open string. Furthermore, it
has been demonstrated that, in the tensionless regime, multiple distinct types of
vacua exist for the closed bosonic string, each leading to different quantum theories
[5]. This underscores the sensitivity of quantization to the methods used to impose
constraints, offering new insights into the physics of string theory.

Vacua also could be used to define a novel way to define metrics for calculating
distances, such as the quantum information metric, which quantify the distances
between different theories in a continuous space of quantum field theories. These
metrics are essential for studying how theories are related and how they transform
into one another through their vacua. [22, 21].

This thesis focuses on exploring the classical and quantum aspects of both ten-
sionless bosonic and tensionless superstrings with focus on the construction of the
vacua of the theories. It begins with a treatment of the tensile bosonic string in
chapter 1, examining its classical dynamics through the Nambu-Goto and Polyakov
actions, and extending to its quantization via light-cone and covariant methods. The
chapter 2 turns to the tensile superstring, emphasizing the role of supersymmetry
in extending the bosonic string framework. Here we provide a detailed analysis of
classical descriptions, including boundary conditions and, the covariant quantization
in the (NS,NS) sector.

Chapters 3 and 4 focus on the tensionless regime, where strings lose their ten-
sion, revealing new symmetries and physical behaviors. In Chapter 3, the tensionless
bosonic string is introduced, highlighting its unique equations of motion, mode ex-
pansions, and the emergence of the 2D Galilean Conformal Algebra (GCA). The
chapter also investigates the quantum structure, including constraints, induced rep-
resentations, and the vacuum structure, which notably demonstrates the transfor-
mation of closed strings into open strings in this limit.

Chapter 4 extends these concepts to the tensionless superstring, characterized
by the Super Galilean Conformal Algebra (SGCA). The classical description in-
cludes symmetries, mode expansions, and connections to the tensile limit, while the
quantum analysis explores Bogoliubov transformations, vacuum structures, and the
interplay between bosonic and fermionic modes. Finally, the last section, will be
dedicated to presenting the conclusions and future directions and new results.



Chapter 1

The Bosonic String

In this chapter, we will examine the classical and quantum relativistic bosonic
string theory in the Minkowski background space-time. We start by introducing
the Nambu-Goto and the Polyakov actions and we describe their respective symme-
tries. Then, we will use these symmetries to simplify the equations of motion for
the open and the closed string models. The quantization process is then presented.
It is carried out using both light-cone and covariant methods, both of them bring
different insights and provide different tools for handling the physical constraints
imposed by Lorentz invariance and reparameterization symmetry. In both methods,
the quantum vacuum state and its associated Fock space form a basis for the theory,
with excited states arising from the application of string oscillators. Finally, the in-
troduction of boundary states enforce the use of Neumann boundary conditions in
the quantum regime.

1.1 Classical Description

1.1.1 The Nambu-Goto Action

The fundamental idea of string theory is to promote the point particle to a relativistic
vibrating string with tension T (Fig. 1.1). As it moves through space-time of
D = d+ 1 dimensions, the string draws a two dimensional surface Σ . This surface
can be parameterized using two coordinates: σ0 = τ and σ1 = σ. The action for
a moving string with coordinates Xµ(τ, σ), where µ = 0, ..., D, in the Minkowski
space is given by

SNG[X
µ] = −T

∫
Σ

dσ2L,

= −T
∫
Σ

dσ2
√

−det(γαβ), γαβ = ∂αX
µ∂βX

νηµν ,

= −T
∫
Σ

dσ2

√
−Ẋ2X ′2 + (ẊX ′)2.

(1.1)

Here, ∂τX
µ = Ẋµ, ∂σX

µ = Xµ′, and γαβ is the induced metric from a D-dimensional
Minkowski space. The action (1.1) is called the Nambu-Goto action.

At each point of the world-sheet there is one time-like and one space-like tangent
vector [9]. In order to prove that the quantity under the square root in (1.1) is
positive let’s consider a generic tangent vector υµ(λ) = Ẋµ + λXµ′, where λ ∈

14
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Figure 1.1: From worldlines to worldsheets

(−∞,∞) is a parameter. To have both timelike and spacelike tangent vectors,
υ2(λ) must take both negative and positive values as we vary λ. Then, υ2(λ) = 0
must have two real roots. Therefore, the discriminant of υ2(λ) = 0 must be positive,
and then

(ẊX ′)2 − Ẋ2X ′2 > 0. (1.2)

The Nambu-Goto action has two types of symmetries: The global and the local ones.
Thus, the global symmetry corresponds to the Poincare invariance, a symmetry
on the worldsheet:

Xµ → X̃µ = Λµ
νX

ν + bµ (1.3)

Under this transformation, the elements of the induced metric in (1.1) change as

γαβ = ηµν∂αX̃
µ∂βX̃

ν = Λµ
γηµνΛ

ν
σ∂αX

γ∂βX
σ = ηγσ∂αX

γ∂βX
σ. (1.4)

Therefore,

S̃NG = −T
∫
dσ2
√

−det(γ̃αβ), γ̃αβ = ∂αX̃
µ∂βX̃

νηµν ,

= −T
∫
Σ

dσ2
√

−det(γαβ), γαβ = ∂αX
µ∂βX

νηµν ,

= SNG.

(1.5)

The local symmetry called diffeomorphism invariance is a gauge symmetry on the
worldsheet. We may redefine the worldsheet coordinates as

σα → σ̃α(τ, σ) (1.6)

Under this transformation, the line element ds2 = γαβdσ
2 = γ̃abdσ̃

2 remains invari-
ant. Then, γαβ = (M̃T )αaγ̃abM̃bβ, where M̃

β
α = ∂ασ̃

β

SNG[X
µ] =

∫
dσ2
√

−det(γαβ) =

∫
dσ̃2|det(M)|

√
−det(M̃T )det(γ̃αβ)det(M̃),

=

∫
dσ̃2|det(M)||det(M̃)|

√
−det(γ̃αβ) = S̃NG

(1.7)
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1.1.2 Equations of Motion and Boundary Conditions

In order to obtain the equations of motion, we vary the Nambu-Goto action (1.1)
in the following way:

δSNG =

∫
dσ2

[
∂L
∂Ẋµ

∂τδX
µ +

∂L
∂X ′µ∂σδX

µ

]
,

=

∫ τf

τi

dτ

∫ σ1

0

dσ [∂τ (δX
µPµ) + ∂σ(δX

µΠµ)− δXµ(∂τPµ + ∂σΠµ)] ,

=

∫ τf

τi

dτ [δXµΠµ]
σ1
0 −

∫ tf

τi

dτ

∫ σ1

0

dσδXµ(∂τPµ + ∂σΠµ) = 0,

(1.8)

where the canonical momentum density Pµ and Πµ are given by

Pµ =
∂L
∂Ẋµ

= −T
(Ẋ ·X ′)X ′

µ −X ′2Ẋµ√
(X ′ · Ẋ)2 − Ẋ2X ′2

, Πµ =
∂L
∂Xµ′ = −T

(Ẋ ·X ′)Ẋµ − Ẋ2X ′
µ√

(X ′ · Ẋ)2 − Ẋ2X ′2
.

(1.9)
As it can be seen, it is necessary to impose some conditions that the bound-

ary terms in (1.8) need to satisfy. The boundary conditions will provide unique
configurations to the strings. The boundary conditions can be classified as:

-Dirichlet boundary condition:

∂τX
µ(τ, σ1) = 0, µ ̸= 0 (1.10)

The Dirichlet boundary condition enforce that the endpoints of the open string
remains fixed throughout the motion.
-Neumann boundary contidion

Πµ(τ, σ1) = 0 (1.11)

This condition does not impose any constraint on the variation of the string coor-
dinate at the endpoints, as can be seen in the term [δXµΠµ]

σ1
0 . Thus, the endpoints

are free to move in the space-time.
-Periodicity condition

Xµ(τ, σ + 2π) = Xµ(τ, σ) (1.12)

This condition sets up the configuration of a closed string. In this case, the string
coordinates Xµ(τ, σ) are periodic functions.

With the vanishing of the boundary terms, only the second term on the right-
hand side remains in the equation (1.8) . This term must vanish for all δXµ, then
we conclude that

∂τPµ + ∂σΠµ = 0. (1.13)

There are only two constrains that can be obtained by consider the momentum
density (1.9) [11]:

P ·X ′ = 0, P2 + T 2X ′2 = 0. (1.14)

In order to simplify the equation of motion and the two constrain equations, a
class of gauges are introduced, they fix the parameterization of the worldsheet. The
parameterizations of open and closed strings are defined as [26]

n ·X(τ, σ) = λ1τ,

n · P = λ2n · p,
(1.15)
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where λ1,2 are constants that can be determined by integration over the string:
λ1 = βα′(n · p)τ, λ2 = β/2π with β = 2(open string), 1(closed string). In (1.15),
Xµ are points that lie both on the world-sheet and on the hyperplane with normal
vector nµ (Fig.1.2). In this parameterization the momentum density n·P is constant
so the σ value assigned to a point is proportional to the amount of n · p momentum
carried by the portion of string from the endpoint σ = 0 to the sigma point σ = σ1
[26].

Figure 1.2: String parameterization: the gauge condition n ·X = λτ fixes the string
coordinates to be the curve at the intersection of the hyperplane.

In addition, there is (up to scaling) a unique tangent vector which at the same
time is orthogonal to the vector X ′µ for every point of the worldsheet. That is,

Ẋ ·X ′ = 0. (1.16)

Equation (1.16) is a constraint that follows from the previous parameterization. An
additional constraint equation arises when the relations (1.15) and momentum in
(1.9) are considered:

Pµ =
1

2πα′
X ′2Ẋµ√
−Ẋ2X ′2

,

n · p = 1

βα′
X ′2(n · Ẋ)√
−Ẋ2X ′2

(1.17)

Ẋ2 +X ′2 = 0 (1.18)

Given the above constraints (1.16) and (1.18), the momentum densities Pµ and Πµ

simplify considerably:

Pµ =
1

2πα′ Ẋ
µ, Πµ = − 1

2πα′X
µ′. (1.19)

Therefore, the equation of motion (1.13) also simplifies to the wave equation:

∂τPµ + ∂σΠµ = 0 (1.20)

⇒ Ẍµ −Xµ′′ = 0. (1.21)
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1.1.3 Polyakov Action

The Nambu-Goto action contains a square root which is difficult to treat at the
moment of the quantization procedure. It is possible to avoid the square root at
the expense of introducing an intrinsic metric tensor hαβ on the worldsheet. The
Polyakov action incorporates this metric tensor to produce an equivalent classical
action [9].

S[Xµ, hαβ] = −T
2

∫
Σ

dσ2
√
−hhαβ∂αXµ∂βX

νηµν , h = det(hαβ). (1.22)

Let us now describe the symmetries of the Polyakov action. This action has a global
symmetry:Poincare invariance

Xµ → X̃µ = Λµ
νX

ν + bµ (1.23)

δXµ = aµνX
ν , aµν = −a µ

ν (1.24)

S̃ = −T
2

∫
dσ2

√
−hhαβ∂αX̃µ∂βX̃

νηµν ,

= −T
2

∫
dσ2

√
−hhαβ(∂αXµ + aµγ∂αX

γ)(∂βX
ν + aν δ∂αX

δ)ηµν ,

= S − T

2

∫
dσ2

√
−hhαβ(∂αXµ∂βX

δaν δ + ∂αX
γ∂βX

νaµγ)ηµν ,

= S − T

2

∫
dσ2

√
−hhαβ(∂αXµ∂βX

δaµδ + ∂αX
γ∂βX

νaνγ),

= S − T

2

∫
dσ2

√
−hhαβ∂αXµ∂βX

ν(aµν + aνµ),

= S.

(1.25)

Moreover, the Polyakov action has two local symmetries, the first one is Diffeo-
morphism invariance:

σα → σ̃α(τ, σ) (1.26)

Under the transformation (1.26) the metric tensor changes in the following way:

hαβ(σ) → h̃αβ(σ̃) = hγδ(σ)
∂σ̃α

∂σγ

∂σ̃β

∂σδ
(1.27)

S̃ = −T
2

∫
dσ̃2
√

−h̃h̃αβ∂αXµ∂βX
νηµν ,

= −T
2

∫
dσ2J̃

√
−hJ̃−2hab

∂σ̃α

∂σa

∂σ̃β

∂σb

∂Xµ

∂σ̃α

∂Xν

∂σ̃β
ηµν ,

= −T
2

∫
dσ2

√
−hhab∂X

µ

∂σa

∂Xν

∂σb
ηµν , J̃ =

∣∣∣∣det(∂σ̃α

∂σβ

)∣∣∣∣
= S

(1.28)

The other one is Weyl invariance:

hαβ(σ) → h̃αβ = eϕ(σ)hαβ(σ) (1.29)
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S̃ = −T
2

∫
dσ2
√

−h̃h̃αβ∂αXµ∂βX
νηµν ,

= −T
2

∫
dσ2
√

−e2ϕheϕhαβ∂αXµ∂βX
νηµν ,

= S.

(1.30)

The Weyl invariance can be thought as the invariance of the theory under a local
change of scale which preserves the angles.

1.1.4 Equations of Motion and Mode Expansion

Now, let’s use the condition δS = 0 to find the equations of motion for the fields
Xµ and hαβ:

δS = δSX + δSh,

δSX = −T
∫
σ2
√
−hhαβ∂α(δXµ)∂βX

νηµν ,

= T

∫
dσ2∂α(

√
−hhαβ∂βXνηµν)δX

µ,

(1.31)

where we have used integration by parts and boundary conditions on the variation
δXµ to suppress the term

√
−hhαβ∂βXνηµνδX

µ|B.C. = 0 in the term δSX . On the
other hand, the variation δSh is such that

δSh = −T
2

∫
dσ2δ(

√
−h)hαβ∂αXµ∂βX

νηµν +
√
−hδhαβ∂αXµ∂βX

νηµν ,

δh = hTr(hαβδhαβ) = hhαβδhαβ = −hhαβδhαβ, δ(
√
−h) = − δh

2
√
−h

.
(1.32)

δSh = −T
2

∫
dσ2

√
−hδhαβ(∂αXµ∂βX

νηµν −
hαβ
2
hγδ∂γX

µ∂δX
νηµν) (1.33)

From the variations (1.31) and (1.33) the equation of motion can be obtained:

∂α

(√
−hhαβ∂βXµ

)
= 0, (1.34)

∂αX
µ∂βX

νηµν −
1

2
hαβh

γδ∂γX
µ∂δX

νηµν = 0. (1.35)

At this point, we can see the classical equivalence between the Nambu-Goto and
Polyakov actions by consider the determinant and the square root of the equation
of motion (1.35):√

−det(∂αXµ∂βXνηµν) =
1

2

√
−hhγδ∂γXµ∂δX

νηµν (1.36)

Therefore, we have that

S = −T
∫
dσ2
√

−det(∂αXµ∂βXνηµν) = −T
2

∫
dσ2

√
−hhγδ∂γXµ∂δX

νηµν (1.37)

In order to simplify the equations of motion (1.34) and (1.35), the world-sheet
metric hαβ can be set to be proportional to the two-dimensional Minkowski metric
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ηαβ, which defines distances as −ds2 = −dτ 2 + dσ2, as can be seen in the appendix
B. Therefore, the equations (1.34) and (1.35) translate to

∂α

(√
−hhαβ∂βXµ

)
= ηαβ∂α∂βX

µ = Ẍµ −Xµ′′ = 0 (1.38)

Tαβ = ∂αX
µ∂βX

νηµν −
1

2
hαβh

γδ∂γX
µ∂δX

νηµν = 0,

Tαβ = ∂αX · ∂βX − 1

2
ηαβ(−Ẋ2 +X ′2) = 0,

(1.39)

where Tαβ can be identified as the energy-momentum tensor. For α = β = 0 and
α = 0, β = 1, the equation (1.39) splits out in two constrain equations:

Ẋ2 +X ′2 = 0, Ẋ.X ′ = 0. (1.40)

Other combinations of α, β give the same equations (1.40). With these equations,
we recover the classical results (1.16),(1.18) and (1.20) from the Nambu-Goto action.

Closed String
The general solution of the wave equation, and the periodicity condition gives

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) = Xµ
L(u) +Xµ

R(υ),

Xµ
L(u+ 2π)−Xµ

L(u) = Xµ
R(υ)−Xµ

R(υ − 2π)
(1.41)

As a consequence of (1.41), we find that both Xµ′
L(u) and Xµ′

R(υ) are strictly
periodic functions with period 2π. Therefore,

Xµ
L(u) =

1

2
xµL +

√
α′

2
ᾱ0u+ i

√
α′

2

∑
n̸=0

ᾱµ
n

n
e−inu,

Xµ
R(υ) =

1

2
xµR +

√
α′

2
α0u+ i

√
α′

2

∑
n̸=0

αµ
n

n
e−inυ.

(1.42)

A set of barred α modes was introduced for the expansion of Xµ
L(u). Even though

they are written identically, the unbarred α modes used in the expansion of Xµ
R(υ)

have no relation to the open string modes. In closed string theory we need two sets
of α modes, barred and unbarred since the left- and right-moving components are
completely independent. Then, the full expansion of Xµ in arbitrary Fourier modes
αµ
n, ᾱ

ν
m is given by

Xµ(τ, σ) = xµ +
√
2α′αµ

0τ + i

√
α′

2

∑
n̸=0

1

n

[
αµ
ne

−in(τ+σ) + ᾱn
µe−in(τ−σ)

]
, (1.43)

where xµ = (xµL + xµR)/2, and the constants have been chosen for later convenience.
We can identify qµ(0) = xµ as the ’center of mass position’ of the string at τ = 0:

qµ(τ) =
1

2π

∫ 2π

0

dσXµ = xµ +
√
2α′αµ

0τ. (1.44)
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In addition, the zero Fourier mode α0 can be related with the total momentum pµ

of the string in the following way

pµ =

∫ 2π

0

dσPµ =
1

2πα′

∫ 2π

0

√
2α′αµ

0 =

√
2

α′α
µ
0 . (1.45)

The requirement that Xµ(τ, σ) be a real function implies that xµ and pµ are real
and

αµ
−n = (αµ

n)
∗, ᾱµ

−n = (ᾱµ
n)

∗. (1.46)

In order to find the Poisson brackets of the Fourier modes defined in the expansion
(1.43), we need to note that the string coordinates Xµ and the momentum density
Pµ are phase-space variables which satisfy the following Poisson brackets [11]

{Xµ(σ, τ), Xν(σ′, τ)} = {Pµ(σ, τ),Pν(σ′, τ)} = 0,

{Xµ(σ, τ),Pν(σ′, τ)} = ηµνδ(σ − σ′).
(1.47)

Using the Poisson brackets (1.47), we can derive the brackets for the Fourier modes
(1.46), and we obtain

{αµ
m, α

ν
n} = {ᾱµ

m, ᾱ
ν
n} = −imδm+nη

µν .

{ᾱµ
m, α

ν
n} = 0

. (1.48)

The constraint equations (1.40) can be written in terms of the oscillator modes (1.48)
by introducing the so called Virasoro constraints Lm, L̄n in the conformal gauge at
τ = 0, thus

Ln = T

∫ 2π

0

dσT−−e
in(τ−σ), T−− =

T00
2

− T01
2

=
1

2

∑
m∈Z

αµ
mα

ν
n−mηµν = 0,

(1.49)

L̄n = T

∫ 2π

0

dσT++e
in(τ+σ), T++ =

T00
2

+
T01
2

=
1

2

∑
m∈Z

ᾱµ
mᾱ

ν
n−mηµν = 0.

(1.50)

which satisfies the following Poisson brackets

{Ln,Lm} = −i(n−m)Ln+m,

{L̄n, L̄m} = −i(n−m)L̄n+m,

{Ln, L̄m} = 0.

(1.51)

Open String
For Neumann boundary conditions, the general solution of the wave equation is
given by [24]

Xµ(τ, σ) = xµ +
√
2α′αµ

0τ + i
√
2α′
∑
n̸=0

1

n
αµ
ne

−inτ cos(nσ). (1.52)
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As in the case of the closed string, xµ and pµ are the center of mass position and
total space-time momentum of the open string, and the zero mode is αµ

0 =
√
2α′pµ.

The corresponding Poisson bracket for the oscillator modes are

{αµ
m, α

ν
n} = −imδm+nη

µν (1.53)

Furthermore, the generator Lm of the Virasoro algebra satisfies the following bracket

{Lm,Ln} = −i(m− n)Lm+n (1.54)

where,

Ln = T

∫ π

0

dσ[T++e
in(τ+σ) + T−−e

in(τ−σ)],

=
1

2

∑
m∈Z

αµ
mα

ν
n−mηµν = 0.

(1.55)

1.2 Quantum Description

This section examines the light-cone and covariant quantization of the bosonic string
theory. Light-cone quantization involves selecting a preferred frame by fixing two
components of the string’s spacetime coordinates, which reduces the constraint equa-
tions and physical degrees of freedom. This method simplifies the quantization pro-
cess by eliminating non-physical modes, enabling direct construction of the physical
spectrum. In contrast, covariant quantization maintains manifest Lorentz invariance
throughout, allowing the treatment of all spacetime coordinates equivalently. Here,
the Virasoro constraints emerge to restrict the Hilbert space to physical states.

1.2.1 Light Cone Quantization

It is possible to choose a gauge in which the constraints equations can be solved
explicitly and the theory can be formulated in terms of physical degrees of free-
dom only, and then quantize the theory via canonical quantization. In order to do
so, let’s consider light cone coordinates

√
2σ± = τ ± σ under a reparametrization

transformation:

σ+ → σ̃+ = f(σ+),

σ− → σ̃− = g(σ−).
(1.56)

Therefore, the quadratic line element ds2 = −dτ 2 + dσ2 = −2dσ+dσ− transform as
follows

ds2 → ds̃2 = −2dσ̃+dσ̃− = −2∂+f(σ
+)∂−g(σ

−)dσ+dσ− (1.57)

The factor −2∂+f(σ
+)∂−g(σ

−) can be drop out using the exponential factor eϕ(σ,τ)

from Weyl symmetry. So, we preserve ds2 by applying reparametrization and Weyl
invariance. Now, let’s consider the following transformation

σ+ + σ− =
√
2τ → σ̃+ + σ̃− =

√
2τ̃ ,

⇒τ̃ =
1√
2
f(σ+) +

1√
2
g(σ−) =

1√
2
f(τ + σ) +

1√
2
g(τ − σ).

(1.58)
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If we identify the relation (1.58) with the general solution of the wave equation, then
we can relate the coordinates X0, X1 with τ and X+. That is,

X+ =

(
1√
2
X0 +

1√
2
X1

)
∝ τ (light cone gauge) (1.59)

Hence,
X+ = βα′p+τ, (1.60)

where β = 2 for open strings and β = 1 for closed strings. Since we know X+ and
X− from the light cone gauge and the constraint equations, then the independent
degrees of freedom are the scalar fields XI where I = 2, 3...25.

For the independent fields XI , we apply the canonical quantization by promot-
ing the Poisson brackets from the classical theory to commutators in the quantum
regimen:

{ , }PB → 1

i
[ , ]. (1.61)

Using the expression (1.47), we obtain the following commutators

[XI(τ, σ),PJ(τ, σ′)] = iδ(σ − σ′)ηIJ ,

[XI(τ, σ), XJ(τ, σ′)] = [PI(τ, σ),PJ(τ, σ′)] = 0
(1.62)

From the commutators (1.62), we can derive the commutators for the oscillator
modes to obtain

[ᾱI
m, ᾱ

J
n] = mδm+nη

IJ , [αI
m, α

J
n] = mηIJδm+n, [ᾱI

m, α
J
n] = 0, (Closed string)

[αI
m, α

J
n] = mηIJδm+n, (Open string).

(1.63)

We can define the operators αI
n = aIn

√
n and αI

−n = aI†n
√
n for n ≥ 1. Using the

operators aIm and aJ†n into the commutators (1.63), then the operators (aIm, a
J†
n ) sat-

isfy the commutation relations of the canonical annihilation and creation operators
of a quantum simple harmonic oscillator. There is a pair of creation and annihila-
tion operators for each value m ≥ 1 of the mode number and for each transverse
light-cone direction I. The same applies for the bar operators. With these creation-
annihilation operators, we introduce the ground states or vacuum states |0, p⟩ in
the bosonic string theory. Thus, by definition, they are annihilated by all the αI

n

operators:

αI
n |0, p⟩ = 0, ᾱI

n |0, p⟩ = 0 n ≥ 1, (Closed string)

αI
n |0, p⟩ = 0, n ≥ 1 (Open string).

(1.64)

To create states from the vacuum state, we can act on them with creation op-
erators. All the creation operators commute among each other, so the order is
irrelevant. To generate all the basis states |λ⟩ we must act on the ground states
with the same amount of creation operators αI†

n and αJ†
m . Any basis state |λ⟩ can

be written as [24]

|λ, λ̄⟩ =

[
∞∏
n=1

D∏
I=2

(αI†
n )λn,I

]
×

[
∞∏

m=1

D∏
J=2

(ᾱJ†
m )λ̄m,J

]
|0, p⟩ , (Closed string)

|λ⟩ =
∞∏
n=1

D∏
I=2

(αI†
n )λn,I |0, p⟩ , (Open string).

(1.65)
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Each state |λ⟩ of the quantum string represents a one-particle state of fixed mo-
mentum. Different oscillation modes of unique type of string correspond to different
kinds of particles [14].

Because of ordering ambiguities in creation-annihilation operators, the classical
Virasoro algebra needs to be modified. The quantum Virasoro algebra takes into
account these ambiguities by indroducing a constant D (dimension), so that the
algebra is [9] :
Open String

[Lm,Ln] = (m− n)Lm+n +
D − 2

12
m(m2 − 1)δm+n (1.66)

Closed string

[Lm,Ln] = (m− n)Lm+n +
D − 2

12
m(m2 − 1)δm+n,

[L̄m, L̄n] = (m− n)L̄m+n +
D − 2

12
m(m2 − 1)δm+n,

[Lm, L̄n] = 0.

(1.67)

Finally, the procedure of light-cone quantization allows to solve the Virasoro
constraints explicitly, but at the price of losing manifest Lorentz invariance. To
check the Lorentz symmetry, the generators must obey the commutation rules of
the Lorentz algebra. In order to ensure this invariance, the number of dimensions
must be D = 25 + 1 [11].

1.2.2 Covariant Quantization

In the covariant quantization, we treat all string coordinates Xµ(τ, σ) on the same
footing to mantain the Lorentz invariance. So, we replace the Poisson brackets of
the fundamental phase space variables by commutators for every coordinates:

[Xµ(σ, τ), Xν(σ′, τ)] = [Pµ(σ, τ),Pν(σ′, τ)] = 0,

[Xµ(σ, τ),Pν(σ′, τ)] = iηµνδ(σ − σ′)
(1.68)

Using (1.68), the commutation relations for the oscillator modes can be found:

[ᾱµ
m, ᾱ

ν
n] = mδm+nη

µν , [αµ
m, α

ν
n] = mηµνδm+n, [ᾱµ

m, α
ν
n] = 0, (Closed string)

[αµ
m, α

ν
n] = mηµνδm+n, (Open string).

(1.69)

As in the light cone quantization, we introduce the vacuum states for the covariant
approach

αµ
n |0, p⟩ = 0, ᾱµ

n |0, p⟩ = 0, (Closed string)

αµ
n |0, p⟩ = 0, (Open string).

(1.70)

Furthermore, the whole Hilbert space of states is obtained by acting on the ground
state with creation operators. However, there exist states with negative norm or
“ghosts” such as ⟨0, p|α0

mα
0†
m |0, p⟩ = −m < 0. They do not allow for probability

interpretation of the corresponding physical system [9].
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In order to define the subspace of physical states in the original Hilbert space,
it is necessary to impose some constraints. We promote the classical constraints
Lm = L̄m = 0 to operators in the quantum regime. They are quadratic in oscillators
and might involve operators which do not commute with each other. From all Lm

constraints, L0, L̄0 are the only one which suffer ordering ambiguity [11].

We can see that not all the quantum constraints Lm, L̄ncan be imposed on the
states. That is, if we try to impose the following constrains

Ln |ψ⟩ = 0 = L̄n |ψ⟩ , ∀n ∈ Z (Closed string)

Ln |ψ⟩ = 0, ∀n ∈ Z (Open string)
(1.71)

then, for example for the case of the open string

⟨ψ|[Ln,L−n]|ψ⟩ = ⟨ψ|2nL0|ψ⟩+
D

12
n(n2 − 1) ⟨ψ|ψ⟩ . (1.72)

This is not possible to satisfy unless |ψ⟩ = 0.This confirms that we cannot impose
all the Virasoro conditions and expect to find nontrivial states. From the experience
with quantum electrodynamics we impose only half of the constraints on physical
states [9]:
Closed string

Ln |ψ⟩ = L̄n |ψ⟩ = 0, n ≥ 1,

(L0 − a) |ψ⟩ = 0, (L̄0 − ā) |ψ⟩ = 0.
(1.73)

Open String

Ln |ψ⟩ = 0, n ≥ 1

(L0 − a) |ψ⟩ = 0,
(1.74)

where the constants a, ā are required to take into account the ambiguity ordering
in the zero Virasoro constraint. For space-time dimension D ≤ 26, the states |ψ⟩
which satisfy the relations (1.73) and (1.74) have positive norm (no-ghost theorem)
[24]

Furthermore, the quantum Virasoro constraints Lm,Ln are the generators of the
quantum Virasoro algebra. Using the commutation relations of creation-annihilation
operators (1.69), and the normal ordering constants a, ā for the zero mode, then the
Virasoro constrains satisfy the following commutation relations [24]

Open String

[Lm,Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n (1.75)

Closed string

[Lm,Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n,

[L̄m, L̄n] = (m− n)L̄m+n +
D

12
m(m2 − 1)δm+n,

[Lm, L̄n] = 0.

(1.76)
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1.2.3 Boundary States

The two-dimensional action for a free boson Xµ(τ, σ) was given in (1.22). In the
conformal gauge hαβ = ηαβ this action takes the following form

S = −T
2

∫
d2σηαβ∂αX

µ∂βXµ, =
T

2

∫
d2σ(Ẋ2 −X ′2) (1.77)

Varying with respect to Xµ such that δXµ(τ1) = δXµ(τ2) = 0 we obtain

δS = T

∫
d2σδXµ(∂2σ − ∂2τ )Xµ − T

∫ τ2

τ1

dτX ′
µδX

µ|σ=π
σ=0 (1.78)

Because we impose a periodicity condition, the surface term is absent from the closed
string . For an open string, the vanishing of the boundary term is achieved when
we impose either Dirichlet or Neumann boundary. These conditions were described
in (1.10) and (1.11). In the conformal gauge, they translate to

∂σX
µ|σ=0,π = 0, (Neumann b.c.)

δXµ|σ=0,π = 0 (Dirichlet b.c.).
(1.79)

In particular, it is possible to express the Neumann boundary condition for the field
X(σ, τ) in terms of Laurent modes j(z) =

∑
n∈Z z

−n−1jn with z = exp(τ + iσ) [10].

∂σX = i(∂ − ∂̄)X = j(z)− j̄(z̄) =
∑
n∈Z

(jnz
−n−1 − j̄nz̄

−n−1). (1.80)

In this way, the Neumann boundary condition is given by

∂σX|σ=0 =
∑
n∈Z

jne
−n(τ+iσ) − j̄ne

−n(τ−iσ) = 0,

=
∑
n∈Z

(jn − j̄n)e
−nτ = 0.

(1.81)

Since for generic τ the summands above are linearly independent, for all integers n
these two equations are solved by

jn − j̄n = 0. (1.82)

As illustrated in Figure 1.1, by interchanging τ and σ, we can reinterpret the
cylinder partition function of the boundary conformal field theory (BCFT) on one
side as a tree-level amplitude of the underlying conformal field theory (CFT) on the
other side. This reinterpretation highlights the open/closed string duality, where
the tree-level amplitude describes the emission of a closed string from boundary A,
its propagation, and its absorption at boundary B. In this context, a boundary can
be interpreted as an object, which couples to closed strings [10]. The relation above
then reads

(τ, σ)closed ↔ (σ, τ)(open) (1.83)

With this equivalence relation between open and closed strings, the Neumann
boundary condition can be expressed in terms of the fields from the closed string.
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Figure 1.3: Closed/open string duality

Then, the Neumann boundary condition is introduced as a constraint which is sat-
isfied by the so called boundary states |BN⟩ in the following way:

∂τXclosed|τ=0 |BN⟩ = 0. (1.84)

In terms of the Laurent modes, the boundary states are such that

i∂τXclosed |BN⟩ =
∑
n∈Z

(jne
−inσ + j̃ne

inσ) |BN⟩ = 0, τ = 0 (1.85)

(jn + j̃−n) |BN⟩ = 0, ∀n ∈ Z (1.86)

The equation (1.86) is satisfied by the solution [10]

|BN⟩ =
1

N
exp

(
−

∞∑
k=1

1

k
j−kj̄−k

)
|0⟩ , (1.87)

where N is a normalization constant to be fixed.



Chapter 2

The Superstring

The bosonic string theory discussed in the previous chapter is unsatisfactory because
it does not contain fermions. Superstring formalism provides a framework for incor-
porating fermionic degrees of freedom into string theory, extending the bosonic string
model to a supersymmetric context. In the present chapter, we explore this approach
that formulates superstrings in 10-dimensional spacetime, where both bosonic and
fermionic coordinates coexist on the worldsheet. The theory introduces two sectors,
the Ramond and Neveu-Schwarz sectors, which correspond to periodic and antiperi-
odic boundary conditions on the fermionic coordinates, respectively. Subsequently,
the quantization process involves imposing worldsheet supersymmetry constraints
and constructing the quantum state space.

2.1 Classical Description

As was discussed in the previous chapter, the Polyakov action (1.22) is invariant
under Weyl and diffeomorphism transformations, so that we can map the worldsheet
metric hαβ to the flat metric ηαβ. In this conformal gauge, the action takes the
following expression:

S = −T
2

∫
Σ

dσ2∂αX · ∂αX. (2.1)

The action (2.1) describes a free field theory in two dimensions. To generalize this
action, we introduce additional internal degrees of freedom describing fermions on
the world sheet. The desired action is obtained by introducing the standard Dirac
action for two-dimensional Majorana spinor which also has space-time vector index
µ = 1, 2, ..., D [8]:

S[Xµ, ψµ] = −T
2

∫
Σ

dσ2
(
∂αX · ∂αX − ψ̄ · ρα∂αψ

)
(2.2)

Here, ψµ is a spinor on the two-dimensional world sheet but transform as a vector
under spacetime Lorentz transformations from SO(D−1, 1). They are the fermionic
counterpart of the scalar Xµ. The spinors are two Majorana components denoted
by

ψµ =

(
ψµ
−

ψµ
+

)
, ψ̄ = ψT iρ0 (2.3)

28
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Furthermore, ρα represents the two-dimensional Dirac matrices which obey the Clif-
ford algebra:

{ρα, ρβ} = 2ηαβ, (2.4)

where ρ0 and ρ1 are conventionally chosen as

ρ0 =

(
0 1
−1 0

)
, ρ1 =

(
0 1
1 0

)
. (2.5)

2.1.1 Boundary Conditions and Mode Expansions

The equations of motion for the action (2.2) can be obtained from the variation
δS = 0. Since the equations of motion for the fields Xµ were founded in the previous
chapter, we will only focus on the variation of the fields ψµ . Let us consider the
variation of the fermionic part SF in light-cone coordinates.

SF =

∫
dσ2ψ̄ · ρα∂αψ =

∫
dσ2(ψ−∂+ψ− + ψ+∂−ψ+), (2.6)

δSF =

∫
dσ2(δψ−∂+ψ− + ψ−∂+δψ− + δψ+∂−ψ+ + ψ+∂−δψ+),

=

∫
dσ2[δψ−∂+ψ− + ∂+(ψ−δψ−)− ∂+ψ−δψ− + δψ+∂−ψ+

+ ∂−(ψ+δψ+)− ∂−ψ+δψ+],

(2.7)

δSF =

∫
dσ2[∂+(ψ−δψ−) + ∂−(ψ+δψ+)− 2∂+ψ−δψ− − 2∂−ψ+δψ+] = 0 (2.8)

The equations of motion are obtained from the last two terms in (2.8). They are
given by,

∂+ψ
µ
− = 0, ∂−ψ

µ
+ = 0, (2.9)

which implies that ψµ
− = ψµ

−(τ − σ) is a right-moving spinor component while ψµ
+ =

ψµ
+(τ +σ) is a left-moving spinor component. The vanishing of the remaining terms

in (2.8) is determined by the application of boundary conditions. In order to find
the conditions, let us expand the surface terms from (2.8)∫

dσ2[∂+(ψ−δψ−) + ∂−(ψ+δψ+)],

=
1

2

∫ τf

τi

dτ

∫ σ1

0

dσ[(∂τ + ∂σ)(ψ−δψ−) + (∂τ − ∂σ)(ψ+δψ+)],

=
1

2

∫ τf

τi

dτ [ψ− · δψ− − ψ+ · δψ+]
σ1
0

(2.10)

The fields ψµ
+ and ψµ

− appear quadratically in the action (2.2). Then, the signs of
ψµ
+ and ψµ

− can be changed without physical consequence. This arbitrariness is used
conventionally to demand in (2.10) the following condition at the endpoint σ = 0
[26]:

ψµ
−(0, τ) = +ψµ

+(0, τ) ⇒ δψµ
−(τ, 0) = +δψµ

+(τ, 0) (2.11)
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The other boundary condition needs to be imposed according to the different con-
figurations of the string. For an open string, the endpoint is σ1 = π and since we
cannot change the sign of ψµ

+ and ψµ
− without changing the condition (2.11), the

choice of the sign at the endpoint σ1 is physically relevant. Then, we have to impose
two different cases given by

ψµ
+(τ, π) = ±ψµ

−(τ, π) ⇒ δψµ
+(τ, π) = ±δψµ

−(τ, π) (2.12)

In this way, the conditions (2.11) and (2.12) vanish the terms shown in (2.10). For
the closed string, we must impose periodic boundary conditions, and also we need
to demand two different cases such that

ψµ
+(τ, σ + 2π) = ±ψµ

+(τ, σ) ⇒ δψµ
+(τ, σ) = ±δψµ

+(τ, σ + 2π),

ψµ
−(τ, σ + 2π) = ±ψµ

−(τ, σ) ⇒ δψµ
−(τ, σ) = ±δψµ

−(τ, σ + 2π).
(2.13)

The vanishing of the terms (2.10) in the case of the closed string is consequently
expressed by the conditions (2.11) and (2.13).

We have seen that for the open string, there are two different ways to impose
the boundary conditions. It means that the full superstring theory state space
breaks into two subspaces: a Ramond (R) sector which contains the states that
arise using the top choice of sign, and a Neveu–Schwarz (NS) sector which contains
the states that arise using the lower choice of sign. However, for the closed string, the
conditions for the two spinor components ψ+ and ψ− can be chosen independently
and satisfy δS = 0, leading to a total of four possibilities: (R,R), (NS,NS), (NS,R)
and (R,NS) [9].
-Ramond sector
With Ramond boundary conditions applied to the closed string, the field ψ± exhibits
periodicity and can be expanded in terms of integrally moded oscillators.

ψµ
−(σ

−) =
√
2α′
∑
n∈Z

dµne
−inσ−

(2.14)

ψµ
+(σ

+) =
√
2α′
∑
n∈Z

d̃µne
−inσ+

(2.15)

-Neveu-Schwarz sector
In the case of the closed string, since the Neveu–Schwarz fermion ψ± is a function
of σ− = τ − σ and changes sign when σ → σ + 2π, it must be expanded with
fractionally moded exponentials:

ψµ
−(σ

−) =
√
2α′

∑
r∈Z+1/2

bµr e
−irσ−

(2.16)

ψµ
+(σ

+) =
√
2α′

∑
r∈Z+1/2

b̃µr e
−irσ+

(2.17)

For the open string, the mode expansions for the fermionic fields in the R and NS
sectors are given by only one copy of the closed string mode expansions. That is,
(2.14) and (2.16) describe de mode expansions for the R and NS sectors for the open
string, respectively.
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2.1.2 Symmetries and Constrain Equations

Let us now consider the conserved currents associated with the global symmetries of
the action (2.2). The first one is the energy-momentum tensor Tαβ associated with
the translation symmetry. The second one is the supercurrent Jα associated with
the global world-sheet supersymmetry.

We begin by examining the traslation symmetry. Here, we consider the infinites-
imal traslation of world-sheet coordinates σ̃α = σα + aα. Then, the fields Xµ(τ, σ)
and ψµ(τ, σ) varies as

δXµ = −aα∂αXµ,

δψµ = −aα∂αψµ.
(2.18)

δS = −T
2

∫
dσ2

[
2∂αXµ∂α(δXµ) + δψ̄ρα∂αψµ + ψ̄ρα∂α(δψµ)

]
,

= −T
2

∫
dσ2

[
−2∂αXµ∂α(a

β∂βXµ) + aβ∂αψ̄µρ
α∂βψ

µ − ψ̄µρα∂α(a
β∂βψµ)

]
,

=
T

2

∫
dσ2aβ∂β(∂αX · ∂αX + ψ̄ · ρα∂αψ),

= T

∫
dσ2∂βJ β,

(2.19)

where we have identified

Jβ =
aβ
2
(∂αX · ∂αX + ψ̄ · ρα∂αψ). (2.20)

We calculate the energy-momentum tensor using (2.20), and the Noether current
method.

aαTαβ =
∂L

∂(∂βXµ)
δXµ +

∂L
∂(∂βψµ)

δψµ − Jβ,

= ∂βXµa
α∂αX

µ +
1

2
ψ̄µρβa

α∂αψ
µ − aβ

2
(∂αX · ∂αX + ψ̄ · ρα∂αψ),

= aα∂αX
µ∂βXµ +

aα

4
(ψ̄µρβ∂αψµ + ψ̄µρα∂βψµ)

+
aα

4
(ψ̄µρβ∂αψµ − ψ̄µρα∂βψµ)−

aα

2
ηαβ(∂γX · ∂γX + ψ̄ · ργ∂αψ),

= aα[∂αX
µ∂βXµ +

1

4
ψ̄µρ(α∂β)ψµ −

ηαβ
2

(∂γX · ∂γX + ψ̄ · ργ∂γψ)

− 1

4
ψ̄µρ[α∂β]ψµ].

(2.21)

In (2.21) we have adopted the notation (·, ·) for symmetrizing indices, and [·, ·]
for antisymmetrizing indices. The energy-momentum tensor must be symmetric for
indices α, β, thus we drop the antisymmetric part. Therefore,

Tαβ = ∂αX
µ∂βXµ +

1

4
ψ̄µρ(α∂β)ψµ −

ηαβ
2

(∂γX · ∂γX + ψ̄ · ργ∂γψ). (2.22)

Since Tαβ is symmetric and traceless, it has only two independent components. In
light cone coordinates, the energy-momentum tensor can be written as [24]
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T+− = T−+ = ∂+X · ∂−X +
1

4
ψ̄µ(ρ+∂− + ρ−∂+)ψµ

− η+−

2
[2η+−∂+X · ∂−X + η+−ψ̄µ(ρ+∂− + ρ−∂+)ψµ],

= ∂+X · ∂−X +
1

4
ψ̄µ(ρ+∂− + ρ−∂+)ψµ

− ∂+X · ∂−X − 1

2
ψ̄µ(ρ+∂− + ρ−∂+)ψµ,

= −1

4
ψ̄µ(ρ+∂− + ρ−∂+)ψµ = 0

(2.23)

As shown in (2.23), the components T+− = T−+ = 0 automatically vanish due to
the equations of motion. The only two independent components are T++ and T−−:

T++ = ∂+X · ∂+X + i
1

2
ψ+ · ∂+ψ+, T−− = ∂−X · ∂−X + i

1

2
ψ− · ∂−ψ− (2.24)

We continue with the super-symmetry. This symmetry ensures that the number
of bosonic and fermionic degrees of freedom are the same at any mass level. The
infinitesimal super-symmetry transformation is given by

δXµ = ϵ̄ψµ,

δψµ = ραϵ∂αX
µ,

(2.25)

where ϵ = (ϵ−, ϵ+) is a constant infinitesimal Majorana spinor that consists of anti-
commuting Grassman numbers. The variation of the action is thus

δS = −T
2

∫
d2σ[2∂αXµ∂α(ϵ̄ψµ)− ∂αψ̄

µραδψµ + ψ̄µρµ∂αδψµ],

= −T
2

∫
dσ2[2∂αψ̄

µ∂αXµϵ− ∂αψ̄
µραρβ∂βXµϵ+ ψ̄µραρβ∂α∂βXµϵ],

= −T
2

∫
dσ2[2∂αψ̄

µ∂αXµϵ+ 2ψ̄µραρβ∂α∂βXµϵ− ∂αψ̄
µραρβ∂βX

µϵ

− ψ̄µραρβ∂α∂βXµϵ],

= −T
2

∫
dσ2∂α[2ψ̄

µϵ∂αXµ − ψ̄µραρβϵ∂βXµ].

(2.26)

From the last expression in (2.26), we identify J α as

J α = −ψ̄µϵ∂αXµ +
1

2
ψ̄µραρβϵ∂βXµ. (2.27)

We calculate the super-current using (2.27), and the Noether current method.

ϵ̄Jα =
∂L

∂(∂αXµ)
δXµ +

∂L
∂(∂αψµ)

δψµ − J α,

= −∂αXµδX
µ − 1

2
ψ̄µρ

αδψµ + ψ̄µϵ∂αXµ −
1

2
ψ̄µραρβϵ∂βXµ,

= −ψ̄µραρβϵ∂βXµ = −ϵ̄ρβραψµ∂βXµ

(2.28)
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Therefore, the super-current is given by

Jα = −ρβραψµ∂βXµ. (2.29)

Since ραρ
βρα = 0, then ραJ

α = 0. From this constraint, we see that there are
only two independent components of the super current (2.29) [8]. The independent
components can be written in light coordinates as follows

J+ = −ρβρ+ψµ∂βXµ,

= −ρ+ρ+ψµ∂+Xµ − ρ−ρ+ψ
µ∂−Xµ,

= 2(ρ−ρ+ψ
µ∂+Xµ + ρ2ψµ∂−Xµ),

= 2ρ−ρ+ψ · ∂+X,

= 2

(
0 0
0 −1

)(
ψ−
ψ+

)
· ∂+X,

= −2

(
0

ψ+ · ∂+X

)
=

(
0

−j+

)
(2.30)

J− = −2

(
ψ− · ∂−X

0

)
=

(
−j−
0

)
(2.31)

The requirement of super-conformal symmetry lead to stronger constraints. That
is, the vanishing of the energy-momentum tensor and supercurrent [8]:

T++ = T−− = 0, j+ = j− = 0. (2.32)

We can now expressing, in the (NS,NS) sector, the constrain equations (2.32) in
terms of the oscillator modes from (2.14) and (2.16) by introducing the so called
super Virasoro constrains for the closed string Ln, L̄n,Qr, Q̄r and Ln,Qr for the
open string [24]:
Closed string

Ln = T

∫ 2π

0

dσT++e
inσ, L̄n = T

∫ 2π

0

dσT−−e
−inσ (2.33)

Qr =
T√
2

∫ 2π

0

dσeirσj++, Q̄r =
T√
2

∫ 2π

0

dσe−irσj−− (2.34)

In terms of oscillators, the constrains (2.34) become

Ln =
1

2

∑
m∈Z

αn+m · α−m +
1

2

∑
r∈Z+1/2

(
r +

n

2

)
b−r · bn+r = 0,

L̄n =
1

2

∑
m∈Z

ᾱn+m · ᾱ−m +
1

2

∑
r∈Z+1/2

(
r +

n

2

)
b̄−r · b̄n+r = 0,

Qr =
∑
m∈Z

αm · br−m = 0,

Q̄r =
∑
m∈Z

ᾱm · b̄r−m = 0.

(2.35)

Open string

Ln = T

∫ π

0

dσ(einσT+++e
−inσT−−), Qr =

T√
2

∫ π

0

dσ(eirσj++e
−irσj−) (2.36)
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In terms of oscillators, the Virasoro constrains (2.36) become

Ln =
1

2

∑
m∈Z

αn+m · α−m +
1

2

∑
r∈Z+1/2

(
r +

n

2

)
b−r · bn+r = 0,

Qr =
∑
m∈Z

αm · br−m = 0.
(2.37)

Now, let us find the brackets for the fermionic oscillator modes bµr , b̄
ν
s from the

mode expansions (2.35). We need first the brackets for the fields ψµ
±. However, since

the canonical momentum of ψµ
± is (i/4πα′)ψµ

±, these constraints are second class,
meaning that if we compute their Poisson bracket the right-hand side is not another
constraint. Therefore, we must follow the procedure due to Dirac and replace the
Poisson brackets by Dirac brackets, which is defined as[9]

{A,B}D.B. = {A,B}P.B. − {A, ϕi}P.B.C
−1
ij {ϕj, B}P.B., (2.38)

where ϕi is a second class constrain and Cij = {ϕi, ϕj}P.B..This leads to

{ψµ
±(τ, σ), ψ

ν
±(τ, σ

′)}D.B. = −iηµν2πα′δ(σ − σ′),

{ψµ
+(τ, σ), ψ

ν
−(τ, σ

′)}D.B. = 0.
(2.39)

In terms of the oscillators, the brackets (2.39) translate into the relations [9]

{bµr , bνs}D.B. = −iηµνδr+s, {b̄µr , b̄νs}D.B. = −iηµνδr+s, {b̄µr , bνs}D.B. = 0 (2.40)

It is now possible to compute the classic super Virasoro algebra of the constraints
in the (NS,NS) sector[9]

{Ln,Lm}D.B. = −i(n−m)Ln+m, {Ln,Qr}D.B. = −i
(n
2
− r
)
Qn+r

{Qr,Qs}D.B. = −2iLr+s

(2.41)

{L̄n, L̄m}D.B. = −i(n−m)L̄n+m, {L̄n, Q̄r}D.B. = −i
(n
2
− r
)
Q̄n+r

{Q̄r, Q̄s}D.B. = −2iL̄r+s

(2.42)

For the present work, we have only shown the necessary results for the description
of the (NS,NS) sector. this thesis project.

2.2 Quantum Description

This section explores the covariant quantization of superstring theory in the RNS
formalism, a method that maintains both Lorentz invariance and worldsheet su-
persymmetry while accommodating the fermionic and bosonic degrees of freedom
fundamental to superstring dynamics. The section begins by applying the canonical
quantization to the boson and fermionic fields. The subsequent analysis is divided
into open strings and closed strings, where distinct boundary conditions lead to dif-
ferent classes of states. The quantization process ends by imposing the constraints
from the quantum super-Virasoro algebra, essential for enforcing physical state con-
ditions.
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2.2.1 Covariant Quantization

We proceed in the same way as in the bosonic string. That is, we treat all string
fields Xµ(τ, σ) and ψµ(τ, σ) on the same footing to mantain the Lorentz invariance.
We make the transition from classical mechanics to quantum mechanics replacing
the classical brackets by the commutator and anti-commutator:

{ , }PB → 1

i
[ , ] { , }DB → 1

i
{ , }. (2.43)

[Xµ(σ, τ),Pν(σ′, τ)] = iηµνδ(σ − σ′),

{ψµ
+(τ, σ), ψ

ν
+(τ, σ

′)} = 2πα′ηµνδ(σ − σ′),

{ψµ
−(τ, σ), ψ

ν
−(τ, σ

′)} = 2πα′ηµνδ(σ − σ′),

{ψµ
+(τ, σ), ψ

ν
−(τ, σ

′)} = 0

(2.44)

From (2.44), the commutation and anti-commutation relations for the oscillator
modes in the NS sector are obtained. For the different string configurations, the
resulting expressions take the form of
Closed string (NS,NS)

[αµ
m, α

ν
n] = [α̃µ

m, α̃
ν
n] = mδm+nη

µν , n,m ∈ Z
{bµr , bνs} = {b̃µr , b̃νs} = δr+sη

µν , r, s ∈ Z+ 1/2.
(2.45)

Open string (NS)

[αµ
m, α

ν
n] = mδm+nη

µν , n,m ∈ Z
{bµr , bνs} = δr+sη

µν , r, s ∈ Z+ 1/2.
(2.46)

In addition, the reality condition on Xµ and ψµ implies that αµ†
m = αµ

−m and
bµ†r = bµ−r. We again see that we can split oscillators into creation and annihila-
tion operators according to the sign of their n, r index. Oscillators with n, r > 0 are
annihilation operators, and oscillators with n, r < 0 are creation operators.

With the commutation and the anti-commutation rules (2.45), (2.46), the oscil-
lator expansions in (2.35), (2.37) can be normal ordered in the quantum regime. As
in the bosonic string case, the only generator that has a normal ambiguity is L0,
so there exist a normal ordering constants for this case. The quantum oscillator
expansions or super Virasoro constraints Ln, L̄n,Qr, Q̄r are the generators of the
super Virasoro algebra, and satisfy the following relations in the NS sector [11]

Closed string (NS,NS)

[Ln,Lm] = (n−m)Lm+n +
D

8
δm+n(n

3 − n),

[L̄n, L̄m] = (n−m)L̄m+n +
D

8
δm+n(n

3 − n),

[Ln,Qr] =
(n
2
− r
)
Qn+r,

[L̄n, Q̄r] =
(n
2
− r
)
Q̄n+r,

{Qr,Qs} = 2Lr+s +
D

2

(
r2 − 1

4

)
δr+s,

{Q̄r, Q̄s} = 2L̄r+s +
D

2

(
r2 − 1

4

)
δr+s

(2.47)
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Open string (NS)

[Ln,Lm] = (n−m)Lm+n +
D

8
δm+n(n

3 − n),

[Ln,Qr] =
(n
2
− r
)
Qn+r,

{Qr,Qs} = 2Lr+s +
D

2

(
r2 − 1

4

)
δr+s

(2.48)

Let us now examine the states in the Hilbert space of the theory in the NS sector.
The oscillator ground state or vacuum in this sector is defined by
Closed string (NS,NS)

αµ
m |0, kµ⟩ = ᾱµ

m |0, kµ⟩ = bµr |0, kµ⟩ = b̄µr |0, kµ⟩ = 0, m = 1, 2, ..., r =
1

2
,
3

2
, ...

(2.49)
Open string (NS)

αµ
m |0, kµ⟩ = bµr |0, kµ⟩ = 0, m = 1, 2, ..., r =

1

2
,
3

2
, ... (2.50)

The general state basis |Λ⟩ in this Hilbert space is built up of oscillators acting on
the vacuum [26].
Closed String (NS,NS)

|Λ⟩ =

[
∞∏
n=1

D∏
µ=0

(αµ†
n )λn,µ

][
∞∏

m=1

D∏
ν=0

(ᾱν†
m )λ̄m,ν

] ∞∏
r=1/2

D∏
α=0

(bα†r )Λr,α

 ∞∏
s=1/2

D∏
β=0

(b̄β†s )Λ̄s,β

 |0, k⟩ ,

(2.51)
Open String (NS)

|Λ⟩ =

[
∞∏
n=1

D∏
µ=0

(αµ†
n )λn,µ

] ∞∏
r=1/2

D∏
α=0

(bα†r )Λr,α

 |0, k⟩ . (2.52)

The next step in the quantization procedure is to give the physical state con-
ditions. As in the bosonic case, we impose only half of the constraints on physical
states |Φ⟩ [24].

Closed string (NS,NS)

Qr |Φ⟩ = 0, Q̄r |Φ⟩ = 0 r ≥ 1/2,

Ln |Φ⟩ = 0, L̄n |Φ⟩ = 0 n ≥ 1,

(L0 − a) |Φ⟩ = 0, (L̄0 − ā) |Φ⟩ = 0

(2.53)

Open string (NS)

Qr |Φ⟩ = 0, r ≥ 1/2,

Ln |Φ⟩ = 0, n ≥ 1,

(L0 − a) |Φ⟩ = 0, (L̄0 − ā) |Φ⟩ = 0

(2.54)

where the constants a, ā are required to take into account the ambiguity ordering
in the zero Virasoro constraint.
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In the case of the open string the (NS) sector contains bosonic states, and the
Ramond (R) sector contains fermionic states. For the closed string, the (NS,NS) and
(R,R) sectors give bosons states, while the (R,NS) and (NS,R) sectors give fermions
states [8]. These physical states are consistent in a ten dimensional space-time. For
the space-time dimension D ≤ 10 the states |Φ⟩ which satisfy the relations (2.53)
and (2.54) have positive norm (no-ghost theorem).



Chapter 3

The Tensionless Bosonic String

In chapter 1 we studied the bosonic string with tension T ̸= 0. In this chapter,
we will explore the zero tension limit, in the classical and quantum regime , of the
bosonic string theory. We closely follow [15, 2, 5, 3, 1]. We start from the Hamilto-
nian with Lagrange multipliers to find the bosonic tensionless string action, and we
will describe its symmetries. From the tensionless action, the classical equations of
restriction are obtained, which are promoted to operators in the quantum descrip-
tion to filter out the physical states. Then, we will define the vacuum state for the
tensionless closed string. Finally, through a Bogoliubov transformation, we link the
tensionless vacuum to the usual tensile vacuum, and we will see that it behaves as
an open string vacuum in the ultra relativistic limit.

3.1 Classical Description

3.1.1 Tensionless Action

We want to find an action in the tensionless limit. If we try to take the limit T → 0
in the Nambu-Goto action, because of the square root, derivative terms, and the
tensile dependence in the string coordinates Xµ(τ, σ;T ), it would lead to very long
calculations. A better approach to find such tensionless action is to propose an
equivalent action in which the tension T is explicitly written in a different way.

Let’s consider the formalism for obtaining the equations of motion from the ex-
tended Hamilton’s action principle. That is, for a system withm constrain equations
ϕm(q, p) = 0, the action for such system can be written as [13]

S =

∫
dtL =

∫
dt [q̇npn −Hc − umϕm] , (3.1)

where um(q, p) are Lagrange multipliers, and the equations of motion are given
through arbitrary variations δqn, δpn, δum of the action.

q̇n =
∂Hc

∂pn
+ um

∂ϕm

∂pn
, ṗn = −∂Hc

∂qn
− um

∂ϕm

∂qn
, ϕm = 0. (3.2)

In this way, the constrain equations of the Nambu-Goto action can be used to find
an equivalent action. It is known that there are only two equations of restriction for

38
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this action (1.14):

ϕ1 = P2 + T 2(X ′)2 = 0,

ϕ2 = P .X ′ = 0.
(3.3)

In addition, the canonical Hamiltonian is such that

Hc = ẊµPµ − LNG = −T (
√
−γ)2√
−γ

+ T
√
−γ = 0, (3.4)

as expected for a diffeomorphism invariant theory.
On the other hand, the momentum Pµ can be written in terms of Ẋµ using one

of the relations in (3.2). That is,

Ẋµ =
∂Hc

∂Pµ

+ um
∂ϕm

∂Pµ

= λ
∂ϕ1

∂Pµ

+ ρ
∂ϕ2

∂Pµ

= 2λPµ + ρX ′µ (3.5)

⇒ Pµ =
1

2λ
(Ẋµ − ρX ′µ) (3.6)

Then, following [15] we rewrite the Nambu-Goto action in terms of Ẋµ, X ′µ:

S =

∫
dτdσ

(
ẊµPµ −Hc − λϕ1 − ρϕ2

)
,

=
1

2

∫
dτdσ

1

2λ

[
(Ẋ)2 + ρ2(X ′)2 − 2ρẊ ·X ′ − 4λ2T 2(X ′)2

]
,

= −T
2

∫
dτdσ

√
−hhαβ∂αXµ∂βX

νηµν ,

= S[Xµ, hαβ].

(3.7)

The previous action shows that if hαβ is defined as (3.8), then S can be identified
with the Polyakov action [3]. This is an important result since now we can use
all the symmetries related to this known action to fix the values of the Lagrange
multipliers λ and ρ. The relationship between the worldsheet metric tensor hαβ and
the Lagrange multipliers is given by:

hαβ =

(
−1 ρ
ρ −ρ2 + 4λ2T 2

)
, h = det(hαβ) = − 1

4λ2T 2
. (3.8)

In the tensionless limit T → 0, the action (3.7) and T
√
−hhαβ take the following

form

S =
1

2

∫
dτdσ

1

2λ

[
(Ẋ)2 + ρ2(X ′)2 − 2ρẊ ·X ′

]
, (3.9)

T
√
−hhαβ =

1

2λ

(
−1 ρ
ρ −ρ2

)
. (3.10)

The previous expressions motivate the introduction of a Lorentz vector V α = 1/
√
2λ(1, ρ)

to rewrite the bosonic tensionless action (3.9) as in [15]

S[Xµ, V α] =

∫
dτdσV αV β∂αX

µ∂βX
νηµν . (3.11)
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This new action is invariant under Poincare and diffeomorphism transformations[15].
Here, we will show explicitly the second symmetry. In order to mantain the diffeo-
morphism invariance, V α must behave as a vector density (weighted tensor) under
a reparametrization. That is,

σα → σ̃α(σβ), Ṽ α =

[
det

(
∂σ̃a

∂σb

)]−1/2
∂σα

∂σ̃β
V β(σ̃c) (3.12)

Ṽ αṼ β = J−1/2∂σ
α

∂σ̃a
V a(σ̃)J−1/2∂σ

β

∂σ̃b
V b(σ̃), J = det

(
∂σa

∂σ̃b

)
= J−1V a(σ̃)V b(σ̃)

∂σβ

∂σ̃b

∂σα

∂σ̃a

(3.13)

S =

∫
dτdσṼ α(σ̃)Ṽ β(σ̃)∂αX

µ(σ̃)∂βX
ν(σ̃)ηµν ,

=

∫
dτdσJ−1V a(σ̃)V b(σ̃)

∂σβ

∂σ̃b

∂σα

∂σ̃a
∂αX

µ∂βX
νηµν ,

=

∫
dτ̃dσ̃V α̃(σ̃)V β̃(σ̃)∂α̃X

µ∂β̃X
νηµν ,

= S̃

(3.14)

then, the action is invariant under diffeomorphism transformations.

3.1.2 Equations of Motion and Mode Expansions

The analysis of bosonic tensionless string theory is extended in [3] following [15].
Specifically, the analysis of the equations of motion, its mode expansion and con-
straints are covered. We show here some of the results from [3] with more detail.
Let’s start with the variation of the action δS = 0 defined in (3.11) to find the
equations of motion.∫

dτdσ2δV α(V β∂αX
µ∂βX

νηµν) + 2V αV βδ(∂αX
µ)∂βX

νηµν = 0,

=

∫
dτdσδV α(V β∂αX

µ∂βX
νηµν)− δXµ∂α(V

αV β∂βX
νηµν),

(3.15)

⇒ ∂α
(
V αV β∂βX

µ
)
= 0, V β∂αX

µ∂βX
νηµν = 0, (3.16)

where integration by parts and periodic boundary conditions were applied in (3.15).
In order to obtain simpler motion equations, symmetries must be taken into account.
In the conformal gauge, hαβ = ηαβ and so ρ = 0 in (3.8). In addition, the tensionless
action is invariant under diffeomorphism, so it’s possible to take the fixed gauge
V α = (υ, 0) where υ is a constant [15]. This gauge corresponds to the conformal
gauge in the tensile theory. Then, using this gauge the motion equations (3.16) are
such that

Ẍµ = 0, Ẋ2 = 0, Ẋ ·X ′ = 0. (3.17)
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For a particular Lorentz observer X0 = τ , then the above equations imply the
following expressions:

Ẍµ = 0, ⃗̇X2 = 1, ⃗̇X.X⃗ ′ = 0. (3.18)

Therefore, the motion of the string is restricted:

1. Every point of the string moves with speed of light.

2. Longitudinal oscillations are forbidden.

The solution for Ẍµ = 0 can be calculated by noting that for a closed string the
periodicity condition Xµ(τ, σ + 2π) = Xµ(τ, σ) implies the existence of a Fourier
series such that

Xµ(τ, σ) = xµ + Ãµ
0σ +

∑
n∈Z

Cµ
n(τ)e

−inσ. (3.19)

Since Ẍµ = 0, then Cµ
n = Ãµ

n+ B̃
µ
nτ . Furthermore, Xµ(τ, σ+2π) = Xµ(τ, σ) implies

Ãµ
0 = 0. It’s convenient to choose Ãµ

n = i
√
2c′Aµ

n/n and B̃µ
n =

√
2c′nBµ

n/n for n ̸= 0
and Cµ

0 =
√
2c′Bµ

0 . Then, [3]

Xµ(τ, σ) = xµ +
√
2c′Bµ

0 τ + i
√
2c′
∑
n̸=0

1

n
(Aµ

n − inτBµ
n)e

−inσ. (3.20)

The constrain equations in (3.17) can be written in terms of oscillator modes, then
they translate to:

Ẋ2 = 2c′
∑
m,n

Bn ·Bme
−iσ(m+n) = 2c′

∑
m,n

B−n ·B−me
iσ(m+n),

= 2c′
∑
m,k

B−m ·Bm+ke
−ikσ = 4c′

∑
n∈Z

Mne
−inσ = 0,

(3.21)

X ′.Ẋ = 2c′
∑
n,m

(An − inτBn) ·Bme
−iσ(n+m) = 2c′

∑
n,m

(A−m − inτB−m) ·Bm+ne
−inσ,

= 4c′
∑
n∈Z

(Ln − inτMn)e
−inσ = 0,

(3.22)

where we have defined Ln and Mn as

Ln =
1

2

∑
m∈Z

A−m ·Bm+n, Mn =
1

2

∑
m∈Z

B−m ·Bm+n. (3.23)

Therefore, from (3.21) and (3.22), we arrive to the constrain equations [3]

Mn = 0, Ln = 0, ∀n ∈ Z. (3.24)
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3.1.3 Generators

A residual symmetry that leaves the gauge fixed action invariant remains. In order to
find it, let’s consider the infinitesimal transformation of diffeomorphism σα → σα+ϵα

in (3.12):

Ṽ α = (1 + ∂αϵ
α)1/2

(
δαβ + ∂βϵ

α
) (
V β + ϵa∂aV

β
)
,

= V α + V β∂βϵ
α + ϵβ∂βV

α +
1

2
V α∂βϵ

β.
(3.25)

By requiring invariance, δV α = Ṽ α − V α = 0, and using the gauge V α = (υ, 0) then

− ϵ̇0 +
1

2
ϵ̇0 +

1

2
(ϵ1)′ = 0,

− υϵ̇1 = 0.
(3.26)

The previous system of equations is only satisfied if ϵα = (f ′(σ)τ + g(σ), g(σ)),
where f(σ), g(σ) are arbitrary well behaved functions. Now, it’s possible to see the
effect of such transformations on coordinates (or any function):

Xµ(τ + ϵ0, σ + ϵ1) = Xµ(τ, σ) + ϵα∂αX
µ(τ, σ),

= [1 + L(f) +M(g)]Xµ(σ, τ),
, (3.27)

where L(f) = f ′(σ)τ∂τ + f(σ)∂σ and M(g) = g(σ)∂τ . These operators satisfy the
following commutation relations[15]:

[L(f1), L(f2)] = L(f1f
′
2 − f ′

1f2),

[L(f),M(g)] =M(fg′ − f ′g),

[M(g1),M(g2)] = 0.

(3.28)

In terms of Fourier modes, f(σ) =
∑
ane

inσ, g(σ) =
∑
bne

inσ, then it holds that

L(f) =
∑

ane
inσ(∂σ + inτ∂τ ) = −i

∑
anLn, Ln = ieinσ(∂σ + inτ∂τ )

M(g) =
∑

bne
inσ∂τ = −i

∑
bnMn, Mn = ieinσ∂τ

(3.29)

Substituting the above relations into the commutation relations (3.28) the following
commutation expressions are obtained:

[Lm, Ln] = (m− n)Lm+n,

[Lm,Mn] = (m− n)Mm+n,

[Mm,Mn] = 0.

(3.30)

This algebra and the generators can also be derived from a contraction of the classical
Virasoro algebra where the constants c, c̄ (central charges) are zero for the closed
string. To prove the above statement, let’s consider the classical Virasoro generators
Ln, L̄m in the following representation [1]

Ln = ieinω∂ω, L̄n = ieinω̄∂ω̄, (3.31)

where ω = τ + σ and ω̄ = τ − σ. Then,
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Ln − L̄−n = ieinσ[i sin(nτ)∂τ + cos(nτ)∂σ],

Ln + L̄−n = ieinσ[cos(nτ)∂τ + i sin(nτ)∂σ]
(3.32)

If we perform the Carrolian or ultrarelativistic limit c = ϵ→ 0 then τ → ϵτ, σ → σ
in Ln − L̄−n and ϵ(Ln + L̄−n), then

Ln − L̄−n = ieinσ
(
iϵnτ

∂

ϵ∂τ
+ ∂σ

)
= Ln,

ϵ(Ln + L̄−n) = ieinσ
(
ϵ
∂

ϵ∂τ
+ ϵ2τn∂σ

)
,

= ieinσ∂τ =Mn.

(3.33)

This result sugests that the tensile theory in the ultrarelativistic limit could be
related to the tensionless theory .

3.1.4 Limit from the Tensile String

In order to relate the tensile, in the aforementioned limit, and tensionless theory, we
follow [3]. We consider the equation of motion from the tensile theory (1.38) and
the constrain equations (1.40) in the ultra-relativistic limit c = ϵ→ 0:

Ẍµ − ϵ2X ′′µ = 0, Ẋ ·X ′ = 0, Ẍ2 + ϵ2X ′2 = 0, (3.34)

In addition, the solution to the wave equation for the closed string (1.43) in the
ultra-relativistic limit is such that

Xµ(τ, σ) = xµ + 2
√
2c′

√
ϵαµ

0τ

+ i
√
2c′
∑
n̸=0

1

n

[
αµ
n − ᾱµ

−n√
ϵ

− inτ
√
ϵ(αµ

n + ᾱµ
−n)

]
e−inσ (3.35)

where c′ = 1/2πT . As can be seen, the solution in this limit is of order O(ϵ−1/2),
then ϵ2X ′′µ and ϵ2X ′2 vanish in the limit (3.34) . Therefore,

Ẍµ = 0, Ẋ2 = 0, Ẋ ·X ′ = 0. (3.36)

The equations (3.36) reproduce the previous result from tensionless theory (3.17).
Thus, the solutions (3.20) and (3.35) must coincide. A comparison between these
solutions reveals that [3]

Aµ
n =

1√
ϵ
(αµ

n − ᾱµ
−n), Bµ

n =
√
ϵ(αµ

n + ᾱµ
−n). (3.37)

In this way, the algebra of Aµ
n, B

µ
n can be determined using the Poisson brackets

relations of the tensile closed string (1.48):

{Aµ
m, B

ν
n} =, { 1√

ϵ
(αµ

m − ᾱµ
−m),

√
ϵ(αν

n + ᾱν
−n)},

= {αµ
m, α

ν
n} − {ᾱµ

−m, ᾱ
ν
−n},

= −2imδm+n,0η
µν

(3.38)
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{Aµ
m, A

ν
n} = {Bµ

m, B
ν
n} = 0 (3.39)

As can be seen in (3.38) and (3.39) these one are not the algebra of harmonic
oscillator modes (1.48).

3.2 Quantum Description

3.2.1 2d Galilean Conformal Algebra

If we promote the classical tensionless theory of closed string through canonical
quantization { } → −i[ ], it is necessary to consider nonzero central charges
c, c̄ as a consequence of non commutativity of some operators αn, ᾱn in Virasoro
generators. Thus, we consider Lm, L̄n that satisfy the following relations:

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0,

[Lm, L̄n] = 0.

(3.40)

These Virasoro operators replace the classical operators in the expressions (3.33) to
extend the algebra (3.30) [1] :

Ln = Ln − L̄−n, Mn = ϵ(Ln + L̄−n) (3.41)

[Lm,Mn] = [Lm − L̄−m, ϵ(Ln + L̄−n)]

= ϵ
(
(m− n)Lm+n +

c

12
m(m2 − 1)δm+n,0 − (−m+ n)L̄−m−n +

c̄

12
m(m2 − 1)δ−m−n,0

)
= ϵ(m− n)(Lm+n + L̄−m−n) + ϵ

c+ c̄

12
m(m2 − 1)δm+n,0

=Mm+n +
cM
12
m(m2 − 1)δm+n,0.

(3.42)

Other combinations of commutators are obtained in a similar way. The generators
form the 3d Bondi-Metzner-Sachs algebra (BMS3) or equivalently the 2d Galilean
Conformal Algebra (2d-GCA) [1]

[Lm, Ln] = (m− n)Lm+n +
cL
12
m(m2 − 1)δm+n,0,

[Lm,Mn] = (m− n)Mm+n +
cM
12
m(m2 − 1)δm+n,0,

[Mm,Mn] = 0,

(3.43)

where cM = ϵ(c+ c̄) and cL = c− c̄. For a well defined string theory c = c̄ = D, then
cL, cM vanish in the ultra relativistic limit . If the central charges are not zero, it is
possible to think of tensionless strings which are not derived as a limit from tensile
string theories and are fundamental objects in their own right [3].
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3.2.2 Quantum Constrains

The quantum version of constraints (3.24) allows to restrict the Hilbert space to
filter out the physical states. The most general way to impose this condition is
demanding all the matrix elements of the constraint acting on physical states to
vanish.

⟨phys|Ln|phys⟩ = 0 = ⟨phys|Mn|phys⟩ , ∀n ∈ Z. (3.44)

There are several ways to impose the constrains . Specifically, they can be splitted
out in three different cases[5]:

Fn |phys⟩ = 0, n > 0

Fn |phys⟩ = 0, n ̸= 0

Fn |phys⟩ ≠ 0 ∀n ∈ Z.
(3.45)

Since the zero components of A0
m, B

0
n could have ordering ambiguities, additional

constants must be considered: F0 =: F0 : −aF . In order to impose the physical
conditions, the vacuum state is considered as a physical state with respect to the
constraints. According to the relations (3.45), there are nine possible ways to obtain
vacuums |0, kµ⟩, and restrict the Hilbert space. However, in [5], it is proved that
only four vacuums are physically consistent . The main three cases are given by 1

Lm |0, kµ⟩ = 0, Mn |0, kµ⟩ = 0, m > 0, n > 0 (3.46)

Lm |0, kµ⟩ ≠ 0, Mn |0, kµ⟩ = 0, m ∈ Z, n ̸= 0 (3.47)

Lm |0, kµ⟩ ≠ 0, Mn |0, kµ⟩ ≠ 0, m, n ∈ Z. (3.48)

Because we are interested in the evolution of the tensile theory under the ten-
sionless limit, only one of the physical vacuum is considered: the induced vacuum.
This is given by the relation (3.47) and we denote it as

|0, kµ⟩ = |0, kµ⟩I , (3.49)

Therefore, for m,n ∈ Z

(Lm − aLδm,0) |0, kµ⟩I =
∑
s∈Z

A−s ·Bs+m |0, kµ⟩I ̸= 0,

(Mn − aMδn,0) |0, kµ⟩I =
∑
s∈Z

B−s ·Bs+n |0, kµ⟩I = 0.
(3.50)

Here, the constants aM , aL have been added to consider ordering ambiguities in the
zero component of the operator Mn, Lm. In terms of oscillator modes it holds that

Aµ
m |0, kµ⟩I ̸= 0, Bµ

n |0, kµ⟩I = 0, Bµ
0 |0, kµ⟩I = b0 |0, kµ⟩I . (3.51)

1The remaining case occurs when kµ = 0 for all n,m.
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3.2.3 Induced Representation

According to [2], the induced vacuum (3.51) can be settled in a subalgebra of BMS3.
Following this work, let’s consider |h, h̄⟩ as the physical states for the closed string
in the tensile theory. Then, the Virasoro operators over these states satisfy the
following relations:

L0 |h, h̄⟩ = h |h, h̄⟩ , L̄0 |h, h̄⟩ = h̄ |h, h̄⟩ , (3.52)

Ln |h, h̄⟩ = 0 = L̄n |h, h̄⟩ , ∀n > 0. (3.53)

In the ultrarelativistic limit, the Virasoro operators can be expressed in terms of
the operators of the Galilean Conformal Algebra 2D through inverting the relation
(3.41). So that,

L0 |h, h̄⟩ =
1

2

(
L0 +

M0

ϵ

)
|h, h̄⟩ = h |h, h̄⟩ ,

L̄0 |h, h̄⟩ =
1

2

(
M0

ϵ
− L0

)
|h, h̄⟩ = h̄ |h, h̄⟩ .

(3.54)

If the expressions (3.54) are subtracted and added, then

M0 |h, h̄⟩ = ϵ(h+ h̄) |h, h̄⟩ ,
L0 |h, h̄⟩ = (h− h̄) |h, h̄⟩ ,
Mn |h, h̄⟩ = ϵ(Ln + L̄−n) |h, h̄⟩ = 0.

(3.55)

If we assume that in the ultrarelativistic limit, the Virasoro operators map as |h, h̄⟩ =
|M, s⟩ when ϵ→ 0, the representations become induced representations of BMS3 in
this limit [2].

M0 |M, s⟩ =M |M, s⟩ , L0 |M, s⟩ = s |M, s⟩ , Mn |M, s⟩ = 0 n ̸= 0 (3.56)

whereM = ϵ(h+h̄) and s = h−h̄. This defines a 1D representation of the subalgebra
of BMS3 spanned by {L0,Mn, cL; cM}. For |M, s⟩ = |0, kµ⟩I , the induced vacuum is
recovered in this representation as can be recognized in (3.50) or (3.51).

3.2.4 Mass Spectrum

Other aspects of bosonic tensionless strings such as the mass have been studied in
[3] and [5]. In particular, it has been shown that it is a theory of massless particles
of higher spins. Here, we present a summary of the principal ideas.

The physical Hilbert space in which we are interested is built on the vacuum
state of the tensile string theory in the limit ϵ → 0. In order to find the mass
spectrum in this limit, the momentum pµ is considered in that limit.
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pµ =

∫ 2π

0

dσPµ, Pµ = lim
ϵ→0

Ẋµ

2πα′ =
Ẋµ

2πc′

=
1

2πc′

∫ 2π

0

dσ

(
√
2c′Bµ

0 +
√
2c′
∑
n̸=0

Bµ
ne

−inσ

)
,

=

√
2

c′
Bµ

0 .

(3.57)

Also, it is necessary to note [Bµ
m, B

ν
n] = 0, thus there is no ordering ambiguity in

the operator M0 and so aM = 0. Therefore, for a state |Φ⟩ it holds that M0 |Φ⟩ = 0.
Therefore, the mass operator acting on the state is given by [3]

m2 |Φ⟩ = −pµpµ |Φ⟩ = − 2

c′
B0 ·B0 |Φ⟩ =

2

c′

(∑
m̸=0

B−m ·Bm

)
|Φ⟩ ,

=
2

c′

(∑
m ̸=0

ϵηµν(α
µ
−m + ᾱµ

m)(α
ν
−m + ᾱν

−m)

)
αµ1
−n1

...αµN
−nN

ᾱν1
−m1

...ᾱνN
−mN

|0, kµ⟩α

= 0.

(3.58)

In the limit ϵ goes to zero, and makes all masses vanish on the induced vacuum
|0, kµ⟩α = |0, kµ⟩I . In addition, we would be able to generate fields of arbitrary spin
which are massless. So, it has been shown that the tensionless limit of string theory
generates a theory of massless higher spins.

The tensionless vacuum mass can also be obtained using the oscillator modes
operators (3.51) [3, 5]:

M0 |0, kµ⟩I = 0 =
∑
m∈Z

B−m ·Bm |0, kµ⟩I = |0, kµ⟩I ,

=

(∑
m̸=0

B−m ·Bm +B2
0

)
|0, kµ⟩I ,

= B2
0 |0, kµ⟩I = 0

(3.59)

Therefore, the mass is given by

m2 |0, kµ⟩I = −pµpµ |0, kµ⟩I = − 2

c′
B2

0 |0, kµ⟩I = 0. (3.60)

3.2.5 Induced Vacuum

Now, we will focus our attention on the evolution of the tensile vacuum as we take
the tension to zero. First, we will start by finding the tensionless vacuum under the
ideas presented in [2]. Then, we link the tensile vacuum in the ultrarelativistic limit
with the tensionless vacuum following [2] and [5].

Recalling the physical constrains in (3.51), and noting that the commutativ-
ity of Bµ

n in M0, then the tensionless vacuum or induced vacuum is given by
Mn |0, kµ⟩I = 0, ∀n ∈ Z. In terms of the oscillator modes, it translates to



48

Bµ
n |0, kµ⟩I = 0, ∀n ∈ Z. This vacuum expression can be written in terms of

the new modes C, C̃ defined as [2]

Cµ
n =

1

2
(Aµ

n +Bµ
n), C̃µ

n =
1

2
(−Aµ

−n +Bµ
−n). (3.61)

In this way, Bµ
n |0, kµ⟩I = 0 = (Cµ

n + C̃µ
−n) |0, kµ⟩I , for every integer n. These

operators form the algebra of two decoupled harmonic oscillators, i.e.

[Cµ
m, C

ν
n] = mδm+nη

µν [C̃µ
m, C̃

ν
n] = mδm+nη

µν . (3.62)

Furthermore, using (3.37) the tensile and tensionless raising and lowering operators
are related by

Cµ
n =

1

2

(√
ϵ+

1√
ϵ

)
αµ
n +

1

2

(√
ϵ− 1√

ϵ

)
ᾱµ
−n,

C̃µ
n =

1

2

(√
ϵ− 1√

ϵ

)
αµ
−n +

1

2

(√
ϵ+

1√
ϵ

)
ᾱµ
n

(3.63)

As can bee seen in (3.63), Cn, C̃n contain mixed tensile operators, so that the
vacuum in which C, C̃ act is different from the usual tensile theory |0, kµ⟩α. The
vacuum |0, kµ⟩c is defined by

Cµ
n |0, kµ⟩c = 0 = C̃µ

n |0, kµ⟩c , ∀n > 0. (3.64)

This new vacuum and its excitations can be used as a basis to build the induced
vacuum solution to the equation (Cµ

n + C̃µ
−n) |0, kµ⟩I = 0 , as was stated in [2].

|0, kµ⟩I = N
∞∏
n=1

exp

(
− 1

n
C−n · C̃−n

)
|0, kµ⟩c . (3.65)

We can obtain this vacuum solution also by noting that (3.65) can be thought as
a generalization of the squeeze state for a harmonic oscillator. For a given ground
state |0⟩1 of a harmonic oscillator with Hamiltonian H1 that change instantaneously

to H2, the ground state can be written as |0⟩1 = e−
1
2
tanhβa†2a

†
2 |0⟩2 [25]. Taking into

account this fact, we can try to make an ansatz for the induced vacuum considering
two decoupled set of oscillators Cµ†

n , C̃
ν†
n :

|0, kµ⟩I = NeΓ |0, kµ⟩c , Γ = exp

(
∞∑
n=1

f(n)C†
n · C̃†

n

)
. (3.66)

We substitute the ansatz (3.66) into the equation Bµ
n |0, kµ⟩I = 0 to obtain

(Cn + C̃†
n) |0, kµ⟩I = 0,

Cne
Γ |0, kµ⟩c + C̃†

ne
Γ |0, kµ⟩c = 0,

(3.67)

[Cn, e
Γ] |0, kµ⟩c + C̃†

ne
Γ |0, kµ⟩c = 0, (3.68)

After using the identity [A, eB] = [A,B]eB if [[A,B], B] = 0, we obtain[
Cn,

∞∑
n=1

f(n)C†
n · C̃†

n

]
=

∞∑
m=1

f(m)nδnmC̃
†
m = f(n)nC̃†

n (3.69)
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[
f(n)nC̃†

n,
∞∑

m=1

f(m)C†
m · C̃†

m

]
= 0 (3.70)[

Cn,
∞∑

m=1

f(m)C†
m · C̃†

m

]
eΓ |0, kµ⟩c + C̃†

ne
Γ |0, kµ⟩c = 0,

=

(
∞∑

m=1

f(m)[Cn, C
†
m]C̃

†
m + C†

n

)
eΓ |0, kµ⟩c = 0,

=

(
∞∑

m=1

f(m)nδnmη
µνηνλC̃

†
m + C†

n

)
eΓ |0, kµ⟩c = 0,

= (f(n)n+ 1)C̃†
ne

Γ |0, kµ⟩c = 0.

(3.71)

Then, f(n) = −1/n and the ansatz corresponds to the vacuum solution (3.65).
Recalling that Bµ

n |0, kµ⟩I = (Cµ
n + C̃µ

−n) |0, kµ⟩I = 0, then the induced vacuum
is a Neumann boundary state, as was shown in (1.86). Therefore, the vacuum state
(3.65) reflects the characteristics of an open string vacuum. This is a remarkable
theoretical physics phenomena shown in [2].

On the other hand, we can obtain an explicit relation between the vacuum with
Neumann boundary conditions and the tensile string vacuum in the ultrarelativistic
limit by noting a Bogoliubov transformation in the the relations (3.63) parameterized
by [2]

cosh θ =
1

2

(√
ϵ+

1√
ϵ

)
, sinh θ =

1

2

(√
ϵ− 1√

ϵ

)
. (3.72)

So, the αn = an
√
n oscillators can be obtained as an inverse Bogoliubov transfor-

mation of the Cn = bn
√
n oscillators.

aµn = cosh θbµn − sinh θb̃µ†n ,

ãµn = − sinh θbµ†n + cosh θb̃µn
(3.73)

We can prove that, in addition, the generator A related to such transformation can
be used to express the creation-annihilation operators in terms of exponential maps
. That is,

S = eA, A =
N∑

n=1

θb†n · b̃†n − θbn · b̃n, N → ∞ (3.74)

eAbne
−A = bn + [A, bn] +

1

2!
[A, [A, bn]] +

1

3!
[A, [A, [A, bn]]] + ... (3.75)

[A, bλn] =
N∑

m=1

θ{[b†mb̃†m, bn]− θ[bmb̃m, bn]

=
N∑

m=1

θb̃m · [b†m, bn] = −b̃µ†n ηµνηνλθ

= −θb̃λ†n .

(3.76)

In general, for an odd integer or even k commutators, we will obtain the following
results in the commutators: k odd −θkb̃†n and k even θkbn. For example,

[A, [A, bn]] = θ2bn, [A, [A, [A, bn]]] = −θ3bn. (3.77)
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Therefore,

eAbne
−A = bn − θb̃†n +

θ2

2!
bn −

θ3

3!
b̃†n +

θ4

4!
bn + ...

= bn

∞∑
k=0

θ2k

(2k)!
− b̃†n

∞∑
k=0

θ2k+1

(2k + 1)!
,

= bn cosh θ − b†n sinh θ,

= an

(3.78)

In the same way, eAb̃ne
−A = ãn = − sinh θb†n + cosh θb̃n. Therefore, as was shown in

[2] and [5], the oscillators modes can be written as

aµn = SbnS
−1 = cosh θbµn − sinh θb̃µ†n ,

ãµn = Sb̃nS
−1 = − sinh θbµ†n + cosh θb̃µn.

(3.79)

Therefore, we can use the operator A to relate the two vacuums through the squeeze
operator S [2]:

|0, kµ⟩α = S |0, kµ⟩c . (3.80)

Here, we show a method to simplify (3.80) based on the properties of the algebra
su(1, 1) (appendix A). Let’s define the operators K±, K0

K+ =
N∑

n=1

b†n · b̃†n, K− =
N∑

n=1

bn · b̃n, K0 =
1

2

N∑
n=1

(b†nbn + b̃†nb̃n + I) (3.81)

The operators (3.81) satisfy the algebra of the su(1, 1) group.

[K−, K+] =
∑
n,m

(bmb̃mb
†
nb̃

†
n − b†nb̃

†
nbmb̃m),

=
∑
n,m

(b†nbmb̃mb̃
†
n + δnmb̃mb̃n − b†nb̃

†
nbmb̃m),

=
∑
n,m

(b†nbmδnm + δnmb̃mb̃
†
n),

=
N∑

n=1

(b†nbn + b̃†nb̃n + I) = 2K0

(3.82)

[K0, K+] =
1

2

∑
n,m

(b†nbn + b̃†nb̃n + I)b†mb̃†m − b†mb̃
†
m(b

†
nbn + b̃†nb̃n + I),

=
1

2

∑
n,m

b†nb
†
mbnb̃

†
m + b†nb̃

†
mδnm + b†mb̃

†
mb̃

†
nb̃n − b†mb̃

†
mb

†
nbn − b†mb̃

†
mb̃

†
nb̃n,

=
N∑

n=1

b†nb̃
†
m = K+

(3.83)

[K0, K−] = [K0, K+]
† = −K− (3.84)
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Then, by virtue of the properties of the su(1, 1) algebra (Appendix A), S can be
written as S = exp(α+K+ + α−K−).Then, the vacuum relation (3.80) translates to

|0, kµ⟩α = S |0, kµ⟩c = exp(ωK0 + α+K+ + α−K−) |0, kµ⟩c ,
= eγ+K+eln(γ0)K0eγ−K− |0, kµ⟩c ,
= eγ+K+eln(γ0)K0 |0, kµ⟩c ,

= exp

(
tanh θ

N∑
n=1

b†nb̃
†
n

)
exp

(
N

2
ln(cosh(θ)−2) +

1

2

N∑
n=1

b†nbn + b̃†nb̃n

)
|0, kµ⟩c

= cosh θ−N exp

(
tanh θ

N∑
n=1

b†n · b̃†n

)
|0, kµ⟩c ,

=

(
1

cosh θ

)N N∏
n=1

exp

[
tanh θ

n
C†

n · C̃†
n

]
|0, kµ⟩c

(3.85)

where we have used the fact that [b†n · b̃†n, b†m · b̃†m] = 0 for n ̸= m. In the infinite limit
of oscillators N → ∞,

|0, kµ⟩α =

(
1

cosh θ

)1+1+... ∞∏
n=1

exp

[
tanh θ

n
C−n · C̃−n

]
|0, kµ⟩c ,

=
√
cosh θ

∞∏
n=1

exp

(
tanh θ

n
C−n · C̃−n

)
|0, kµ⟩c ,

(3.86)

where the regularization 1+ 1+ 1+ ...∞ = ζ(0) = −1/2 was used in the last result.
For ϵ = 1, the tensile vacuum is recovered in (3.86), i.e. |0, kµ⟩α = |0, kµ⟩C . In the
extreme ultra relativistic limit ϵ = 0,

lim
ϵ→0

√
cosh θ = N, lim

ϵ→0
tanh θ = −1. (3.87)

⇒ |0, kµ⟩α =
√
cosh θ

∞∏
n=1

exp

(
− 1

n
C−n · C̃−n

)
|0, kµ⟩c (3.88)

In this way, we have reached the result (3.88) shown in [2]. Hence, the closed tensile
string vacuum |0, kµ⟩α evolves into the induced vacuum |0, kµ⟩I in the extreme limit,
as can be seen by comparison with (3.65). Since this vacuum is also a Neumann
boundary state in this limit, thus the closed string vacuum behaves like an open
string free to move in all directions.



Chapter 4

The Tensionless Superstring

4.1 Classical Description

4.1.1 Tensionless Superstring Action

Following the procedure outlined in [17], one can supersymmetrise the tensionless
bosonic string. In the tensionless regime, the usual worldsheet metric hαβ vanishes
in the tensionless limit and is replaced by the vector densities V αV β, reflecting the
degeneration of the metric. The action for the tensionless limit of the superstring is
given by

S[V α, Xµ, ψµ] =

∫
dσ2[V αV β∂αX · ∂βX + ψ̄ · ρα∂αψ], (4.1)

where the fields ψµ are two-dimensional Majorana spinors denoted as

ψµ =

(
ψµ
0

ψµ
1

)
. (4.2)

In order to specify the ρα matrices, it is necessary to note the consequences of
the metric degeneration of the worldsheet in the Clifford Algebra. As was discussed
in the tensionless bosonic theory, the worldsheet metric becomes degenerate and it
is replaced by a product of two vector densities

T
√
−hhαβ → V αV β. (4.3)

In light of the change given in (4.3), the Clifford Algebra characterized by {ρα, ρβ} =
2ηαβ needs to be modified. The metric ηαβ is replaced by the product of the vector
densities V αV β (subject to a gauge choice of V α = (1, 0) . Therefore, the tensionless
Clifford Algebra is determined by [17]

{ρα, ρβ} = 2V αV β. (4.4)

Then, the relation (4.4) reduces to the following matrix equations:

(ρ0)2 = 1, (ρ1)2 = O, ρ0ρ1 + ρ1ρ0 = O (4.5)

A set of matrices that satisfies the relations (4.5) is such that

ρ0 =

(
1 0
0 −1

)
, ρ1 =

(
0 0
1 0

)
(4.6)

52
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For the previous matrices (4.6), the supersymmetrised action for a fundamental
tensionless string can be written as [7]

S =

∫
dσ2

[
Ẋ2 + i(ψ0 · ψ̇0 + ψ1 · ψ̇1 − ψ1 · ψ′

0)
]
. (4.7)

4.1.2 Symmetries

Just like in the bosonic case, the tensionless superstring action is invariant under
local diffeomorphisms and supersymmetry transformations [7].
-Diffeomorphism invariance

δXµ = ξα∂αX
µ,

δψµ
0 = ξα∂αψ

µ
0 +

1

4
∂αξ

αψµ
0 ,

δψµ
1 = ξα∂αψ

µ
1 +

1

4
∂αξ

αψµ
1 +

1

2
∂1ξ

0ψµ
0

(4.8)

-Supersymmetry invariance

δψµ
0 = −ϵ1Ẋµ,

δψµ
1 = −ϵ0Ẋµ − ϵ0Xµ′,

δXµ = i(ϵ0ψµ
0 + ϵ1ψµ

1 )

(4.9)

By requiring the invariance of δSξ = 0 and δSϵ = 0, ξα, ϵα and ψ must satisfy the
following conditions [7]:

∂0ξ
0 = ∂1ξ

1, ∂0ξ
1 = 0,

∂0ϵ
1 = ∂0ϵ

0 = ∂1ϵ
1 = ∂1ϵ

0,

∂0ϵ
0 = ∂0ϵ

1 = 0

(4.10)

ψµ
0 = ψµ∗

1 (4.11)

4.1.3 Equations of Motion and Mode Expansions

The equations of motion obtained by varying (4.1) with respect to Xµ and ψµ can
be expressed as

Ẍµ = 0, ψ̇µ
0 = 0, ψ̇µ

1 = ψ′µ
0 . (4.12)

The solutions to the equations (4.12) in the (NS,NS) sector are of the following form

Xµ(τ, σ) = xµ +
√
2c′Bµ

0 τ + i
√
2c′
∑
n ̸=0

1

n
(Aµ

n − inτBµ
n)e

−inσ,

ψµ
0 (τ, σ) =

√
c′
∑

r∈Z+1/2

βµ
r e

−irσ, ψµ
1 (τ, σ) =

√
c′
∑

r∈Z+1/2

[γµr − irτβµ
r ]e

−irσ.

(4.13)

Here, we have already imposed the closed string boundary conditions on Xµ and
ψµ in (4.13). As observed, the field Xµ follows the same mode expansion presented
in (3.20), while the components of the field ψµ is expanded in terms of fermionic
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oscillator modes βµ
r , γ

µ
r . From (2.39) and (4.13), we get the non-zero commutations

of the fermionic modes

{γµr , βν
s } = −2iδr+sη

µν . (4.14)

We note that the commutation relations of the oscillators are not in a simple har-
monic oscillator basis just as it happened with the tensionless bosonic case in (3.38).

We continue with the classical analysis focusing on the constraint equations for
the tensionless superstring. Similarly to the tensile superstring case discussed in
the chapter 2, the constraint equations can be worked out by finding the compo-
nents of the energy-momentum tensor and the supercurrent from the action. These
components are given by [7]

Ẋ ·X ′ +
1

4
(ψ′

0 · ψ1 + ψ0 · ψ′
1) = 0, Ẋ2 +

i

2
ψ′
0 · ψ0 = 0 (4.15)

ψ0 ·X ′ + ψ1 · Ẋ = 0, ψ0 · Ẋ = 0. (4.16)

Using the mode expansions (4.13) in the constraint equations (4.15) and (4.16), then
they translate to the following expressions

Ẋ ·X ′ +
1

4
(ψ′

0 · ψ1 + ψ0 · ψ′
1) = 4c′

∑
n∈Z

(Ln − inτMn)e
−inσ = 0,

Ẋ2 +
i

2
ψ′
0 · ψ0 = 4c′

∑
n∈Z

Mne
−inσ = 0,

ψ0 ·X ′ + ψ1 · Ẋ = 4c′
∑

r∈Z+1/2

(Gr − irτHr)e
−irσ = 0,

ψ0 · Ẋ = 4c′
∑

r∈Z+1/2

Hre
−irσ = 0,

(4.17)

where the above terms have been defined as

Ln =
1

2

∑
m

A−m ·Bm+n +
1

4

∑
r

(2r + n)(β−r · γr+n + γ−r · βr+n),

Mn =
1

2

∑
m

B−m ·Bm+n +
1

4

∑
r

(2r + n)β−r · βr+n,

Gr =
1

2

∑
m

(A−m · βm+r +B−m · γm+r),

Hr =
1

2

∑
m

(B−m · βm+r).

(4.18)

4.1.4 Super Galilean Conformal Algebra

The classical algebra spanned by the generators (4.18) is known as the classical Super
Galilean Conformal Algebra (Inhomogenous) or SGCAI . By using the brackets
relations of the oscillators ( 3.38) and (4.14), the resulting brackets of the generators
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are the following [7]:

{Lm, Ln} = −i(m− n)Lm+n, {Lm,Mn} = −i(m− n)Mm+n,

{Lm, Gr} = −i
(m
2
− r
)
Gm+r, {Mm, Gr} = −i

(m
2
− r
)
Hm+r.

{Lm, Hr} = −i
(m
2
− r
)
Hm+r, {Gr, Gs} = −2iLr+s,

{Gr, Hs} = −2iMr+s.

(4.19)

The SGCAI is a generalization of the tensionless bosonic algebra or GCA shown in
(3.30). This algebra can also be derived by applying an inhomogeneous contraction
to the super Virasoro generators shown in (2.36), alongside the contraction in (3.41).
The inhomogeneous contraction can be written as [7]

Gr = Qr − iQ̄−r, Hr = ϵ(Qr + iQ̄−r) (4.20)

However, from the point of view of the algebra, there are several ways that one could
contract the fermionic generators and generalize the GCA. Another consistent alge-
bra is the so called Super Galilean Conformal Algebra (Homogeneous) or SGCAH .
In this case, the SGCAH can be obtained by a contraction on the super Virasoro
generators which scale both in a similar manner [4]. The resulting algebra is less
richer than the SGCAI .

4.1.5 Limit from the Tensile Superstring

Now, we want to find a relation between the tensionless superstring theory and the
tensile superstring theory in the UR limit. One way is to reproduce the tensionless
action (4.7) starting from the RNS superstring action (4.1) in the UR limit. In order
to ensure that our action does not blow up while taking the UR limit, the fermionic
degrees of freedom ψµ must be scaled.

First, we make a change of variables in the fermionic fields ψµ
+ and ψµ

− given by

ψµ
0 =

1√
2
(ψµ

+ + iψµ
−), ψµ

1 =
1√
2
(ψµ

+ − iψµ
−) (4.21)

Second, we apply the inhomogeneous scaling to the new fields defined in (4.21). The
scaling can be expressed as [7]:

ψµ
0 → ϵψµ

0 ,

ψµ
1 → ψµ

1

(4.22)

The scaling (4.22) together with the UR limit give us the form of the action for the
Inhomogeneous tensionless superstring:

S =

∫
d2σ[Ẋ2 + i(ψ0 · ψ̇1 + ψ1 · ψ̇0 − ψ0 · ψ′

0)] (4.23)

This is same action (4.7) provided we use the equation (4.11). Therefore, the equa-
tions of motion are also the same in the UR limit. Now we can apply the inhomo-
geneous scaling on the mode expansions of the tensile string [7]. That is,

ψµ
0 =

√
c′
∑
r

√
ϵ(bµr + ib̃µ−r)e

−irσ,

ψµ
1 =

√
c′
∑
r

[
bµr − ib̃µ−r√

ϵ
− irτ

√
ϵ(bµr + ib̃µ−r)

]
e−irσ.

(4.24)
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The expansion for the scalar field Xµ is given by (3.35). If we compare these modes
with the one that we obtained intrinsically in (4.13), it can be seen that

γµr =
1√
ϵ
(br − ib̃−r), βr =

√
ϵ(br + ib̃−r). (4.25)

The remaining relations for the Aµ
n, B

ν
m modes are given by (3.37).

Plugging the relations (4.25) and (3.37) back into the generators (4.18) gives
us the connections between the tensile and the tensionless constraints expressed in
equations (4.20) and (3.41). Therefore, this inhomogeneous scaling and the UR limit
on the tensile superstring is consistent to arrive at SGCAI .

4.2 Quantum Description

4.2.1 Quantum Constrains

Similar to the bosonic case, the theory of quantum superstrings is formulated in the
covariant approach. We promote to operators the constraints (4.18) and then we
impose them as physical conditions on the states |phys⟩ of the Hilbert space. These
conditions can be written as

⟨phys|Ln|phys⟩ = 0, ⟨phys|Mn|phys⟩ = 0,

⟨phys|Gr|phys⟩ = 0, ⟨phys|Hr|phys⟩ = 0.
(4.26)

In addition, the quantum version of the constraints in (4.18) spans the quantum
SGCAI , and satisfy the following relations [4]

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n)δn+m,

[Ln,Mm] = (n−m)Mn+m +
cM
12

(n3 − n)δn+m,

[Ln, Gr] =
(n
2
− r
)
Gn+r, [Mn, Gr] =

(n
2
− r
)
Hn+r.

[Ln, Hr] =
(n
2
− r
)
Hn+r,

{Gr, Gs} = 2Lr+s +
cL
3

(
r2 − 1

4

)
δr+s,

{Gr, Hs} = 2Mr+s +
cM
3

(
r2 − 1

4

)
δr+s.

(4.27)

4.2.2 Bogoliubov Transformation on the Worldsheet

As in the tensionless bosonic case, it is convenient to have an oscillator construction
of modes. In order to find such oscillator basis, let’s define the Cµ

n , C̃
µ
n and ωµ

n, ω̃
µ
n

as

Cµ
n =

1

2
(Aµ

n +Bµ
n), C̃µ

n =
1

2
(−Aµ

−n +Bµ
−n),

ωµ
r =

1

2
(γµr + βµ

r ), ω̃µ
r =

i

2
(−γµ−r + βµ

−r)
(4.28)
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The operators presented in (4.28) follow the canonical commutation relations for
harmonic oscillators [6]:

[Cµ
m, C

ν
n] = [C̃µ

m, C̃
ν
n] = mδm+nη

µν , {ωµ
r , ω

ν
s} = ω̃µ

r , ω̃
ν
s} = δr+sη

µν(4.29)

In addition, the operators in (4.28) can be splitted out in creation and annihilation
operators due to hermiticity. Specifically, the hermiticity of the generators used
in (4.27) implies the hermiticity of the modes γr and βr. Furthermore, since we
demand Am, Bn, γr, βs all to be manifestly hermitian, ωr is hermitian and ω̃r is
anti-hermitian. [6]. Then, the following relations holds

γ†r = γ−r, β†
r = β−r,

ω†
r = ω−r, ω̃†

r = −ω̃−r

(4.30)

Using (4.25), we can write the new operators defined in (4.28) in terms of tensile
operators. The resulting expressions are given by

ωr = br cosh θ + ib̃−r sinh θ, Cµ
n = αµ

n cosh θ + α̃µ
−n sinh θ

ω̃r = −ib−r sinh θ + b̃r cosh θ, C̃µ
n = α−n sinh θ + α̃µ

n cosh θ,
(4.31)

where we again obtain a Bogoliubov transformation between the tensile operators
and the new oscillator harmonic basis parameterized by (3.72)

4.2.3 Fermionic Squeezed Vacuum

With the Bogoliubov transformation, we can use the generator A related to such
transformation to express the creation-annihilation operators in terms of exponential
maps. These relations reads as [6]:

ωr = S−1
F brSF , ω̃r = S−1

F b̃rSF , (4.32)

where

SF = exp

(∑
r>0

iθω−r · ω̃−r − iθωr · ω̃r

)
. (4.33)

Furthermore, we can now relate the tensile vacuum |00⟩α, characterized by (2.49),
and the vacuum |00⟩C , which is annihilated under the conditions

Cn |00⟩C = C̃n |00⟩C = ωr |00⟩C = ω̃r |00⟩C = 0, ∀n, r > 0 (4.34)

The relation is explicitly given by

|00⟩α = SSF |00⟩C , (4.35)

where S is the squeeze operator given by (3.74).
Analogously to the bosonic case, we show a method to simplify (4.35) based on

the properties of the algebra su(1, 1). Let’s define the operators K+ and K− as

K+ = i
∑
r>0

ω̃†
r · ω†

r, K− = i
∑
r>0

ω̃r · ωr (4.36)
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The remaining generator K0 can be found using the following commutation relation:

[K−, K+] = −
∑
r,s

(ω̃†
rω

†
rω̃sωs − ω̃sωsω̃

†
rω

†
r),

= −
∑
r,s

(−ω̃†
rω̃sω

†
rωs − ω̃sωsω̃

†
rω

†
r),

= −
∑
r,s

(ω̃sω̃
†
rω

†
rωs + δrsω

†
rωs − ω̃sωsω̃

†
rω

†
r),

= −
∑
r,s

(−ω̃sω̃
†
rωsω

†
r − δrsω̃sω̃

†
r + δrsω

†
rωs − ω̃sωsω̃

†
rω

†
r),

= −
∑
r,s

(ω̃sωsω̃
†
rω

†
r − δrsω̃sω̃

†
r + δrsω

†
rωs − ω̃sωsω̃

†
rω

†
r).

= −
∑
r,s

(ω†
rωs − ω̃sω̃

†
r)δrs = −

∑
r>0

(ω†
rωr − ω̃rω̃

†
r),

= −
∑
r>0

(ω†
rωs − ω̃sω̃

†
r)δrs = −

∑
r>0

(ω†
rωr + ω̃†

rω̃r + I),

= 2K0.

(4.37)

Therefore,

K0 = −1

2

∑
r>0

(ω†
rωr + ω̃†

rω̃r + I). (4.38)

These operators also satisfy the commutation relations of the su(1, 1) algebra.

[K0, K+] = − i

2

∑
r,s

(ω̃†
rω̃rω̃

†
sω

†
s + ω†

rωrω̃sω
†
s − ω̃†

sω
†
sω̃

†
rω̃r − ω̃†

sω
†
sω

†
rωr),

= − i

2

∑
r,s

(ω̃†
rω

†
sω̃rω̃

†
s + ω̃†

sω
†
rωrω

†
s − ω̃†

sω
†
sω̃

†
rω̃r − ω̃†

sω
†
sω

†
rωr),

= − i

2

∑
r,s

(−ω̃†
rω

†
sω̃

†
sωr − ω̃†

rω
†
sδrs − ω̃†

sω
†
rω

†
sωr − ω̃†

sω
†
rδsr

− ω̃†
sω

†
sω̃

†
rω̃r − ω̃†

sω
†
sω

†
rωr),

= − i

2

∑
r,s

(ω̃†
rω̃

†
sω

†
sωr − ω̃†

rω
†
sδrs + ω̃†

sω
†
sω

†
rωr − ω̃sω

†
rδrs

− ω̃†
sω

†
sω̃

†
rω̃r − ω̃†

sω
†
sω

†
rωr),

= − i

2

∑
r>0

−2ω̃†
rω

†
r = i

∑
r>0

ω̃†
rω

†
r = +K+

(4.39)

[K0, K+]
† = K†

+K0 −K†
0K

†
+ = K†

+,

= −i
∑
r>0

ωrω̃rK0 −K0i
∑
r>0

ωrω̃r,

= i
∑
r>0

ω̃rωrK0 +K0i
∑
r>0

ω̃rωr,

= K−K0 −K0K− = −[K0, K−] = K−

(4.40)
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With the K’s operators defined, we can rewrite the vacuum (4.35) as

|00⟩α = S exp

(∑
r>0

iθω−r · ω̃−r − iθωr · ω̃r

)
|00⟩C ,

= S exp

(∑
r>0

−iθω̃−rω−r + iθω̃rωr

)
|00⟩C ,

= Seα+K++α−K− |00⟩C ,
= Seγ+K+eln(γ0)K0eγ−K− |00⟩C ,

(4.41)

where ω = 0, α+ = −θ, α− = 0, and

z2 =
ω2

4
− α+α− = θ2,

γ± =
2γ± sinh(z)

2z cosh(z)− ω sinh(z)
= ∓ tanh(θ),

γ0 = (cosh(z)− ω

2z
sinh(z))−2 = cosh(θ)−2

(4.42)

In this way, we finally obtain

|00⟩α = Se− tanh(θ)K+e−2 ln(cosh(θ))K0etanh(θ)K− |00⟩C ,
= Se− tanh(θ)K+e−2 ln(cosh θ)K0 |00⟩C ,

= Se− tanh(θ)K+ exp

(
ln(cosh θ)

∑
r>0

(ω†
rωr + ω̃†

rω̃r + I)

)
|00⟩C ,

= Se− tanh(θ)K+eN ln(cosh θ) exp

(∑
r>0

(ω†
rωr + ω̃†

rω̃r)

)
|00⟩C ,

= S cosh(θ)N exp

(
−i tanh(θ)

∑
r>0

ω̃†
rω

†
r

)
|00⟩C ,

= exp

(∑
n=1

tanh θ

n
C†

n · C̃†
n

)
exp

(
−i tanh(θ)

∑
r>0

ω̃†
rω

†
r

)
|00⟩C ,

=
∏
n,r>0

exp

[
tanh θ

(
C†

n · C̃†
n

n
+ iω†

r · ω̃†
r

)]
|00⟩C

(4.43)

In the extreme limit ϵ = 0, tanh θ = −1. Then,

|00⟩α =
∏
n,r>0

exp

[
−

(
C†

n · C̃†
n

n
+ iω†

r · ω̃†
r

)]
|00⟩C (4.44)

This result is in agreement with the vacuum shown in [6]. As in the tensile fermionic
vacuum shown in (2.52), the vacuum (4.44) incorporates contributions from both
fermionic and bosonic creation operators, which behave as harmonic oscillators.
Nevertheless, the functional form differs significantly. Notably, the vacuum exhibits
an exponential decrease with respect to the positive integers n in the bosonic con-
tribution. Interestingly, unlike the tensionless bosonic vacuum described in (3.88),
the tensionless limit here does not introduce an infinite normalization factor outside
the exponential as we take the tensionless limit.



Chapter 5

Conclusions and Future Directions

In this thesis project, we have explored the theory of tensionless strings. The inves-
tigation focused on the symmetries of the string worldsheet, treating the tensionless
strings both as a limit of the conventional tensile theory and as a fundamental object
in its own right.

It has been shown that the equations of motion, mode expansions, and constraint
equations for the tensionless bosonic string and the inhomogeneous tensionless su-
perstring are consistent with the Galilean Conformal Algebra (GCA) and the Super
Galilean Conformal Algebra (SGCA), respectively [1, 3, 4, 7]. Additionally, sig-
nificant differences emerged when studying the quantum tensionless closed string
using canonical quantization. For the bosonic case, imposing quantum constraints
lead to distinct quantum mechanical theories[5]. By examining the induced vac-
uum through worldsheet Bogoliubov transformations, we identified this vacuum as
a Neumann boundary state, indicating the emergence of open strings from closed
strings in the tensionless limit [3, 2]. Furthermore, the masses of all these states
were found to vanish [3].

For the tensionless superstring, we analyzed the inhomogeneous tensionless su-
perstring, characterized by the residual symmetry algebra SGCAI [7]. In the tension-
less limit, the degeneration of the worldsheet metric modifies the Clifford algebra for
worldsheet fermions to reflect this feature. Bogoliubov transformations connecting
tensile and tensionless oscillators were constructed, establishing a mapping between
the two superstring vacua[7, 6].

It was found that the tensionless superstring vacuum in the (NS,NS) sector,
unlike the bosonic vacuum, incorporates fermionic harmonic oscillator operators in
addition to the bosonic ones. Furthermore, this tensionless superstring vacuum ex-
hibits a notably different functional form compared to the superstring vacuum in
conventional tension theory. This discrepancy with the usual tension string theory
is also observed in the tensionless bosonic vacuum, which presents an exponential
functional form with bosonic creation operators. Another striking feature of the ten-
sionless superstring vacuum is that there is no normalization constant that diverges
outside the exponential operator, as occurs in the case of the bosonic vacuum when
the tensionless limit is taken. [6, 2]

Furthermore, when deriving the tensionless bosonic vacuum [2] and the inhomo-
geneous tensionless superstring vacuum [6], a method based on the properties of the
su(1,1) algebra was proposed, providing a structured approach for their computa-
tion.

60



61

In future work, the relationship between infinite distance limits and the emer-
gence of tensionless strings will be examined. Infinite distance limits are character-
ized by qualitative transitions in physical theories. A key aspect in the exploration
of such limits will involve the information metric, a powerful tool that establishes
a notion of distance within any continuous family of theories. In the context of
string theory, infinite distance limits correspond to the emergence of a tower of light
states that become progressively lighter, as illustrated in the mass spectrum of the
tensionless bosonic string, for instance, in equation (3.58). In infinite distance lim-
its, tensionless strings represent a concrete physical realization of the tower of light
states predicted by the swampland conjecture [22].

The classical information metric quantifies the separation between probability
distributions by measuring how easily they can be distinguished. This concept is
extended by the quantum information metric, which defines a measure of distance
in the space of quantum states, often evaluated through the vacuum states. Within
quantum theories, this metric captures the differences between neighboring theories
by assessing the distinguishability of their predictions, placing them further apart
when they are more easily differentiable. [21].

Additionally, infinite distance limits are linked to factorization of expectation
values. As discussed in [22], this refers to a phenomenon where the information
metric exhibits an infinite distance singularity. This occurs when the expectation
values of observables factorize, implying the disappearance of statistical or quantum
correlations between degrees of freedom. In such scenarios, the system becomes
effectively simpler or more deterministic, and the ambiguity inherent to sampling
from the probability distribution vanishes.

The connection between infinite distance factorization and tensionless string the-
ory, as noted in [22], highlights the universality of this feature in specific physical
configurations, including string theory.

As an example, consider the distance in the quantum harmonic oscillator with
frequency ω:

d(ω1, ω0) = log

(
ω1

ω0

)
(5.1)

In the limit ω → ∞, the particle is confined to the minimum of the potential, making
the ground state probability distribution to collapse to a single point. In contrast, as
ω → 0, the particle behaves as free, and the eigenfunctions lose their smoothness and
normalizability. In both of these extreme limits, the distance (5.1) diverges. These
infinite distance limits in the information metric correspond to theories where ex-
pectation values factorize: ⟨xn⟩ = ⟨x⟩n. However, the explicit physical observables
from tensionless strings that undergo factorization in this context remain unidenti-
fied. Exploring such observables, particularly for the tensionless bosonic string and
tensionless superstring in the (NS, NS) sector, would provide valuable insights into
the underlying mechanics of tensionless strings and their relation to infinite distance
limits.



Appendix A

su(1,1) Algebra

The elements g of the SU(1,1) group satisties

gSg† = S. (A.1)

The generators of the group are operators Ki , i = 0, 1, 2, that satisfy the commu-
tation relations

[K1, K2] = −iK0, [K2, K0] = iK1, [K0, K1] = iK2. (A.2)

The resulting algebra su(1, 1) introduce the raising and lowering operators K± in
the standard form

K± = K1 ± iK2, K+ = K†
−, (A.3)

which obey the following relations: [K0, K±] = ±K±, [K−, K+] = 2K0.
The properties of the group and its algebra allow to obtain a decomposition

formulae of the generic element [16]

exp(ωK0 + α+K+ + α−K−) = exp(γ+K+) exp(ln(γ0)K0) exp(γ−K−) (A.4)

where

γ0 =
(
coshΞ− ω

2Ξ
sinhΞ

)−2

, γ± =
2α± sinhΞ

2Ξ coshΞ− ω sinhΞ
, Ξ2 =

ω2

4
−α+α−.
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Appendix B

Conformally flat 2D metric

Any two-dimensional Riemannian manifold (M, g) is conformally flat. Let (x, y) be
the original local coordinates with which the metric takes the form

ds2 = gxxdx
2 + 2gxydxdy + gyydy

2 (B.1)

ds2 =

(
√
gxxdx+

gxy + i
√
g

√
gxx

dy

)(
√
gyydx+

gxy − i
√
g

√
gxx

dy

)
, (B.2)

where g = gxxgyy − g2xy. According to the theory of differential equations, there
exists an integrating factor λ(x, y) = λ1(x, y) + iλ2(x, y) such that

λ

(
√
gxxdx+

gxy + i
√
g

√
gxx

dy

)
= du+ idυ,

λ̄

(
√
gyydx+

gxy − i
√
g

√
gxx

dy

)
= du− idυ,

(B.3)

Then ds2 = (du2 + dυ2)/|λ|2 and by setting |λ|−2 = e2Λ, we have the desired coor-
dinate system. If (M, g) is a Lorentz manifold, we have integrating factors λ(x, y)
and µ(x, y) such that

λ

(
√
gxxdx+

gxy +
√
−g

√
gxx

dy

)
= du+ dυ,

µ

(
√
gyydx+

gxy −
√
−g

√
gxx

dy

)
= du− dυ,

(B.4)

In terms of the coordinates (u, v) the metric takes the form ds2 = λ−1µ−1(du2 −
dv2). The product λµ is either positive definite or negative definite and we may set
1/|λµ| = e2Λ to obtain the form [18]

ds2 = ±e2Λ(du2 − dv2) (B.5)
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