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Resumen

La Selectividad de Espin Inducida por Quiralidad (CISS por sus siglas en inglés) es un
fenémeno experimental que se ha documentado de manera detallada, donde moléculas
quirales exhiben polarizaciones electrénicas altas en una configuraciéon de transporte de
dos terminales, proporcionando un recurso prometedor para la espintréonica molecular.
Explicar este efecto ha constituido un desafio teérico, comenzando desde modelos con-
tinuos [1, 2] de estructuras helicoidales, hasta modelos de enlaces fuerte 3| 4] [5, 6] que
implican los orbitales en el transporte. La reciprocidad de Onsager es la principal regla
que rige el transporte en sistemas con simetria de reversion temporal y pocos de los mode-
los propuestos en la literatura cumplen con esta condicién [7]. En este trabajo se hace una
evaluacion critica de los modelos orbitales discretos previos y se aborda una propuesta
analitica y numérica que satisface la reciprocidad, y que incluye procesos de decoherencia
como mecanismo de rompimiento de reversibilidad temporal, necesario para la acumu-
lacion de espin. Nuestro modelo produce polarizaciones altas dentro de una descripcion
realista, tanto de hélices simples como dobles y valida cualitativamente escenarios recientes

establecidos por modelos minimos de CISS exactamente resueltos.

Palabras clave: CISS, tight-binding, Quiralidad, Polarizacion de espin



Abstract

Chiraly Induced Spin Selectivity (CISS) is a very well experimentally documented phe-
nomenon, where chiral molecules in a two-terminal transport setup exhibit electron polar-
ization to an extraordinary degree, furnishing a promising resource for molecular spintron-
ics. Explaining this effect has constituted a theoretical challenge, starting from continuous
models [I], 2] of helical structures to tight-binding models [3] [4], 5], 6] that surmise the or-
bitals involved in transport. A major test for two terminal spin selection is Onsager’s
reciprocity relations [7], which apply to systems with time-reversal symmetry that very
few of the models in the literature comply with. Here, we discuss a critical assessment of
the previous discrete orbital models and embark on an analytical and numerical proposal
that satisfies reciprocity and includes decoherence processes as sources of time-reversal
symmetry-breaking mechanisms. Our model yields high polarization outputs within a
realistic description of both single and double helices and validates qualitatively recent

scenarios set by exactly solved minimal models of CISS.

Keywords: CISS, tight-binding, Chirality, Spin Polarization
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Chapter 1

Introduction

Chiral Induced Spin Selectivity (CISS) refers to the quantum mechanical phenomenon
where chiral molecules act as spin filters, enabling spin-polarized electron transport [9].
The history of CISS begins with the recognition of spin activity in ferromagnetic materials,
an essential aspect of spintronics. Spin-polarized transport was first described by Mott in
1936, who proposed that the resistance of ferromagnetic materials could be explained by
considering the separate behaviors of spin-up and spin-down electrons, leading to spin-
polarized currents [10], 11]. This idea laid the foundation for the control of the spin and
the development of devices like spin valves, which paved the way for further research into
spin-polarized electron transport in other systems, including chiral materials [12].

The first proposal of the relation between chirality and spin selection was made by
Farago [13], who surmised that point chiral molecules such as amino acids, when scatter-
ing electrons, could yield an angle-dependent spin polarization. This proposal was later
measured by Kessler [I4] for point chiral molecules in the gas phase. The spin effect was
small (107%%) and this was only achieved after attaching heavy atoms to the chiral Cam-
phor molecules. Thompson and Blum [15] extensively developed the scattering theory
of chiral units, demonstrating chiral-dependent spin polarization in the Born scattering
formalism.

For some years there was little interest in the small spin polarizing effect of chiral
molecules until the first experimental observation of the CISS effect came in 1999 [16]. It

was demonstrated that spin-polarized electrons can be filtered through chiral molecules,



producing asymmetries significantly larger than those observed in the gas phase or even
in ferromagnets [16]. Since this discovery, numerous experiments have validated this phe-
nomenon across various chiral systems, including oligopeptides, helicenes, proteins, chiral
perovskites, and dichalcogenide crystals [I7]. Additionally, several advanced measure-
ment techniques have been developed to study this effect [9]. The CISS effect establishes
a fundamental connection between molecular chirality and electron spin, with far-reaching
implications for spin-based technologies and the understanding of life’s homochiral nature

[18, (19, 20].

CISS is commonly measured using techniques such as photoelectron spectroscopy,
Mott polarimetry, conductive probe atomic force microscopy (mc-AFM), and scanning
tunneling microscopy (STM), all of which provide valuable insights into the spin-selective
behavior of electron transport through chiral materials [9]. However, to understand spin
polarization, it is essential first to analyze the fundamental behavior of electrons in chiral

molecules.

Ref. [21] explored long-distance electron transfer in DNA, focusing on charge trans-
port rates and efficiency under various conditions. Their findings revealed that electron
transfer primarily occurs via a multistep hopping mechanism, with guanine and, in some
sequences, adenine serving as charge carriers. Similarly, ref. [22] examined electron
transport in non-electron transfer proteins, challenging the notion that these proteins act
as insulators. The study measured single-molecule conductance, the energy of resonant
electronic states, and conductance variations related to protein conformations. It demon-
strated that non-electron transfer proteins exhibit significant conductivity, comparable to
bacterial filaments, with transport mediated through resonant states involving aromatic

residues such as tyrosine and tryptophan.

Among the types of chirality, axial or helical chirality has the most pronounced ef-
fect on spin selectivity in organic systems. For example, mc-AFM measurements showed
spin polarizations as high as 57% in double-stranded DNA, while single-stranded DNA
exhibited no significant spin polarization [23]. Nevertheless, experiments using ultravio-

let photoelectron spectroscopy (UPS) have reported spin polarizations in single-stranded



DNA chelated with Hg [24], indicating the influence of external factors on spin selectivity.
Studies in proteins as the experiment of ref. [25] investigated spin polarization in electron
transfer through Photosystem I (PSI) using a spintronic device. Experiments on several
classes of helicenes [26, 27, 28] and polymers [29] 30] have also shown that these materials

are significant sources of spin selectivity.

Most experiments have explored the response of spin polarization under varying pa-
rameters. A strong dependence between molecular length and spin polarization has been
demonstrated, with several studies showing that spin polarization increases with the
length of the molecule [23, B1l B2]. Ref. [25] revealed that spin polarization peaks at
room temperature, with electron spins aligned parallel to their momentum, but decreases
sharply below 150 K, disappearing entirely at lower temperatures. These findings high-
light the temperature-dependent nature of spin polarization, driven by thermal energy and
molecular dynamics. However, studies have also shown that heterogeneous or structurally

disordered systems exhibit poor or negligible spin polarization [33], 34 [35].

According to theoretical models explaining CISS, spin-orbit coupling (SOC) has been
established as the primary mechanism for spin activity in chiral systems|[13] [14] [15]. How-
ever, it has been demonstrated that SOC alone cannot generate spin polarization in
non-helical systems. At the same time, the absence of SOC could be argued with some
angular momentum transfer mechanisms to produce spin polarization [36]. The great
variety of experimental findings now available challenge the previous minimal ingredients.
For instance, theoretical studies have shown that orbital overlap and hydrogen bonding
networks can modulate SOC [37], emphasizing the importance of controlling structural
variations when evaluating SOC’s role. Furthermore, experiments on metallopeptides
have shown that incorporating a paramagnetic material results in higher spin polariza-
tion than using a diamagnetic one, with the magnetic properties overriding the influence
of SOC [38]. To clarify the relationship between SOC and spin polarization, more detailed

experiments are needed to isolate SOC’s effects from other contributing factors.

Significant efforts have been made to develop effective models that reproduce experi-

mental results using experimentally measurable parameters and enhance the understand-



ing of CISS. These approaches are typically categorized into three main groups: hydro-
dynamic or continuum models [39, 40, 41], tight-binding frameworks [3] 4] 42| [43], and ab
initio methods such as density functional theory (DFT) [44] 45]. While many theoretical
models successfully report spin polarization, some approaches raise concerns: (i) SOC is
often introduced as an adjustable parameter that must be tuned to unrealistically high
values to match experimental spin polarization results, and (ii) DFT models frequently
report spin polarization in two-terminal setups, which violates Onsager’s reciprocity rela-

tions.

The objective of this work is to address the shortcomings of current models in un-
derstanding spin selectivity by constructing a tight-binding model that incorporates the

following key characteristics:

1. Orbital involvement in transport.

2. Intrinsic SOC as a source of spin activity.

3. Chirality as a source of space inversion asymmetry.

4. Couplings to the environment as a source of time-reversal symmetry breaking.

In the initial stage of this work, tight binding models from the literature are addressed.
Some results are reproduced to validate the computational methods used and serve as
a foundation for our model development. In the methods section, the s- and p-orbital
Hamiltonian is calculated considering the geometry of the orbitals in the helix’s base.
The Landauer formalism is utilized for analyzing electron transmission and spin polariza-
tion. The model did not exhibit spin polarization in a two-terminal setup in accordance
with the Onsager reciprocity. The results provide a comprehensive characterization of
electron behavior in two systems: single-stranded DNA (ssDNA) and double-stranded
DNA (dsDNA).



1.1 Tight-Binding models

We first analyzed existing tight-binding models from the literature and validated our
computational methods by reproducing their results. Two significant studies were selected
for comparison: ref. [6], where chirality is introduced through asymmetrical connections
to input and output leads, and ref. [4], which explores spin polarization in single-stranded
(ssDNA) and double-stranded DNA (dsDNA). These models are among the most robust

in the literature, successfully describing spin transport in chiral molecules.

Achiral Nanotubes

To validate our approach, we used the Kwant framework [46] to replicate the results from
the selected studies. In ref. [6], where an achiral nanotube was modeled, and mirror
asymmetry was introduced by connecting the output lead to a site different from that of
the input lead. This modification caused the two-terminal system to behave like a chiral

molecule.

Biittiker’s lead

Figure 1.1: Representation of the achiral nanotube in the model of Guo-Sun with one
Biittiker’s lead connected to a site.

The Hamiltonian that describes the system has the form:

H="Ho+ Hea + Ha, (1.1)

where Ho = Hpe + Hso, Hnt = D?/2m + V describes the kinectic and potential energies
of the electron, and Hgo = (A/4m?c*)VV (6 x p) is the SOC term, p is the momentum

operator, m is the electron effective mass, A is the Planck constant, ¢ is the speed of light,



and ¢ = (0, 0,,0,) with o, , being the Pauli’s matrices.

The procedure to discretize the Hamiltonian follows the method of finite differences,

detailed in [£.1] The final tight-binding Hamiltonian has the form:

J [N N-1 N
Hy, = Z Z ejncjncjn + Z c}n(t” + 2i50,)Cjnt1 + Z C}n(h + 2ipo,)cj1, + He. |,
j=1 Ln=1 n=1 n=1
(1.2)
here {c}n, cjn} are the creation and annihilation operators on the site {j,n} in the nan-

otube, J is the number of chains, IV is the length of the nanotube, €;, is the potential
energy, ¢ (t.) is the intrachain (interchain) hopping integral, and s (u) is the intrachain
(interchain) SOC parameter; o; = 0, sin ¢; — o, cos ¢; and ¢; is the azimuth angle of the
site in cylindrical coordinates. For the numeric factors used in the simulations, see ref.
[6].

Note that prefactor in the SOC term —ih?/4m?c*VV (€;;,0;0) is on the order of
1078 eV/N. To generate SOC intensity of the order of meV, it would require VV =

10> N/C corresponding to an extraordinarily high electric field for molecular systems

under normal conditions.

By Onsager’s reciprocity relations, the model did not exhibit spin polarization in a two-
terminal setup. A third probe (Biittiker’s lead) was incorporated into the system to break
the time-reversal symmetry and achieve spin polarization. The resulting spin polarization
depended not only on the positions of the magnetic electrodes but also on the location
where the third probe was connected. This dependence arises from the asymmetries
induced by Biittiker’s lead, which affected the system’s chirality. Furthermore, when only
one decoherence lead was attached, the robustness of spin polarization was influenced
by the site of connection due to variations in the wave function amplitudes along the
nanotube. This observation was confirmed by plotting the local density of states (LDOS)
along the nanotube, showing that sites with low LDOS were suboptimal for introducing

decoherence.

The complete model was subsequently tested. Initially, the conductance and spin

polarization were evaluated for a nanotube with J = 6 chains and N = 20 sites per



chain. Decoherence leads were connected to all sites in the system to ensure that mirror
asymmetries were solely caused by the input and output terminals. In the figures, j
denotes the site where the output lead is connected, while the input lead is fixed at

{j = 1,n = 1}. Refer to the original reference for a complete description of the parameters

used.
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Figure 1.2: Conductances and spin polarization reported by Guo-Sun.
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Figure 1.3: Conductances and spin polarization results of the Guo-Sun model in Kwant.

The findings contrast with the results reported by Guo and Sun in terms of the am-
plitudes of both conductance and spin polarization. For the achiral case (j = 1), the con-

ductance in the Kwant model exceeds 0.7, whereas the reference reported conductances



below 0.6. This discrepancy is even more pronounced in the chiral case j = 2, where
the reference values are approximately 10 times greater than the conductance amplitudes

obtained in the Kwant model.

The graphs in Figure demonstrate the chiral nature of the nanotube as determined
by the positions of the leads. For example, Ps(j = 2) = —Ps(j = 6) because these
configurations are mirror images, a property that is independent of the model parameters.
A similar relationship is observed for j = 3 and j = 5. While the Kwant model accurately
captures this behavior, discrepancies in conductance values remain. Additionally, the
spin polarization values reported in the original study are relatively large, with maximum
values of 16% for (j = 3,7 = 5) and 15% for (j = 2,7 = 6). In contrast, the reproduced
model yields significantly higher spin polarization maximums, approximately ~ 30% and

~ 45%, respectively.

It is also noteworthy that the curves are symmetric about the line £ = 0: The
conductances satisfy the relation G4(E) = G| (—F), while the spin polarization follows
P,(E) = —P;(—F). This symmetry arises from a form of electron-hole symmetry in the
system. Specifically, the Hamiltonian in equation|1.2]is invariant under the transformation

Gt — (=1)7F7c]

iy and cjny — (—1)j+"+1cjm. However, this electron-hole-type symmetry

is broken when J is odd. Refer to Appendix for a demonstration of this symmetry.

Spin polarization depends on the coupling of Biittiker’s leads to the system (I'y) and
the strength spin-orbit coupling (s). The robustness of spin polarization was evaluated by
varying these parameters, as described in the reference study. For dephasing, the results
confirm that spin polarization increases with higher dephase coupling but decreases at
large values of I';. This reduction occurs because strong electron-electron and electron-
phonon interactions significantly interfere with electron transmission in the two-terminal
setup. The spin polarization as a function of the spin-orbit coupling strength (s) shows
significant discrepancies between the model reproduced in Kwant and the original results
reported by Guo and Sun. According to the reference, even spin polarization remains
noticeable at the smallest value of s = 0.002, with amplitudes around ~ 10%. In contrast,

the Kwant model produces zero amplitudes for this value of s. As s increases, the spin



polarization also rises in both cases, reaching a maximum of 75 % in the Kwant model

and 15 % in the original model.
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Figure 1.4: (Left) Robustness of the spin polarization reported by Guo and Sun vs. the
dephase coupling in the Anderson disorder. (Right) Spin polarization vs. the dephase
coupling in the reproduced model in Kwant.
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Figure 1.5: (Left) Robustness of the spin polarization reported by Guo and Sun vs. the
spin-orbit coupling strength s in the Anderson disorder. (Right) Spin polarization vs. the
spin-orbit coupling strength in the reproduced model in Kwant.

ssDNA and dsDNA

The study in ref. [4] investigated spin polarization in single-stranded (ssDNA) and double-
stranded DNA (dsDNA). No spin polarization was reported for ssDNA, and the analysis
focused entirely on dsDNA. Interestingly, a subsequent study by the same authors in-

troduced interactions with additional nearest neighbors and reported spin polarization in



ssDNA [5]. However, the observed spin polarization in ssDNA was approximately 107>
which is four orders of magnitude lower than the spin polarization typically observed in
dsDNA. Here, it is only discussed the results of the first work. The Hamiltonian describing

the system is:

H =Hpna+ Hicas + He + Hso + Ha. (1.3)
N 2
Hpna = Z[Z(ejnc;ncjn + tjnc}ncjnﬂ) + Anclpcan + Hecl, (1.4)
n=1 j=1

where N is the DNA length, c;r-n = (c;.nT, c;ni) the creation operator of the spinor at the
nth site of the jth chain of the dsDNA, ¢;,, the on-site energy, ¢;,, is the intrachain coupling

and )\, is the interchain coupling.

MHicad +He = D lemalapm + toaly(cin, + con,) + Hoel, (1.5)

k.B(B=L,R)
describe the left and right nonmagnetic leads and the couplings between the leads and
de dsDNA, n; = 1 and ng = N. The spin-orbit term appears in the same form as in
the previous case. The potential V has only a radial component, as the effects are more
significant in that direction. Considering charge propagation along a single helical chain
of the dsDNA, the momentum is expressed as p = f)HlAH where lAH is the unit vector in the

direction of the helical chain. This reduces the spin-orbit coupling to:

Hso = Z itgoc;n[aﬁl + 0'7]1'+1]Cjn+1 + H.c. (1.6)

j7n

where tgo = O’ZL_H = 0, sin(nA¢) sin 0 + o, cos(nA¢) sinf + o, cos  with 6 is the

h2
4m?2c2ly)
helix angle and A¢ is the angle between sucessive base pairs. The interchain SOC has

been neglected because it is very small.

The decoherence effects are introduced through the Hamiltonian:

Hq = Z(Ej”ka;nk + tda;nkcjn + H.c.), (1.7)

j7n7k

T

where a;,, = (a}nm, a}nk i) is the creation operator for the virtual lead, and t; represents



the coupling strength between the system and the virtual lead. The term €, denotes the

energy of the states in the virtual lead.

Figure 1.6: Model of dsDNA of the Guo and Sun’s model.

The comparison of this model and the Kwant simulation presents the same discrep-
ancies that the model of the achiral nanotubes. The results in Figure [1.7(a) depict the
conductance and spin polarization from the original model. Two distinct conductance
peaks are observed near energies —0.25 and 0.5 that are reproduced with high fidelity
by Kwant in Figure (b). The spin polarization reaches ~ 30% in the original model,

compared to just 2% in the Kwant simulation.
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Figure 1.7: (a) Top panel: Conductance and spin polarization in dsDNA in the Guo
and Sun’s model as a function of the injection energy. Half panel: without decoherence.
Bottom panel: without helicity (b) reproduced model in Kwant.



Note that, in both cases—achiral nanotubes and dsDNA-—there is no spin polarization
in the absence of decoherence or spatial chirality (¢ = 0). These findings emphasize that
spatial asymmetry, the decoherence introduced by Biittiker’s leads, and the presence of
spin-orbit coupling are all critical components for achieving spin accumulation in these
models.

A barrier was introduced into both systems to analyze its effect on spin polarization.
Spin polarization was enhanced when the injection energy was below the site energies of
the molecules, consistent with the findings in ref. [47]. Further details on the tunneling

effect in spin transport will be discussed in our model.

Charge Transfer in DNA

The model in ref. [3] analyzes the charge transfer in DNA, including the heterogeneity
of the site energies given the nucleobases in the DNA sequence. This paper presents a
ladder model based on a nearest-neighbor tight-binding framework to describe distance-
dependent charge transport in DNA. The model’s Hamiltonian is introduced, and the
transmission function is analyzed to calculate DNA conductance, aiming to reproduce
and expand upon the Wang-Chakraborty model [48].

The model is described by the Hamiltonian:

n Jj+1 n—1
Hor = eablbi+ > eablbi+ > bl + )Y [blbis + Hel (1.8)
i=n—2 i=2 i=1
N ntj+1 N-1
Hso = GCCILchH + Z eccle; + Z eicle; + ] Z [cfeipr + Heoel (1.9)
i=N-2 i=n+2 i=n+1
7‘[5’1752 :tJ_ Z[bjcl+Hc], (110)

i=1

where bj- is the creation operator in the ith site of the first strand, cj- is the creation operator
in the ith site of the second strand, ;| and ¢, are the intrastrand hopping and interstrand
hopping respectively. The on-site energies correspond to ¢ = 7.75 eV, ¢¢ = 8.87 eV,
er = 9.14 eV, €4 = 8.24 eV. The sequence has the form (G : C) — (T : A); — (G : O)s.

The study reveals a transition from tunneling-dominated, exponential distance-dependent
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Figure 1.8: Reproduced model in Kwant. Transmission at Fermi’s energy as a function
of the number of A-T base pair in the DNA model for different intrastrand hopping
integrals ¢ (1-0.1 eV, 2-0.3 eV, 3-0.4 eV, 4-0.5 eV) with (¢, = 0) and for various values
of the interstrand hopping ¢, (5-0.01 eV, 6-0.03 eV, 7-0.07 eV) at fixed t| = 0.5 eV. The
coupling between the system and the leads was set at 1.5 eV and the coupling between
the lead’s sites was fixed at 5 eV.

transport to nearly length-independent behavior as electronic coupling parameters in-
crease. For single-stranded DNA, transport follows a tunneling mechanism, whereas in,
double-stranded DNA, coherent tunneling occurs through bridge states formed by w7
interactions between complementary nucleobases. The intrastrand and interstrand hop-
ping integrals significantly influence this transition, with stronger coupling enhancing
electronic state delocalization and promoting band-like transport. Additionally, asym-
metric DNA-electrode coupling alters conductance and transport pathways by modifying
the delocalization of electronic states. At finite temperatures, coherent tunneling through
extended electronic states leads to nearly distance-independent conductance for longer
bridges, highlighting the importance of coupling and environmental conditions in DNA

charge transport.
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Chapter 2

Methods

2.1 The Model

Rashba coupling

SO Intrinsic

Figure 2.1: (a) Representative image of the Slater Koster terms considered for the tight-
binding Hamiltonian in DNA. (b) Representation of the orbitals in a helix [49].

Several tight-binding based models have been proposed to characterize spin trans-
port in single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) [5l 14, 3] [6].
However, these models are often limited to a site-based description, considering only one
orbital with spherical symmetry per site and two degrees of freedom given by spin. In

our model, each site is described by a combination of s and p orbitals, allowing the incor-



poration of hydrogen bond effects that partially polarize the molecules and create local
electric fields within the system. Additionally, geometrical effects (e.g., tilt) are consid-
ered, accounting for nucleobases that are not entirely perpendicular to the axis. This level
of detail modifies the final tight-binding Hamiltonian by introducing new overlap terms

beyond the kinetic term.

Figure [2.1] presents the kinetic term and the higher-order hopping integrals. To cal-
culate each of these terms, we characterized the basis vectors of the DNA unit cell and
the orientation of the p-orbitals relative to one another. A complete set of Slater-Koster
terms was obtained using the following expression:

(Rij, i(pi)) (Rij, i(p1))
(Rji, Rji)

By = (0(pa), 8(15)) Vi + (VI =V, (2.1)

where 41 = s,p;, py, p. are the orbitals at sites R; and Ry and let fi(x;) be the unitary

vector in the direction of the orbital 1;.

The unit vectors of the s-p orbitals in the DNA helix base are given by:

Ny, = COS ¢;T + sin ¢, 7,
Ny, = — sin @; + cos ¢;7,

z,

S
I

3
»
I

where ¢; is the angular position in cylindrical coordinates R;; is the distance between

i-site and j-site:

bA
o = 2050 89/2) + 2205
limter = 2@ €OS A@T + 2a sin A¢y,

where A¢ = ¢; — ¢;, a and b are the radius and the pitch of the helix, respectively.



The tilt of the helix can be described by a rotation of angle # around y axis:

cosf 0 siné
R,(0) = 0 1 0

—sinf 0 cosf

The unit vectors of the orbitals are rewritten considering the tilt:

Ny, = cos 0 cos ¢;T + cos Osin ¢;y + sin 62,

Ny, = — Sin @;T + cos ¢;7,

N, = sinf cos ¢;& + sin O sin ¢;y + cos Oz,

so as well the Pauli’s matrices:

84, = 05 08t cos ¢; + o, cosfsing; + o, sin b, (2.2)
8y, = —0gsin @; + 0y cos ¢;, (2.3)
5., = 0y sinf cos ¢; + 0, sinfsin ¢; + o cos 0. (2.4)

Using Eq. the overlaps between intra-helix and inter-helix orbitals can be calculated.

The numerical values of these orbital overlaps, in meV, are:

Vi = —163, Vel = 379,
Voin) = 215, vrin) = —94,
‘/;g%(out) _ _247 ‘/poz;(out) _ 43’

Virlout) — —10.

The numerical parameters are the same of the reference []: a = 0.7 A, b = 3.4 A,

A¢ =2 /(M — 1) where M is the number of base pairs per turn.

The complete Hamiltonian of the system has the next structure: where H, contains the

mobile electrons in the half-filled p, orbitals of the system, H, encompasses all cohesive
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Figure 2.2: Complete Hamiltonian structure of the DNA after calculating the kinetic
term, the intrinsic spin-orbit, the Stark coupling, and the Rashba coupling.

interactions in terms of the s, p, and p, orbitals, and 7" includes the terms that coupling

the 7 and the o interactions. The specific form of each of these sub-matrices is given by:

H7r |pzAZ> |sz7,> ’pzAj) ’szj>
i out in
<pZAi’ €pAi Ezz Ezz 0
out T n
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mn T out
<pZAj| Ezz 0 €ij Ezz
n out T
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here the diagonal terms (¢; ;) are the HOMO-LUMO energies of each nucleobase of the

DNA: These values are calculated using tight-binding methods and compared with those

Energy [eV] Adenine Thymine Cytosine Guanine
Eromo -8.2 -9.0 -8.2 -8.9
Erumo -4.4 -4.8 -4.4 -4.4

Table 2.1: Orbital energies of DNA base pairs calculated through tight-binding methods,
as reported in ref. [§].

obtained through other approaches in ref. [§]. Only homogeneous combinations of nucle-
obases are considered; i.e., the ssDNA is composed of adenine bases, with diagonal energies
set to their HOMO levels. Additionally, the dsDNA consists solely of A-T pairs, where the
adenine strand has the HOMO energy, while the thymine strand has the LUMO energy
of thymine. This aspect, often overlooked in previous works, is significant because it has

been demonstrated that site energy disorder impacts electronic transmission [50] 511 [6].

2.2 Slater-Koster Terms

The Kinetic Term

The lowest order term comes from the overlapping between the p, orbitals in the system.

It depends on the geometrical parameters described in the latter section

H? = Z EiZCZCj, (2.5)
1,

bA¢ cos

in i 2 2 T(in
E" = (sin” 0 cos A¢ + cos 0)‘/;,p( )+ [ o

— 2asin(A¢/2) sin f sin gzﬁl}

Vil — yn
Rl

[bA¢ cos 0

ST 2a8in(A¢/2) sin 0 sin gbj]

Jintra




where 7 and j are the i-site and the j-site in the same helix (A-A and B-B). On the other

hand, the kinetic term outside the helix depends only on the tilt:

out __ out i
HK - Ezz E :Cicj7
'7j

E%" = cos® OV, — sin? oV,
where ¢ and j are the i-site in the helix A and the j-site in the helix B.

The Stark Effect

(2.6)

The transition between the p, orbitals of different sites is also possible due to the sp

coupling. This effect is the consequence of the electric fields in the chiral structure of the

DNA, as it has been pointed.

<S’ HS |p2> = 26a0EZ = gsp

where the Slater-Koster term follows the expression:

A¢

' b V;a(in)
E” = |—2asin(A¢/2) sinfsin ¢; + 5 cosf| =L —
T

R

Jintra

The geometry of the orbitals enables the Stark coupling between strands:

E" = — sin gV

The Intrinsic SO Effect

The intrinsic spin-orbit coupling in carbon atoms provides a spin-active pathway for elec-

trons. The overlap between the p, and the p,, p, orbitals at the same site enables spin

flipping, allowing the electron to subsequently hop to the p, orbital at another site. It is

worth mentioning that models such as the Guo and Sun model introduce SOC as coupling



between the i-site and i+ 1-site. In contrast, in the proposed model, SOC arises naturally

from including higher-order interactions within the atomic orbitals.

eh

HSO = WS . (p X VV) (28)
10V  eh

_ -7 " L.- 2.9

r Or 2m3c? > (2:9)

= AL-s (2.10)

All the possible matrix elements are summarized in the table:

lpe)  Ipy)  [P2)

Pz 0 5.6, 15,8,

(py| | 8.8, 0 —15,&p

(p-| —i8y&p  15:8p 0

where &, = Ah/2 is the spin-orbit strength that was set in a numerical value of 6 meV
for the simulations and §; are the Pauli’s matrices in the helix base described in Eq. 2.4
The Slater-Koster terms of the coupling between the p, and the p,, p, orbitals are given
by:

E'™ = — cosfsinf(cos(Ap) — 1)\/;,7;(i") + [Za sin(A¢/2) cos 6 sin ¢; + bQA—?:b sin 9]

Vil — yn
|2

[—2@ sin(A¢/2) cos 0 sin ¢; + bQA—¢ Ccos 9}
m

| Jintra

E" = sin 0sin(Ag)Vrl™ + 2asin(A¢/2) cos ¢

Vil _ yn
T

{bQA_gb cos ) — 2asin(A¢/2) sin f sin gb]}

™

Jintra




Similarly to the Stark effect, the Slater-Koster terms outside the helix can be calculated

using the specific orbital geometry:

E%" = cosfsin Q(VPZ(OW) — V;;(out))

out __
Bt =0

Rashba Interaction

Combining the Stark effect and the intrinsic spin-orbit coupling gives rise to the Rashba
effect. This term enables overlap between the s orbital of a site and the px, py orbitals

of another site:

| A ‘/So(in)
E" = (Qa sin(A¢/2) sin ¢; cos 6 + 2_71-¢ sin 9) ‘Rup.ﬁ
pin 2asin(A¢/2) cos ¢; valin)

R

intra

E2" = cos V5o

out __
Esy =0
The other Slater-Koster terms were calculated

mn mn
Ess - Vss

E™ = [cos 62 cos(A¢) + sin HQ]VPZ("”) + (4a®sin®(Ag/2) sin ¢; sin ¢+

Vil — yn
Rl

b?(Ag)? sin® 0
472

+ 2asin(A¢/2)bA sin 6 cos 0(sin ¢; + sin ¢;) /27 + )

)

Jintra




E;Z = cosf sin(Agb)V;,T;(m) + 2asin(A¢/2) cos ¢,

V™ = Vo™
R

A
2asin(A¢/2) cos 0 sin ¢; + 52_¢ sin 9]
m

Jintra ’

Vil _ yn
R

Y

in o __ w(in 2 .2
E, = cos AQSV;JP( ) + 4a® sin®(Ap/2) cos p; cos b,

ijintra

B = Ve,

B = sin? 9%’;(0“” — cos? HVP‘;(‘M),
out __

By =0,

out
Eg =0.

2.3 Landauer Formalism

To perform transport measurements, two electrodes are connected to both ends of the
molecule, with both leads modeled as perfect semi-infinite 1D chains. To illustrate the
effects of the leads on the site energies of the system, we refer to the calculations presented

by Pastawski and Medina [52]. Consider the Hamiltonian shown in Figure in its

decimated form.

HO = El ‘pzl> <pzl| + EN |pzN> <pzN| + ‘/I,N ’pzl) <pzN‘ + VN,l |pzN> <pz1| y (211)

where E and V' are functions of the variable € and p,; (p.n) are the p, orbitals of the first

(last) site in the strand. The dispersion relations of the electrodes are:
EkL,(R) = EL,(R) + 2VL,(R) COS(kL’(R)a), (212)

L (R) refers to the left (right) lead.

The system connected to the leads can be described in terms of the p, orbitals and



the couplings between the leads and system V;p«r)

HO—leads - WL(’pzl) <pz0| + ‘p20> <pzl|) + V;SR(|pzN> <pzN+1| + |pzN+1> <pzN|) (213)

The site energies where the leads are connected include the self-energy produced by

the leads:
Vi 2
Ly, = VLL (IVz|cos(kra) —i|Vy | sin(kra)) (2.14)
L
=L Ay — iy, (2.15)
Vi 2
Ry, = vﬁ (V| cos(kra) — i|Vi| sin(kga)) (2.16)
R
=R Ay —ifTy. (2.17)

These expressions can be calculated in terms of the energy following the decimation

procedure described in [52]:

w0 = [ [ -

; VAVE — (e — E)2/2 (2.18)

The leads produce an effective potential of the form:

7:leff = Ho + 54 1p20) (P20] +7 Sn [Panvir) (Pania] - (2.19)

Note that the leads are described solely in terms of their p, orbitals, without additional
orbital interactions or spin-active properties. Depolarized electrons are injected from the
pz orbital of the lead to the pz orbital of the system. Finally, the Green’s function can

be obtained from the effective Hamiltonian:

GPN () = [(e  in)T — Hogg] ™ (2.20)

Additionally, the gray region in Fig. indicates that the density of states (DoS) of the
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Figure 2.3: Schematic representation of the molecule’s energy levels when connected to
leads. Here, ugr and py denote the chemical potentials of the right and left leads, re-
spectively; Vy is the coupling within the lead sites, and Vi and V;, are the right and left
couplings between the system and the leads. a) Energy diagram with the vertical axis
representing energy levels and the horizontal axis showing the position of the leads and
the system. b) Schematic of orbital connections between the leads and the system.

leads follows the semi-circle law, allowing transmission only when the injection energy
falls within the interval (g —2V0, pir.r +2Vp]. The expression for such a density of state
can be calculated from the Green’s function:

Ni(e) = 1 lim Im G (e + in). (2.21)

7 n—0

Given that the leads are semi-infinite chains connected to the system, the Green’s function

at the surface site is:

1
GE, = 2.22
1,1 E—EO—ZR(E)’ ( )

replacing the expression for $f(¢) and comparing with eq. [2.21) the semi-circle law is

Ni(e) = %%\/1 - (6 Q—Vfo)% (2.23)

Using the Fisher-Lee formula [53], we obtain the transmission between the leads in

obtained:

terms of the self energies of the leads and the retarded R and advanced A Green’s func-

tions:

TarpL = [2QFR(6)]G5R,6L(E) [QBFL(E)]GaAL,ﬂR(e)' (2.24)

The «, B indicated the process or channel associated with the electron decay. The



conductance can be expressed as:

2

Grp = 4%%[%(@(;27%)&(E)GQR(G)]. (2.25)

In CISS research, ”spin polarization” is commonly defined as the difference between
measurable quantities associated with a spin-selective process divided by their sum. For
instance, polarization in the CISS literature is often represented as normalized anisotropies
in electron currents or charge transfer rate constants, which can be influenced by the spin
density of states [9]. The spin polarization (Ps) in all the presented results is derived in
terms of the conductances from Eq.

b GG,

= . 2.2
TG ia (2.26)

2.4 Dephasing

During the transport process, the electron experiences a loss of phase memory due to in-
elastic interactions (e.g., electron-phonon interaction, inelastic impurity scattering, electron-
electron interaction, etc.). To simulate these considerations, a third probe must be intro-
duced into the system. There is expected no spin polarization in a fully phase-coherent
two-terminal conduction, the time-reversal symmetry is preserved, as it is stated in the
reciprocity relations. Assuming the application of these rules for any conductor, the
reciprocity theorem states that, for a multi-terminal circuit in the linear regime, the con-
ductance measurement is invariant under the exchange of voltage and current when both

the magnetization (M) and the magnetic field (H) are inverted:
Gij(H, M) = Gyj(—H,—M). (2.27)

This theorem is valid for any linear-regime circuit, regardless of the number of termi-

nals or the microscopic dephasing process [54].

Applying the reciprocity theorem to chiral molecules provides insight into the trans-



mission properties of CISS. Particularly, in a two-terminal system, the theorem requires
that the conductance remains unchanged under the reversion of the ferromagnetic magne-
tization. Given that the conductance is related to the transmission probability, it follows
that:

Tij(=) = Tij(«), (2.28)

where the direction of the arrows indicates the direction of the magnetization.

In terms of the spin, it is possible to write the transmission and reflection of the

electrons propagated in the right direction in their matrix form:

sy te Froses Teo

T = R= (2.29)

Ty T T T

For the left moving electrons, the above matrices are time-reversed:

bee T T T

T = R= (2.30)

eyt Tes T
These terms connect the quantum description with a macroscopic approach in experi-
ments. It is possible to write this conductance in a matrix equation for the total current
I and the spin current I,:

1 N t Pt —
__Ne t ML — MR (2.31)

—4sL h Ptt Yr HsL

Where pup and pg are the chemical potential of the leads and pug;, = (u—y — p)/2. This
matrix equation fully describes the coupled charge and collinear spin transport through

a (nonmagnetic) chiral component, which is subject to Onsager’s reciprocity in the linear



response regime, where the following relations are fulfilled

b=ty e+t +to ., (2.32)
P =T A T A T T =2 —t, (2.33)
Ve =ty — e — ey +tee, (2.34)
Yr =Ty — Ty — T+ Ty (2.35)
Pro=(tysy —te +tey —t )/t (2.36)
Po=(r,,—rsc+re . —r..)/r (2.37)
S=ty b —te —t o, (2.38)
=T =T e T (2.39)

For a more detailed description of the macroscopic approach and the Onsager reciprocity

breaking in a ferromagnetic/chiral element, see reference [55].

The third probe introduced in the model acts as a probability leakage, leading to a
loss of unitarity in the transmission. Electrons exiting the sample toward this lead are
entirely incoherent with those entering. However, more sophisticated models, such as the
D’Amato-Pastawski model, preserve unitarity by imposing a voltmeter probe condition

on the lead. Like the two-terminal leads, this probe is characterized by its self-energy.

% = —i°Ty. (2.40)

It is possible to define a dephasing length in terms of the imaginary part of the self-energy
¢Fdi

Zd_ 2 (2.41)

where 7, is the dephasing time. Let us call x the direction of electron injection, a charac-



teristic length can be associated with 74:

Ly= %, (2.42)
pah
- 2.43
T (2.43)
ki h?
=2 2.44
Ly (2.44)

where k, is the wave vector associated with the energy injection.

Eq. indicates the dephasing that the electron suffers caused by the decoherent
event. It is easy to see that when I'y — 0, then L, — 0o is consistent with the statement

that there is no spin polarization without decoherence.

Given that leads are the main source of decoherence, the Landauer formalism is useful
in characterizing the transmission in the three-probe system. The procedure resulting

from applying Kirchhoft’s law to each lead is called the Landauer-Biittiker equation.

Trels L

Trr=Trr+ ,
R,L R,L TR7¢+T¢>,L

(2.45)

where the first term is identified as the coherent transmission, while the second is the
incoherent contribution to the current. The Eq. can be expressed in terms of the

conductances:

Gri=Gnrr + (ggiﬁ + g(;lL)_l, (2.46)

which can be identified as the equivalent inverse of resistance in a circuit.

The transmission of Eq. can be extended to various decoherent probes in different

sites of the molecule:

N N
TR,L =Tgrr+ Z Z Tr (W Y,:Ti1, (2.47)

=1 i=1



where

Tl,l - 1/g1 T1’2 T1’3 ce TI,N

T271 T272 — 1/92 T273 Ce T2,N

W = T3’1 T3’2 T373 — 1/93 N Tg’N
L Tna Ty Tng oo Inn— 1/91\/_

where g; are the adimensional conductances of each site, i.e., they are just the transmission

probabilities that can be calculated from Eq. [2.24]

2.5 Band Folding

Considering the total Hamiltonian described in the first section, where each site has
four orbitals with two spin degrees of freedom, it is challenging to perform a qualitative
analysis of the molecule’s transport properties. Obtaining an analytical description of
the model is useful for better understanding spin behavior during transport. Therefore,
it is convenient to implement an effective Hamiltonian in the p, orbital space, with the

o-structure interaction introduced perturbatively.

The Foldy-Wouthuysen transformation is a unitary transformation of the orthonor-
mal basis in which both the Hamiltonian and the wave function are represented [56]. The
eigenvalues remain unchanged under such a unitary transformation, indicating that the
physics is unaffected by this change in the unitary basis. Consequently, such a unitary
transformation can always be applied; specifically, one can choose a unitary basis trans-
formation that reformulates the Hamiltonian into a more convenient form. Consider the
Hamiltonian of Fig. [2.2] the effective Hamiltonian where the space 7 is 4 x 4, and the o
space is 12 x 12 with two degrees of freedom for the spin both. Let us call the eigenfunction

of the complete Hamiltonian ¢ = (1, 1,)T where it can be written in the form:

H, T ™ ™
vr| o [®
T, v |

(2.48)



where it is possible to write the ¢ component of the eigenfunction in terms of the w

component:

wa - (E - H(r)_lTTwWa (249)

Substituting this into the first row of gives an effective eigenvalue equation written

solely for the m components:

[HW - T(E - Ho)_lTTWw = E¢7r7 (250)

[H, — TH'TW), ~ ESt,, (2.51)

where S =1 +TH 72T1. Finally, the transformation ® = S'/2¢), is performed:

[H, — TH;'TNS™*® = ES'?®, (2.52)

S YV2[H, - TH;'T'|S™*® = E, (2.53)

where the final effective Hamiltonian is:

Hyp~ S 'V?[H, — TH,'TTS™'/2 (2.54)

This transformation ensures the normalization of the new eigenfunction in the m-space

being consistent with the normalization of the original eigenstate:

DD = 1), Sty (2.55)
=l (I + TH> TNy, (2.56)

~ Plbe + 0. (2.57)
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Chapter 3

Results

The conductances and the spin polarization as a function of the injection energy are
characterized in the ssDNA and dsDNA. A qualitative analysis of spin transport behavior
in the ssDNA and dsDNA, under varying parameters, is presented in terms of the averaged
spin polarization where the (P;) is averaged in the interval [Egono —ksT, Enomo+ksT).
Notably, these values represent averages over specific energy ranges and appear small due
to the narrow width of the peaks. When the spin polarization is computed as a function
of the injection energy, as shown in Figure (b) Peaks can reach up to 80 % with
increased dephasing coupling in both analyzed cases. The non-monotone nature of spin
polarization and conductance, while not commonly observed in experiments, could result
from the disorder in the energies of the system that takes to resonant peaks at different

injection energies.

3.1 Spin Polarization in ssDNA

To characterize the electron transport in the ssDNA, a chain of N = 30 sites was simu-
lated. The coupling of the electrodes to the system is set to Vg = Vi, = 1 eV, and the
coupling to the dephasing probe is weak I'; = 0.06 eV to approximate the third probe to
a virtual probe.

Figure (a) shows the conductance of spin up and the conductance of spin down

in terms of the electron energy around the lead’s chemical potential, uy = —9 eV, which
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Figure 3.1: Conductances in terms of the spin and spin polarization in ssDNA. (a) Spin
conductance on a logarithmic scale as a function of electron injection energy in ssDNA.
(b) Spin polarization of ssDNA as a function of electron injection energy, with inverted
chirality: L-left-handed (black) and D-right-handed (red).

is close to the HOMO energy levels of the system. Differences between G4 and G, are
observable on the order of 1072, More evident differences can be obtained by adjusting
parameters such as the coupling strength of the decoherence probe to the system (I'y)
or by connecting additional dephasing probes. The observed spin polarization shows
values around 1.5%, contrasting with the results in ref. [4], where no spin polarization
was reported, and in the ref. [5], which incorporated interactions with additional nearest

neighbors and reported a spin polarization of around ~ 107° in ssDNA.

Notably, the spin relaxation length is generally longer than the physical length of the
molecule, so spin polarization should persist even as the molecule’s length increases, as
shown in Figure|3.2| (a). This increase is not monotonic but follows an interference pattern
resulting from temperature effects, consistent with experimental observations reported in

ref. [57].

Figure (b) shows spin polarization as a function of the coupling strength of the
dephasing probe to the system. Note that when the coupling I'; = 0, there is no spin
polarization in the system as it is expected given the reciprocity relations. As I'y in-
creases, spin polarization also rises to values around (P;) = 14%. However, beyond a

certain threshold, spin polarization starts to decrease as inelastic scattering events dis-
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Figure 3.2: Average spin polarization in ssDNA as a function of a) number of turns (n)
b) the coupling strength of the dephasing probe to the system.

rupt spin transmission between the leads. This behavior has also been reported in [5],

where decoherence effects are introduced in a similar manner.
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Figure 3.3: Spin polarization in ssDNA as a function of the injection energy with the
decoupling strength I'y = 0.06 without tilt (# = 0).

Figure [3.3| shows the effect of the absence of tilt on the spin polarization. When
the tilt is removed, spin polarization decreases by approximately an order of magnitude
compared to the values in Figure (b). This reduction occurs because tilt is crucial
in orbital overlap, facilitating additional electron transport channels that enhance spin
filtering. Nevertheless, the intrinsic helicity of the molecule preserves a degree of spin

polarization. This suggests that even without tilt, the chiral structure of the helix provides



a foundational spin-selective pathway, though at a lower efficiency.

3.1.1 Tunneling effect
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Figure 3.4: (a) Energy scheme of the injection energies in the leads, the energy of the
system and the barrier intensity. (b) Average spin polarization in ssDNA as a function of
the barrier intensity (V) and the dephasing coupling strength (I'y).

As previously discussed, the tunneling effect is crucial in analyzing electron behav-
ior within the molecule. The barrier was simulated by applying an external potential
to the system’s energy sites, causing an initial drop in conductance since the electron
transmission probability is inversely proportional to the barrier height. However, spin po-
larization is expected to increase. Figure [3.4]illustrates how average spin polarization rises
as the barrier intensity (Vp) increases. This behavior is not strictly monotonic; instead,
it exhibits an interference pattern similar to the one observed when spin polarization is
evaluated as a function of the number of turns (see Figure (a)).

Figure3.5|illustrates the impact of adding a barrier to the system on spin polarization.
As expected, spin polarization increases with rising SOC strength and dephasing coupling
strength. However, it is important to note that the spin-orbit coupling (SOC) considered
here corresponds to the intrinsic atomic SOC, which is inherently small and varies on the
order of meV. Alternatively, to other works that insert SOC as a variable parameter,
spin polarization in the system can be enhanced by minimizing the SOC and instead

varying parameters such as the barrier intensity and the dephasing coupling strength. This



approach demonstrates that external factors can be crucial in amplifying spin-selective

effects.
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Figure 3.5: Spin polarization as a function of the spin-orbit strength and the dephasing
coupling strength (a) without a barrier (b) with a barrier intensity of 1 eV.
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Figure 3.6: Spin polarization as a function of the energy injection with (a) a barrier of
intensity Vp = 1 eV with decoherence strength I'; = 0.06 eV (b) a barrier of intensity
Vg =1 eV with decoherence strength I'y = 0.6 eV.

Referring to the energy scheme in Figure (a), spin polarization is higher when the
injection energy is below the barrier. Figurea) shows that the average spin polarization
increases to approximately 0.15 % below the barrier and then declines to about 0.0045 %

above it, marking a substantial change of two orders of magnitude. In Figure b), with



a higher dephasing coupling (I'y = 0.6 €V'), spin polarization rises to nearly 10 % below

the barrier and drops to around 3 % above it.

3.2 Spin Polarization in dsDNA

The electron transmission behavior in dsDNA requires a more detailed analysis than that
of ssDNA. Specifically, the energy difference between the Adenine-HOMO and Thymine-
LUMO strands plays a significant role in shaping the electron transmission profile, depend-
ing on whether the leads are connected symmetrically or asymmetrically to the molecule.
To study this, a toy model of three base pairs was simulated. Decoherence leads were
connected to all sites with a decoupling strength of I'y = 0.06 eV, the chemical potential
of the leads was set as the average of the HOMO and LUMO energies, (1 = —6.5 eV),
and the coupling of the electrodes to the system is set to Vig = V;p, = 1 eV. Figure |3.7
illustrates the conductance profiles for all possible lead connections. In panel (a), the
conductances are shifted: when the leads are connected to the Adenine-HOMO strand,
the conductance peak is centered at —8.2 eV, whereas when connected to the Thymine-
LUMO strand, the peak shifts to —4.8 eV/. This is because the accessible states for
electron transmission are related to the energy sites of the molecule. Panel (b) shows that
the conductance decreases by three orders of magnitude when the leads are connected
asymmetrically. This is because the LUMO energy acts as a barrier that the electron
needs to travel in order to be transmitted.

The energy difference between the Adenine-HOMO and Thymine-LUMO strands also
affects spin polarization. Figure [3.8] shows that around the HOMO energy, the conduc-
tance is approximately ~ 0.01 ¢?/h with a spin polarization close to 0.07 %. In contrast,
near the LUMO energy, the conductance decreases significantly to around 1E — 7 e¢2/h
while the spin polarization rises to 0.15 %. This demonstrates a resonant versus a non-
resonant effect, similar to the behavior of electrons tunneling below a barrier: while the
conductance remains low, the system still displays substantial spin polarization. Here,
the LUMO energy acts as a barrier, enabling additional channels for conduction and spin

polarization that differ from the results observed in ssDNA, where the site energies are
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Figure 3.7: Conductance with (a) symmetric connections to the left and right leads:
Adenine-HOMO strand (black) and Thymine-LUMO strand (red), and (b) asymmetric
connections to the left and right leads.

E ELun
0,001 . HOMO . LMo
——Ps
o) L%jﬁ;
o
—0,001 4 B
T T T T
-10 -8 -8 -4 -2
Eomo ELumo
T T T T
= 7 —— Conductance |
o, 001 1
p i i
@ i i
e i i
] - -
3 =5 .
e
g i i
5 ] ]
Q -
1E-12 T
-10 -8 -6 -4 -2
Energy [eV]

Figure 3.8: Spin polarization (above panel) and conductance (below panel) in a DNA toy
model of 3 pair bases as a function of the injection energy of the leads.

homogenous.

Figure |3.9| presents the average spin polarization as a function of the number of turns
and the coupling strength of the dephasing probe. The behavior closely resembles that
observed in ssDNA: spin polarization generally increases with the number of turns, though
not in a strictly monotonic manner. Additionally, average spin polarization peaks at
approximately 15 % when the dephasing strength reaches 0.5 eV after which it declines

as inelastic events begin to interfere with electron transmission.
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intensity (V) and the dephasing coupling strength (I'y) in the DNA model.

To evaluate the effect of the barrier in dsDNA, a model consisting of 30 base pairs

(60 sites) was simulated, with decoherence probes connected to all sites. This setup was

chosen because, when only one probe is connected to the system, spin polarization appears

only at specific energies, depending on whether the decoherence probe was attached to

the HOMO strand or the LUMO strand. Figure illustrates how spin polarization



is enhanced with the barrier intensity and decoupling strength while conductance drops.
It is important to note that this enhancement is not as regular as in the case of ssDNA
due to interference effects. Nevertheless, the slight inclination to the left of the pattern
indicates that spin polarization grows when the dephasing coupling strength is maintained
while the barrier is increased. Additionally, the maximum spin polarization in dsDNA
exceeds that in ssDNA, as expected, given the inclusion of multiple decoherence probes

in the system.
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Figure 3.11: Average spin polarization as a function of the injection energy around a
barrier of 1 eV (a) with a dephasing coupling strength of I'y = 0.06 eV (b) with a
dephasing coupling strength of I'y = 0.5 eV

Figure shows the spin polarization as a function of the injection energy near the
barrier. In both cases, the spin polarization reaches a maximum when the injection energy
is between the HOMO and LUMO barriers and decreases when the injection energy is
above the highest LUMO barrier. This detrimental effect reaches two orders of magnitude
when the dephasing coupling strength is comparable to the couplings in the molecule, in
agreement with the results presented for the ssDNA [3.6] This is the typical behavior of
the tunnel effect, and once again, the spin polarization is enhanced by the presence of
a barrier in the system. The difference when the dephasing coupling is smaller is not
significant, but note that in general, the spin polarization is several orders of magnitude
smaller than in the other case. The combined effects of the barrier and dephasing also

influence the conductance, which decreases to 107¢ €2 /h with minimal dephasing coupling



and further drops to 107 €%/h at maximum dephasing. This behavior is analogous to the
resonant and non-resonant effects observed in DNA without a barrier, where conductance

decreases at certain energies while spin polarization increases.

3.3 Band Folding

After implementing the effective Hamiltonian of Eq. in Kwant for a 3-site helix, the
spin polarization decreased by several orders of magnitude to approximately ~ 10719 %,
while the conductance exhibited similar peaks to those observed in the complete orbital
model. Considering that models in the literature [58] use this approximation with Hamil-
tonians in reciprocal space, it appears that the band-folding method is incompatible with
finite systems: Although the quantum number £ is well-defined in the semi-infinite leads,
as demonstrated in the methods section, it is not well-defined within the finite system
itself, even if the energies are. For this reason, a reciprocal-space version of the model
was constructed, but its analysis in terms of spin behavior is deferred to future work.
For simplicity, the Hamiltonian describing the interaction between two sites with bare

spin-orbit and kinetic coupling was constructed as follows:
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After applying the transformation:

Hyp=H, —TH'T", (3.1)



the effective Hamiltonian can be written in the form
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The Hamiltonian in reciprocal space is defined by:

H(k) = % Z > e (0| |®;) (3.2)
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where Rj; = R is the distance between two sites and is the same for every 1, j.

It is important to note that the phase in the diagonal terms is zero, as these terms
involve processes occurring within orbitals of the same site. In contrast, the off-diagonal
terms acquire a phase that depends on the transitions between orbitals of different sites.

The reciprocal Hamiltonian can thus be expressed in the following form:

—2i/\egsyEm + QiAegstyz

H(k) = BT + B (k) - - (k) (34)

where
f(k) =2cos(k-R), (3.5)
g(k) =2sin(k - R). (3.6)

The new Hamiltonian in reciprocal space can be evaluated in a k£ point in the Brillouin



zone, typically around a hall-full k£ point.
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Chapter 4

Conclusions

This work introduced a tight-binding model to analyze charge transport and spin polar-
ization in chiral systems, specifically single-stranded DNA (ssDNA) and double-stranded
DNA (dsDNA). Unlike other tight-binding models, this approach incorporated a detailed
description of s- and p-orbitals at each site. This level of detail allowed for the emergence
of intrinsic spin-orbit coupling (SOC), the Stark effect, and the Rashba effect, arising
naturally from the orbital geometry and their overlaps in the helical structure. Addi-
tionally, the model did not exhibit spin polarization in a two-terminal setup, consistent
with Onsager’s reciprocity relations, necessitating the introduction of a third probe to
incorporate decoherence.

The results are promising and remark the importance of geometrical considerations
in the theoretical models for understanding CISS. First, the strength of the SOC used
was the intrinsic atomic value, as measured experimentally, and there was no need to
artificially adjust this parameter above meV magnitudes to achieve spin polarization.
This provides a more accurate description of CISS compared to existing models. Second,
the orbital model demonstrated spin polarization in ssDNA without requiring interactions
with additional nearest neighbors, with results several orders of magnitude higher than
those reported in the literature. This highlights the critical importance of geometric
parameters in theoretical models analyzing CISS.

The role of decoherence was also examined. The highest spin polarization values

were observed when the dephasing coupling strength was comparable to the coupling



parameters within the system. Introducing decoherence probes not only broke time-
reversal symmetry but also played a crucial role in enabling spin accumulation. However,
excessive increases in the dephasing coupling negatively impacted electron transmission
and spin polarization, as electrons tended to escape through the reservoir.

Electron behavior in ssDNA and dsDNA was analyzed within the tunneling and hop-
ping regimes. For ssDNA, where the site energies are uniform along the molecule, spin
polarization aligned with the resonant conductance peaks. In dsDNA, the energy differ-
ence between strands significantly influenced electron transmission, producing resonant
peaks near the HOMO energy and non-resonant peaks near the LUMO strand. The
LUMO strand acted as a barrier that enhanced spin polarization. Furthermore, adding
an external potential barrier affected spin polarization in both cases, demonstrating that
spin polarization is maximized when the injection energy is below the barrier and decreases

when it is above it.

4.1 Future work

Several important aspects were not addressed in this study and warrant further explo-
ration: First, the introduction of decoherence leads as a source of leakage of probability
results in the loss of unitarity in the system’s transmission. Testing the model with a more
sophisticated approach for incorporating decoherence, such as the D’ Amato-Pastawski for-
malism, could maintain unitarity while still breaking time-reversal symmetry, offering a
more subtle representation of decoherence effects.

Concerning the spin-active paths in the double helical system, recent group theory
studies of line groups have revealed spin-active channels between helices that should be
included in a complete orbital model [59] 60]. Also, the inversion asymmetry of the helix
(and of all chiral structures) makes for an internal potential that contributes to an intrinsic
Rashba term that has not been considered here. Such a coupling is distinguished from
the Rashba effect coming from hydrogen bonding and is important to determine intrinsic
from extrinsic spin effects.

Additionally, a Hamiltonian in reciprocal space was developed using the band-folding



methodology, as the folded Hamiltonian in real space did not provide a reliable framework
for qualitatively analyzing spin behavior in the system. This reciprocal space approach can
potentially deepen the understanding of CISS, particularly as it remains underexplored

in other studies.



57

Bibliography

1]

Matthias Geyer, Rafael Gutierrez, and Gianaurelio Cuniberti. Effective hamiltonian
model for helically constrained quantum systems within adiabatic perturbation the-
ory: Application to the chirality-induced spin selectivity (ciss) effect. The Journal
of chemical physics, 152(21), 2020.

Karen Michaeli and Ron Naaman. Origin of spin-dependent tunneling through chiral

molecules. The Journal of Physical Chemistry C, 123(27):17043-17048, 2019.

Ricardo Gutierrez, E Diaz, Ron Naaman, and G Cuniberti. Spin-selective trans-
port through helical molecular systems. Physical Review B—Condensed Matter and
Materials Physics, 85(8):081404, 2012.

Ai-Min Guo and Qing-feng Sun. Spin-selective transport of electrons in dna double

helix. Physical review letters, 108(21):218102, 2012.

Ai-Min Guo and Qing-Feng Sun. Spin-dependent electron transport in protein-
like single-helical molecules.  Proceedings of the National Academy of Sciences,

111(32):11658-11662, 2014.

Ai-Min Guo, Ting-Rui Pan, Tie-Feng Fang, XC Xie, and Qing-Feng Sun. Spin
selectivity effect in achiral molecular systems. Physical Review B, 94(16):165409,
2016.

Xu Yang, Caspar H van der Wal, and Bart J van Wees. Detecting chirality in two-

terminal electronic nanodevices. Nano letters, 20(8):6148-6154, 2020.



8]

[11]

[12]

[13]

[14]

[15]

[17]

Laurence George Demosthenis Hawke, George Kalosakas, and Constantinos Sim-
serides. Electronic parameters for charge transfer along dna. The Furopean Physical

Journal E, 32(3):291-305, 2010.

Brian P Bloom, Yossi Paltiel, Ron Naaman, and David H Waldeck. Chiral induced

spin selectivity. Chemical Reviews, 124(4):1950-1991, 2024.

Nevill Francis Mott. The electrical conductivity of transition metals. Proceed-
ings of the Royal Society of London. Series A-Mathematical and Physical Sciences,
153(880):699-717, 1936.

Nevill Francis Mott. The resistance and thermoelectric properties of the transition
metals. Proceedings of the Royal Society of London. Series A-Mathematical and
Physical Sciences, 156(888):368-382, 1936.

Igor Zuti¢, Jaroslav Fabian, and S Das Sarma. Spintronics: Fundamentals and ap-

plications. Reviews of modern physics, 76(2):323, 2004.

PS Farago. Spin-dependent features of electron scattering from optically active

molecules. Journal of Physics B: Atomic and Molecular Physics, 13(18):L567, 1980.

Stefan Mayer and Joachim Kessler. Experimental verification of electron optic dichro-

ism. Physical review letters, 74(24):4803, 1995.

K Blum, M Musigmann, and D Thompson. Elastic electron collision with chiral and
oriented molecules. In Supercomputing, Collision Processes, and Applications, pages

137-153. Springer, 1999.

K Ray, SP Ananthavel, DH Waldeck, and Ron Naaman. Asymmetric scatter-
ing of polarized electrons by organized organic films of chiral molecules. Science,

283(5403):814-816, 1999.

Clarice D Aiello, John M Abendroth, Muneer Abbas, Andrei Afanasev, Shivang

Agarwal, Amartya S Banerjee, David N Beratan, Jason N Belling, Bertrand Berche,



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Antia Botana, et al. A chirality-based quantum leap. ACS nano, 16(4):4989-5035,
2022.

Suryakant Mishra, Amit Kumar Mondal, Shubhadeep Pal, Tapan Kumar Das,
Eilam ZB Smolinsky, Giuliano Siligardi, and Ron Naaman. Length-dependent elec-

tron spin polarization in oligopeptides and dna. The Journal of Physical Chemistry

C, 124(19):10776-10782, 2020.

Neeraj Bangruwa, Manish Srivastava, and Debabrata Mishra. Ciss-based label-
free novel electrochemical impedimetric detection of uve-induced dna damage. ACS

Omega, 7(42):37705-37713, 2022.

Prashant K Bhartiya, Suryansh, Neeraj Bangruwa, Manish Srivastava, and De-
babrata Mishra. Light-amplified ciss-based hybrid qd-dna impedimetric device for
dna hybridization detection. Analytical Chemistry, 95(7):3656-3665, 2023.

Bernd Giese. Electron transfer in dna. Current opinion in chemical biology, 6(5):612—

618, 2002.

Stuart Lindsay. Ubiquitous electron transport in non-electron transfer proteins. Life,

10(5):72, 2020.

Zouti Xie, Tal Z Markus, Sidney R Cohen, Zeev Vager, Rafael Gutierrez, and Ron
Naaman. Spin specific electron conduction through dna oligomers. Nano letters,

11(11):4652-4655, 2011.

Dominik M Stemer, John M Abendroth, Kevin M Cheung, Matthew Ye, Mo-
hammed S El Hadri, Eric E Fullerton, and Paul S Weiss. Differential charging in

photoemission from mercurated dna monolayers on ferromagnetic films. Nano letters,

20(2):1218-1225, 2020.

Itai Carmeli, Karuppannan Senthil Kumar, Omri Heifler, Chanoch Carmeli, and Ron
Naaman. Spin selectivity in electron transfer in photosystem i. Angewandte Chemie

International Edition, 53(34):8953-8958, 2014.



[26]

[27]

[29]

[30]

[31]

[32]

Vankayala Kiran, Shinto P Mathew, Sidney R Cohen, Irene Hernandez Delgado,
Jérome Lacour, and Ron Naaman. Helicenes—a new class of organic spin filter.

Advanced Materials, 28(10):1957-1962, 2016.

Niccolo Giaconi, Lorenzo Poggini, Michela Lupi, Matteo Briganti, Anil Kumar,
Tapan K Das, Andrea L Sorrentino, Caterina Viglianisi, Stefano Menichetti, Ron
Naaman, et al. Efficient spin-selective electron transport at low voltages of thia-

bridged triarylamine hetero [4] helicenes chemisorbed monolayer. ACS nano,

17(15):15189-15198, 2023.

Rafael Rodriguez, Cristina Naranjo, Anil Kumar, Paola Matozzo, Tapan Kumar
Das, Qirong Zhu, Nicolas Vanthuyne, Rafael Gémez, Ron Naaman, Luis Sanchez,
et al. Mutual monomer orientation to bias the supramolecular polymerization of
[6] helicenes and the resulting circularly polarized light and spin filtering properties.

Journal of the American Chemical Society, 144(17):7709-7719, 2022.

Amit Kumar Mondal, Marco D Preuss, Marcin L Sleczkowski, Tapan Kumar Das,
Ghislaine Vantomme, EW Meijer, and Ron Naaman. Spin filtering in supramolecular
polymers assembled from achiral monomers mediated by chiral solvents. Journal of

the American Chemical Society, 143(18):7189-7195, 2021.

Lei Jia, Chenchen Wang, Yuchun Zhang, Liu Yang, and Yong Yan. Efficient spin
selectivity in self-assembled superhelical conducting polymer microfibers. ACS nano,

14(6):6607-6615, 2020.

B Gohler, V Hamelbeck, TZ Markus, M Kettner, GF Hanne, Zeev Vager, Ron
Naaman, and H Zacharias. Spin selectivity in electron transmission through self-

assembled monolayers of double-stranded dna. Science, 331(6019):894-897, 2011.

M Kettner, B Gohler, H Zacharias, D Mishra, V Kiran, R Naaman, Claudio
Fontanesi, David H Waldeck, Slawomir Sek, Jan Pawlowski, et al. Spin filtering in

electron transport through chiral oligopeptides. The Journal of Physical Chemistry
C, 119(26):14542-14547, 2015.



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Y Lu, BP Bloom, S Qian, and DH Waldeck. Enantiospecificity of cysteine adsorption
on a ferromagnetic surface: Is it kinetically or thermodynamically controlled? The

Journal of Physical Chemistry Letters, 12(32):7854-7858, 2021.

Paul V Mollers, Jimeng Wei, Soma Salamon, Manfred Bartsch, Heiko Wende,
David H Waldeck, and Helmut Zacharias. Spin-polarized photoemission from chi-

ral cuo catalyst thin films. ACS nano, 16(8):12145-12155, 2022.

KB Ghosh, Wenyan Zhang, F Tassinari, Y Mastai, O Lidor-Shalev, R Naaman,
P Mollers, D Nurenberg, H Zacharias, J Wei, et al. Controlling chemical selectivity in

electrocatalysis with chiral cuo-coated electrodes. The Journal of Physical Chemistry

C, 123(5):3024-3031, 2019.

Yingdan Xu and Wenbo Mi. Chiral-induced spin selectivity in biomolecules, hybrid
organic—inorganic perovskites and inorganic materials: a comprehensive review on

recent progress. Materials Horizons, 10(6):1924-1955, 2023.

Matthias Geyer, Rafael Gutierrez, Vladimiro Mujica, and Gianaurelio Cuniberti.
Chirality-induced spin selectivity in a coarse-grained tight-binding model for helicene.

The Journal of Physical Chemistry C, 123(44):27230-27241, 2019.

Ramon Torres-Cavanillas, Garin Escorcia-Ariza, Isaac Brotons-Alcazar, Roger
Sanchis-Gual, Prakash Chandra Mondal, Lorena E Rosaleny, Silvia Gimenez-
Santamarina, Michele Sessolo, Marta Galbiati, Sergio Tatay, et al. Reinforced room-
temperature spin filtering in chiral paramagnetic metallopeptides. Journal of the

American Chemical Society, 142(41):17572-17580, 2020.

Sina Yeganeh, Mark A Ratner, Ernesto Medina, and Vladimiro Mujica. Chiral
electron transport: Scattering through helical potentials. The Journal of chemical

physics, 131(1), 20009.

Solmar Varela, Ernesto Medina, Floralba Lopez, and Vladimiro Mujica. Inelastic

electron scattering from a helical potential: transverse polarization and the structure



[41]

[42]

[43]

[44]

[47]

[48]

factor in the single scattering approximation. Journal of Physics: Condensed Matter,

26(1):015008, 2013.

Ernesto Medina, Floralba Lopez, Mark A Ratner, and Vladimiro Mujica. Chiral
molecular films as electron polarizers and polarization modulators. Furophysics Let-

ters, 99(1):17006, 2012.

Dhurba Rai and Michael Galperin. Electrically driven spin currents in dna. The
Journal of Physical Chemistry C, 117(26):13730-13737, 2013.

Solmar Varela, Vladimiro Mujica, and Ernesto Medina. Effective spin-orbit couplings
in an analytical tight-binding model of dna: Spin filtering and chiral spin transport.

Physical Review B, 93(15):155436, 2016.

Volodymyr V Maslyuk, Rafael Gutierrez, Arezoo Dianat, Vladimiro Mujica, and
Gianaurelio Cuniberti. Enhanced magnetoresistance in chiral molecular junctions.

The journal of physical chemistry letters, 9(18):5453-5459, 2018.

Elena Diaz, Francisco Dominguez-Adame, Rafael Gutierrez, Gianaurelio Cuniberti,
and Vladimiro Mujica. Thermal decoherence and disorder effects on chiral-induced

spin selectivity. The journal of physical chemistry letters, 9(19):5753-5758, 2018.

Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Wain-
tal. Kwant: a software package for quantum transport. New Journal of Physics,

16(6):063065, 2014.

Miguel Mena, Solmar Varela, Bertrand Berche, and Ernesto Medina. Minimal model
for chirally induced spin selectivity: spin-orbit coupling, tunneling and decoherence.

Journal of Statistical Mechanics: Theory and Ezxperiment, 2024(8):084001, 2024.

XF Wang and Tapash Chakraborty. Charge transfer via a two-strand superexchange
bridge in dna. Physical review letters, 97(10):106602, 2006.



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[58]

Mayra Peralta, Steven Feijoo, Solmar Varela, Rafael Gutierrez, Gianaurelio Cunib-
erti, Vladimiro Mujica, and Ernesto Medina. Spin-phonon coupling in a double-

stranded model of dna. The Journal of Chemical Physics, 159(2), 2023.

Natallia V Grib, Dmitry A Ryndyk, Rafael Gutiérrez, and Gianaurelio Cuniberti.
Distance-dependent coherent charge transport in dna: crossover from tunneling to

free propagation. Journal of Biophysical Chemistry, 1(02):77-85, 2010.

R Gutierrez and G Cuniberti. Spin-dependent effects in helical molecular systems
with rashba-like spin-orbit interaction. Acta Physica Polonica A, 127(2):185-191,

2015.

Horacio M Pastawski and Ernesto Medina. Tight binding’'methods in quantum trans-
port through molecules and small devices: From the coherent to the decoherent

description. arXiv preprint cond-mat/0103219, 2001.

Daniel S Fisher and Patrick A Lee. Relation between conductivity and transmission

matrix. Physical Review B, 23(12):6851, 1981.

Xu Yang. Connecting chirality and spin in electronic devices. 2020.

Xu Yang, Caspar H. van der Wal, and Bart J. van Wees. Detecting chirality in
two-terminal electronic nanodevices. Nano Letters, 20(8):6148-6154, 2020. PMID:
32672980.

Leslie L Foldy and Siegfried A Wouthuysen. On the dirac theory of spin 1/2 particles

and its non-relativistic limit. Physical Review, 78(1):29, 1950.

Limin Xiang, Julio L Palma, Christopher Bruot, Vladimiro Mujica, Mark A Ratner,
and Nongjian Tao. Intermediate tunnelling-hopping regime in dna charge transport.

Nature chemistry, 7(3):221-226, 2015.

Edward McCann and Mikito Koshino. The electronic properties of bilayer graphene.
Reports on Progress in physics, 76(5):056503, 2013.



[59] Pablo Mendieta. Spin transport hamiltonians on molecular helices: Derivations from

symmetry, 2024.

[60] Denis Kochan, Susanne Irmer, and Jaroslav Fabian. Model spin-orbit coupling hamil-

tonians for graphene systems. Physical Review B, 95(16):165415, 2017.



65

Appendix A: Discretization Aquiral

Nanotubes Model

H="Ho+ Ha+ Ha,

~

p N
Ho=—+V
"7 om TV 4Am?2c?

VV (6 % p),

(4.1)

Consider that ¢ are the eigenstates of the Hamiltonian of the system:

Hoyp = £,
It is possible to rewrite the operator p in its differential form:

PP =—h (02 + 02+ 02),

hQ

—— 0 + ‘A/?ﬁi + (6 x 0;) = Ev,
2m

where ¥ = VV

o WVG+ag) — 205 + Vi-ag)
J

¢(n+An) - 2wn + w(ann)
A2 ’

8Z¢n =

(4.2)



while the SOC term can be written in the form:

’7(6’ X ]5) = _’Veijko'jhigk(wnj) (43)

= —ihyo;Oktn; (4.4)

where we use the central derivative in finite differences:

Yirai — Vi-ni
Oy — Ve Vi

replacing the finite differences in

h? h? N
— W(U,]’Jrl,n - 2an + ujfl,n) — m(ﬂj’n+1 — 2an + uj,nfl> + V — Z(h/4m2C2)h’}/y
J n

(] 1= Ujt1n—u,_ n
€0 (A A =) + €yen0 (o oA =) (4.5)
n J

we have considered 7 = 77 th electric field is in the radial direction:

b (1 — 2ujn + Uj1n) + 10 (Ujng1 — 2050 + Ujn—1) + Vi +

+ 050 (Ujn1 = Ujn—1) = {0 (Ujr10 — Ujo12)  (4.6)

rewriting the u;, as a |j,n) state

ty(lg +1,n) (Gl = 215,n) (Gl + 13,m) G+ 1nl) +E0(5,n+ 1) (G0l = 2[5,n) (j,n| +
+17,m) Gon 4+ 1)) + VIi,n) Gonl + iso5(,n + 1) (Gonl = |7.n) (Gyn+ 1)) —

—ipo.(lj +1,n) (G,n| —1j,n) (j + 1L,n]) (4.7)

Rewriting everything in terms of the creation and annihilation operators:

J N N-1 N
H(] = Z Z Ean;r-ann -+ Z C;rn(t” —+ QiSUj)cj,nJrl + Z C;r'n<tl_ + 2iMUZ)Cj+1,n -+ H.c. s
j=1 Ln=1 n=1 n=1

(4.8)
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Appendix B: “Electron-Hole

Symmetry” in Achiral Nanotubes

It was stated that the Hamiltonian:

J N N-1 N
HO = Z Z Gan;ann -+ Z C}Ln(t” -+ QiSUj)ijJrl + Z C;r'n<tl_ + QZ.MUZ)C]'+17” -+ H.c. s
j=1 Ln=1 n=1 n=1

(4.9)
is invariant under the transformation:
Cjnt = (=1)7Fl,,
Ciny = (=1)"H T
C;m = (=1)7 ")y
i N (_1)J‘+n+1€jni

Cjnt

when J is even or equal to 1. It is understood that if each of the parts of the Hamiltonian

is invariant under the transformation, then the complete Hamiltonian is also invariant.

C<
feo |1 ant
Cinin = [Cm’ ij]

Cinl

— 1
- CjnTCjnT + CjnJ,CjnwL



Applying the transformation:

_ (_1)j+n+lcjn¢( 1)j+n ;[n¢ +( 1) +annT( 1)]+n+1 ;rnT

:(_1)2(j+n)+1 (_1)2(j+n)+1 b

T
CinlCjn) Tt CjntCing

_ ol T
= —CjnlC gnd Cj"TCjnT

by applying the commutation rules of the creation and annihilation operators: {¢;, ¢ ]} =

0:

ij» it is possible to rewrite the result:

_f i
= Cjp1Cint T Cjp Cinl — 1

The spin-orbit term along the chain Z] SV ; (t) + 2i50;)cj 1 can be written in

the matrix form:

t 0 0 sin ¢; + 4 cos ¢;
t+2iso; = | | + 2is ’ ’
0 1 sin ¢; — i cos ¢; 0

recalling that o; = o, sin¢; — o, cos ¢;.

t” —25¢

256i®i tH

Then, it is possible to perform the multiplication with the creation annihilation operators:

[ 1| o =257 | |Cnin

c. c.
jnt  Tynd L

L 1 12s¢ Ly Cin+1)

tiCins1t — 25€7" % Cjurny

T T
c c
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. i i i
= b (G Cintrt + CimiClniay + Cny Cintrl + CiniChniy) + 28

(=€l iy — €99ty + €9k, Ciniar + e P eiycl 10) (4.10)

Applying the transformation to this term:

r 1 t —2se71% —1)dHntlct
= (—1>j+n+16'n¢ (_1)j+nc ot H ( ) 2 ;n-l—li
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_ i —igg, I, i
= (tCjnyClppq) + 25€ i; CinlCint1r — 25693 CintCint1y T UCintCiny1p) + Heoc.

After including explicitly the terms of the conjugate Hamiltonian, the expression is the

same as the one in the equation. [4.10}

_ T T T T
=1 (CjnTCjnJrlT T CintCipy1p T CjnCint1l + ijcjn+1¢) + 2s

(=€l neininy — € Cimcininy + €9ch, iy + e epel )

The interchain spin-orbit coupling can be written in the matrix form:

C;n(ﬁ + 2i,u0z)cj+1n =

1 i

2ip 0 Cint
T Gnt Ciny

0 —QZ,U, Cinl

oo i i
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Applying the transformation:

2i 0 —1)itnt
= | (=17t (—1)7tne s (ZL7 e

Lt Cjnt
_ 2iﬂ<<_1)2(j+n)+lcjn¢c;[n¢ - (_1)2(j+n)+1cjnTc;[nT + H.C)

_ o T T T T
= 2ip(—Cjni Cjpy + CintCing T CinyCint — Cjn Ciny)



	Introduction
	Tight-Binding models

	Methods
	The Model
	Slater-Koster Terms
	Landauer Formalism
	Dephasing
	Band Folding

	Results
	Spin Polarization in ssDNA
	Tunneling effect

	Spin Polarization in dsDNA
	Tunneling effect

	Band Folding

	Conclusions
	Future work

	Bibliografía

