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Nombre del Director del Programa:

T́ıtulo académico:

Director del programa de:

Nombre del Decano del Colegio Académico:

T́ıtulo académico:

Decano del Colegio:

Nombre del Decano del Colegio de

Posgrados:

T́ıtulo académico:

Dario Niebieskikwiat

Doctor en F́ısica
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ciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour

et al. (2017) Discussion document on best practice for issues around theses publishing,

disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco

de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part

– should not be considered a publication. This statement follows the recommendations

presented by the Committee on Publication Ethics COPE described by Barbour et al.

(2017) Discussion document on best practice for issues around theses publishing available

on http://bit.ly/COPETheses.



5

Agradecimientos

Agradezco a mis papás y a mis hermanos por apoyarme y estar presentes siempre en

todas las etapas de mi vida. Gracias por animarme en los momentos dif́ıciles y, sobre

todo, gracias por su amor y entrega incondicional.

También agradezco a mis amigos de la Universidad, siempre nos hemos apoyado mu-

tuamente en este camino y han sido parte indispensable a lo largo de mi carrera. En

especial, quiero mencionar a David, mi compañero de todo el pregrado y ahora de la
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Resumen

La Selectividad de Esṕın Inducida por Quiralidad (CISS por sus siglas en inglés) es un

fenómeno experimental que se ha documentado de manera detallada, donde moléculas

quirales exhiben polarizaciones electrónicas altas en una configuración de transporte de

dos terminales, proporcionando un recurso prometedor para la espintrónica molecular.

Explicar este efecto ha constituido un desaf́ıo teórico, comenzando desde modelos con-

tinuos [1, 2] de estructuras helicoidales, hasta modelos de enlaces fuerte [3, 4, 5, 6] que

implican los orbitales en el transporte. La reciprocidad de Onsager es la principal regla

que rige el transporte en sistemas con simetŕıa de reversión temporal y pocos de los mode-

los propuestos en la literatura cumplen con esta condición [7]. En este trabajo se hace una

evaluación cŕıtica de los modelos orbitales discretos previos y se aborda una propuesta

anaĺıtica y numérica que satisface la reciprocidad, y que incluye procesos de decoherencia

como mecanismo de rompimiento de reversibilidad temporal, necesario para la acumu-

lación de esṕın. Nuestro modelo produce polarizaciones altas dentro de una descripción

realista, tanto de hélices simples como dobles y valida cualitativamente escenarios recientes

establecidos por modelos mı́nimos de CISS exactamente resueltos.

Palabras clave: CISS, tight-binding, Quiralidad, Polarización de esṕın
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Abstract

Chiraly Induced Spin Selectivity (CISS) is a very well experimentally documented phe-

nomenon, where chiral molecules in a two-terminal transport setup exhibit electron polar-

ization to an extraordinary degree, furnishing a promising resource for molecular spintron-

ics. Explaining this effect has constituted a theoretical challenge, starting from continuous

models [1, 2] of helical structures to tight-binding models [3, 4, 5, 6] that surmise the or-

bitals involved in transport. A major test for two terminal spin selection is Onsager’s

reciprocity relations [7], which apply to systems with time-reversal symmetry that very

few of the models in the literature comply with. Here, we discuss a critical assessment of

the previous discrete orbital models and embark on an analytical and numerical proposal

that satisfies reciprocity and includes decoherence processes as sources of time-reversal

symmetry-breaking mechanisms. Our model yields high polarization outputs within a

realistic description of both single and double helices and validates qualitatively recent

scenarios set by exactly solved minimal models of CISS.

Keywords: CISS, tight-binding, Chirality, Spin Polarization
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Chapter 1

Introduction

Chiral Induced Spin Selectivity (CISS) refers to the quantum mechanical phenomenon

where chiral molecules act as spin filters, enabling spin-polarized electron transport [9].

The history of CISS begins with the recognition of spin activity in ferromagnetic materials,

an essential aspect of spintronics. Spin-polarized transport was first described by Mott in

1936, who proposed that the resistance of ferromagnetic materials could be explained by

considering the separate behaviors of spin-up and spin-down electrons, leading to spin-

polarized currents [10, 11]. This idea laid the foundation for the control of the spin and

the development of devices like spin valves, which paved the way for further research into

spin-polarized electron transport in other systems, including chiral materials [12].

The first proposal of the relation between chirality and spin selection was made by

Farago [13], who surmised that point chiral molecules such as amino acids, when scatter-

ing electrons, could yield an angle-dependent spin polarization. This proposal was later

measured by Kessler [14] for point chiral molecules in the gas phase. The spin effect was

small (10−4%) and this was only achieved after attaching heavy atoms to the chiral Cam-

phor molecules. Thompson and Blum [15] extensively developed the scattering theory

of chiral units, demonstrating chiral-dependent spin polarization in the Born scattering

formalism.

For some years there was little interest in the small spin polarizing effect of chiral

molecules until the first experimental observation of the CISS effect came in 1999 [16]. It

was demonstrated that spin-polarized electrons can be filtered through chiral molecules,



producing asymmetries significantly larger than those observed in the gas phase or even

in ferromagnets [16]. Since this discovery, numerous experiments have validated this phe-

nomenon across various chiral systems, including oligopeptides, helicenes, proteins, chiral

perovskites, and dichalcogenide crystals [17]. Additionally, several advanced measure-

ment techniques have been developed to study this effect [9]. The CISS effect establishes

a fundamental connection between molecular chirality and electron spin, with far-reaching

implications for spin-based technologies and the understanding of life’s homochiral nature

[18, 19, 20].

CISS is commonly measured using techniques such as photoelectron spectroscopy,

Mott polarimetry, conductive probe atomic force microscopy (mc-AFM), and scanning

tunneling microscopy (STM), all of which provide valuable insights into the spin-selective

behavior of electron transport through chiral materials [9]. However, to understand spin

polarization, it is essential first to analyze the fundamental behavior of electrons in chiral

molecules.

Ref. [21] explored long-distance electron transfer in DNA, focusing on charge trans-

port rates and efficiency under various conditions. Their findings revealed that electron

transfer primarily occurs via a multistep hopping mechanism, with guanine and, in some

sequences, adenine serving as charge carriers. Similarly, ref. [22] examined electron

transport in non-electron transfer proteins, challenging the notion that these proteins act

as insulators. The study measured single-molecule conductance, the energy of resonant

electronic states, and conductance variations related to protein conformations. It demon-

strated that non-electron transfer proteins exhibit significant conductivity, comparable to

bacterial filaments, with transport mediated through resonant states involving aromatic

residues such as tyrosine and tryptophan.

Among the types of chirality, axial or helical chirality has the most pronounced ef-

fect on spin selectivity in organic systems. For example, mc-AFM measurements showed

spin polarizations as high as 57% in double-stranded DNA, while single-stranded DNA

exhibited no significant spin polarization [23]. Nevertheless, experiments using ultravio-

let photoelectron spectroscopy (UPS) have reported spin polarizations in single-stranded



DNA chelated with Hg [24], indicating the influence of external factors on spin selectivity.

Studies in proteins as the experiment of ref. [25] investigated spin polarization in electron

transfer through Photosystem I (PSI) using a spintronic device. Experiments on several

classes of helicenes [26, 27, 28] and polymers [29, 30] have also shown that these materials

are significant sources of spin selectivity.

Most experiments have explored the response of spin polarization under varying pa-

rameters. A strong dependence between molecular length and spin polarization has been

demonstrated, with several studies showing that spin polarization increases with the

length of the molecule [23, 31, 32]. Ref. [25] revealed that spin polarization peaks at

room temperature, with electron spins aligned parallel to their momentum, but decreases

sharply below 150 K, disappearing entirely at lower temperatures. These findings high-

light the temperature-dependent nature of spin polarization, driven by thermal energy and

molecular dynamics. However, studies have also shown that heterogeneous or structurally

disordered systems exhibit poor or negligible spin polarization [33, 34, 35].

According to theoretical models explaining CISS, spin-orbit coupling (SOC) has been

established as the primary mechanism for spin activity in chiral systems[13, 14, 15]. How-

ever, it has been demonstrated that SOC alone cannot generate spin polarization in

non-helical systems. At the same time, the absence of SOC could be argued with some

angular momentum transfer mechanisms to produce spin polarization [36]. The great

variety of experimental findings now available challenge the previous minimal ingredients.

For instance, theoretical studies have shown that orbital overlap and hydrogen bonding

networks can modulate SOC [37], emphasizing the importance of controlling structural

variations when evaluating SOC’s role. Furthermore, experiments on metallopeptides

have shown that incorporating a paramagnetic material results in higher spin polariza-

tion than using a diamagnetic one, with the magnetic properties overriding the influence

of SOC [38]. To clarify the relationship between SOC and spin polarization, more detailed

experiments are needed to isolate SOC’s effects from other contributing factors.

Significant efforts have been made to develop effective models that reproduce experi-

mental results using experimentally measurable parameters and enhance the understand-



ing of CISS. These approaches are typically categorized into three main groups: hydro-

dynamic or continuum models [39, 40, 41], tight-binding frameworks [3, 4, 42, 43], and ab

initio methods such as density functional theory (DFT) [44, 45]. While many theoretical

models successfully report spin polarization, some approaches raise concerns: (i) SOC is

often introduced as an adjustable parameter that must be tuned to unrealistically high

values to match experimental spin polarization results, and (ii) DFT models frequently

report spin polarization in two-terminal setups, which violates Onsager’s reciprocity rela-

tions.

The objective of this work is to address the shortcomings of current models in un-

derstanding spin selectivity by constructing a tight-binding model that incorporates the

following key characteristics:

1. Orbital involvement in transport.

2. Intrinsic SOC as a source of spin activity.

3. Chirality as a source of space inversion asymmetry.

4. Couplings to the environment as a source of time-reversal symmetry breaking.

In the initial stage of this work, tight binding models from the literature are addressed.

Some results are reproduced to validate the computational methods used and serve as

a foundation for our model development. In the methods section, the s- and p-orbital

Hamiltonian is calculated considering the geometry of the orbitals in the helix’s base.

The Landauer formalism is utilized for analyzing electron transmission and spin polariza-

tion. The model did not exhibit spin polarization in a two-terminal setup in accordance

with the Onsager reciprocity. The results provide a comprehensive characterization of

electron behavior in two systems: single-stranded DNA (ssDNA) and double-stranded

DNA (dsDNA).



1.1 Tight-Binding models

We first analyzed existing tight-binding models from the literature and validated our

computational methods by reproducing their results. Two significant studies were selected

for comparison: ref. [6], where chirality is introduced through asymmetrical connections

to input and output leads, and ref. [4], which explores spin polarization in single-stranded

(ssDNA) and double-stranded DNA (dsDNA). These models are among the most robust

in the literature, successfully describing spin transport in chiral molecules.

Achiral Nanotubes

To validate our approach, we used the Kwant framework [46] to replicate the results from

the selected studies. In ref. [6], where an achiral nanotube was modeled, and mirror

asymmetry was introduced by connecting the output lead to a site different from that of

the input lead. This modification caused the two-terminal system to behave like a chiral

molecule.

Figure 1.1: Representation of the achiral nanotube in the model of Guo-Sun with one
Büttiker’s lead connected to a site.

The Hamiltonian that describes the system has the form:

H = H0 +Hel +Hd, (1.1)

where H0 = Hnt +HSO, Hnt = p̂2/2m + V describes the kinectic and potential energies

of the electron, and HSO = (ℏ/4m2c2)∇V (σ̂ × p̂) is the SOC term, p̂ is the momentum

operator, m is the electron effective mass, ℏ is the Planck constant, c is the speed of light,



and σ̂ = (σx, σy, σz) with σx,y,z being the Pauli’s matrices.

The procedure to discretize the Hamiltonian follows the method of finite differences,

detailed in 4.1. The final tight-binding Hamiltonian has the form:

H0 =
J∑

j=1

[
N∑

n=1

ϵjnc
†
jncjn +

N−1∑
n=1

c†jn(t∥ + 2isσj)cj,n+1 +
N∑

n=1

c†jn(t⊥ + 2iµσz)cj+1,n +H.c.

]
,

(1.2)

here {c†jn, cjn} are the creation and annihilation operators on the site {j, n} in the nan-

otube, J is the number of chains, N is the length of the nanotube, ϵjn is the potential

energy, t∥ (t⊥) is the intrachain (interchain) hopping integral, and s (µ) is the intrachain

(interchain) SOC parameter; σj = σx sinϕj − σy cosϕj and ϕj is the azimuth angle of the

site in cylindrical coordinates. For the numeric factors used in the simulations, see ref.

[6].

Note that prefactor in the SOC term −iℏ2/4m2c2∇V (ϵijkσj∂k) is on the order of

10−8 eV/N . To generate SOC intensity of the order of meV , it would require ∇V =

105 N/C corresponding to an extraordinarily high electric field for molecular systems

under normal conditions.

By Onsager’s reciprocity relations, the model did not exhibit spin polarization in a two-

terminal setup. A third probe (Büttiker’s lead) was incorporated into the system to break

the time-reversal symmetry and achieve spin polarization. The resulting spin polarization

depended not only on the positions of the magnetic electrodes but also on the location

where the third probe was connected. This dependence arises from the asymmetries

induced by Büttiker’s lead, which affected the system’s chirality. Furthermore, when only

one decoherence lead was attached, the robustness of spin polarization was influenced

by the site of connection due to variations in the wave function amplitudes along the

nanotube. This observation was confirmed by plotting the local density of states (LDOS)

along the nanotube, showing that sites with low LDOS were suboptimal for introducing

decoherence.

The complete model was subsequently tested. Initially, the conductance and spin

polarization were evaluated for a nanotube with J = 6 chains and N = 20 sites per



chain. Decoherence leads were connected to all sites in the system to ensure that mirror

asymmetries were solely caused by the input and output terminals. In the figures, j

denotes the site where the output lead is connected, while the input lead is fixed at

{j = 1, n = 1}. Refer to the original reference for a complete description of the parameters

used.

Figure 1.2: Conductances and spin polarization reported by Guo-Sun.

Figure 1.3: Conductances and spin polarization results of the Guo-Sun model in Kwant.

The findings contrast with the results reported by Guo and Sun in terms of the am-

plitudes of both conductance and spin polarization. For the achiral case (j = 1), the con-

ductance in the Kwant model exceeds 0.7, whereas the reference reported conductances



below 0.6. This discrepancy is even more pronounced in the chiral case j = 2, where

the reference values are approximately 10 times greater than the conductance amplitudes

obtained in the Kwant model.

The graphs in Figure 1.2 demonstrate the chiral nature of the nanotube as determined

by the positions of the leads. For example, Ps(j = 2) = −Ps(j = 6) because these

configurations are mirror images, a property that is independent of the model parameters.

A similar relationship is observed for j = 3 and j = 5. While the Kwant model accurately

captures this behavior, discrepancies in conductance values remain. Additionally, the

spin polarization values reported in the original study are relatively large, with maximum

values of 16% for (j = 3, j = 5) and 15% for (j = 2, j = 6). In contrast, the reproduced

model yields significantly higher spin polarization maximums, approximately ∼ 30% and

∼ 45%, respectively.

It is also noteworthy that the curves are symmetric about the line E = 0: The

conductances satisfy the relation G↑(E) = G↓(−E), while the spin polarization follows

Ps(E) = −Ps(−E). This symmetry arises from a form of electron-hole symmetry in the

system. Specifically, the Hamiltonian in equation 1.2 is invariant under the transformation

cjn↑ → (−1)j+nc†jn↓ and cjn↓ → (−1)j+n+1c†jn↑. However, this electron-hole-type symmetry

is broken when J is odd. Refer to Appendix 4.1 for a demonstration of this symmetry.

Spin polarization depends on the coupling of Büttiker’s leads to the system (Γd) and

the strength spin-orbit coupling (s). The robustness of spin polarization was evaluated by

varying these parameters, as described in the reference study. For dephasing, the results

confirm that spin polarization increases with higher dephase coupling but decreases at

large values of Γd. This reduction occurs because strong electron-electron and electron-

phonon interactions significantly interfere with electron transmission in the two-terminal

setup. The spin polarization as a function of the spin-orbit coupling strength (s) shows

significant discrepancies between the model reproduced in Kwant and the original results

reported by Guo and Sun. According to the reference, even spin polarization remains

noticeable at the smallest value of s = 0.002, with amplitudes around ∼ 10%. In contrast,

the Kwant model produces zero amplitudes for this value of s. As s increases, the spin



polarization also rises in both cases, reaching a maximum of 75 % in the Kwant model

and 15 % in the original model.

Figure 1.4: (Left) Robustness of the spin polarization reported by Guo and Sun vs. the
dephase coupling in the Anderson disorder. (Right) Spin polarization vs. the dephase
coupling in the reproduced model in Kwant.

Figure 1.5: (Left) Robustness of the spin polarization reported by Guo and Sun vs. the
spin-orbit coupling strength s in the Anderson disorder. (Right) Spin polarization vs. the
spin-orbit coupling strength in the reproduced model in Kwant.

ssDNA and dsDNA

The study in ref. [4] investigated spin polarization in single-stranded (ssDNA) and double-

stranded DNA (dsDNA). No spin polarization was reported for ssDNA, and the analysis

focused entirely on dsDNA. Interestingly, a subsequent study by the same authors in-

troduced interactions with additional nearest neighbors and reported spin polarization in



ssDNA [5]. However, the observed spin polarization in ssDNA was approximately 10−5

which is four orders of magnitude lower than the spin polarization typically observed in

dsDNA. Here, it is only discussed the results of the first work. The Hamiltonian describing

the system is:

H = HDNA +Hlead +Hc +HSO +Hd. (1.3)

HDNA =
N∑

n=1

[
2∑

j=1

(ϵjnc
†
jncjn + tjnc

†
jncjn+1) + λnc

†
1nc2n +H.c.], (1.4)

where N is the DNA length, c†jn = (c†jn↑, c
†
jn↓) the creation operator of the spinor at the

nth site of the jth chain of the dsDNA, ϵjn the on-site energy, tjn is the intrachain coupling

and λn is the interchain coupling.

Hlead +Hc =
∑

k,β(β=L,R)

[ϵβka
†
βkaβk + tβa

†
βk(c1nβ

+ c2nβ
) +H.c.], (1.5)

describe the left and right nonmagnetic leads and the couplings between the leads and

de dsDNA, nL = 1 and nR = N . The spin-orbit term appears in the same form as in

the previous case. The potential V has only a radial component, as the effects are more

significant in that direction. Considering charge propagation along a single helical chain

of the dsDNA, the momentum is expressed as p̂ = p̂∥l̂∥ where l̂∥ is the unit vector in the

direction of the helical chain. This reduces the spin-orbit coupling to:

HSO =
∑
j,n

itSOc
†
jn[σ

j
n + σj

n+1]cjn+1 +H.c. (1.6)

where tSO = ℏ2
4m2c2la

, σj
n+1 = σx sin(n∆ϕ) sin θ + σy cos(n∆ϕ) sin θ + σz cos θ with θ is the

helix angle and ∆ϕ is the angle between sucessive base pairs. The interchain SOC has

been neglected because it is very small.

The decoherence effects are introduced through the Hamiltonian:

Hd =
∑
j,n,k

(ϵjnka
†
jnk + tda

†
jnkcjn +H.c.), (1.7)

where a†jnk = (a†jnk↑, a
†
jnk↓) is the creation operator for the virtual lead, and td represents



the coupling strength between the system and the virtual lead. The term ϵjnk denotes the

energy of the states in the virtual lead.

Figure 1.6: Model of dsDNA of the Guo and Sun’s model.

The comparison of this model and the Kwant simulation presents the same discrep-

ancies that the model of the achiral nanotubes. The results in Figure 1.7(a) depict the

conductance and spin polarization from the original model. Two distinct conductance

peaks are observed near energies −0.25 and 0.5 that are reproduced with high fidelity

by Kwant in Figure 1.7 (b). The spin polarization reaches ∼ 30% in the original model,

compared to just 2% in the Kwant simulation.

(a) (b)

Figure 1.7: (a) Top panel: Conductance and spin polarization in dsDNA in the Guo
and Sun’s model as a function of the injection energy. Half panel: without decoherence.
Bottom panel: without helicity (b) reproduced model in Kwant.



Note that, in both cases—achiral nanotubes and dsDNA—there is no spin polarization

in the absence of decoherence or spatial chirality (ϕ = 0). These findings emphasize that

spatial asymmetry, the decoherence introduced by Büttiker’s leads, and the presence of

spin-orbit coupling are all critical components for achieving spin accumulation in these

models.

A barrier was introduced into both systems to analyze its effect on spin polarization.

Spin polarization was enhanced when the injection energy was below the site energies of

the molecules, consistent with the findings in ref. [47]. Further details on the tunneling

effect in spin transport will be discussed in our model.

Charge Transfer in DNA

The model in ref. [3] analyzes the charge transfer in DNA, including the heterogeneity

of the site energies given the nucleobases in the DNA sequence. This paper presents a

ladder model based on a nearest-neighbor tight-binding framework to describe distance-

dependent charge transport in DNA. The model’s Hamiltonian is introduced, and the

transmission function is analyzed to calculate DNA conductance, aiming to reproduce

and expand upon the Wang-Chakraborty model [48].

The model is described by the Hamiltonian:

HS1 = ϵGb
†
1b1 +

n∑
i=n−2

ϵGb
†
ibi +

j+1∑
i=2

ϵib
†
ibi + t∥

n−1∑
i=1

[b†ibi+1 +H.c.] (1.8)

HS2 = ϵCc
†
n+1cn+1 +

N∑
i=N−2

ϵCc
†
ici +

n+j+1∑
i=n+2

ϵic
†
ici + t∥

N−1∑
i=n+1

[c†ici+1 +H.c.] (1.9)

HS1−S2 = t⊥

n∑
i=1

[b†ici +H.c.], (1.10)

where b†i is the creation operator in the ith site of the first strand, c†i is the creation operator

in the ith site of the second strand, t∥ and t⊥ are the intrastrand hopping and interstrand

hopping respectively. The on-site energies correspond to ϵG = 7.75 eV , ϵC = 8.87 eV ,

ϵT = 9.14 eV , ϵA = 8.24 eV . The sequence has the form (G : C)− (T : A)j − (G : C)3.

The study reveals a transition from tunneling-dominated, exponential distance-dependent



Figure 1.8: Reproduced model in Kwant. Transmission at Fermi’s energy as a function
of the number of A-T base pair in the DNA model for different intrastrand hopping
integrals t∥ (1-0.1 eV, 2-0.3 eV, 3-0.4 eV, 4-0.5 eV) with (t⊥ = 0) and for various values
of the interstrand hopping t⊥ (5-0.01 eV, 6-0.03 eV, 7-0.07 eV) at fixed t∥ = 0.5 eV . The
coupling between the system and the leads was set at 1.5 eV and the coupling between
the lead’s sites was fixed at 5 eV .

transport to nearly length-independent behavior as electronic coupling parameters in-

crease. For single-stranded DNA, transport follows a tunneling mechanism, whereas in,

double-stranded DNA, coherent tunneling occurs through bridge states formed by π-π

interactions between complementary nucleobases. The intrastrand and interstrand hop-

ping integrals significantly influence this transition, with stronger coupling enhancing

electronic state delocalization and promoting band-like transport. Additionally, asym-

metric DNA-electrode coupling alters conductance and transport pathways by modifying

the delocalization of electronic states. At finite temperatures, coherent tunneling through

extended electronic states leads to nearly distance-independent conductance for longer

bridges, highlighting the importance of coupling and environmental conditions in DNA

charge transport.
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Chapter 2

Methods

2.1 The Model

(a) (b)

Figure 2.1: (a) Representative image of the Slater Koster terms considered for the tight-
binding Hamiltonian in DNA. (b) Representation of the orbitals in a helix [49].

Several tight-binding based models have been proposed to characterize spin trans-

port in single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) [5, 4, 3, 6].

However, these models are often limited to a site-based description, considering only one

orbital with spherical symmetry per site and two degrees of freedom given by spin. In

our model, each site is described by a combination of s and p orbitals, allowing the incor-



poration of hydrogen bond effects that partially polarize the molecules and create local

electric fields within the system. Additionally, geometrical effects (e.g., tilt) are consid-

ered, accounting for nucleobases that are not entirely perpendicular to the axis. This level

of detail modifies the final tight-binding Hamiltonian by introducing new overlap terms

beyond the kinetic term.

Figure 2.1 presents the kinetic term and the higher-order hopping integrals. To cal-

culate each of these terms, we characterized the basis vectors of the DNA unit cell and

the orientation of the p-orbitals relative to one another. A complete set of Slater-Koster

terms was obtained using the following expression:

Ei,j
µµ′ = (n̂(µi), n̂(µ

′
j))V

π
µµ′ +

(Rij, n̂(µi))(Rij, n̂(µ
′
j))

(Rji,Rji)
(V σ

µ,µ′ − V π
µ,µ′), (2.1)

where µ = s, px, py, pz are the orbitals at sites Ri and Rj and let n̂(µj) be the unitary

vector in the direction of the orbital µj.

The unit vectors of the s-p orbitals in the DNA helix base are given by:

n̂xi
= cosϕix̂+ sinϕiŷ,

n̂yi = − sinϕix̂+ cosϕiŷ,

n̂zi = ẑ,

n̂si = R̂ij,

where ϕi is the angular position in cylindrical coordinates Rij is the distance between

i-site and j-site:

Rijintra = 2a sin∆ϕ/2ŷ +
b∆ϕ

2π
ẑ,

Rijinter = 2a cos∆ϕx̂+ 2a sin∆ϕŷ,

where ∆ϕ = ϕj − ϕi, a and b are the radius and the pitch of the helix, respectively.



The tilt of the helix can be described by a rotation of angle θ around y axis:

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 .

The unit vectors of the orbitals are rewritten considering the tilt:

n̂xi
= cos θ cosϕix̂+ cos θ sinϕiŷ + sin θẑ,

n̂yi = − sinϕix̂+ cosϕiŷ,

n̂zi = sin θ cosϕix̂+ sin θ sinϕiŷ + cos θẑ,

so as well the Pauli’s matrices:

ŝxi
= σx cos θ cosϕi + σy cos θ sinϕi + σz sin θ, (2.2)

ŝyi = −σx sinϕi + σy cosϕi, (2.3)

ŝzi = σx sin θ cosϕi + σy sin θ sinϕi + σz cos θ. (2.4)

Using Eq. 2.1 the overlaps between intra-helix and inter-helix orbitals can be calculated.

The numerical values of these orbital overlaps, in meV , are:

V σ(in)
ss = −163, V σ(in)

pp = 379,

V σ(in)
sp = 215, V π(in)

pp = −94,

V σ(out)
sp = −24, V σ(out)

pp = 43,

V π(out)
pp = −10.

The numerical parameters are the same of the reference [4]: a = 0.7 Å, b = 3.4 Å,

∆ϕ = 2π/(M − 1) where M is the number of base pairs per turn.

The complete Hamiltonian of the system has the next structure: whereHπ contains the

mobile electrons in the half-filled pz orbitals of the system, Hσ encompasses all cohesive



Figure 2.2: Complete Hamiltonian structure of the DNA after calculating the kinetic
term, the intrinsic spin-orbit, the Stark coupling, and the Rashba coupling.

interactions in terms of the s, px and py orbitals, and T includes the terms that coupling

the π and the σ interactions. The specific form of each of these sub-matrices is given by:

Hπ |pzAi⟩ |pzBi⟩ |pzAj⟩ |pzBj⟩

⟨pzAi| ϵπpAi Eout
zz Ein

zz 0

⟨pzBi| Eout
zz ϵπpBi 0 Ein

zz

⟨pzAj| Ein
zz 0 ϵπpAj Eout

zz

⟨pzBj| 0 Ein
zz Eout

zz ϵπpBj

Hσ |sAi⟩ |pxAi⟩ |pyAi⟩ |sBi⟩ |pxBi⟩ |pyBi⟩ |sAj⟩ |pxAj⟩ |pyAj⟩ |sBj⟩ |pxBj⟩ |pyBj⟩

⟨sAi| ϵsAi 0 ξsp 0 0 0 0 0 V in
sp 0 0 0

⟨pxAi| 0 ϵpxAi iξpE
SOC
xy 0 0 0 0 0 0 0 0 0

⟨pyAi| ξsp −iξpESOC
xy ϵpyAi 0 0 0 V in

ps 0 0 0 0 0

⟨sBi| 0 0 0 ϵsBi 0 ξsp 0 0 0 0 0 V in
sp

⟨pxBi| 0 0 0 0 ϵpxBi iξpE
SOC
xy 0 0 0 0 0 0

⟨pyBi| 0 0 0 ξsp −iξpESOC
xy ϵpyBi 0 0 0 V in

ps 0 0

⟨sAj| 0 0 V in
sp 0 0 0 ϵsAj 0 ξsp 0 0 0

⟨pxAj| 0 0 0 0 0 0 0 ϵpxAi iξpE
SOC
xy 0 0 0

⟨pyAj| V in
ps 0 0 0 0 0 ξps −iξpESOC

xy ϵpyAj 0 0 0

⟨sBj| 0 0 0 0 0 V in
sp 0 0 0 ϵsBi 0 ξsp

⟨pxBj| 0 0 0 0 0 0 0 0 0 0 ϵpxBi iξpE
SOC
xy

⟨pyBj| 0 0 0 V in
ps 0 0 0 0 ξps −iξpESOC

xy ϵpyBi

T |sAi⟩ |pxAi⟩ |pyAi⟩ |sBi⟩ |pxBi⟩ |pyBi⟩ |sAj⟩ |pxAj⟩ |pyAj⟩ |sBj⟩ |pxBj⟩ |pyBj⟩

⟨pzAi| 0 −isyξp iξpE
SOC
zy V out

zs 0 Ein
sz Ein

xz Ein
yz 0 0

⟨pzBi| V out
zs Eout

zx 0 0 −isyξp iξpE
SOC
zy 0 0 0 Ein

zs Ein
zx Ein

zy

⟨pzAj| Ein
zs Ein

zx Ein
zy 0 0 0 0 −isyξp iξpE

SOC
zy V out

zs Eout
zx 0

⟨pzBj| 0 0 0 Ein
zs Ein

zx Ein
zy V out

zs Eout
zx 0 0 −isyξp iξpE

SOC
zy



here the diagonal terms (ϵi,j) are the HOMO-LUMO energies of each nucleobase of the

DNA: These values are calculated using tight-binding methods and compared with those

Energy [eV] Adenine Thymine Cytosine Guanine
EHOMO -8.2 -9.0 -8.2 -8.9
ELUMO -4.4 -4.8 -4.4 -4.4

Table 2.1: Orbital energies of DNA base pairs calculated through tight-binding methods,
as reported in ref. [8].

obtained through other approaches in ref. [8]. Only homogeneous combinations of nucle-

obases are considered; i.e., the ssDNA is composed of adenine bases, with diagonal energies

set to their HOMO levels. Additionally, the dsDNA consists solely of A-T pairs, where the

adenine strand has the HOMO energy, while the thymine strand has the LUMO energy

of thymine. This aspect, often overlooked in previous works, is significant because it has

been demonstrated that site energy disorder impacts electronic transmission [50, 51, 6].

2.2 Slater-Koster Terms

The Kinetic Term

The lowest order term comes from the overlapping between the pz orbitals in the system.

It depends on the geometrical parameters described in the latter section

H in
K =

∑
i,j

Ein
zzc
†
icj, (2.5)

Ein
zz = (sin2 θ cos∆ϕ+ cos2 θ)V π(in)

pp +

[
b∆ϕ cos θ

2π
− 2a sin(∆ϕ/2) sin θ sinϕi

]
[
b∆ϕ cos θ

2π
− 2a sin(∆ϕ/2) sin θ sinϕj

] [
V

σ(in)
pp − V

π(in)
pp

|Rijintra|2

]
,



where i and j are the i-site and the j-site in the same helix (A-A and B-B). On the other

hand, the kinetic term outside the helix depends only on the tilt:

Hout
K = Eout

zz

∑
i,j

c†icj, (2.6)

Eout
zz = cos2 θV π

pp − sin2 θV σ
pp

where i and j are the i-site in the helix A and the j-site in the helix B.

The Stark Effect

The transition between the pz orbitals of different sites is also possible due to the sp

coupling. This effect is the consequence of the electric fields in the chiral structure of the

DNA, as it has been pointed.

⟨s|HS |pz⟩ = 2ea0EZ = ξsp (2.7)

where the Slater-Koster term follows the expression:

Ein
sz =

[
−2a sin(∆ϕ/2) sin θ sinϕi +

b∆ϕ

2π
cos θ

]
V

σ(in)
sp

|Rijintra |

The geometry of the orbitals enables the Stark coupling between strands:

Eout
sz = − sin θV σ(out)

sp

The Intrinsic SO Effect

The intrinsic spin-orbit coupling in carbon atoms provides a spin-active pathway for elec-

trons. The overlap between the pz and the px, py orbitals at the same site enables spin

flipping, allowing the electron to subsequently hop to the pz orbital at another site. It is

worth mentioning that models such as the Guo and Sun model introduce SOC as coupling



between the i-site and i+1-site. In contrast, in the proposed model, SOC arises naturally

from including higher-order interactions within the atomic orbitals.

HSO =
eℏ

4m2
0c

2
s · (p×∇V ) (2.8)

= −1

r

∂V

∂r

eℏ
2m2

0c
2
L · s (2.9)

= λL · s (2.10)

All the possible matrix elements are summarized in the table:

|px⟩ |py⟩ |pz⟩

⟨px| 0 -iŝzξp iŝyξp

⟨py| iŝzξp 0 −iŝxξp

⟨pz| −iŝyξp iŝxξp 0

where ξp = λℏ/2 is the spin-orbit strength that was set in a numerical value of 6 meV

for the simulations and ŝi are the Pauli’s matrices in the helix base described in Eq. 2.4.

The Slater-Koster terms of the coupling between the pz and the px, py orbitals are given

by:

Ein
xz = − cos θ sin θ(cos(∆ϕ)− 1)V π(in)

pp +

[
2a sin(∆ϕ/2) cos θ sinϕi +

b∆ϕ

2π
sin θ

]
[
−2a sin(∆ϕ/2) cos θ sinϕj +

b∆ϕ

2π
cos θ

][
V

σ(in)
pp − V

π(in)
pp

|Rijintra|2

]

Ein
yz = sin θ sin(∆ϕ)V π(in)

pp + 2a sin(∆ϕ/2) cosϕi[
b∆ϕ

2π
cos θ − 2a sin(∆ϕ/2) sin θ sinϕj

][
V

σ(in)
pp − V

π(in)
pp

|Rijintra|2

]



Similarly to the Stark effect, the Slater-Koster terms outside the helix can be calculated

using the specific orbital geometry:

Eout
xz = cos θ sin θ(V π(out)

pp − V σ(out)
pp )

Eout
yz = 0

Rashba Interaction

Combining the Stark effect and the intrinsic spin-orbit coupling gives rise to the Rashba

effect. This term enables overlap between the s orbital of a site and the px, py orbitals

of another site:

Ein
sx =

(
2a sin(∆ϕ/2) sinϕi cos θ +

b∆ϕ

2π
sin θ

)
V

σ(in)
sp

|Rijintra|

Ein
sy =

2a sin(∆ϕ/2) cosϕi

|Rijintra |
V σ(in)
sp

Eout
sx = cos θV σ(out)

sp

Eout
sy = 0

The other Slater-Koster terms were calculated

Ein
ss = V in

ss

Ein
xx = [cos θ2 cos(∆ϕ) + sin θ2]V π(in)

pp + (4a2 sin2(∆ϕ/2) sinϕi sinϕj+

+ 2a sin(∆ϕ/2)b∆sin θ cos θ(sinϕi + sinϕj)/2π +
b2(∆ϕ)2 sin2 θ

4π2
)

[
V

σ(in)
pp − V

π(in)
pp

|Rijintra|2

]
,



Ein
xy = cos θ sin(∆ϕ)V π(in)

pp + 2a sin(∆ϕ/2) cosϕj[
2a sin(∆ϕ/2) cos θ sinϕi +

b∆ϕ

2π
sin θ

] [
V

σ(in)
pp − V

π(in)
pp

|Rijintra|2

]
,

Ein
yy = cos∆ϕV π(in)

pp + 4a2 sin2(∆ϕ/2) cosϕi cosϕj

[
V

σ(in)
pp − V

π(in)
pp

|Rijintra |2

]
,

Eout
ss = V σ(out)

ss ,

Eout
xx = sin2 θV π(out)

pp − cos2 θV σ(out)
pp ,

Eout
yy = 0,

Eout
xy = 0.

2.3 Landauer Formalism

To perform transport measurements, two electrodes are connected to both ends of the

molecule, with both leads modeled as perfect semi-infinite 1D chains. To illustrate the

effects of the leads on the site energies of the system, we refer to the calculations presented

by Pastawski and Medina [52]. Consider the Hamiltonian shown in Figure 2.2 in its

decimated form.

H0 = E1 |pz1⟩ ⟨pz1|+ EN |pzN⟩ ⟨pzN |+ V1,N |pz1⟩ ⟨pzN |+ VN,1 |pzN⟩ ⟨pz1| , (2.11)

where E and V are functions of the variable ϵ and pz1 (pzN) are the pz orbitals of the first

(last) site in the strand. The dispersion relations of the electrodes are:

EkL,(R) = EL,(R) + 2VL,(R) cos
(
kL,(R)a

)
, (2.12)

L (R) refers to the left (right) lead.

The system connected to the leads can be described in terms of the pz orbitals and



the couplings between the leads and system VtL(tR)

H0−leads = VtL(|pz1⟩ ⟨pz0|+ |pz0⟩ ⟨pz1|) + VtR(|pzN⟩ ⟨pzN+1|+ |pzN+1⟩ ⟨pzN |) (2.13)

The site energies where the leads are connected include the self-energy produced by

the leads:

LΣ1 =

∣∣∣∣VtLVL
∣∣∣∣2(|VL| cos(kLa)− i|VL| sin(kLa)) (2.14)

=L ∆1 − iLΓ1, (2.15)

RΣ1 =

∣∣∣∣VtRVR
∣∣∣∣2(|VR| cos(kRa)− i|VR| sin(kRa)) (2.16)

=R ∆N − iRΓN . (2.17)

These expressions can be calculated in terms of the energy following the decimation

procedure described in [52]:

ΣR(ϵ) =

∣∣∣∣VRV0
∣∣∣∣2 [(ϵ− E0)

2
− i
√

4V 2
0 − (ϵ− E0)2/2

]
(2.18)

The leads produce an effective potential of the form:

Ĥeff = Ĥ0 +
L Σ1 |pz0⟩ ⟨pz0|+R ΣN |pzN+1⟩ ⟨pzN+1| . (2.19)

Note that the leads are described solely in terms of their pz orbitals, without additional

orbital interactions or spin-active properties. Depolarized electrons are injected from the

pz orbital of the lead to the pz orbital of the system. Finally, the Green’s function can

be obtained from the effective Hamiltonian:

GR,(A)(ϵ) = [(ϵ± iη)Î − Ĥeff ]
−1. (2.20)

Additionally, the gray region in Fig. 2.3 indicates that the density of states (DoS) of the



(a) (b)

Figure 2.3: Schematic representation of the molecule’s energy levels when connected to
leads. Here, µR and µL denote the chemical potentials of the right and left leads, re-
spectively; V0 is the coupling within the lead sites, and VR and VL are the right and left
couplings between the system and the leads. a) Energy diagram with the vertical axis
representing energy levels and the horizontal axis showing the position of the leads and
the system. b) Schematic of orbital connections between the leads and the system.

leads follows the semi-circle law, allowing transmission only when the injection energy

falls within the interval [µR,L−2V0, µR,L+2V0]. The expression for such a density of state

can be calculated from the Green’s function:

Ni(ϵ) =
1

π
lim
η→0

ImGR
ii(ϵ+ iη). (2.21)

Given that the leads are semi-infinite chains connected to the system, the Green’s function

at the surface site is:

GR
1,1 =

1

ϵ− E0 − ΣR(ϵ)
, (2.22)

replacing the expression for ΣR(ϵ) and comparing with eq. 2.21, the semi-circle law is

obtained:

N1(ϵ) =
1

πV0

√
1−

(
ϵ− E0

2V0

)2

. (2.23)

Using the Fisher-Lee formula [53], we obtain the transmission between the leads in

terms of the self energies of the leads and the retarded R and advanced A Green’s func-

tions:

TαR,βL = [2αΓR(ϵ)]G
R
αR,βL(ϵ)[2

βΓL(ϵ)]G
A
αL,βR(ϵ). (2.24)

The α, β indicated the process or channel associated with the electron decay. The



conductance can be expressed as:

GR,L = 4
e2

h
Tr[ΓR(ϵ)G

R
R,L(ϵ)ΓL(ϵ)G

A
L,R(ϵ)]. (2.25)

In CISS research, ”spin polarization” is commonly defined as the difference between

measurable quantities associated with a spin-selective process divided by their sum. For

instance, polarization in the CISS literature is often represented as normalized anisotropies

in electron currents or charge transfer rate constants, which can be influenced by the spin

density of states [9]. The spin polarization (Ps) in all the presented results is derived in

terms of the conductances from Eq. 2.37:

Ps =
G↑ − G↓
G↑ + G↓

. (2.26)

2.4 Dephasing

During the transport process, the electron experiences a loss of phase memory due to in-

elastic interactions (e.g., electron-phonon interaction, inelastic impurity scattering, electron-

electron interaction, etc.). To simulate these considerations, a third probe must be intro-

duced into the system. There is expected no spin polarization in a fully phase-coherent

two-terminal conduction, the time-reversal symmetry is preserved, as it is stated in the

reciprocity relations. Assuming the application of these rules for any conductor, the

reciprocity theorem states that, for a multi-terminal circuit in the linear regime, the con-

ductance measurement is invariant under the exchange of voltage and current when both

the magnetization (M) and the magnetic field (H) are inverted:

Gij(H,M) = Gij(−H,−M). (2.27)

This theorem is valid for any linear-regime circuit, regardless of the number of termi-

nals or the microscopic dephasing process [54].

Applying the reciprocity theorem to chiral molecules provides insight into the trans-



mission properties of CISS. Particularly, in a two-terminal system, the theorem requires

that the conductance remains unchanged under the reversion of the ferromagnetic magne-

tization. Given that the conductance is related to the transmission probability, it follows

that:

Tij(⇒) = Tij(⇐), (2.28)

where the direction of the arrows indicates the direction of the magnetization.

In terms of the spin, it is possible to write the transmission and reflection of the

electrons propagated in the right direction in their matrix form:

T =

t→→ t←→

t→← t←←

R =

r→→ r←→

r→← r←←

 (2.29)

For the left moving electrons, the above matrices are time-reversed:

T =

t←← t→←

t←→ t→→

R =

r←← r→←

r←→ r→→

 (2.30)

These terms connect the quantum description with a macroscopic approach in experi-

ments. It is possible to write this conductance in a matrix equation for the total current

I and the spin current Is: I

−IsL

 = −Ne
h

 t Ptt

Ptt γr


µL − µR

µsL

 (2.31)

Where µL and µR are the chemical potential of the leads and µsL = (µ→ − µ←)/2. This

matrix equation fully describes the coupled charge and collinear spin transport through

a (nonmagnetic) chiral component, which is subject to Onsager’s reciprocity in the linear



response regime, where the following relations are fulfilled

t = t→→ + t→← + t←→ + t←←, (2.32)

r = r→→ + r→← + r←→ + r←← = 2− t, (2.33)

γt = t→→ − t→← − t←→ + t←←, (2.34)

γr = r→→ − r→← − r←→ + r←←, (2.35)

Pt = (t→→ − t→← + t←→ − t←←)/t, (2.36)

Pr = (r→→ − r→← + r←→ − r←←)/r, (2.37)

s = t→→ + t→← − t←→ − t←←, (2.38)

= −r→→ − r→← + r←→ + r←←. (2.39)

For a more detailed description of the macroscopic approach and the Onsager reciprocity

breaking in a ferromagnetic/chiral element, see reference [55].

The third probe introduced in the model acts as a probability leakage, leading to a

loss of unitarity in the transmission. Electrons exiting the sample toward this lead are

entirely incoherent with those entering. However, more sophisticated models, such as the

D’Amato-Pastawski model, preserve unitarity by imposing a voltmeter probe condition

on the lead. Like the two-terminal leads, this probe is characterized by its self-energy.

ϕΣi = −iϕΓd. (2.40)

It is possible to define a dephasing length in terms of the imaginary part of the self-energy

ϕΓd:

2Γd

ℏ
=

1

τϕ
, (2.41)

where τϕ is the dephasing time. Let us call x the direction of electron injection, a charac-



teristic length can be associated with τϕ:

Lϕ =
pxτϕ
m

, (2.42)

=
pxℏ
2mΓd

, (2.43)

=
kxℏ2

2mΓd

, (2.44)

where kx is the wave vector associated with the energy injection.

Eq. 2.44 indicates the dephasing that the electron suffers caused by the decoherent

event. It is easy to see that when Γd → 0, then Lϕ → ∞ is consistent with the statement

that there is no spin polarization without decoherence.

Given that leads are the main source of decoherence, the Landauer formalism is useful

in characterizing the transmission in the three-probe system. The procedure resulting

from applying Kirchhoff’s law to each lead is called the Landauer-Büttiker equation.

T̃R,L = TR,L +
TR,ϕTϕ,L
TR,ϕ + Tϕ,L

, (2.45)

where the first term is identified as the coherent transmission, while the second is the

incoherent contribution to the current. The Eq. 2.45 can be expressed in terms of the

conductances:

G̃R,L = GR,L + (G−1R,ϕ + G−1ϕ,L)
−1, (2.46)

which can be identified as the equivalent inverse of resistance in a circuit.

The transmission of Eq. 2.44 can be extended to various decoherent probes in different

sites of the molecule:

T̃R,L = TR,L +
N∑
j=1

N∑
i=1

TR,j[W
−1]j,iTi,L, (2.47)



where

W =



T1,1 − 1/g1 T1,2 T1,3 . . . T1,N

T2,1 T2,2 − 1/g2 T2,3 . . . T2,N

T3,1 T3,2 T3,3 − 1/g3 . . . T3,N
...

...
. . .

...
...

TN,1 TN,2 TN,3 . . . TN,N − 1/gN


where gi are the adimensional conductances of each site, i.e., they are just the transmission

probabilities that can be calculated from Eq. 2.24.

2.5 Band Folding

Considering the total Hamiltonian described in the first section, where each site has

four orbitals with two spin degrees of freedom, it is challenging to perform a qualitative

analysis of the molecule’s transport properties. Obtaining an analytical description of

the model is useful for better understanding spin behavior during transport. Therefore,

it is convenient to implement an effective Hamiltonian in the pz orbital space, with the

σ-structure interaction introduced perturbatively.

The Foldy-Wouthuysen transformation is a unitary transformation of the orthonor-

mal basis in which both the Hamiltonian and the wave function are represented [56]. The

eigenvalues remain unchanged under such a unitary transformation, indicating that the

physics is unaffected by this change in the unitary basis. Consequently, such a unitary

transformation can always be applied; specifically, one can choose a unitary basis trans-

formation that reformulates the Hamiltonian into a more convenient form. Consider the

Hamiltonian of Fig. 2.2, the effective Hamiltonian where the space π is 4× 4, and the σ

space is 12×12 with two degrees of freedom for the spin both. Let us call the eigenfunction

of the complete Hamiltonian ψ = (ψπ, ψσ)
T where it can be written in the form:

Hπ T

T † Hσ


ψπ

ψσ

 = E

ψπ

ψσ

 (2.48)



where it is possible to write the σ component of the eigenfunction in terms of the π

component:

ψσ = (E −Hσ)
−1T †ψπ, (2.49)

Substituting this into the first row of 2.48 gives an effective eigenvalue equation written

solely for the π components:

[Hπ − T (E −Hσ)
−1T †]ψπ = Eψπ, (2.50)

[Hπ − TH−1σ T †]ψπ ≈ ESψπ, (2.51)

where S = Î + TH−2σ T †. Finally, the transformation Φ = S1/2ψπ is performed:

[Hπ − TH−1σ T †]S−1/2Φ = ES1/2Φ, (2.52)

S−1/2[Hπ − TH−1σ T †]S−1/2Φ = EΦ, (2.53)

where the final effective Hamiltonian is:

Heff ≈ S−1/2[Hπ − TH−1σ T †]S−1/2. (2.54)

This transformation ensures the normalization of the new eigenfunction in the π-space

being consistent with the normalization of the original eigenstate:

Φ†Φ = ψπSψπ, (2.55)

= ψ†π(Î + TH−2σ T †)ψπ, (2.56)

≈ ψ†πψπ + ψ†σψσ. (2.57)
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Chapter 3

Results

The conductances and the spin polarization as a function of the injection energy are

characterized in the ssDNA and dsDNA. A qualitative analysis of spin transport behavior

in the ssDNA and dsDNA, under varying parameters, is presented in terms of the averaged

spin polarization where the ⟨Ps⟩ is averaged in the interval [EHOMO−kBT,EHOMO+kBT ].

Notably, these values represent averages over specific energy ranges and appear small due

to the narrow width of the peaks. When the spin polarization is computed as a function

of the injection energy, as shown in Figure 3.1 (b) Peaks can reach up to 80 % with

increased dephasing coupling in both analyzed cases. The non-monotone nature of spin

polarization and conductance, while not commonly observed in experiments, could result

from the disorder in the energies of the system that takes to resonant peaks at different

injection energies.

3.1 Spin Polarization in ssDNA

To characterize the electron transport in the ssDNA, a chain of N = 30 sites was simu-

lated. The coupling of the electrodes to the system is set to VtR = VtL = 1 eV , and the

coupling to the dephasing probe is weak Γd = 0.06 eV to approximate the third probe to

a virtual probe.

Figure 3.1 (a) shows the conductance of spin up and the conductance of spin down

in terms of the electron energy around the lead’s chemical potential, µ = −9 eV , which



(a) (b)

Figure 3.1: Conductances in terms of the spin and spin polarization in ssDNA. (a) Spin
conductance on a logarithmic scale as a function of electron injection energy in ssDNA.
(b) Spin polarization of ssDNA as a function of electron injection energy, with inverted
chirality: L-left-handed (black) and D-right-handed (red).

is close to the HOMO energy levels of the system. Differences between G↑ and G↓ are

observable on the order of 10−2. More evident differences can be obtained by adjusting

parameters such as the coupling strength of the decoherence probe to the system (Γd)

or by connecting additional dephasing probes. The observed spin polarization shows

values around 1.5%, contrasting with the results in ref. [4], where no spin polarization

was reported, and in the ref. [5], which incorporated interactions with additional nearest

neighbors and reported a spin polarization of around ∼ 10−5 in ssDNA.

Notably, the spin relaxation length is generally longer than the physical length of the

molecule, so spin polarization should persist even as the molecule’s length increases, as

shown in Figure 3.2 (a). This increase is not monotonic but follows an interference pattern

resulting from temperature effects, consistent with experimental observations reported in

ref. [57].

Figure 3.2 (b) shows spin polarization as a function of the coupling strength of the

dephasing probe to the system. Note that when the coupling Γd = 0, there is no spin

polarization in the system as it is expected given the reciprocity relations. As Γd in-

creases, spin polarization also rises to values around ⟨Ps⟩ = 14%. However, beyond a

certain threshold, spin polarization starts to decrease as inelastic scattering events dis-



(a) (b)

Figure 3.2: Average spin polarization in ssDNA as a function of a) number of turns (n)
b) the coupling strength of the dephasing probe to the system.

rupt spin transmission between the leads. This behavior has also been reported in [5],

where decoherence effects are introduced in a similar manner.

Figure 3.3: Spin polarization in ssDNA as a function of the injection energy with the
decoupling strength Γd = 0.06 without tilt (θ = 0).

Figure 3.3 shows the effect of the absence of tilt on the spin polarization. When

the tilt is removed, spin polarization decreases by approximately an order of magnitude

compared to the values in Figure 3.1 (b). This reduction occurs because tilt is crucial

in orbital overlap, facilitating additional electron transport channels that enhance spin

filtering. Nevertheless, the intrinsic helicity of the molecule preserves a degree of spin

polarization. This suggests that even without tilt, the chiral structure of the helix provides



a foundational spin-selective pathway, though at a lower efficiency.

3.1.1 Tunneling effect

(a) (b)

Figure 3.4: (a) Energy scheme of the injection energies in the leads, the energy of the
system and the barrier intensity. (b) Average spin polarization in ssDNA as a function of
the barrier intensity (VB) and the dephasing coupling strength (Γd).

As previously discussed, the tunneling effect is crucial in analyzing electron behav-

ior within the molecule. The barrier was simulated by applying an external potential

to the system’s energy sites, causing an initial drop in conductance since the electron

transmission probability is inversely proportional to the barrier height. However, spin po-

larization is expected to increase. Figure 3.4 illustrates how average spin polarization rises

as the barrier intensity (VB) increases. This behavior is not strictly monotonic; instead,

it exhibits an interference pattern similar to the one observed when spin polarization is

evaluated as a function of the number of turns (see Figure 3.2 (a)).

Figure 3.5 illustrates the impact of adding a barrier to the system on spin polarization.

As expected, spin polarization increases with rising SOC strength and dephasing coupling

strength. However, it is important to note that the spin-orbit coupling (SOC) considered

here corresponds to the intrinsic atomic SOC, which is inherently small and varies on the

order of meV . Alternatively, to other works that insert SOC as a variable parameter,

spin polarization in the system can be enhanced by minimizing the SOC and instead

varying parameters such as the barrier intensity and the dephasing coupling strength. This



approach demonstrates that external factors can be crucial in amplifying spin-selective

effects.

(a) (b)

Figure 3.5: Spin polarization as a function of the spin-orbit strength and the dephasing
coupling strength (a) without a barrier (b) with a barrier intensity of 1 eV .

(a) (b)

Figure 3.6: Spin polarization as a function of the energy injection with (a) a barrier of
intensity VB = 1 eV with decoherence strength Γd = 0.06 eV (b) a barrier of intensity
VB = 1 eV with decoherence strength Γd = 0.6 eV .

Referring to the energy scheme in Figure 2.3 (a), spin polarization is higher when the

injection energy is below the barrier. Figure 3.6 a) shows that the average spin polarization

increases to approximately 0.15 % below the barrier and then declines to about 0.0045 %

above it, marking a substantial change of two orders of magnitude. In Figure 3.6 b), with



a higher dephasing coupling (Γd = 0.6 eV ), spin polarization rises to nearly 10 % below

the barrier and drops to around 3 % above it.

3.2 Spin Polarization in dsDNA

The electron transmission behavior in dsDNA requires a more detailed analysis than that

of ssDNA. Specifically, the energy difference between the Adenine-HOMO and Thymine-

LUMO strands plays a significant role in shaping the electron transmission profile, depend-

ing on whether the leads are connected symmetrically or asymmetrically to the molecule.

To study this, a toy model of three base pairs was simulated. Decoherence leads were

connected to all sites with a decoupling strength of Γd = 0.06 eV , the chemical potential

of the leads was set as the average of the HOMO and LUMO energies, (µ = −6.5 eV ),

and the coupling of the electrodes to the system is set to VtR = VtL = 1 eV . Figure 3.7

illustrates the conductance profiles for all possible lead connections. In panel (a), the

conductances are shifted: when the leads are connected to the Adenine-HOMO strand,

the conductance peak is centered at −8.2 eV , whereas when connected to the Thymine-

LUMO strand, the peak shifts to −4.8 eV . This is because the accessible states for

electron transmission are related to the energy sites of the molecule. Panel (b) shows that

the conductance decreases by three orders of magnitude when the leads are connected

asymmetrically. This is because the LUMO energy acts as a barrier that the electron

needs to travel in order to be transmitted.

The energy difference between the Adenine-HOMO and Thymine-LUMO strands also

affects spin polarization. Figure 3.8 shows that around the HOMO energy, the conduc-

tance is approximately ∼ 0.01 e2/h with a spin polarization close to 0.07 %. In contrast,

near the LUMO energy, the conductance decreases significantly to around 1E − 7 e2/h

while the spin polarization rises to 0.15 %. This demonstrates a resonant versus a non-

resonant effect, similar to the behavior of electrons tunneling below a barrier: while the

conductance remains low, the system still displays substantial spin polarization. Here,

the LUMO energy acts as a barrier, enabling additional channels for conduction and spin

polarization that differ from the results observed in ssDNA, where the site energies are



(a) (b)

Figure 3.7: Conductance with (a) symmetric connections to the left and right leads:
Adenine-HOMO strand (black) and Thymine-LUMO strand (red), and (b) asymmetric
connections to the left and right leads.

Figure 3.8: Spin polarization (above panel) and conductance (below panel) in a DNA toy
model of 3 pair bases as a function of the injection energy of the leads.

homogenous.

Figure 3.9 presents the average spin polarization as a function of the number of turns

and the coupling strength of the dephasing probe. The behavior closely resembles that

observed in ssDNA: spin polarization generally increases with the number of turns, though

not in a strictly monotonic manner. Additionally, average spin polarization peaks at

approximately 15 % when the dephasing strength reaches 0.5 eV after which it declines

as inelastic events begin to interfere with electron transmission.



(a) (b)

Figure 3.9: Averaged spin polarization in DNA in as a function of (a) number of turns
(n) (b) the coupling strength of the dephasing probe to the system.

3.2.1 Tunneling effect

(a) (b)

Figure 3.10: (a) Energy scheme of the injection energies in the leads, the energy of the
system, and the barrier intensity. (b) Average spin polarization as a function of the barrier
intensity (VB) and the dephasing coupling strength (Γd) in the DNA model.

To evaluate the effect of the barrier in dsDNA, a model consisting of 30 base pairs

(60 sites) was simulated, with decoherence probes connected to all sites. This setup was

chosen because, when only one probe is connected to the system, spin polarization appears

only at specific energies, depending on whether the decoherence probe was attached to

the HOMO strand or the LUMO strand. Figure 3.10 illustrates how spin polarization



is enhanced with the barrier intensity and decoupling strength while conductance drops.

It is important to note that this enhancement is not as regular as in the case of ssDNA

due to interference effects. Nevertheless, the slight inclination to the left of the pattern

indicates that spin polarization grows when the dephasing coupling strength is maintained

while the barrier is increased. Additionally, the maximum spin polarization in dsDNA

exceeds that in ssDNA, as expected, given the inclusion of multiple decoherence probes

in the system.

(a) (b)

Figure 3.11: Average spin polarization as a function of the injection energy around a
barrier of 1 eV (a) with a dephasing coupling strength of Γd = 0.06 eV (b) with a
dephasing coupling strength of Γd = 0.5 eV

Figure 3.11 shows the spin polarization as a function of the injection energy near the

barrier. In both cases, the spin polarization reaches a maximum when the injection energy

is between the HOMO and LUMO barriers and decreases when the injection energy is

above the highest LUMO barrier. This detrimental effect reaches two orders of magnitude

when the dephasing coupling strength is comparable to the couplings in the molecule, in

agreement with the results presented for the ssDNA 3.6. This is the typical behavior of

the tunnel effect, and once again, the spin polarization is enhanced by the presence of

a barrier in the system. The difference when the dephasing coupling is smaller is not

significant, but note that in general, the spin polarization is several orders of magnitude

smaller than in the other case. The combined effects of the barrier and dephasing also

influence the conductance, which decreases to 10−6 e2/h with minimal dephasing coupling



and further drops to 10−9 e2/h at maximum dephasing. This behavior is analogous to the

resonant and non-resonant effects observed in DNA without a barrier, where conductance

decreases at certain energies while spin polarization increases.

3.3 Band Folding

After implementing the effective Hamiltonian of Eq. 2.54 in Kwant for a 3-site helix, the

spin polarization decreased by several orders of magnitude to approximately ∼ 10−10 %,

while the conductance exhibited similar peaks to those observed in the complete orbital

model. Considering that models in the literature [58] use this approximation with Hamil-

tonians in reciprocal space, it appears that the band-folding method is incompatible with

finite systems: Although the quantum number k is well-defined in the semi-infinite leads,

as demonstrated in the methods section, it is not well-defined within the finite system

itself, even if the energies are. For this reason, a reciprocal-space version of the model

was constructed, but its analysis in terms of spin behavior is deferred to future work.

For simplicity, the Hamiltonian describing the interaction between two sites with bare

spin-orbit and kinetic coupling was constructed as follows:

|pzi⟩ |pzj⟩ |si⟩ |pxi⟩ |pyi⟩ |sj⟩ |pxj⟩ |pyj⟩

⟨pzi| ϵπp Ezz 0 −iλŝy iλŝx 0 Exz Eyz

⟨pzj| Ezz ϵπp 0 Exz Eyz 0 −iλŝy iλŝx

⟨si| 0 0 ϵs 0 0 0 0 0

⟨pxi| iλŝy Exz 0 ϵσp −iλŝz 0 0 0

⟨pyi | −iλŝx Eyz 0 iλŝz Eσ
p 0 0 0

⟨sj| 0 0 0 0 0 ϵs 0 0

⟨pxj| Exz iλŝy 0 0 0 0 ϵσp −iλŝz

⟨pyj| Eyz −iλŝx 0 0 0 0 iλŝz ϵσp

After applying the transformation:

Heff = Hπ − TH−1π T †, (3.1)



the effective Hamiltonian can be written in the form

|pzi⟩ |pzj⟩

⟨pzi| E ′s V ′zz

⟨pzj| V ′zz E ′s

where

E ′s = ϵπp −
(ϵσpExz − iλEyzsz)Exz − (ϵσpEyz − iλExzsz)Eyz − 2λ2ϵσp

ϵσ2

p − λ2
,

V ′zz = Ezz −
−2iλϵσpsyExz + 2iλϵσpsxEyz

ϵσ2

p − λ2
,

The Hamiltonian in reciprocal space is defined by:

H(k) =
1

N

N∑
i=1

N∑
j=1

eikRij ⟨Φi|H |Φj⟩ (3.2)

=
1

N

(
N∑
i=j

⟨Φi|H |Φj⟩+
N∑
i ̸=j

eikRij ⟨Φi|H |Φj⟩

)
, (3.3)

where Rij = R is the distance between two sites and is the same for every i, j.

It is important to note that the phase in the diagonal terms is zero, as these terms

involve processes occurring within orbitals of the same site. In contrast, the off-diagonal

terms acquire a phase that depends on the transitions between orbitals of different sites.

The reciprocal Hamiltonian can thus be expressed in the following form:

H(k) = Eπ
s + Ezzf(k)−

−2iλϵσpsyExz + 2iλϵσpsxEyz

ϵσ2

p − λ2
g(k) (3.4)

where

f(k) = 2 cos(k ·R), (3.5)

g(k) = 2 sin(k ·R). (3.6)

The new Hamiltonian in reciprocal space can be evaluated in a k point in the Brillouin



zone, typically around a hall-full k point.
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Chapter 4

Conclusions

This work introduced a tight-binding model to analyze charge transport and spin polar-

ization in chiral systems, specifically single-stranded DNA (ssDNA) and double-stranded

DNA (dsDNA). Unlike other tight-binding models, this approach incorporated a detailed

description of s- and p-orbitals at each site. This level of detail allowed for the emergence

of intrinsic spin-orbit coupling (SOC), the Stark effect, and the Rashba effect, arising

naturally from the orbital geometry and their overlaps in the helical structure. Addi-

tionally, the model did not exhibit spin polarization in a two-terminal setup, consistent

with Onsager’s reciprocity relations, necessitating the introduction of a third probe to

incorporate decoherence.

The results are promising and remark the importance of geometrical considerations

in the theoretical models for understanding CISS. First, the strength of the SOC used

was the intrinsic atomic value, as measured experimentally, and there was no need to

artificially adjust this parameter above meV magnitudes to achieve spin polarization.

This provides a more accurate description of CISS compared to existing models. Second,

the orbital model demonstrated spin polarization in ssDNA without requiring interactions

with additional nearest neighbors, with results several orders of magnitude higher than

those reported in the literature. This highlights the critical importance of geometric

parameters in theoretical models analyzing CISS.

The role of decoherence was also examined. The highest spin polarization values

were observed when the dephasing coupling strength was comparable to the coupling



parameters within the system. Introducing decoherence probes not only broke time-

reversal symmetry but also played a crucial role in enabling spin accumulation. However,

excessive increases in the dephasing coupling negatively impacted electron transmission

and spin polarization, as electrons tended to escape through the reservoir.

Electron behavior in ssDNA and dsDNA was analyzed within the tunneling and hop-

ping regimes. For ssDNA, where the site energies are uniform along the molecule, spin

polarization aligned with the resonant conductance peaks. In dsDNA, the energy differ-

ence between strands significantly influenced electron transmission, producing resonant

peaks near the HOMO energy and non-resonant peaks near the LUMO strand. The

LUMO strand acted as a barrier that enhanced spin polarization. Furthermore, adding

an external potential barrier affected spin polarization in both cases, demonstrating that

spin polarization is maximized when the injection energy is below the barrier and decreases

when it is above it.

4.1 Future work

Several important aspects were not addressed in this study and warrant further explo-

ration: First, the introduction of decoherence leads as a source of leakage of probability

results in the loss of unitarity in the system’s transmission. Testing the model with a more

sophisticated approach for incorporating decoherence, such as the D’Amato-Pastawski for-

malism, could maintain unitarity while still breaking time-reversal symmetry, offering a

more subtle representation of decoherence effects.

Concerning the spin-active paths in the double helical system, recent group theory

studies of line groups have revealed spin-active channels between helices that should be

included in a complete orbital model [59, 60]. Also, the inversion asymmetry of the helix

(and of all chiral structures) makes for an internal potential that contributes to an intrinsic

Rashba term that has not been considered here. Such a coupling is distinguished from

the Rashba effect coming from hydrogen bonding and is important to determine intrinsic

from extrinsic spin effects.

Additionally, a Hamiltonian in reciprocal space was developed using the band-folding



methodology, as the folded Hamiltonian in real space did not provide a reliable framework

for qualitatively analyzing spin behavior in the system. This reciprocal space approach can

potentially deepen the understanding of CISS, particularly as it remains underexplored

in other studies.
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Appendix A: Discretization Aquiral

Nanotubes Model

H = H0 +Hel +Hd, (4.1)

H0 =
p̂

2m
+ V̂ +

ℏ
4m2c2

∇V (σ̂ × p̂),

Consider that ψ are the eigenstates of the Hamiltonian of the system:

H0ψ = Eψ,

It is possible to rewrite the operator p̂ in its differential form:

p̂2 = −ℏ2(∂2x + ∂2y + ∂2z ),

− ℏ2

2m
∂iψi + V̂ ψi + γ⃗(σ̂ × ∂i) = Eψ, (4.2)

where γ⃗ = ∇V

∂2jψj =
ψ(j+∆j) − 2ψj + ψ(j−∆j)

∆2
j

, j = x, y

∂2nψn =
ψ(n+∆n) − 2ψn + ψ(n−∆n)

∆2
n

, n = z



while the SOC term can be written in the form:

γ⃗(σ̂ × p̂) = −γ⃗ϵijkσjℏi∂k(ψnj) (4.3)

= −iℏγ⃗σj∂kψnj (4.4)

where we use the central derivative in finite differences:

∂iψi =
ψ(i+∆i) − ψ(i−∆i)

2∆i

replacing the finite differences in 4.2

− ℏ2

2m∆2
j

(uj+1,n − 2ujn + uj−1,n)−
ℏ2

2m∆2
n

(uj,n+1 − 2ujn + uj,n−1) + V̂ − i(ℏ/4m2c2)ℏγy[
ϵyxzσj(

uj,n+1−uj,n−1

2∆n

) + ϵyzxσz(
uj+1,n−uj−1,n

2∆j

)

]
(4.5)

we have considered γ⃗ = γĵ th electric field is in the radial direction:

t∥(uj+1,n − 2ujn + uj−1,n) + t⊥(uj,n+1 − 2ujn + uj,n−1) + V ujn+

+ isσj(uj,n+1 − uj,n−1)− iµσz(uj+1,n − uj−1,n) (4.6)

rewriting the ujn as a |j, n⟩ state

t∥(|j + 1, n⟩ ⟨j, n| − 2 |j, n⟩ ⟨j, n|+ |j, n⟩ ⟨j + 1, n|) + t⊥(|j, n+ 1⟩ ⟨j, n| − 2 |j, n⟩ ⟨j, n|+

+ |j, n⟩ ⟨j, n+ 1|) + V |j, n⟩ ⟨j, n|+ isσj(|j, n+ 1⟩ ⟨j, n| − |j, n⟩ ⟨j, n+ 1|)−

− iµσz(|j + 1, n⟩ ⟨j, n| − |j, n⟩ ⟨j + 1, n|) (4.7)

Rewriting everything in terms of the creation and annihilation operators:

H0 =
J∑

j=1

[
N∑

n=1

ϵjnc
†
jncjn +

N−1∑
n=1

c†jn(t∥ + 2isσj)cj,n+1 +
N∑

n=1

c†jn(t⊥ + 2iµσz)cj+1,n +H.c.

]
,

(4.8)
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Appendix B: “Electron-Hole

Symmetry” in Achiral Nanotubes

It was stated that the Hamiltonian:

H0 =
J∑

j=1

[
N∑

n=1

ϵjnc
†
jncjn +

N−1∑
n=1

c†jn(t∥ + 2isσj)cj,n+1 +
N∑

n=1

c†jn(t⊥ + 2iµσz)cj+1,n +H.c.

]
,

(4.9)

is invariant under the transformation:

cjn↑ → (−1)j+nc†jn↓

cjn↓ → (−1)n+j+1c†jn↑

c†jn↓ → (−1)j+ncjn↑

c†jn↑ → (−1)j+n+1cjn↓

when J is even or equal to 1. It is understood that if each of the parts of the Hamiltonian

is invariant under the transformation, then the complete Hamiltonian is also invariant.

c†jncjn =

[
c†jn↑, c†jn↓

]cjn↑
cjn↓


= c†jn↑cjn↑ + c†jn↓cjn↓



Applying the transformation:

= (−1)j+n+1cjn↓(−1)j+nc†jn↓ + (−1)j+ncjn↑(−1)j+n+1c†jn↑

= (−1)2(j+n)+1cjn↓c
†
jn↓ + (−1)2(j+n)+1cjn↑c

†
jn↑

= −cjn↓c†jn↓ − cjn↑c
†
jn↑

by applying the commutation rules of the creation and annihilation operators: {ci, c†j} =

δij, it is possible to rewrite the result:

= c†jn↑cjn↑ + c†jn↓cjn↓ − 1

The spin-orbit term along the chain
∑J

j=1

∑N−1
n=1 c

†
jn(t∥ + 2isσj)cj,n+1 can be written in

the matrix form:

t∥ + 2isσj =

t∥ 0

0 t∥

+ 2is

 0 sinϕj + i cosϕj

sinϕj − i cosϕj 0


recalling that σj = σx sinϕj − σy cosϕj.

=

 t∥ −2se−iϕj

2seiϕj t∥


Then, it is possible to perform the multiplication with the creation annihilation operators:

=

[
c†jn↑ c†jn↓

] t∥ −2se−iϕj

2seiϕj t∥


cjn+1↑

cjn+1↓


=

[
c†jn↑ c†jn↓

]t∥cjn+1↑ − 2se−iϕjcjn+1↓

2seiϕjcjn+1↑ + t∥cjn+1


= t∥c

†
jn↑cjn+1↑ − 2se−iϕjc†jn↑cjn+1↓ + t∥c

†
jn↓cjn+1↓ + 2seiϕjc†jn↓cjn+1↑ +H.c.



= t∥(c
†
jn↑cjn+1↑ + cjn↑c

†
jn+1↑ + c†jn↓cjn+1↓ + cjn↓c

†
jn+1↓) + 2s

(−eiϕjc†jn↑cjn+1↓ − eiϕjcjn↑cjn+1↓ + eiϕjc†jn↓cjn+1↑ + e−iϕjcjn↓c
†
jn+1↑) (4.10)

Applying the transformation to this term:

=

[
(−1)j+n+1cjn↓ (−1)j+ncjn↑

] t∥ −2se−iϕj

2seiϕj t∥


(−1)j+n+1c†jn+1↓

(−1)j+n+2c†jn+1↑


=

[
(−1)j+n+1cjn↓ (−1)j+ncjn↑

] (−1)j+n+1cjn+1↓t∥ − (−1)jn+2c†jn+1↑

2eiϕj(−1)j+n+1c†jn+1↓ + (−1)j+n+2t∥c
†
jn+1↑


= (t∥cjn↓c

†
jn+1↓ + 2se−iϕjcjn↓c

†
jn+1↑ − 2seiϕjcjn↑c

†
jn+1↓ + t∥cjn↑c

†
jn+1↑) +H.c.

After including explicitly the terms of the conjugate Hamiltonian, the expression is the

same as the one in the equation. 4.10:

= t∥(c
†
jn↑cjn+1↑ + cjn↑c

†
jn+1↑ + c†jn↓cjn+1↓ + cjn↓c

†
jn+1↓) + 2s

(−eiϕjc†jn↑cjn+1↓ − eiϕjcjn↑cjn+1↓ + eiϕjc†jn↓cjn+1↑ + e−iϕjcjn↓c
†
jn+1↑)

The interchain spin-orbit coupling can be written in the matrix form:

c†jn(t⊥ + 2iµσz)cj+1n =

=

[
c†jn↑ c†jn↓

]2iµ 0

0 −2iµ


cjn↑
cjn↓


= 2iµ(c†jn↑cjn↑ − c†jn↓cjn↓ − cjn↓cjn↓ + cjn↑c

†
jn↑)



Applying the transformation:

=

[
(−1)j+n+1cjn↓ (−1)j+ncjn↑

]2iµ 0

0 −2iµ


 (−1)j+nc†jn↓

(−1)n+j+1c†jn↑


= 2iµ((−1)2(j+n)+1cjn↓c

†
jn↓ − (−1)2(j+n)+1cjn↑c

†
jn↑ +H.c)

= 2iµ(−cjn↓c†jn↓ + cjn↑c
†
jn↑ + c†jn↑cjn↑ − c†jn↓cjn↓)
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