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Resumen

El problema de la selectividad de espin inducida por la quiralidad molecular ha sucitado un
gran interés, ya que sugiere funciones para la polarizacién de espin en procesos biolégicos
y promete aplicaciones espintronicas que aprovechan el débil acoplamiento espin-6rbita de
las moléculas organicas como tunica fuente de actividad de espin. Desde el punto de vista
teodrico, el enfoque se ha basado en modelos microscépicos cuanticos que calculan la con-
ductancia a partir de la férmula de Landauer-Buttiker. Este enfoque omite caracteristicas
fisicas experimentales importantes, como la reciprocidad, ya que no incorpora el mecan-
ismo de medicion de espin limitado por las relaciones de reciprocidad. Desde el punto
de vista experimental, la mayoria de los enfoques que evidencian los efectos del filtrado
de espin son circuitos complejos de una sola molécula a partir de monocapas autoensam-
bladas de moléculas quirales sobre tricapas de metal-6xido-ferro relativamente grandes.
En este trabajo, abordamos el problema tedrico desde el formalismo de la matriz de
transporte que incluye explicitamente el dispositivo de medicién de espin y reproduce los
teoremas de reciprocidad. Este formalismo propone dos formas de medir la polarizacién
de espin en el régimen lineal: a través de una medicién de tres puntas o introduciendo una
ruptura de la simetria de reversion temporal en el modelo de la molécula quiral. En el
aspecto experimental, abordamos el filtrado de espin molecular mediante el desarrollo de
un dispositivo break junction, sentando los primeros pasos en la medicion de la actividad

de espin en uniones moleculares quirales.



Palabras clave: Seleccion de espin, quiralidad molecular, polarizacion de espin, re-

ciprocidad, formalismo de la matriz de transporte, break junction, juntas moleculares.



Abstract

The problem of spin selectivity induced by molecular chirality has garnered high interest
since it suggests roles for spin polarization in biological processes and promises spin-
tronic applications harnessing the weak spin-orbit coupling of organic molecules as the
sole source of spin activity. On the theoretical side, the approach has been from quan-
tum microscopic models computing the conductance from the Landauer-Buttiker formula.
This approach misses important experimental physical features such as reciprocity since
it does not incorporate the spin measuring mechanism limited by reciprocity relations.
On the experimental side, most approaches that evidence spin filtering effects are complex
single-molecule circuits from self-assembled monolayers of chiral molecules on relatively
large metal-oxide-ferro trilayers. We address the theoretical problem from the transport
matrix formalism that explicitly includes the spin measurement device and reproduces
the reciprocity theorems. This formalism proposes two ways to measure spin polarization
in the linear regime: through a three-point measurement or by introducing time-reversal
symmetry breaking in the chiral molecule model. On the experimental side, we approach
molecular spin filtering by implementing the break junction device, implementing the first

steps in measuring spin activity in chiral molecular junctions.

Keywords: Spin selectivity, molecular chirality, spin polarization, reciprocity, transport

matrixz formalism, break junction, molecular junctions.
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Chapter 1

Introduction

Chiral molecules, ubiquitous in biological systems, such as amino acids, oligopeptides,
proteins, and many alpha-helical structures, are involved in many electron transfer pro-
cesses [1, 2]. The chirality of molecules has been linked to electron spin polarization since
the theoretical work of Farago [3, 4], who found that point chiral molecules coupled to
spin through the spin-orbit coupling (SOC) and generated an angular-dependent polar-
ization. Later, Kessler’s experiments for point chiral molecules in the gas phase yielded a
very small but measurable polarization of 10~*% with enhanced SOC bonded ad-hoc with
heavy atoms [5]. Theoretical developments Blum and Thompson [6, 7] used scattering
theory in the Born approximation to account for the spin active effects of gas phase chiral

molecules.

Due to the small spin polarizing effects, interest was lost for a while until the ground-
breaking experimental work of Naaman’s group [8], where they worked on self-assembled
monolayers (SAM) of small aminoacids. Using a Mott detector, they evidenced strong
spin-polarizing effects for photo-emitted electrons through the SAM. The same set-up was
later used with double-stranded DNA [9] yielded polarizations exceeding 60% measured
directly of the transmitted photoelectrons from the Au substrate through the SAM at

room temperature. The strong contrast with Kessler’s results led to the belief that this



13

could be a cooperative effect. Still, but later single molecule measurements on double-
stranded DNA using a conductive-prove atomic force microscope (c-AFM) [10], led to
even stronger polarizations of 60 — 70% from single molecule effects, surpassing that of
any known system at room temperature. As a reference, spin polarization achieved by
different densities of state of opposite spin electrons in a ferromagnet leads only to polar-
izations of the order of 20%. This led to coining the term Chirally Induced Spin Selectivity
(CISS), where the minimal ingredients were thought to be chirality and the SOC associ-

ated with chiral centers.

Following these studies, many works have determined CISS effects on different organic
chiral molecules such as peptides [11, 12] and DNA [9, 10]. It has also been studied in
inorganic chiral materials [13]. In the work by Naaman and Carmeli [14], they confirmed
high spin selectivity by measuring spin polarization on transmitted electrons through a
photosystem I SAM using a spintronic device and its temperature dependence. They
found that spin selectivity peaked at 300 K and vanished at temperatures below 150 K
by measuring the emf developed between the nickel and silver layers of a tunnel junction,

separated by a slim insulating AlOx layer as is depicted in Fig. 1.1.

e
gt

Figure 1.1: PSI monolayers absorbed onto the silver surface. Electron transfer begins after
photoexcitation on the primary donor P700. The potential difference between the Ni and
the Ag depends on the spin selection by the PSI and the Ni magnetization direction.
Adapted from ref. [14].

Single-molecule CISS measurements have also been carried out using a scanning tun-
neling microscopy break junction (STM-BJ) set-up on peptides [11], leading to conduc-

tance polarization of 60% and 57% for the left and right isomer respectively. Other recent
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works have shown CISS manifestation at the single molecule level through single helical
hydrocarbon molecules showing magnetochiral asymmetries up to 50% in the conduc-
tance using a spin-polarized STM [15], and in newly developed oligo(phenylene)ethynylene

molecular junctions using STM-BJ method [16].

Several theoretical approaches have been made to explain the CISS effects observed
in the experiments. Models using a tight-binding (TB) approximation considering a he-
lical structure of partially filled orbitals attached to the bases [17], evidencing the SO
magnitude in the transport problem to be in the order of meV given that the chirality is
nonzero. Other models discretize a continuum model where the SO is obtained from the
Pauli equation (non-relativistic limit of Dirac equation) in both helical structures and an

achiral nanotube [18, 19, 20].

Experimental determinations of CISS have been mostly based on two-terminal (2T')
geometry set-ups. Most models are time-reversal invariant due to the SO coupling break-
ing space inversion symmetry but preserving time-reversal. Because of this, reciprocity
theorems dictate that in 2T set-ups, no spin polarization can occur in the linear-response
regime [21, 22]. The reciprocity theorem requires that G(H, M) = G(—H, —M); hence,
the ferromagnetic detector with a magnetization M can not distinguish any spin polar-
ization no matter the chiral structure and the SO coupling magnitude [23]. To elude this
dilemma and remain in linear response, time-reversal symmetry in the chiral molecule
must be broken. This can be done by effectively adding a third probe to the molecule.
This probe gives rise to non-unitary effects, such as dephasing, that break the time-
reversal symmetry. Hence, reciprocity theorems no longer apply, and spin polarization
ensues. This third probe was effectively included in the model of Guo and Sun [18], where
they demonstrated that no spin polarization is possible without the decoherence probe,

even if the helical structure is present and SO coupling is strong.

In this manuscript, we tackle the theoretical problem from the transport matrix for-
malism developed by Yang Xu and Van Wees [22]. We propose two possible ways of

detecting spin polarization in two-terminal set-ups, avoiding the reciprocity problem in
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the linear regime: by connecting a third probe to the circuit’s node and by introducing
a small time-reversal asymmetry perturbation in the chiral molecule transport matrix.
We also validate this model by looking at the classical spin valve configuration with two
ferromagnets and arriving at the GMR and TMR results. On the experimental level,
we develop a break junction device that will allow single-molecule measurements. We
use the device to study electron transport through homometallic Au-Au and bimetallic
Au-Ni junctions by measuring conductance during contact rupture and building conduc-
tance histograms at ambient conditions, laying the foundations to study CISS through

oligopeptides in the built device.



16

Chapter 2

Theoretical Background

2.1 Standard Model of Spin Injection

The transfer of spin-polarized electrons from a ferromagnetic (F) conductor to a nonmag-
netic (N) conductor forms the foundation of spintronic devices, with the process being
referred to as spin injection. This section presents the calculations that lead to the for-
mation of a spin accumulation at the interface of an F /N junction under two study cases:
spin injection from F to N without any external spin pumping and spin extraction from
N to F, where an external circuit maintains a non-equilibrium spin accumulation at the
far end of the nonmagnetic conductor (note that this is our case of interest). For these
study cases’ complete description and step-by-step derivation, refer to Fabian et al., [24]

semiconductors spintronics review.

Throughout this treatment, it is considered that both bulk conductors F and N have
dimensions larger than their corresponding spin diffusion lengths (Lp < Lgp and Ly <
Lsy). This length represents the distance at which spin accumulation at each region has

been reduced to 1/e percent.
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/ Contact

F C

' X
e—> e—3

Le>>Lr Lv>> Loy

Figure 2.1: Scheme of a F/N junction. The ferromagnet (F) has a width Lg, and the
nonmagnetic conductor (N) has a width Ly. Both conductors are assumed to have their
physical widths larger than their spin diffusion lengths L,z and L.y, respectively. The
contact region of the junction is C, assumed to be infinitely narrow, thus there is a
discontinuity at x = 0. Adapted from ref. [24].

2.1.1 Spin Injection F=N

We consider that spin is injected from the ferromagnet onto the nonmagnetic conductor.
It is assumed that psp(—00) = psy(400) = 0, that is, spin accumulation only exists at

the interface.

The following definitions are required for all the calculations:

9=91+9, 95=91 — 9. (2.1)
o=o01+0, 0,=0—0, (2.2)
= +)/2, s = (1 — )/2, (2.3)

where gy()) is the spin-specific density of states per unit volume, g is the total density of
states; o)) is the spin-specific conductivity, and o is the total conductivity; gy is the
spin-specific electrochemical potential, u is the total electrochemical potential, and g is

denominated as spin accumulation.

The spin diffusion equation (2.4) can be solved in both regions of the spin detector (F

and N, C is not considered a region),
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where L is the generalized spin diffusion length given by,

D is diffusivity defined as,

— 1
D-_9 _*9 UTQ’ (2.6)

g g
B oo

For a degenerate conductor (metal), the current spin polarization P; = j,/j is given by,
1 040

Pj = P, + ~4Vp,—— (2.7)
J o

where P, = 04/0 is the spin polarization of the conductivity. The electric (charge) current
density j is defined as
on

j=—eJ=0FE+ GD%, (2.8)

where J is the electron (particle) current density, £ is the electric field magnitude, D is
the diffusivity, and n is the density of electrons. The first goal is to find Pj(x = 0) that
determines the spin accumulation psy(0). Thus, the spin diffusion equation for the F and

N regions considering the boundary conditions psp(—00) = psy(+00) = 0 yields,

psr () = pop(0)e”/For,

= sF — s
ad LsF
HsN ([E) = NSN(O)G_I/LSN;
. (2.10)
= sN — — ’
VM N LsN

respectively. In the nonmagnetic conductor N, P,x = 0, since ony = on; = on/2 (no

spin preference in the conductivity).
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Thus, rewriting (2.7) for each region,

1 fsF(0)
Pip(0) = Py + =120 2.11
16(0) = Par + -2 2.)
= jor(0) = jPyp + —“Z(O), (2.12)
F
1N8N(O)

Po(0) = — , 2.13
w(0) = — 22 213

= jon(0) = —2XO (2.14)

where Rp and Ry are the effective resistances for each conductor that appear in the

spin-polarized transport,

Rp = —% L, (2.15)
40FTO—F¢
L

Ry = =X (2.16)
ON

From (2.13), if Pjx(0) is known, then the spin accumulation s,y (0) can be calculated

:U/sN(O) - _]P]N<O)RN = _jsN(O)RN' (217)

Note that because of Ry, the spin accumulation at N grows with L,y.

Now, we analyze the contact region at x = 0. Since it is located at a single point,
the electrochemical potential is discontinuous; thus, it is impossible to define gradients.

Instead, the currents are defined by

Jr = Gilptn (0) — prr(0)] = GrAp4(0), (2.18)

Ji = Giluyn(0) = pyr(0)] = G AR (0), (2.19)
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where G (}) is the spin-dependent conductance of the contact instead of conductivity o

as in the bulks of both regions. Spin and charge currents are

Js = GsAu(0) + GAp,(0). (2.21)

Eliminating Ay from (2.20) and substituting into (2.21) yields

. . A S O
Js = Paj + léc( ), (2.22)
G
Rop = — 2.23

where R¢ is the effective resistance of the contact region and P = (Gy — G})/G is
conductance spin polarization. The current spin polarization at the contact is obtained

from (2.22),
1 Aps(0)
Pio=Ps+ =~ .
’ G Jj  Re

(2.24)

Now, there are three equations for P;(0) at both regions and at the interface: (2.11),
(2.13), and (2.24); and five unknowns: P;#(0), Pjn(0), Pic(0), psr(0), and psn(0). To
solve this, an approximation is used: at the contact, the spin current must be continuous;
thus,

P;p(0) = Pin(0) = Pjc = P;. (2.25)

This assumption is justified if spin-flip scattering can be neglected at the contact (must
be reconsidered at room temperature). Thus, imposing this approximation, the system

can be solved to obtain the spin injection efficiency,

RrpP,r + RcPq
= = (P,)g. 2.26
7" Rrp+ Rc+ Ry {Fo)n (2.26)
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Spin injection efficiency is the conductivity spin polarization P, averaged over each region
(remember that P,y = 0) and weighted by the corresponding effective resistance. Note

that it does not depend on the current.

Spin accumulation at z = 0 from the N region (2.17) can be rewritten in terms of the
spin injection efficiency,

psn(0) = —I{Ps) rRy. (2.27)

Now, if j < 0 (=), then electrons flow from F to N and usx(0) > 0; that is spin injection.
If instead j > 0 (<), electrons flow from N to F and p,n(0) < 0; that is spin extraction.

The latter is our case of interest.

2.1.2 Silsbee-Johnson Spin-Charge Coupling

In spin injection, driving spin-polarized electrons (due to magnetization) from F to N
causes a non-equilibrium spin accumulation at N. In spin extraction, spin accumulation
is generated in N at the interface with F; an emf appears in an open circuit, and current

flows in a closed circuit. This is called Johnson-Silsbee spin-charge coupling [24, 25].

Considering once again an arrangement as in Fig. 2.1, with the new boundary condi-
tion that a non-equilibrium spin accumulation is sustained at the far right boundary of

the nonmagnetic conductor,

fisn (00) # 0. (2.28)

Meanwhile, spin relaxation at the ferromagnetic conductor causes spin to be in equilibrium
at its far left boundary,

psp(—00) = 0. (2.29)

Note that this is precisely the case in our CISS quantum circuit. There, spin accumulation

at the far right boundary of the nonmagnetic conductor is sustained by the CISS effect.
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The main goal is to find the induced emf under the condition of having an open circuit

emf = py(00) — pup(—00). (2.30)

It is necessary to introduce the concept of local charge neutrality. It refers to the
condition where the net charge within a localized region is zero. To illustrate this, consider
a Fermi gas in equilibrium, with an electron density ny and chemical potential n. When
the gas is in a weakly non-equilibrium state in the presence of an electric field £ = —V ¢,

and current is flowing, then

on

ny = nyo(n + epir + ep) = npo + 87;0 (epr + e), (2.31)
on

ny =mny(n +epy +eg) = no + 8;0 (epy + e9), (2.32)

where for degenerate conductors, deviations from 7 are considered small; thus, the expan-

sion is obtained. Also, for degenerate conductors and considering that £ = 0,

%:;O = 9(77)7 (233)

where g(n) is the density of states per unit volume. Thus, considering this in both (2.31)
and (2.32),

ny = o + gre(in + ¢), (2.34)

ny =nyo + gre(py + @) (2.35)
Thus, the total electron density is,
n=mny+n;, =ng+eg(p+ @) + egsps. (2.36)

Local charge neutrality condition implies that n = ngy, meaning that the additional charge

contributions from u, ¢, and ps should collectively sum to zero. This condition eliminates
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the electric field from the problem by relating it to the electrochemical potential [24],

¢(x) = —p(x) — Pypus(z), (2.38)

where P, = gs;/g9 = (g+ — g,)/g is the spin polarization of the density of states. Since in
the nonmagnetic conductor we have that Py = 0, we have for both the F and N regions,

respectively,

¢F($) = —MF(ZE) - PgFMsF(fB)7 (2-39)

on(z) = —pn(z). (2.40)
Since psp(—o0) = 0, then from (2.30)
emf = —[pn(00) — pp(—00)] = —Ad. (2.41)

Thus, the emf induced is equal to a voltage drop between the F and N regions. From the
drift-diffusion model (well described in Reference [24]), the charge current is related to

the gradient of electrochemical potential and spin accumulation,
1 . 1.
Viu=—(—0osVus) = —j— PV, (2.42)
o o
thus, considering that 7 = 0 (open circuit) and that P,y =0

V/LF = — O—Fv,usp, (243)

Viuy = 0. (2.44)



24

Integrating both equations over F (—o0,0) and N (0, 00) regions respectively and recalling

that psp(—o00) =0

MF(_OO) - ,uF(O) = PO'FIU/SF(O)7 (245)

pun (+00) — g (0) = 0. (2.46)

As expected, the electrochemical potential across N is constant, while across F, there is

an electrochemical potential drop due to the spin polarization of op. Thus from (2.30),

emf = puy(00) — pp(—00) = Ap(0) — Poppsr(0). (2.47)

The only thing that is left is finding expressions for Ap(0) and psp(0). From the

equations of the current density at the contact, (2.20) and (2.21),

Ap(0) = =RcPejs(0) (2.48)

and replacing it in (2.47) we have

emf = —A¢(0) = —RcPels(0) — Pyrpsr(0). (2.49)

Figure 2.2: Spatial profile of the spin accumulation pu, across the junction. The left side
is the ferromagnetic conductor F, and the right is the nonmagnetic conductor N. From
ref. [24].

Solving again the spin diffusion equation (2.4) with the new boundary conditions, the

spatial profile of the spin accumulation in the nonmagnetic conductor at the contact is
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obtained,

HsN (:L’) = :usN(OO) + [NsN<0) - NsN(OO)]e_I/LSNa (2'50)
= Vpta(0) = =1l 0) = (o0 2:51)

where the value of psy(0) is to be determined. On the other hand, for the ferromagnetic
conductor, the spatial profile of usp(z) has the same form as in (2.9); see Fig. 2.2. Thus,
using these results and replacing them on (2.12), (2.14), and (2.22) considering that j = 0,

the system of equations for the spin currents at x = 0 for each region is obtained,

Ji(0) = =l () = o (e0)], (2.52)
jsF(O) = RLFMSF(O)’ (253)
i = - Br(0). (2.54)

Just as before, it is assumed that spin current is conserved across the contact; thus,

jsN(O) = ]SF(O) = jsC = .]S(O) (255)

This allows to find the expression for A@(0), usr(0), 75(0), and Ap(0). Eliminating j5(0)
and psy(0) from (2.53), (2.52), and (2.54),

Rp

Hsrl0) = oo (09). (2.56)
Substituting it back on (2.53),
, 1
Js(0) = RF+RC+RNNSN(OO)~ (2.57)
Replacing j,(0) on (2.48),
Ap(0) = STy (o0), (2.58)

" Rp+ Re + RNMSN
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These results lead to the final expression for the emf. Replacing them on (2.49),

RpP,r + RcPs

emf = — s
o RF+Rc+RN'uN

(00) = —Pjpsn(00). (2.59)

Recall that P; = (P,)r is the spin injection efficiency defined in (2.26). What equation
(2.59) says is that when an equilibrium spin (P}, since it is the current polarization that we
are injecting) is in electrical contact with a non-equilibrium spin, psy(00), an emf is devel-
oped [24]. This effect allows the detection of non-equilibrium spin using a ferromagnetic
conductor connected to the region containing this non-equilibrium spin. Measuring this

emf gives away information about the spin accumulation in the nonmagnetic conductor

[24].

Note that if psny(00) > 0 and the current spin polarization at the junction is positive,
P; > 0, then emf < 0. This, from (2.30), says that pur > px and, due to local charge
neutrality, the opposite is true for electrostatic potential, ¢r < ¢n, thus electrons move

from N to F.

2.2 Electron Transport in atomic-sized Contacts

According to Ohm’s law, when a potential difference V' is established between two points
of a macroscopic conductor, a current I will flow through it that is related to the potential
difference by the equation

V =IR, (2.60)

where R is the resistance to the flow of current across the conductor. Conductance G is
defined as the opposite of resistance, being G = 1/R. From Drude’s model, the expression
of macroscopic conductance is obtained:

A
G=07, (2.61)
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where ¢ is the conductivity that is an intensive property of the material, A is the cross-

sectional area, and L is the conductor’s length.

When the dimensions of the conductor shrink to the atomic scale, Ohm’s law breaks
down. In this regime, electrons transverse ballistically through the conductor since the

distance they travel between two scattering events is much smaller than the atomic size.

ML

Reservoir

MR

Reservoir

Figure 2.3: Illustration of Landauer’s representation of an electronic transport experiment.
Left and right reservoirs with electrochemical potentials p; and pg, respectively, are
connected to the sample by ideal one-dimensional leads.

If we consider two electron reservoirs L (left) and R (right) with electrochemical poten-
tials pz, and pg respectively. The reservoirs are connected through one-dimensional wires
to a sample. Thus, the net current leaving the L lead (1) is given by the number of avail-
able electrons in the lead Ny (¢), their velocity vy, and transmission probability through
the sample Tg (R < L) and the electrons that go into L should also be considered [26].

The net current is then

IL = €/d€ |:TR’LUL%NL<E)]£L<€) — TL,RUR%NR<5)]CR(5) N (262)

where N;(e) = 2/(hv;) is the 1D density of states of the leads, f;(¢) is the Fermi-Dirac
distribution of the charge carriers. Half of the density of states is taken because we only

care for the outgoing states.

Assuming time-reversal for the transmission probabilities: Tr = 17 gr. The Fermi-
Dirac distributions become a step-wise function at low temperatures: f(g) — O(ep —
;). In the linear response regime, the integral is approximated by simply evaluating

the transmission probabilities at er. Thus, considering this and including a factor of 2
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accounting for spin degeneracy, the current is

2e

I = —Trolue = pr), (2.63)

with (ur — ugr) = eV, thus the two-probe conductance is given by

2¢?
GrL = TTR,L- (2.64)

Finally, the conductance quantum is defined as Gy = 2¢?/h ~ 77.48;, S. From this, the

resistance of a 1D point contact can be calculated as Rg, = 1/Go ~ 12.9 k(.

2.3 Transport Matrix Formalism

In this section, we describe coupled charge and spin transport in a circuit where a chiral
component (either molecule, assembly of molecules, or solid-state chiral system) that
generates a spin polarization due to CISS is connected to a ferromagnet (F) in two-
terminal (2T) geometry to detect such spin accumulation generated in the chiral element
as an emf due to the previously described Silsbee-Johnson spin-charge coupling. Each
of these elements is characterized by a set of spin-dependent transmission and reflection
probabilities. This set-up is used in CISS detection, where a magnetoresistance (MR)
signal reveals the effect when changing the magnetization of the ferromagnetic electrode

[10, 11]. The formalism is taken from the work of Yang, et al. [22, 23].

UL UR
e
1 I

Figure 2.4: Generic 2T circuit containing a chiral component connected in series with a
ferromagnet with a node in the middle. The bias voltage across the circuit is up — pg =
—eV. Currents from right to left (=) are taken as positive and negative from left to right
(«<). The chiral molecule is assumed to favor electrons with their spin parallel to their
momentum. Adapted from ref. [22].
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In this formalism, the chiral molecule is assumed to have time-reversal symmetry and
spatial-inversion asymmetry that polarizes spin when charge current flows through it,
allowing only one spin orientation to transmit. The exact description of how this takes
place and the role of its spin-orbit coupling is outside the scope of this model. Hence,
throughout this section, it is considered the molecule only allows the transmission of spins
parallel to the electron’s momentum; thus, instead of the usual 1 and | notation of spin

direction that we have been using so far, we will switch to a — and < notation.

> V- N > > V- AN >
/,LL*)‘ < /,tR—) ILtL—>< IL[—>
—
> —> —_— —
Le— Re— Le— —
Hi— - L H H (_g |;_<_ I

(a) (b)

Figure 2.5: (a) Representation of ideal CISS effect. Directional spin transmission favors
spin parallel to the electron’s momentum while it flips and reflects the disfavored spin.
Spin-specific electrochemical potentials are defined at both sides of the chiral component.
Adapted from ref. [22] (b) Representation of a ferromagnetic conductor’s spin-dependent
transmission and reflection. Transmission is only allowed when the spin is aligned with
the magnetization direction; otherwise, electrons are reflected. Adapted from ref. [27]

2.3.1 Spin-Charge Transport in the Chiral Component

First, it is necessary to define the spin-space transmission T and reflection R matrices in

the chiral component represented in Fig. 2.5a. For the right-moving electrons,

T, — (t—>—> t<——>) 7 R, = <T—>—> 7a<——>) 7 (265)

e T T T

and for the left-moving, they are the time-reversed version of the right-moving ones,

T, — (tee t%e) ’ R, = (ree r%e) . (266)

eyt Te— T
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Using the Landuer-Buttiker formalism and considering the transmission and reflection

matrices above, the current leaving each lead has the form,

(1) -5 fo-ma () -2 ()] @

I, Ne ML MR~
_ 21 —Rr - , 2.68
<[Le> h |:( D) (,ULe ) MR ( )
where I = [ ,+1, is the charge current, I, = I, — I, is the spin current, u = (p_,+pu. )/2
is the (charge) electrochemical potential, and p = (p—, — p)/2 is the spin accumulation

as in the previous section [22, 24]. From equations (2.67) and (2.68), the transport matrix

T. for the chiral system is

I t s s WL — MR
N
—1sL = _Te Prr Y Nt HUsL (269>
Isr Pt Yo Ur HsRr

where N is the number of spin-degenerate channels in the chiral molecule, e is the electron
charge, h is the Planck constant and the matrix elements ¢, s, P, P,, v, and -, are all
linear combinations of the directional transmission and reflection matrices, T and R,
respectively. Elements ¢ and r are the average transmission and reflection probabilities,
respectively, P, and P, are the CISS-induced spin polarizations on the transmission and
reflection probabilities, v, and -, describe spin relaxation and spin transport due to spin

accumulation, and s is the charge current generated by the spin accumulation [22]. The
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formalism treats spins separately, hence ¢ + r = 2. Each of these quantities is defined as:

t=t,, +t +te +t, (2.70)
T=T T F Tl Tl (2.71)
Ve =t — b —tey e, (2.72)
Vo =Ty — T — T+ T —2, (2.73)
Po=(ty —te +tey—t )/t (2.74)
Po=,,—rac+re . —r.)/r (2.75)
S=to Ftoe —tey —too (2.76)
=Ty =T T T (2.77)

Symmetries are of central importance in solid-state physics. Time-reversal symmetry
refers to microscopic systems that remain unchanged under a time-reversal operation T.
Macroscopic systems follow thermodynamics, and thus, most processes are irreversible.
Onsager showed that in the linear response regime (small perturbations around thermo-
dynamic equilibrium), these processes are subject to constraints imposed by time-reversal
symmetry [23]. Onsager reciprocity relations in the linear regime require that under
time-reversal (that is, magnetization and magnetic field reversal), the transport matrix
satisfies T;;(H, M) = T;;(—H,—M). Considering Onsager reciprocity on 7. gives that
Pit = P,r = s, and therefore it follows Onsager reciprocity by being symmetric [23, 22].
Connecting the chiral component to the left reservoir as depicted in Fig. 2.4, us;, = 0 and

T reduces to a 2 x 2 matrix concerned only on its left interface with the node,

I Ne ('t PBt\ (pr — pr
= ) 2.
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. The matrix can be written in terms of just P, rewriting v, and ~,,

Pit+s 1+2Ptt

Tt Tt
P, 1+ 2P
vy = —t+ rs__Ivehy (2.80)
T Tr
where 7; and 7, are defined as,
Ly —te
= 2.81
T e g
gy = 22 " Tee (2.82)

Ty T

2.3.2 Spin-Charge Transport in the achiral Ferromagnetic Tun-

nel Junction (FMTJ)

The ferromagnet (F) breaks time-reversal symmetry, and spin accumulation is zero inside
it since spin relaxation is strong [22]. The ferromagnetic tunnel junction (FMTJ) provides
a spin polarization to any out-flowing current. This polarization is defined as Pr =
(G-, — G)/(Gp), where G_, (. is the spin-specific conductance and Gp = G_, + G is
the total conductance. When a spin accumulation is formed at the interface, the FMTJ
generates a charge voltage [24]. Considering that the FMTJ is connected to a reservoir
on its left, the only concern is at its right interface with the node in Fig. 2.4. The

spin-specific currents on the left side are given by:
1
I =—-Go [ur = (kR + psr)] (2.83)

Ie = G lux — (. — pon)]. (2.84)

Defining a transmission coefficient 0 < T' < 2, the transport matrix 7Tr¢ is therefore

I . N'e T —PFT Hrp — UR
(Is> T (PFT -T ) < fs ) (2:85)
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where N’ is the number of spin-degenerate channels. T satisfies Onsager reciprocity rela-
tions on the linear regime by being antisymmetric because a reversal on the magnetization

M corresponds to a sign change of Pr [22, 23].

2.3.3 Spin-Charge Transport in 2T geometry

Now, a circuit geometry of two terminals (2T) is considered, as shown in Fig. 2.4. Both
transport matrix equations (2.78) and (2.85) can be rewritten into conductance matrix

equations. Thus, for the chiral component, the elements of the conductance matrix are

Ne?
=7 L, (2.86)
Ne?
g2 h, Ptt = gg, (287)
Ne? ( 2Pt)
gp=——1_1+ t. 2.88
! h s (2.88)

Note that g = g3 results from the matrix being symmetric due to Onsager reciprocity.

For the FMTJ, the elements of its conductance matrix are

N’ 2

Gy = TQT, (2.89)

N’ 2
Gy = — he PeT = —Gi, (2.90)

—_N' 2

Gi=-——-° (2.91)

h
Here G5 = —(G3 because of the matrix being antisymmetric. Thus, the conductance

matrices for the chiral component and the FMTJ are

()= o) (). )
(—Ils) N _é (g; gi) (ML,; M) ) (2.93)
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There are no L or R subscripts in the currents (charge and spin) because, in the steady
state, both I and I should be equal on both sides of the node. Therefore, (2.92) and
(2.93) describe the currents at both sides of the node. This allows to write the expressions

for I, u, and u, as a function of the 2T bias pu;, — pgr

_ Gsg1 + G193

s f(/m — pr), (2.94)
p= gy — 951 G0 _fgl(G4 90 (4 ), (2.95)
e e (2.96)
I _éGlgg - 3G} —fG1g1(G4 + 94) (r — 1), (2.97)
f=03—G3— (G +g1)(Ga+ ga). (2.98)

Note that f does not change with either chirality or magnetization reversal since it has a
second-order dependence on g3 and (3 that depend on the CISS-induced spin polarization
of the transmitted electrons, P;, and on the spin polarization of the out-flowing current
at the ferromagnet, P; respectively. Charge current I depends on g3 and G2, remaining
invariant under both reversals. Consequently, the 2T conductance is invariant under both

asymmetries reversals in the linear response,

2 2
Gor — G195 — 91G3 fGlgl(G4 + 94) — Gor(P2, P?). (2.99)

Because of this, no MR signal should be measured from the edges in the 2T geometry.
This is in agreement with what Onsager reciprocity relations, which state that in the
linear response regime, 2T conductance remains constant under either magnetization M

or magnetic field H reversal [23],

However, p and ug are affected by both asymmetries, having a first-order dependence on

g3 and G3.
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The reason why MR vanishes in 2T geometry can be understood as two opposite
processes that cancel each other out in the linear regime. First, due to CISS, spin is
injected and a spin accumulation forms at the node that is detected at the ferromagnet
as a charge voltage due to Silsbee-Johnson spin-charge coupling [24]. This indeed changes
when the ferromagnet magnetization is reversed. In the second process, the ferromagnet
now injects spin into the chiral molecule, and due to Onsager reciprocity, it is detected as

charge voltage.

Yang et al. propose that for MR signals to be measured, an energy relaxation process
is needed inside the device. In Reference [21], Yang et al. also show that it is possible to

measure such MR in the linear regime if the geometry is of more than two terminals.

2.4 Tight-Binding Example Model of the Electronic

Transport Through a Chiral Molecule

As seen in the previous section, the transport matrix of the chiral component is defined by
spin-dependent transmission and reflection coefficients. These coefficients can be obtained
by carrying out a quantum description of the transport through the chiral component.
To show how this can be done, we present a simple example of a tight-binding model of
electron transport. We consider three sites in a helical structure, each with two orbitals,
p, and p,. This helix is connected to two leads composed of semi-infinite chains of p,

orbitals.

The helix has a radius a, a pitch b, and the angle between two contiguous atoms is
A¢p = ¢ — ¢n. We will use cylindrical coordinates, with the helix resting on the XY
plane. For simplicity, we will consider that our atoms are positioned at every half turn,

that is A¢ = 7, with the first atom at the bottom with ¢; = 0 and the last at b with
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Figure 2.6: Structure of the example model for the molecule in (a) the XY plane, showing
the p, orbitals; (b) in the XZ plane, showing the positions of the three sites in the model
and the p, orbitals.

¢3 = 2. We define the position vector at site n as,

A N bAD -~
R,=a (cos ¢, X +sing,Y + 2—¢Z> . (2.101)
T

To build the TB Hamiltonian, Following the model of Ref. [17], we must consider all
possible interactions between orbitals in the same atom and different atoms. The spin

transport is defined by the Hamiltonian:

H = Ho + Hicad, (2.102)

where Ho = Hrp + Hso. Hrp is the TB Hamiltonian on the Slater-Koaster scheme that

describes the overlaps between nearest neighbors’ orbitals.

We will consider that the only interaction between orbitals in the same atom is intrinsic

spin-orbit coupling, given by the Hamiltonian:

1oV e
Hso = ——F-5—=3L"S,
r Or 2m§c (2.103)

—\L-S,
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where V' is the atomic potential, mg is the effective electron mass, L = r x p is the
orbital angular momentum operator, and S is the spin angular momentum operator. In

the |l,m;) basis, we can write the p, and p, orbitals as,

1
|paz> = _E(H? 1> - |1’ _1>)7 (2'104)
p:) = |1,0). (2.105)

Therefore, the matrix elements of the spin-orbit Hamiltonian are given by,

|px> |pz>
Hso = <pa:| 0 isygp
<pz| _isygp 0

where £, = Ai?/2 and S, is given by

Sy, = —Sx sin ¢,, + Sy cos ¢y, (2.106)

where Sy is the Pauli matrix representing the electron spin degree of freedom in the Z
axis. Using the Slater-Koaster scheme as in Ref. [17], the overlap between the orbitals

iy and p, at site n and m respectively, are given by

B = |V | im)
(2.107)
(Ve —=VvVr ),

Hn fbm, Hn b,

IR ?

= (A(pn) - ﬁ(lum))v;fnum +

where R,,,, = R,,, — R,,, (i) is the unit vector along the p, orbital direction, and Vo

are the Slater-Koaster m and o overlaps [17].

With our example model configuration, we have

fi(z,) = cos ¢ X + sin ¢, Y, (2.108)

A

ii(z,) = Z, (2.100)
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and the vector R,,,,, joining the two atoms is

R = 2a [—sin <¢m ¢”> sin 22K 4 cos (¢m ¢"> sin 20y 4 02051 (2.110)
2 2 2 2 2

With this in mind and considering ¢; = 0, ¢o = m, and ¢3 = 27 with A¢ = 7w, we obtain

the Slater-Koaster overlaps,

VA Vi

Evm — _yr _ PP 2.111

TxT pp 1 T b2/4 ) ( )
bZ(Vc’ _ V7r)

E?" = V7r 2.112

> 16a%(1 4 b2/4) (2.112)

nm __ b(‘/;;; ‘/;77;)> (2113)

0 2a(1 4 b2/4)

Note that if b = 0, there’s no overlap between p, and p.. With this result and considering

the SO Hamiltonian Hgp, we can write the TB Hamiltonian of the three-site-model helix

Hoi
12 |P1) |Pay) 129, |Pas) |Pzs)
(Das | Ep 1Sy&p E;i Eal:z 0 0
(Pl | —1S46 & —-E? EZ 0 0
Ho=Hrp+Hso= (| | B,  E.. & i8§ E5 EZ
(Pl | —EZ B2 —iS,§ g  —E  EZ
(Das| 0 0 E2 £ p iSy&p
2y 0 0 —E> EZ —i1S, &

Note that because of the spin degree of freedom, the Hamiltonian matrix is 12x12. We still
have to connect the helix to the leads composed of semi-infinite p, orbitals; the overlaps
between them and the helix sites 1 and 2 are purely kinetic terms. The self-energies of

each lead are given by [20)]

L21 = LAl - iLfl —

Ly,m 2 0
1% e—e) (e —e9)2
— ( 5 b +Z\/(°V;;p)2 - Tp> : (2.114)

Pl
Vi

Ry n 2 0
1% g—¢ g —g0)2
— ( P+ z'\/(OV;,rp)2 — %) : (2.115)

Rzg == RAg - i3F3 —

DI
Vop
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are the overlaps of the p, orbitals between the first and third site in helix,

and the left and right lead, respectively, OV;fp is the overlap of the p, orbitals inside the

leads, and 52 is the energy of the p orbitals in the lead. The lead Hamiltonian is

Hicad = L21|pz1><pzl| + RE3|pz3><pz3|'

(2.116)

Considering this and the TB Hamiltonian, we can write the complete Hamiltonian H

for the system coupled to the leads, summarized in the table below.

12 [P=1) Poy)  [Pzy)  |Day) [P=)
(D, | p iSy&p E,; E,? 0 0
(D] | —i8y& e +51  —EZ  EL 0 0

H="Ho+ Hieaa (Pal EZ, E}] p iSy&p EX EY
wol | ~EE B S o R g
(Das | 0 0 E EY p iSy&p
(P2 0 0 B ER  —iS)6, g+ 5
The Green function is given by,
G = el —H] " (2.117)

where R stands for retarded. From the obtained 12 x 12 Green matrix and the Fisher and

Lee formula [26], we can relate it to the spin-specific transmission between the leads as

Til(e) = 45T ()G Ly
Tyi(e) = 4T ()G .,
T3i(e) = 45T ()G Ly
Tyi(e) = 4T (e)GY

() "Ts(e)Gy ., (), (2.118)
() "Ts(e)Gy ., (), (2.119)
() Ts(e)Gy. .. ()5 (2.120)
() T3(e)Gy. .. ()5 (2.121)

with these being equivalent tot_,_,, t_ ., t_,., and t,__, in the transport matrix formalism.

The correspondent reflection probabilities r are found by simply considering the elements

of the Green matrix of the same site, that is,

GR

and G;‘

zn Pzn

PznsPzn
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Chapter 3

Toward Transport in Nanoscale

structures: Experimental Set-up

3.1 Mechanically Controlled Break Junction

We used a mechanically controlled break junction (MCBJ) set-up to study electron trans-
port through atomic-sized contacts. The device consists of a clamp of two brass pieces
that will hold the sample placed onto a flexible substrate with the pressure exerted by
four nuts at the top. A piezo stack (Thorlabs PK3JMAP1) is placed on a third brass
piece that is moved up and down by a micrometer screw. Thus, the set-up works as a
three-point bending mechanism that bends the flexible substrate with the action of the

piezo. A diagram and picture of the MCBJ are shown in Fig. 3.1a and 3.1b, respectively.

The most common choice for the flexible substrate in literature is a plate of phospho-
rous bronze about 1 mm thick, which is covered with an insulating film, usually Kapton
[28, 29, 30]. Instead, we decided to design 3D-printable PLA flexible substrates, reducing
the costs and complexity of the sample preparation. The printed pieces were 26 X 6 mm

and 1 mm thick, with the middle section reduced to half the thickness to ensure a higher
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Figure 3.1: (a) Diagram of the MCBJ set-up. The clamp comprises two brass pieces that
hold the flexible substrate in place. The micrometer screw moves the piezo up close to
the substrate. (b) Picture of the real set-up, donated by the Laboratory of Molecular
Electronics, Yachay Tech. (C) and (d) show the MCBJ inside its metal enclosure for
noise reduction.

flexibility. Aside from costs, the advantage is that Kapton is no longer needed to insulate

the sample from the substrate, and we can prepare many substrates in less than an hour.

To reduce electromagnetic noise and interference, we placed the electronics inside an
aluminum enclosure, and so was the MCBJ, as seen in Fig. 3.1c and 3.1d. Coaxial cables

were also used to connect everything in the set-up.

This set-up was used to study electron transport in atomic-sized contacts with ho-
mometallic (Au-Au) and bimetallic junctions (Au-Ni) at ambient temperature. In both
cases, conductance (current) traces were measured and analyzed statistically, building

histograms from thousands of traces.

3.2 Electronics

The MCBJ is connected to a set of electronics that serves three functions: constant voltage

supply for the junction, current-to-voltage converter and amplifier, and trigger for the data
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acquisition. Fig. 3.2 shows the entire circuit used for the equipment operation. All the

electronics are powered by a symmetric V.. = 410 V source.

LM7805 Transimpedance Amplifier
Vee 1 KQ
Vi GND Vo 10 KQ
R 0.1pF 100 KQ
=T | "7 : 1MQ 10KQ Buffer
033uF = |gogoS Amplifier Amplifier
To DAQ
O
Buffer
Vee Amplifier To DAQ
Trigger
——o
Vee
KPZ101 AAA 1
2KQ 0.1puF = =

Trigger

Figure 3.2: Circuit diagram of the electronics connected to the MCBJ. Enclosed in green
is the bias voltage circuit that provides a constant supply of Vs = 200 mV. Enclosed
in blue the trans-impedance amplifier circuit is enclosed in blue that converts the output
current from the junction into an amplified voltage signal. Enclosed in red is the trigger
circuit that compares the output voltage signal from the trans-impedance amplifier to a
selected reference voltage. Depending on whether the signal exceeds or not said reference,
it sends a pulse to the trigger input in the DAQ. The piezo is controlled by Thorlabs
KPZ101, which sends a 100 V triangular signal.

In the bias voltage circuit, LM7805 sends out a constant 5 V. Then, a voltage divider
with a variable resistor controls the bias voltage for the break junction. We used Vi.s =
200 mV, to prevent electric noise. When this signal passes through the Au-Au junction,
a small current comes out. The trans-impedance amplifier circuit converts this current to
an amplified voltage signal. This is done by the TL084 op-amp connected to the selected
feedback resistor R, that determines the amplification factor from 10% to 10°. The output
signal then goes to the analog input of the Digilent MCC USB-1208HS DAQ device.

To activate the trigger, the circuit compares the trans-impedance amplifier output V

with a controllable reference voltage. When the voltage is higher than the reference, the
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Figure 3.3: Aluminum enclosure of the electronics of the MCBJ device depicted on Figure
3.2. The knob allows the amplification selection. The red LED indicates the action of the
trigger circuit.

output from the op-amp will saturate to +V,., and —V,. if it is lower (in fact, it will
saturate to ~ £8.529 V). This value is then compared in an XOR gate with either 5 V
or ground. When the selector is at ground, then the output will be high if V5 > Vs and
low otherwise. If instead the selector is at 5 V, then the opposite occurs; the output is
high if Vi < Vier and low otherwise. In this study, the latter is used with V¢ ~ V., such

that the trigger activates when the voltage signal drops from V4.

A controlled high-voltage signal is sent to the piezo element to bend the substrate.
For this purpose, we use Thorlabs KPZ101 K-Cube Piezo Controller, which automatically
controls the piezo element up to 1 kHz. PC-controlled operation is done with LabVIEW
utilizing the device’s control software package, Kinesis. The LabVIEW program sends
positive DC voltage ramps (triangular functions) from KPZ101 to the piezo stack (Thor-
labs PK3JMAP1). The ramps cause repeated elongation and contraction of the piezo,
which bends the substrate, breaking and forming the atomic-size contacts between both

tips of the electrodes.
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3.3 Homometallic Junctions

To make the homometallic sample, we used a 0.lmm diameter 4N purity (99.99%) Au.
Electrodes were formed by making a notch using a 3D-printed device that consisted of a
scalpel blade whose altitude was mechanically controlled by a micrometer screw. Spring
kept the back of the scalpel under pressure to ensure continuous contact between the blade
and the micrometer. The device is as shown in Figure 3.4b. Several tries were needed to

obtain the desired notch with a proper depth.

Scalpel Micrometer

SCrew

02
] A ]
| L)
Au wire Sample
holder

(a) (b)

Figure 3.4: Notching mechanism for the preparation of homometallic junction samples.
(a) Diagram of the notching process for the homometallic junction samples. (b) 3D printed
PLA device for notching the sample wires.

This sample was placed in a PLA flexible substrate. To prefix the sample, nail polish
drops were placed at its ends. Then, after letting it dry, epoxy adhesive drops were placed
near the junction, and by allowing them to cure for a few minutes, they were gently spread
to reach the start of the notch. This final fix was left inside a protective glass enclosure
for 24 hours to cure fully. Once the curing process was done, two thin copper probes
(roughly the same diameter as the Au wire) were attached to the sample, covering the
spot with silver paint to enhance electrical contact. The sample is loaded onto the MCBJ,

with the clamp holding the flexible substrate in place.
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Figure 3.5: Sample placed on the PLA flexible substrate. A diagram can be seen in the
upper part, while a picture of the real montage can be seen in the lower part.

The flexible substrate bends under the displacement of the piezo, stretching the wire
and breaking the notch. Then, the piezo contracts, and the substrate returns to its
natural form, squeezing the electrode tips back together and re-forming the contact. This
rupture and junction formation was done continuously. Since no two traces are equal
because of contamination, thermal interaction, electromagnetic noise, contact structure,

etc., hundreds of contact rupture traces were measured.

3.4 Bimetallic Samples

With the same MCBJ set-up previously described, bimetallic junctions can also be stud-
ied, which are junctions where the electrodes are made of different metals. Considering
that some metals have the habitability to wet others [29, 31], we chose Au and Ni, where
the former wets the latter. This is convenient since we want to replicate the set-ups used
in the literature of CISS in further studies. Thus, it requires generating a magnetization

on the ferromagnet (Ni) so spin selection can be measured in I-V curves.

The technique used is described by Tal et al. [29], where studied bimetallic samples

of diverse materials including Au-Ni in a vacuum chamber at 4.2 K. The idea is that the
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Figure 3.6: (a) Three-point bending device for the bimetallic junction sample prepara-
tions. With the micrometer screw, the device keeps the flexible substrate slightly bent,
allowing us to align the wires on top of it with their tips in contact. After relaxation of
the substrate, the tips squeeze against each other, forming a larger contact. (b) Bimetallic
sample of Au-Ni obtained by this method.

flexible substrate must be kept bent while the sample is prepared. Therefore, an adjustable
three-point bending device was 3D printed, as seen in Figure 3.6a. The amount of bending
done must be small, considering that the action of the piezo in the MCBJ device is of the
order of micrometers. Both sample wires were cut with a sharp tip at one end and placed
on the bent substrate. The same notching mechanism was used for this sharpening, but
this time, instead of calibrating the blade height such that just a notch was made, it was

lowered until it cut through the wire, leaving little tips on each end.

Under a stereoscopic microscope, one of the wires is attached to the substrate with
a drop of nail polish on its back end. The second wire is then attached the same way,
ensuring its tip’s alignment with that of the first one. After the nail polish cures, two
drops of epoxy adhesive are placed near the tips of both wires. The alignment is corrected,
ensuring both tips are in contact, and more epoxy is added if needed, spreading it as close
as possible to the tips, preventing any flow underneath it, and allowing them to cure like
that. The substrate is then relaxed, and the two tips are squeezed together to form a
larger contact. During this process, Au wets Ni as is reported on ref. [29]. To test if the
sample preparation was successful, we tested its continuity with a multimeter to verify

whether the contact between both electrodes was achieved.
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Chapter 4

Results

4.1 Spin-Charge Transport in 3T Geometry

As seen in previous sections, in a 2T geometry circuit where a chiral component is con-
nected in series to a ferromagnet with a node in between, the emergence of an MR signal
to detect CISS is forbidden in the linear response regime according to Onsager reciprocity
relations, due to chirality being invariant under time-reversal [22, 23, 21]. The only way
to measure 2T MR is to break Onsager reciprocity in the nonlinear regime by introduc-
ing energy-dependent transport and energy relaxation in the device [22] or by the Hanle

effect, which does not require a ferromagnetic element.

In the node, spin accumulation ps and electrochemical potential y are defined, and
spin is preserved. At the same time, energy relaxation takes place because of electron-
phonon interaction. With this in mind, we propose to turn our heads to a 3T geometry
(Fig. 4.1) following the work in ref. [32]. Here, a nonmagnetic metallic layer is in contact
with the ferromagnet, playing the node’s role in the previous model. This addition is
experimentally justified since, in CISS experiments, the molecule needs to be attached to
an affine metal, which can be done using gold with a thiol group attached to the molecule’s

ends [33]. The purpose of this third terminal is to measure the actual contribution of the
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node (now the metallic layer). We impose the condition that this third terminal is a
voltage probe; thus, the net current flowing into and out of it is zero. We aim to measure

the potential difference between this new probe p, and py.
L7 ]
1|1

C—

LI
1 s

Figure 4.1: Proposed 3T circuit geometry. A third terminal has been added to the
former node, which is now considered a metal layer in contact with the ferromagnet. This
terminal is a measurement lead; thus, the current that flows into it has to flow out of it,
causing a zero net current.

To allow easier handling, we rewrite the equations that were obtained in Yang Xu and

Van Wees model, (2.94), (2.95) and (2.96):

ps = Da(pr — pr), (2.94)
p=pr —Ds(ur — pr), (2.95)
= pr + i(pr — pr). (2.96)

The introduced variables I'1, I's, and I's are defined as,

_ —G% — Gsg3) — G1(Gy + ga)

I, ; , (4.1)
T, — 93 + Gsgs —fgl(G4 + 94)’ (4.2)
T, — Gsg1 + Gigs. (4.3)

f

It is now possible to consider the contribution of the spin accumulation with respect
to the electrochemical potential us at the far left of the ferromagnet, py. Starting from

the interaction of the two induced electrochemical potentials at the node, pu — pus from
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(2.94) and (2.96),

pw—ps = pr+Ti(pr — pr) — To(pr — pr), (4.4)

we then replace the expression (2.95) for p referred to pp,

pr —Us(pr — pr) — ps = ppr +Ti(pr — pr) — Do(pr — pr), (4.5)

pr = ps = pr + (T = T2+ Ts) (e — pr). (4.6)

We then obtain the expression for the potential difference between the left reservoir puy,
and the electric manifestation of the preference of one spin species against the other due

to CISS in the molecule, that is, the spin accumulation g,

2 _ 2
1L — fhs = ji + 95 — G1gs — Gsgn G]:); (G1+91)(Ga + 94). (4.7)

Thus, the electrochemical potential difference p;, — 115 does indeed depend on the reversal
of both magnetization of the ferromagnet or chirality of the molecule since it depends
on G3 and g3, respectively. This allows us to measure the effect of CISS even in the
linear response regime, breaking Onsager reciprocity that is only concerned with the 2T

geometry.

4.1.1 Application of the Transport Matrix Model

Spin Valve: GMR and TMR

The validity of Yang Xu’s model [22, 23], we tackled the classic spin valve for the giant
magnetoresistance (GMR) and tunneling magnetoresistance (TMR) schemes. For this,

we put two ferromagnetic conductors in series.
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Figure 4.2: Spin valve 2T geometry circuit with two ferromagnets F1 and F2 in series.
Considerations about current sign and voltage bias are the same.

The matrix equations for FR and FL, respectively, are given by:

= < < oo 4.8
(Is> h (PFT -T ) ( ps )’ (4:8)
_ 1 §1 §2 H— HR (4.9)
€ G3 G4 Hs ’ .
I . Ne T —PFT MmrL — W

(L>'__"ﬁ_(P%T —ﬂ‘) ( ps )’ (4.10)

_ 1[Gy Gs ML — 1
e <G3 G4) ( Hs ’ (4.11)
where the polarizations Pr and P depend on the spin-specific conductances of each

ferromagnet:

~ G -G

G- +G
G -G
Pr=_ " 4.1
PTG +Gl (4.13)

Both matrix equations follow Onsager reciprocity by being antisymmetric under time-
reversal, as previously seen. Following the same procedure as before and considering that

Gy = —G5 and Go = —ég, we arrive at the equations for u, us, and I,

—G2 4 G3Gy — G1(Gy + Gy)

M= pr = (1R — pr)
_ - (4.14)
—G2 4+ G3G3 — G1(G4 + Gy)
= WR + 7 (R — pL),
G3Gy + G1G
po = = ), (4.15)

1-G1G2 — G1G? — GGG+ G
]:_E 173 ! 3f ! 1( 1 4)(/LR_/LL)7 (416)
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with f being,
f=—-G2—G2+2G3G;3 — (G + G1)(Gy + Gy). (4.17)

Note that the current (4.16) changes depending on whether the magnetization of FL and
FR are parallel or anti-parallel, since G'3 and ég depend on Pp and ﬁF respectively, thus
changing the value of f. If the magnetizations are parallel, the product Ggég is positive,
while when they are anti-parallel, it is negative. The denominator is larger in the latter
case than in the former, thus making the conductance smaller in the anti-parallel and

larger in the parallel configurations:

Glég + é1G§ + G1C~;1(G4 + 54)
G2 + G2 — 2G5Gs + (Gy + G1)(Gy + Ga)

GGMR = (4.18)

Thus, we have that,

Gemr = Gour(Pr, ﬁF); (4.19)

meaning that conductance depends on the magnetization directions, and thus, we have

MR signals in the linear regime. Thus, we recover the classical spin-valve GMR scheme.

To connect with the popular Julliere’s model for GMR, we can see these results in

terms of the density of states (DOS). From Drude’s model, we know that,

o= , (4.20)

where n is the electron density, 7 is the mean free time, and m is the electron mass.

Electron density depends on the DOS,

n = /:F deg(e) f(e). (4.21)

where g(g) is the DOS and f(e) is the Fermi-Dirac distribution. For low temperatures
f(e) = O(ep — pi), and (4.21) becomes n ~ g(ep)ep. The conductance is related to the
conductivity by,

G=o

A Ae?
= °r (4.22)

= 9(€F)€F L
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The spin-specific conductances are then,

Ae’r Ae’r

s Gi=gler)er— (4.23)

Gy = g1(er)er

For each ferromagnet, we know that its spin polarization is defined in terms of its spin-
specific conductance as Pr = (Gy — G|)/(G+ + Gy). From this and considering the

spin-specific conductances, we obtain the spin polarization of each ferromagnet,

_ griler) — g1i(er)
Foi = gri(er) + gui(er)’ (424)

where 7+ = FL, FR.

The expression for the magnitude of the tunneling magnetoresistance from Julliere’s

model is [24],

Rap—Rp Gp—Gap
GMR = = 4.25
Rp Gap (4.25)

where P means parallel and AP anti-parallel. Considering that both ferromagnets are

equal, we define these resistances as,

2R+R, 1
Rp = Gp==(G++G 4.26
b=t Gr=3(Gi+0) (4.26)
1 QGTG¢
Rip==-(R++ R Gap=——"- 4.27
AP 2( ++ R)), AP Gt G, ( )
Thus, we can find an expression for the GMR ratio,
(G —Gy)?
GMR = ——. 4.28
4G+ G (4.28)
If we define & = G+/G|, then we can rewrite the ratio as
—1)?
aMR = (@1 (4.29)

4o



93

hence the GMR changes with the value of «, if both spin dependent conductances are
equal, then GMR = 0, that is expected since it means that there’s no spin preference,

thus no spin valve behavior.

TMR is similar to GMR but with an insulating layer between FL and FR, thus form-
ing a tunnel junction. The tunnel current is obtained from Fermi’s golden rule on the
tunneling rate [24] and considering a low bias regime, this gives

4Am2e?

h

Ga ~ TgUL (€F>gaR(€F)a (430)

where o is the spin direction, and 7' is the tunneling transmission assumed to be constant.

With this in mind, the expressions for the P and AP conductances are given by [24]

Gp = Gh+ Gy o (910918 + 91L9.R), (4.31)

Gap = GQP + Gjp X (¢1L.9\r + 91LG1R)- (4.32)

Replacing this on the TMR ratio gives,

TMR — Rap — Rp _ Gp—Gap ~ 2P Pyrr '
Rp Gap 1= PyrrPyrr

(4.33)

Note that if both Pyr, = P;rr = 1, that is, if both ferromagnets are 100% spin-polarized,
TMR becomes infinite; while if one or both ferromagnets is not polarized (i.e., Py; = 0),

then the TMR vanishes.

time-reversal Asymmetry in the Chiral Component

In Chapter 2.3, we saw that the transport matrix of the chiral component satisfied Onsager
reciprocity by being symmetric (equal off-diagonal terms). This was because the chiral
component had time-reversal symmetry. It is possible to break this symmetry by consider-

ing a small perturbation with odd time dependence in the transport matrix. Introducing
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this component is analogous to connecting the system to a third probe that emulates
dephasing processes such as electron-electron interaction, electron-phonon interaction, or

inelastic impurity scattering.

Therefore, the transport matrix is:

(—[Is> N _% ((Pt +tgPD)t . _VfPD)t) (H’ L;S” R) : (4.34)

where ¢ < 1 is a small parameter and Pp is a contribution to the chiral component
spin polarization with time-reversal asymmetry. This modified matrix satisfied Onsager

reciprocity in the linear regime by being antisymmetric:
7172(H, M) = (.Pt — 6PD)t = T271(—H, —M) = (Pt — EPD)t. (435)

We can proceed as normal and write the conductance equations. For this, we define the

new terms in the chiral matrix:

_  Né? D

g2 = T(Pt —ePp)t = go + Gy, (4.36)
~ Ne?

G3 = T(Pt +ePp)t = g3 +eG%, (4.37)

where the superscript D stands for decoherence. Note that as before, go = g3 and similarly

to the ferromagnet matrix elements, the decoherence terms are such that GY = —G2,
defined as
Ne?
GY = ———Ppt = ~G5. (4.38)

Hence, the conductance matrices at the right and left of the node are,

<—[Is> - (”Zé gi) (u LSMR) » (4.39)
<—[fs> N _é <g; gi) (“i; M) - (4.40)
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From this, we obtain the equations for I, i, and p4, which have the same form as equations
(2.94)-(2.98) but with the newly defined conductances g, and g3. Considering (4.36) and

(4.37), and neglecting terms with 2, we obtain,

_ Gsqr + Gi(gs — €G§))

i 7 (kR — pr), (4.41)
2 — Gg3 — eG3GY — G1(Gy +
MZML—93 393 — € 3f3 1(G4 94)(,%—#1%), (4.42)
—G3 — G3g3 +eG3GY — G1(Gy +
= up + 3 393 isf 3 1(Ga g4)(MR—ML), (4.43)
2 _ 2 _
j 1Gig5 — 1G5 — 91(G4 + g4) (i — pin), (4.44)
e f
f = gg - G?)) + 2€G3G3D — (Gl + g1)<G4 + g4). (445)

Note that now, because of the term 2eG3GE in f, we have that,

G193 — 1G%2 — g1(G4 + g4)

G = GL .(Pr, Pp) = 7
2T 2T( F D) g% — G% + 2€G3G?l)) — (Gl + 91)(G4 + 94)

(4.46)

thus, it changes upon time-reversal because of the decoherence Pp term in GZ| and 2T
MR is detectable. If we let € — 0, we recover the results in chapter 2.3. Since ¢ < 1, we

can expand (4.46) around € = 0 to first order obtaining

2G3[G192 — 1G3 — G191(G4 + 94)|GY
2

G~ Gop + ¢
A (02— G2 — (G1+ 91)(Gs + )]

+ 0(e?), (4.47)

evidencing the change in the (charge) current slope. When we let ¢ — 0, G has the
same expression as the usual 2T conductance restricted by reciprocity. To illustrate, a
current plot is shown in Fig. 4.3 using the parameters mentioned in the plots of ref.
[22], and a large ¢ was used to evidence the difference in both slopes for a reversal in the
ferromagnet’s magnetization direction. It is clear that in the vicinity of zero bias voltage

(linear response), an MR signal can be measured.
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Figure 4.3: Example I-V curves due to the introduction of time-reversal symmetry break-
ing in the molecule’s transport matrix.

4.2 Homometallic Junction

The voltage was measured under ambient conditions as a function of time as the junction
elongates until it breaks. To convert the voltage traces to conductance ones, we use

circuit analysis on the MCBJ. We consider that there’s only one Au atom in the contact;

therefore, across the junction, the current encounters a resistance of Rg, = 1/Gy ~
12.9k€:
1
‘/out = ‘/biast (_) ) (448)
Ra,

where in out case Ry = 100 k2 and Vi, = 200 mV, thus Vi =~ 1,54955 V. Dividing the

output voltage of the traces by V. gives us the conductance traces.

Figure 4.4a shows an individual trace of conductance measured during contact rupture.
Each trace has 500 conductance measurements with a time between each measurement
of At = 2us. The curve shows the expected step-wise decrease of the conductance, with
plateaus formed around 1Gq, 2Gg, and 3Gy. Not all traces were considered in the data
acquisition, only those representing a whole rupture, meaning that the signal reached the
minimum output voltage. The trace also shows an unexpected plateau at 1.5Gq, possibly

coming from the intrusion of contaminants in the junction.
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Figure 4.4: Results of the measurements taken on the Au-Au junction.(a) Individual con-
ductance trace of a contact rupture obtained with the MCBJ device at ambient conditions
with a bias voltage of 200 mV. (b) Histogram built from 5202 accumulated measurements
of conductance traces during contact rupture. Three main peaks can be identified clearly,
with their mean value obtained from the Gaussian fit.

Figure 4.4b shows the histogram built from 5202 accumulated conductance traces.
The three main peaks are clearly visible with mean positions at 0.952+0.004 G, 1.819+
0.005 Gy, and 2.737 + 0.01 G, obtained from a Gaussian fit. The shift in the peak values
is because of the different geometries the contact can assume for more than one atom in

forming the contact.

Dimer Monomer

b

D.C Dimeric T D.C Dimeric P D.C Monomeric
C D E

Figure 4.5: Configurations obtained from MD simulations right before first contact or
just after breaking: (A) dimer, (B) monomer, (C) double contact dimeric transversal, (D)
double contact dimeric parallel, and (E) double contact monomeric. From ref. [34].

In the work of Sabater et al., [34], they studied jump-to-contact (JC) and jump-out-of-

contact (JOC) phenomena in gold electrodes using molecular dynamics (MD) at a constant
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temperature of 4.2 K. They found that the junction takes five principal structures at
the point of contact or just before breaking: dimer, monomer, double-contact dimeric
transversal, double-contact dimeric parallel, and double-contact monomeric. Dimer and
monomer have mean values of 0.92 + 0.07G and 0.97 + 0.15G respectively, while for all
the double contact configurations, the mean value is 1.73 & 0.02G. These structures are
depicted in Fig. 4.5. Our mean conductance values are clearly well within the range of
the DF'T/MD results, considering that thermal effects and contaminants are present due

to ambient conditions.

The histogram also shows increased counts in valleys between peaks. This is a conse-
quence of contamination in the junction due to the lack of a controlled atmosphere. The
broadening of the peaks compared to those presented in literature [28] is due to thermal
effects since most of those measurements were taken under cryogenic temperatures. At
0.5Gy, many counts were registered and appeared in other measurements taken. Further
investigation is needed to find the real cause of the increased counts there, but due its
sharpness we conclude that the most probable cause might be a faulty connection in the

electronics or a problem with the DAQ device.

4.3 Preliminary Bimetallic Junction Results

To study bimetallic samples at room temperature, three different measurements were
done: a Au-Au sample made with the bimetallic junction sample preparation technique,
that is, two separate pieces of gold wire were aligned, a Ni-Ni sample made with the
homometallic junction sample preparation technique, and a Au-Ni sample. All measure-
ments were done with a 200 mV voltage bias and a 10°> amplification factor (R; = 100 k).
The obtained conductance histograms built from accumulated rupture traces are shown

in Fig. 4.6.
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Figure 4.6: Rupture conductance histograms of homometallic and bimetallic atomic-sized
junctions. (a) Conductance histogram of a homometallic Au-Au junction prepared with
the bimetallic technique aligning two separate gold electrodes. (b) Conductance histogram
of a bimetallic Au-Ni junction. (c¢) Conductance histogram of a homometallic Ni-Ni
junction.

For the Au-Au sample, 5516 individual rupture traces were taken. The resulting
histogram displays the three expected peaks around the first three multiple integers of the
conductance quantum, but they are less pronounced than those obtained in the previous
section. This might suggest that the bimetallic sample preparation technique results in
weaker contact than the homometallic one. The Ni-Ni conductance histogram was built
from 3072 individual rupture traces taken. Results showed only a decrease in conductance
as the separation between the electrodes increased (with time). No quantization of the
conductance was observed, which was expected since works done on Ni nanocontacts
show that no such quantization occurs in ferromagnetic atomic-sized contacts due to the
combination of the d orbitals providing several partially open conduction channels [35, 36].
But, these works describe a peak around 1.3Gq that is not displayed in our histogram.
This vanishing might be due to oxidation of the junction since the peak was observed for

theoretical calculations at cryogenic temperatures.

In the case of the Au-Ni sample, the conductance histogram was built from 3310

individual rupture traces. As previously mentioned, Tal’s group showed that Au wets the
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tip of the Ni electrode, forming essentially an Au-Au junction [29]. Our results did not
show this behavior. Instead, it had more in common with the homometallic Ni junction,
depicting only a decrease in conductance as the electrode separation increases. It’s worth
noting that the results obtained in ref. [29] were with the sample inside a vacuum chamber
and with a temperature of 4.2 K. Meanwhile, our measurements were done in ambient
conditions, meaning that oxide was formed in the tip of the nickel electrode, changing the

electrical properties of the junction.
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Chapter 5

Conclusions

From the work of Yang et al. [22], we saw that a two-terminal (2T) magnetoresistance
(MR) measurement to determine CISS is forbidden by Onsager reciprocity relations in
the linear regime. An MR signal is only measurable when we are outside the linear regime
[22]. We proposed the 3T alternative, placing a third terminal connected to the node,
where the spin accumulation is defined, imposing the condition that this terminal is a
voltage probe. This geometry breaks Onsager reciprocity since it is only concerned with
2T but allows detecting CISS in the linear regime by measuring the potential difference
between the node (a nonmagnetic metal to which the chiral molecule is coupled) and the
ferromagnet. This configuration follows the idea of an emf emerging from an F /N junction
with the spin being pumped from N, described in Section 2.1.2 and Ref. [24]. In the work

done on CISS in photosystem I [14], a similar electric detection of CISS was used.

Another mechanism involving 2T measurement that circumvents Onsager’s reciprocity
is the introduction of time-reversal symmetry breaking. We modeled this in our Transport
matrix approach as a small antisymmetric term in the matrix that describes the chiral
molecule. With this model, we showed that spin filtering is detected in the 2T set-up in
the linear regime. Time-reversal symmetry breaking can be modeled explicitly through

the coefficients of the transport matrix using Green’s function formalism.
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On the experimental side, we have built a reliable, robust, and complete MCBJ set-
up capable of studying electron transport through atomic-sized contacts in homometallic,
bimetallic, and possibly molecular junctions. The results obtained for the Au-Au junction
showed well-defined peaks in the built histogram, comparable to those under the same
conditions and at cryogenic temperatures in the literature for both the MCBJ and STM-
BJ devices [30, 28].

To implement the measurement of spin-sensitive magnetoresistance, we found in the re-
cent literature [29] the possibility of generating metal-oxide-ferro junctions using bimetal-
lic contacts in the break junction set-up. This will be possible by registering the -V
curve, depending on the ferro orientation. Further refinements of our set-up are necessary

to achieve this goal.

We performed the first trials of bimetallic contacts with Au-Ni junctions. We first
measured homometallic gold junctions prepared as a bimetallic sample by aligning the
tips of the two electrodes. The results validated the method by showing the expected
conductance histogram depicting peaks around the integer multiples of the conductance
quantum. We then tested homometallic nickel junctions, obtaining a conductance his-
togram different from the literature that depicts a decrease in the measured conductance
as the contact breaks. A similar behavior was observed in the conductance histogram
of the bimetallic Au-Ni junction, disagreeing with the observed wetting of the nickel tip
at 4.2 K, forming suspended Au chains in the junction that gave rise to a conductance
histogram similar to that of homometallic gold samples. Thus, we confirm that we must
implement an atmosphere and temperature control in our set-up to carry out measure-

ments in bimetallic samples.

Carrying out the measurements at ambient conditions implies the inevitable intru-
sion of contaminants in the junction that, combined with thermal effects, account for the
broadening of the peaks and the increased counts in the valleys of the conductance his-
togram of the homometallic sample. A higher number of measurements is needed so that

these effects pale against the actual conductance values being measured. Since we opted
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to utilize PLA 3D-printed strips as our flexible substrates, many repeated measurements
could lead to permanent deformation; a more flexible material like phosphorous bronze
might be the best option. Contamination is a bigger deal for the bimetallic samples be-
cause we must keep the substrate bent and the sample exposed for at least twenty-four
hours to allow the epoxy drops to cure. Therefore, contaminants and oxide accumulate
in the junction in the case of Ni samples. This also means that a high-quality flexible

substrate is a must.

5.1 Future Work

Building on the foundation of this work, we aim to investigate CISS with the MCBJ set-up
to study transport through molecular contacts using oligopeptides. This involves using a
bimetallic junction (Au-Ni) and placing the oligopeptides between both electrodes. We
are currently adapting our set-up to operate inside a vacuum chamber, allowing measure-
ments under low vacuum and in an inert argon atmosphere, controlling the environment
and preventing contamination. We are building a vibration isolation system to enhance
measurement stability, allowing the study of transport through chains of atoms or single

molecules without breaking the contact due to their vibration sensitivity.

We must develop a molecule deposition technique to place the oligopeptides between
the two electrodes. After a brief but insightful discussion with Prof. Oren Tal of the
Department of Chemical and Biological Physics, Weizmann Institute of Science, we have
decided to develop a molecule atomizer like the one they designed in ref. [37]. It heats a
drop of the oligopeptide solution and evaporates it, directing the flush of molecules toward
the junction through a small nozzle. They have also enlightened that to remove the oxide
formed on the junction, high voltage pulses should be applied to inject current from the

Ni to the Au, and manual squeezing should be done to encourage Ni wetting by Au.
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With these additions to our set-up, we plan to measure conductance through a single
oligopeptide and characterize I-V under different magnetization directions of the nickel

electrode to explore the spin-selective transport associated with CISS.
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Appendix A

Transport Matrix for the Chiral

Component

In this section, we will show in detail how the transport matrix for the chiral component is
obtained starting from the Landauer-Buttiker formula. We start from the two spin-space
transmission and reflection matrices for the right and left moving electrons introduced in

the main text [22]:

T, = (t—>—> t<——>) : R, = (T—>—> T<——>) ’ (A.l)

Lot T T

T, = (te<— t—><—) 7 R, = <T<—e T—H—) ‘ (AQ)

ley Ty Tes Tos

We use the Landauer-Buttiker formula from section 2.2 to find the current that leaves

each lead. For the left lead, we have

=c [a [TRLlezw )1(e) = Tirvns Ni(e) fle >] | (A3)
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where the DOS N;(¢) = 1/n(dk/de), and knowing that the group velocity of electrons is

given by v; = dw/dk = 1/h(de/dk), then we obtain that

1 2
(€> 7Th’l]i hvi ( )

Replacing the DOS in the current I, we obtain

(&

I= [ = Tnn(E)fule) - Tun)nle). (A5)

If we now consider that, as in section 2.2, the temperature is low and the time-reversal

for the transmission probabilities such that Tr = T}, g, then we obtain

(&

ILh

Tr,rpr — To,ritr] (A.6)

Note that the first term refers to the current injected from the left lead, and the right
one refers to the current coming into it. We can write the first term depending on the

reflection back to the left lead as 1 — Ry, 1.:

(&
I =711 = Reo)ne — Trrps] - (A7)

If we now consider the spin-dependence of each variable, we can write the spin-space

column vector version:

()= lem )=o) e

()= [e=a () = ()] "

the current on lead L is negative because we have assumed that the current moving from

left to right is negative and from right to left is positive.
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From (A.8) and replacing the directional transmission and reflection matrices, we

obtain
Ne
Iy, = _TKl - THH)IU/L—) — Ve sfpe —lee R — t—H—ﬂR(—]? (AlO)
Ne
Ip < = _T[_T_H_ML_} + (1 - T<—<—)NL<— —le R — t—>—>/~LR<—]- (A-ll)

Therefore, we can now find the expressions for I = I, + I _:

Ne
I= __[(1 T T%H)ML—> + (1 T — T<——>)/~LL<—

h (A.12)
_(tee + tea)ﬂR—) - (te% + t—)%)ﬂR(—]?

using the fact that p;— = p; + psi and pie = pi — fisi,

I=— T[(l — Ty — T 1l —r _Tea),uL

+ (1 — T — T —14+ro o+ T<——>)M5L (A.13)
- (t<—<— Fle+l, + t—>—>),uR

+ (_t<—<— —te o+l + t—>—>),UsR]

Finally, considering the definitions (2.70)-(2.77), we obtain the equation of the current

across the chiral component

Ne

I = —7[(% — WR)t + [sLS + [sRS]- (A.14)

Due to continuity, this result should be the same as I = Iz, 4+ I, .
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Now we find the expression for I,;, = I, — I :

Ne
I, =— T[(l — T+ T—><—)NL—> + (_1 — T + T<——>)ML<—
+ (_t<—<— + t<——>)MR—> + (_t—M— + t—>—>),UR<—]a
Ne
=— T[(l — Tt T =l —re o Fre ) (A.15)

+ (1 —rastraet1l+re — 7"<——>),UJsL
+ (_t<—<— +ley —t + t—>—>)MR

+ (_t<—<— +le o+l — t—>—>)ﬂsR]a

Ne

== - [=Brnn = ese + Pitir = Yitsr)- (A.16)

In this last expression, we consider that Onsager reciprocity needs that Pit = P.r = s;

thus we write
Ne

Lo = —=[(1r = ) Por + Yeftor + Yutton)- (A.17)

Following a similar procedure for Iy,

Ne

I;r = _T[(ML — pURr) Pt 4 Yipisr, + Yrtisr)- (A.18)

Thus, we finally obtain the 3 x 3 transport matrix for the chiral component:

I N t s s UL — UR
—Igp|l=—F|Pr v % [hsT, ) (A.19)
Lr Pt v v HsR
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Appendix B

Transport Matrix for the FMTJ

In this section, we will show in detail how the transport matrix for the ferromagnetic
tunnel junction (FMTJ) is obtained. We start from the tunnel currents for majority (—)

and minority (<—) spin electrons as discussed in ref.[38]:

I =G, (V + “2R> , (B.2)

where V' = —(u — p)/e is the voltage bias between the left lead and the node. Replacing

this, we get

G

I, = —f(ﬂL—M—MsR)a (B.3)
G
I = T (L — p+ pisr) - (B.4)

Hence, we can now find I = I, + I, and I,z = I, — [_, with the latter being at the left

side of the node:

1
I= —E[G—ML —Gopr — Gopsg + Gopp — Gopir + G pisr), (B.5)

1
= —g[(uL — 1r)Gr — psrGrPpl, (B.6)
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1
Iip = _E[G%NL —Gopp — Gopsg — Gepr + Gopir — G pisrl, (B.7)

1
= _g[(ﬂL — ur)GrPr — psrGFl, (B.8)

were we have used the definitions of the Ferromagnet spin-polarization Pr = (G_, —
G.)/(G, + G.) and the total conductance Gp = G_, + G,_. To distinguish G from
ideal transmission, a transmission coefficient 7 (0 < 7' < 0) is introduced so that we

decouple how well the junction conducts overall from the spin polarization effects [22]:

N'e

I=- A [(pr — pur)T — psr PrT], (B.9)
N'e

Lir = —— (e — pr)PrT — psrT], (B.10)

therefore, we obtain the ferromagnet’s transport matrix:

I Ne (T —PpT\ (pur — pr
= —— . B.11
(ISR) h (PFT =T ) ( HsR ( )
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Appendix C

2T Spin-Charge Transport

With the transport matrices for each component obtained, we can study spin and charge
transport when both are connected in series in a two-terminal (2T) configuration. As in

section 2.3.3, we rewrite the transport equations into conductance equations:

(—]f) B _% (g; ii) (M ;SMR> ) (C.1)
<—IIS> N _é <g; gi) (NL,; M) ) (C.2)

where the matrix elements for the chiral component are given by:

Ne?

g1 = Tt, (C.3)
Ne?

go = h Ptt:g37 (04)




7

where g = g3 due to the matrix being symmetric because of Onsager reciprocity. Simi-

larly, the matrix elements for the FMTJ are:

6= (C.6)
Gy = —N;Q PeT = —Gs, (C.7)
Gy = —_]X/‘EQT_ (C.8)
Here, G35 = —(Gj3 because the matrix is antisymmetric. At the steady state, continuity

requires I and I to be equal at both sides of the node. From C.1 and C.2, respectively,

we have:

1
I'=——[Gi(pe — p) + Gops,
1
I, = —E[GS(ML — ) + Gyl
1
fz—jmw—um+mmh
1

—ngmw—um+m%l

Thus, equating (C.9) and (C.12):

_ Grur + (G2 — g2)pis + g1fir
a Gi+aq .

Equating (C.12) and (C.10) with the latter being multiplied by —1:

_ Gapp + (Gy+ ga)its — g3pir
3793

Now, equating the two obtained equations for u:

(C.13)

(C.14)

(Gs — g3)[Grpr + (G2 — g2) s + gi1pr] = (G1 + 1) [Gapr, + (Ga + ga)pis — g3ir),

(G3 — g3)(G2 — g2) — (G1+ 91)(Ga + g0)) s = (1Gs + 93G1)pr, — (G193 + Gsg1) g,
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where we define the term on the left-hand side as f = (G3—g3)(Ga—g2)—(G1+91)(Ga+94):

Gs + 935G
s = %(/M — HR)- (C.15)

Replacing this expression for u into (C.13):

_Giur +qipr | G2 — 921G + g3Gy
G+ 5 G+ g f (s = pir),
(Grpr + gipr) f + (Ga — 92)(91G3 + 93G1) (1. — pr)
(Gi+aq)f ’
(G1 + i ){[G3(G2 — g2) — G1(Ga + ga)lpr — [93(Ga — g2) — g1(Ga + g4) | pr}
(Gi+aq)f 7

adding and subtracting [—g3(g2 — G2) + 91(G4 + g4)| e/ f,

93(92 — G2) — 1(G4 + ga)

== ; (G3 — g3)(G2 — g2) — (G1 + g1)(G4 + 94)ML

f

(1w — pr) +

Noting that the numerator of the second term is f, then we obtain the expression for u

referred to the left lead:

po= pr — gs(92 ~ Go) ; 91(Cs 1 9.) (1L — pr). (C.16)

Replacing now the expression for p; on (C.14):

_Gapr — gspr n Gy + 91 1G3 + g3Gy
Gs— g3 Gs— g3 /
(Gspr, — g3pr) f + (Ga + 94)(91G3 + g3G1) (UL — pr)
(GS - g3)f ’
(G — g3){[G3(G2 — g2) — Gi(Ga + g)luur — [93(Ga — g2) — 91(Ga + g4)pr}
(Gs—g3)f 7

(ML - ,LLR),

adding and subtracting [G3(G2 — g2) — G1(G4 + 94)|pr/ [,

- G3(G2 - 92) - GI(G4 + 94)
H= f

G —
(b — pr) + 595 Gy — 92) — (G114 91)(Ga + 94) f g

(
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The numerator of the second term is once again equal to f; therefore, we obtain the

expression for p referred to the right lead:

G3(Ga — g2) — G1(Gy + g4)
f

= pg + (ke — k). (C.17)

We still need to find I and ;. We look back at equation (C.11) and replace the

expressions for both p and ps:

1 —Gy) — 1(Ga + Gs + g3G
[:_g G193(92 2) fg1( 4 94)(#L—MR)+G2g1 3 fgs 1(ML—MR) 7
1 G19293 — G1Gags — G191Ga — G19194 + 91G2G3 + G1Gags
e f
simplifying, we obtain the expression for the current in the system:
1G GyGs — Gih (G
;- 1019295 F G1GaGrs 191(G4 + ga) (1 — ). (C.18)

€ f

Where, noting that the bias voltage is given by V' = —(uy, — pug)/e, thus we have the

expression for the 2T conductance discussed in the main text.

Finally, we find an expression for Iy by substituting the expressions of p and pg in

(C.10):
1 —Gs) — q1(Gy + Gs + gsG
I — - G393(92 2) fgl( 4 94)(ML_MR)_|_G491 3 f93 1(ML—MR) 7
1 g293G3 — GaG3gs — g1G3Gy — g1G3gs + 91G3G4 + G193Gy
- _; f (,uL - /’LR)a

simplifying, we obtain the expression for the spin current in the system:

_1Gs93(92 — G2) — 9194G3 + 93G1Gy
e f

I = (1L — pr)- (C.19)
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Note that if we now impose g, = g3 and G2 = —G3 due to Onsager reciprocity, we get

_1g3Gs + 93G5 — 9194G3 + G1Gags
e f

I, = (1L — pr), (C.20)

where the third term on the numerator changes with the magnetization of the ferromagnet
due to its linear dependence on Pr, and the fourth term changes with chirality handedness
due to its dependence on P;, thus I, changes with either time-reversal or spatial inversion,

expected because of it being the spin current.
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