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acá. Un fuerte agradecimiento a Dennis Cazar, Malena Loza y Krutskaya Yépez por su
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Resumen

El problema de la selectividad de esṕın inducida por la quiralidad molecular ha sucitado un

gran interés, ya que sugiere funciones para la polarización de esṕın en procesos biológicos

y promete aplicaciones espintrónicas que aprovechan el débil acoplamiento esṕın-órbita de

las moléculas orgánicas como única fuente de actividad de esṕın. Desde el punto de vista

teórico, el enfoque se ha basado en modelos microscópicos cuánticos que calculan la con-

ductancia a partir de la fórmula de Landauer-Buttiker. Este enfoque omite caracteŕısticas

f́ısicas experimentales importantes, como la reciprocidad, ya que no incorpora el mecan-

ismo de medición de esṕın limitado por las relaciones de reciprocidad. Desde el punto

de vista experimental, la mayoŕıa de los enfoques que evidencian los efectos del filtrado

de esṕın son circuitos complejos de una sola molécula a partir de monocapas autoensam-

bladas de moléculas quirales sobre tricapas de metal-óxido-ferro relativamente grandes.

En este trabajo, abordamos el problema teórico desde el formalismo de la matriz de

transporte que incluye expĺıcitamente el dispositivo de medición de esṕın y reproduce los

teoremas de reciprocidad. Este formalismo propone dos formas de medir la polarización

de esṕın en el régimen lineal: a través de una medición de tres puntas o introduciendo una

ruptura de la simetŕıa de reversión temporal en el modelo de la molécula quiral. En el

aspecto experimental, abordamos el filtrado de esṕın molecular mediante el desarrollo de

un dispositivo break junction, sentando los primeros pasos en la medición de la actividad

de esṕın en uniones moleculares quirales.
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Abstract

The problem of spin selectivity induced by molecular chirality has garnered high interest

since it suggests roles for spin polarization in biological processes and promises spin-

tronic applications harnessing the weak spin-orbit coupling of organic molecules as the

sole source of spin activity. On the theoretical side, the approach has been from quan-

tum microscopic models computing the conductance from the Landauer-Buttiker formula.

This approach misses important experimental physical features such as reciprocity since

it does not incorporate the spin measuring mechanism limited by reciprocity relations.

On the experimental side, most approaches that evidence spin filtering effects are complex

single-molecule circuits from self-assembled monolayers of chiral molecules on relatively

large metal-oxide-ferro trilayers. We address the theoretical problem from the transport

matrix formalism that explicitly includes the spin measurement device and reproduces

the reciprocity theorems. This formalism proposes two ways to measure spin polarization

in the linear regime: through a three-point measurement or by introducing time-reversal

symmetry breaking in the chiral molecule model. On the experimental side, we approach

molecular spin filtering by implementing the break junction device, implementing the first

steps in measuring spin activity in chiral molecular junctions.

Keywords: Spin selectivity, molecular chirality, spin polarization, reciprocity, transport

matrix formalism, break junction, molecular junctions.
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Chapter 1

Introduction

Chiral molecules, ubiquitous in biological systems, such as amino acids, oligopeptides,

proteins, and many alpha-helical structures, are involved in many electron transfer pro-

cesses [1, 2]. The chirality of molecules has been linked to electron spin polarization since

the theoretical work of Farago [3, 4], who found that point chiral molecules coupled to

spin through the spin-orbit coupling (SOC) and generated an angular-dependent polar-

ization. Later, Kessler’s experiments for point chiral molecules in the gas phase yielded a

very small but measurable polarization of 10−4% with enhanced SOC bonded ad-hoc with

heavy atoms [5]. Theoretical developments Blum and Thompson [6, 7] used scattering

theory in the Born approximation to account for the spin active effects of gas phase chiral

molecules.

Due to the small spin polarizing effects, interest was lost for a while until the ground-

breaking experimental work of Naaman’s group [8], where they worked on self-assembled

monolayers (SAM) of small aminoacids. Using a Mott detector, they evidenced strong

spin-polarizing effects for photo-emitted electrons through the SAM. The same set-up was

later used with double-stranded DNA [9] yielded polarizations exceeding 60% measured

directly of the transmitted photoelectrons from the Au substrate through the SAM at

room temperature. The strong contrast with Kessler’s results led to the belief that this
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could be a cooperative effect. Still, but later single molecule measurements on double-

stranded DNA using a conductive-prove atomic force microscope (c-AFM) [10], led to

even stronger polarizations of 60 − 70% from single molecule effects, surpassing that of

any known system at room temperature. As a reference, spin polarization achieved by

different densities of state of opposite spin electrons in a ferromagnet leads only to polar-

izations of the order of 20%. This led to coining the term Chirally Induced Spin Selectivity

(CISS), where the minimal ingredients were thought to be chirality and the SOC associ-

ated with chiral centers.

Following these studies, many works have determined CISS effects on different organic

chiral molecules such as peptides [11, 12] and DNA [9, 10]. It has also been studied in

inorganic chiral materials [13]. In the work by Naaman and Carmeli [14], they confirmed

high spin selectivity by measuring spin polarization on transmitted electrons through a

photosystem I SAM using a spintronic device and its temperature dependence. They

found that spin selectivity peaked at 300 K and vanished at temperatures below 150 K

by measuring the emf developed between the nickel and silver layers of a tunnel junction,

separated by a slim insulating AlOx layer as is depicted in Fig. 1.1.

Figure 1.1: PSI monolayers absorbed onto the silver surface. Electron transfer begins after
photoexcitation on the primary donor P700. The potential difference between the Ni and
the Ag depends on the spin selection by the PSI and the Ni magnetization direction.
Adapted from ref. [14].

Single-molecule CISS measurements have also been carried out using a scanning tun-

neling microscopy break junction (STM-BJ) set-up on peptides [11], leading to conduc-

tance polarization of 60% and 57% for the left and right isomer respectively. Other recent
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works have shown CISS manifestation at the single molecule level through single helical

hydrocarbon molecules showing magnetochiral asymmetries up to 50% in the conduc-

tance using a spin-polarized STM [15], and in newly developed oligo(phenylene)ethynylene

molecular junctions using STM-BJ method [16].

Several theoretical approaches have been made to explain the CISS effects observed

in the experiments. Models using a tight-binding (TB) approximation considering a he-

lical structure of partially filled orbitals attached to the bases [17], evidencing the SO

magnitude in the transport problem to be in the order of meV given that the chirality is

nonzero. Other models discretize a continuum model where the SO is obtained from the

Pauli equation (non-relativistic limit of Dirac equation) in both helical structures and an

achiral nanotube [18, 19, 20].

Experimental determinations of CISS have been mostly based on two-terminal (2T)

geometry set-ups. Most models are time-reversal invariant due to the SO coupling break-

ing space inversion symmetry but preserving time-reversal. Because of this, reciprocity

theorems dictate that in 2T set-ups, no spin polarization can occur in the linear-response

regime [21, 22]. The reciprocity theorem requires that G(H,M) = G(−H,−M); hence,

the ferromagnetic detector with a magnetization M can not distinguish any spin polar-

ization no matter the chiral structure and the SO coupling magnitude [23]. To elude this

dilemma and remain in linear response, time-reversal symmetry in the chiral molecule

must be broken. This can be done by effectively adding a third probe to the molecule.

This probe gives rise to non-unitary effects, such as dephasing, that break the time-

reversal symmetry. Hence, reciprocity theorems no longer apply, and spin polarization

ensues. This third probe was effectively included in the model of Guo and Sun [18], where

they demonstrated that no spin polarization is possible without the decoherence probe,

even if the helical structure is present and SO coupling is strong.

In this manuscript, we tackle the theoretical problem from the transport matrix for-

malism developed by Yang Xu and Van Wees [22]. We propose two possible ways of

detecting spin polarization in two-terminal set-ups, avoiding the reciprocity problem in
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the linear regime: by connecting a third probe to the circuit’s node and by introducing

a small time-reversal asymmetry perturbation in the chiral molecule transport matrix.

We also validate this model by looking at the classical spin valve configuration with two

ferromagnets and arriving at the GMR and TMR results. On the experimental level,

we develop a break junction device that will allow single-molecule measurements. We

use the device to study electron transport through homometallic Au-Au and bimetallic

Au-Ni junctions by measuring conductance during contact rupture and building conduc-

tance histograms at ambient conditions, laying the foundations to study CISS through

oligopeptides in the built device.
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Chapter 2

Theoretical Background

2.1 Standard Model of Spin Injection

The transfer of spin-polarized electrons from a ferromagnetic (F) conductor to a nonmag-

netic (N) conductor forms the foundation of spintronic devices, with the process being

referred to as spin injection. This section presents the calculations that lead to the for-

mation of a spin accumulation at the interface of an F/N junction under two study cases:

spin injection from F to N without any external spin pumping and spin extraction from

N to F, where an external circuit maintains a non-equilibrium spin accumulation at the

far end of the nonmagnetic conductor (note that this is our case of interest). For these

study cases’ complete description and step-by-step derivation, refer to Fabian et al., [24]

semiconductors spintronics review.

Throughout this treatment, it is considered that both bulk conductors F and N have

dimensions larger than their corresponding spin diffusion lengths (LF ≪ LsF and LN ≪

LsN). This length represents the distance at which spin accumulation at each region has

been reduced to 1/e percent.
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Figure 2.1: Scheme of a F/N junction. The ferromagnet (F) has a width LF , and the
nonmagnetic conductor (N) has a width LN . Both conductors are assumed to have their
physical widths larger than their spin diffusion lengths LsF and LsN , respectively. The
contact region of the junction is C, assumed to be infinitely narrow, thus there is a
discontinuity at x = 0. Adapted from ref. [24].

2.1.1 Spin Injection F⇒N

We consider that spin is injected from the ferromagnet onto the nonmagnetic conductor.

It is assumed that µsF (−∞) = µsN(+∞) = 0, that is, spin accumulation only exists at

the interface.

The following definitions are required for all the calculations:

g = g↑ + g↓, gs=g↑ − g↓, (2.1)

σ = σ↑ + σ↓, σs = σ↑ − σ↓, (2.2)

µ = (µ↑ + µ↓)/2, µs = (µ↑ − µ↓)/2, (2.3)

where g↑(↓) is the spin-specific density of states per unit volume, g is the total density of

states; σ↑(↓) is the spin-specific conductivity, and σ is the total conductivity; µ↑(↓) is the

spin-specific electrochemical potential, µ is the total electrochemical potential, and µs is

denominated as spin accumulation.

The spin diffusion equation (2.4) can be solved in both regions of the spin detector (F

and N, C is not considered a region),

∇2µs =
µs

L2
s

, (2.4)
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where Ls is the generalized spin diffusion length given by,

Ls =

√
Dτsx. (2.5)

D is diffusivity defined as,

D =
g

g↑
D↓

+
g↓
D↑

=
1

e2
g

g↑g↓

σ↑σ↓
σ

, (2.6)

For a degenerate conductor (metal), the current spin polarization Pj = js/j is given by,

Pj = Pσ +
1

j
4∇µs

σ↑σ↓
σ

, (2.7)

where Pσ = σs/σ is the spin polarization of the conductivity. The electric (charge) current

density j is defined as

j = −eJ = σE + eD
∂n

∂x
, (2.8)

where J is the electron (particle) current density, E is the electric field magnitude, D is

the diffusivity, and n is the density of electrons. The first goal is to find Pj(x = 0) that

determines the spin accumulation µsN(0). Thus, the spin diffusion equation for the F and

N regions considering the boundary conditions µsF (−∞) = µsN(+∞) = 0 yields,

µsF (x) = µsF (0)e
x/LsF ,

⇒ ∇µsF =
µsF

LsF

,
(2.9)

µsN(x) = µsN(0)e
−x/LsN ,

⇒ ∇µsN = −µsN

LsN

,
(2.10)

respectively. In the nonmagnetic conductor N, PσN = 0, since σN↑ = σN↓ = σN/2 (no

spin preference in the conductivity).
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Thus, rewriting (2.7) for each region,

PjF (0) = PσF +
1

j

µsF (0)

RF

, (2.11)

⇒ jsF (0) = jPσF +
µsF (0)

RF

, (2.12)

PjN(0) = −
1

j

µsN(0)

RN

, (2.13)

⇒ jsN(0) = −
µsN(0)

RN

, (2.14)

where RF and RN are the effective resistances for each conductor that appear in the

spin-polarized transport,

RF =
σF

4σF↑σF↓
LsF , (2.15)

RN =
LsN

σN

. (2.16)

From (2.13), if PjN(0) is known, then the spin accumulation µsN(0) can be calculated

µsN(0) = −jPjN(0)RN = −jsN(0)RN . (2.17)

Note that because of RN , the spin accumulation at N grows with LsN .

Now, we analyze the contact region at x = 0. Since it is located at a single point,

the electrochemical potential is discontinuous; thus, it is impossible to define gradients.

Instead, the currents are defined by

j↑ = G↑[µ↑N(0)− µ↑F (0)] = G↑∆µ↑(0), (2.18)

j↓ = G↓[µ↓N(0)− µ↓F (0)] = G↓∆µ↓(0), (2.19)
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where G↑(↓) is the spin-dependent conductance of the contact instead of conductivity σ

as in the bulks of both regions. Spin and charge currents are

j = G∆µ(0) +Gs∆µs(0), (2.20)

js = Gs∆µ(0) +G∆µs(0). (2.21)

Eliminating ∆µ from (2.20) and substituting into (2.21) yields

js = PGj +
∆µs(0)

RC

, (2.22)

RC =
G

4G↑G↓
, (2.23)

where RC is the effective resistance of the contact region and PG = (G↑ − G↓)/G is

conductance spin polarization. The current spin polarization at the contact is obtained

from (2.22),

Pjc = PG +
1

j

∆µs(0)

RC

. (2.24)

Now, there are three equations for Pj(0) at both regions and at the interface: (2.11),

(2.13), and (2.24); and five unknowns: PjF (0), PjN(0), PjC(0), µsF (0), and µsN(0). To

solve this, an approximation is used: at the contact, the spin current must be continuous;

thus,

PjF (0) = PjN(0) = PjC ≡ Pj. (2.25)

This assumption is justified if spin-flip scattering can be neglected at the contact (must

be reconsidered at room temperature). Thus, imposing this approximation, the system

can be solved to obtain the spin injection efficiency,

Pj =
RFPσF +RCPG

RF +RC +RN

= ⟨Pσ⟩R. (2.26)
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Spin injection efficiency is the conductivity spin polarization Pσ averaged over each region

(remember that PσN = 0) and weighted by the corresponding effective resistance. Note

that it does not depend on the current.

Spin accumulation at x = 0 from the N region (2.17) can be rewritten in terms of the

spin injection efficiency,

µsN(0) = −I⟨Pσ⟩RRN . (2.27)

Now, if j < 0 (⇒), then electrons flow from F to N and µsN(0) > 0; that is spin injection.

If instead j > 0 (⇐), electrons flow from N to F and µsN(0) < 0; that is spin extraction.

The latter is our case of interest.

2.1.2 Silsbee-Johnson Spin-Charge Coupling

In spin injection, driving spin-polarized electrons (due to magnetization) from F to N

causes a non-equilibrium spin accumulation at N. In spin extraction, spin accumulation

is generated in N at the interface with F; an emf appears in an open circuit, and current

flows in a closed circuit. This is called Johnson-Silsbee spin-charge coupling [24, 25].

Considering once again an arrangement as in Fig. 2.1, with the new boundary condi-

tion that a non-equilibrium spin accumulation is sustained at the far right boundary of

the nonmagnetic conductor,

µsN(+∞) ̸= 0. (2.28)

Meanwhile, spin relaxation at the ferromagnetic conductor causes spin to be in equilibrium

at its far left boundary,

µsF (−∞) = 0. (2.29)

Note that this is precisely the case in our CISS quantum circuit. There, spin accumulation

at the far right boundary of the nonmagnetic conductor is sustained by the CISS effect.
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The main goal is to find the induced emf under the condition of having an open circuit

(j = 0),

emf = µN(∞)− µF (−∞). (2.30)

It is necessary to introduce the concept of local charge neutrality. It refers to the

condition where the net charge within a localized region is zero. To illustrate this, consider

a Fermi gas in equilibrium, with an electron density n0 and chemical potential η. When

the gas is in a weakly non-equilibrium state in the presence of an electric field E = −∇ϕ,

and current is flowing, then

n↑ = n↑0(η + eµ↑ + eϕ) ≈ n↑0 +
∂n↑0
∂η

(eµ↑ + eϕ), (2.31)

n↓ = n↓0(η + eµ↓ + eϕ) ≈ n↓0 +
∂n↓0
∂η

(eµ↓ + eϕ), (2.32)

where for degenerate conductors, deviations from η are considered small; thus, the expan-

sion is obtained. Also, for degenerate conductors and considering that E = 0,

∂n0

∂η
= g(η), (2.33)

where g(η) is the density of states per unit volume. Thus, considering this in both (2.31)

and (2.32),

n↑ = n↑0 + g↑e(µ↑ + ϕ), (2.34)

n↓ = n↓0 + g↓e(µ↓ + ϕ). (2.35)

Thus, the total electron density is,

n = n↑ + n↓ = n0 + eg(µ+ ϕ) + egsµs. (2.36)

Local charge neutrality condition implies that n = n0, meaning that the additional charge

contributions from µ, ϕ, and µs should collectively sum to zero. This condition eliminates
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the electric field from the problem by relating it to the electrochemical potential [24],

g(µ+ ϕ) + gsµs = 0, (2.37)

ϕ(x) = −µ(x)− Pgµs(x), (2.38)

where Pg = gs/g = (g↑ − g↓)/g is the spin polarization of the density of states. Since in

the nonmagnetic conductor we have that PgN = 0, we have for both the F and N regions,

respectively,

ϕF (x) = −µF (x)− PgFµsF (x), (2.39)

ϕN(x) = −µN(x). (2.40)

Since µsF (−∞) = 0, then from (2.30)

emf = −[ϕN(∞)− ϕF (−∞)] = −∆ϕ. (2.41)

Thus, the emf induced is equal to a voltage drop between the F and N regions. From the

drift-diffusion model (well described in Reference [24]), the charge current is related to

the gradient of electrochemical potential and spin accumulation,

∇µ =
1

σ
(j − σs∇µs) =

1

σ
j − Pσ∇µs, (2.42)

thus, considering that j = 0 (open circuit) and that PσN = 0

∇µF = −PσF∇µsF , (2.43)

∇µN = 0. (2.44)
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Integrating both equations over F (−∞,0) and N (0,∞) regions respectively and recalling

that µsF (−∞) = 0

µF (−∞)− µF (0) = PσFµsF (0), (2.45)

µN(+∞)− µN(0) = 0. (2.46)

As expected, the electrochemical potential across N is constant, while across F, there is

an electrochemical potential drop due to the spin polarization of σF . Thus from (2.30),

emf = µN(∞)− µF (−∞) = ∆µ(0)− PσFµsF (0). (2.47)

The only thing that is left is finding expressions for ∆µ(0) and µsF (0). From the

equations of the current density at the contact, (2.20) and (2.21),

∆µ(0) = −RCPGjs(0) (2.48)

and replacing it in (2.47) we have

emf = −∆ϕ(0) = −RCPGIs(0)− PgFµsF (0). (2.49)

Figure 2.2: Spatial profile of the spin accumulation µs across the junction. The left side
is the ferromagnetic conductor F, and the right is the nonmagnetic conductor N. From
ref. [24].

Solving again the spin diffusion equation (2.4) with the new boundary conditions, the

spatial profile of the spin accumulation in the nonmagnetic conductor at the contact is
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obtained,

µsN(x) = µsN(∞) + [µsN(0)− µsN(∞)]e−x/LsN , (2.50)

⇒ ∇µsN(0) = −
1

LsN

[µsN(0)− µsN(∞)], (2.51)

where the value of µsN(0) is to be determined. On the other hand, for the ferromagnetic

conductor, the spatial profile of µsF (x) has the same form as in (2.9); see Fig. 2.2. Thus,

using these results and replacing them on (2.12), (2.14), and (2.22) considering that j = 0,

the system of equations for the spin currents at x = 0 for each region is obtained,

jsN(0) = −
1

RN

[µsN(0)− µsN(∞)], (2.52)

jsF (0) =
1

RF

µsF (0), (2.53)

jsC =
1

RC

∆µs(0). (2.54)

Just as before, it is assumed that spin current is conserved across the contact; thus,

jsN(0) = jsF (0) = jsC ≡ js(0). (2.55)

This allows to find the expression for ∆ϕ(0), µsF (0), js(0), and ∆µ(0). Eliminating js(0)

and µsN(0) from (2.53), (2.52), and (2.54),

µsF (0) =
RF

RF +RC +RN

µsN(∞). (2.56)

Substituting it back on (2.53),

js(0) =
1

RF +RC +RN

µsN(∞). (2.57)

Replacing js(0) on (2.48),

∆µ(0) = − RCPG

RF +RC +RN

µsN(∞). (2.58)
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These results lead to the final expression for the emf. Replacing them on (2.49),

emf = −RFPσF +RCPG

RF +RC +RN

µsN(∞) = −PjµsN(∞). (2.59)

Recall that Pj = ⟨Pσ⟩R is the spin injection efficiency defined in (2.26). What equation

(2.59) says is that when an equilibrium spin (Pj, since it is the current polarization that we

are injecting) is in electrical contact with a non-equilibrium spin, µsN(∞), an emf is devel-

oped [24]. This effect allows the detection of non-equilibrium spin using a ferromagnetic

conductor connected to the region containing this non-equilibrium spin. Measuring this

emf gives away information about the spin accumulation in the nonmagnetic conductor

[24].

Note that if µsN(∞) > 0 and the current spin polarization at the junction is positive,

Pj > 0, then emf < 0. This, from (2.30), says that µF > µN and, due to local charge

neutrality, the opposite is true for electrostatic potential, ϕF < ϕN , thus electrons move

from N to F.

2.2 Electron Transport in atomic-sized Contacts

According to Ohm’s law, when a potential difference V is established between two points

of a macroscopic conductor, a current I will flow through it that is related to the potential

difference by the equation

V = IR, (2.60)

where R is the resistance to the flow of current across the conductor. Conductance G is

defined as the opposite of resistance, being G = 1/R. From Drude’s model, the expression

of macroscopic conductance is obtained:

G = σ
A

L
, (2.61)



27

where σ is the conductivity that is an intensive property of the material, A is the cross-

sectional area, and L is the conductor’s length.

When the dimensions of the conductor shrink to the atomic scale, Ohm’s law breaks

down. In this regime, electrons transverse ballistically through the conductor since the

distance they travel between two scattering events is much smaller than the atomic size.

Figure 2.3: Illustration of Landauer’s representation of an electronic transport experiment.
Left and right reservoirs with electrochemical potentials µL and µR, respectively, are
connected to the sample by ideal one-dimensional leads.

If we consider two electron reservoirs L (left) and R (right) with electrochemical poten-

tials µL and µR respectively. The reservoirs are connected through one-dimensional wires

to a sample. Thus, the net current leaving the L lead (IL) is given by the number of avail-

able electrons in the lead NL(ε), their velocity vL, and transmission probability through

the sample TR,L (R← L) and the electrons that go into L should also be considered [26].

The net current is then

IL = e

∫
dε

[
TR,LvL

1

2
NL(ε)fL(ε)− TL,RvR

1

2
NR(ε)fR(ε)

]
, (2.62)

where Ni(ε) = 2/(hvi) is the 1D density of states of the leads, fi(ε) is the Fermi-Dirac

distribution of the charge carriers. Half of the density of states is taken because we only

care for the outgoing states.

Assuming time-reversal for the transmission probabilities: TR,L = TL,R. The Fermi-

Dirac distributions become a step-wise function at low temperatures: f(ε) → Θ(εF −

µi). In the linear response regime, the integral is approximated by simply evaluating

the transmission probabilities at εF . Thus, considering this and including a factor of 2
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accounting for spin degeneracy, the current is

IL =
2e

h
TR,L(µL − µR), (2.63)

with (µL − µR) = eV , thus the two-probe conductance is given by

GR,L =
2e2

h
TR,L. (2.64)

Finally, the conductance quantum is defined as G0 = 2e2/h ≈ 77.48µ S. From this, the

resistance of a 1D point contact can be calculated as RG0 = 1/G0 ≈ 12.9 kΩ.

2.3 Transport Matrix Formalism

In this section, we describe coupled charge and spin transport in a circuit where a chiral

component (either molecule, assembly of molecules, or solid-state chiral system) that

generates a spin polarization due to CISS is connected to a ferromagnet (F) in two-

terminal (2T) geometry to detect such spin accumulation generated in the chiral element

as an emf due to the previously described Silsbee-Johnson spin-charge coupling. Each

of these elements is characterized by a set of spin-dependent transmission and reflection

probabilities. This set-up is used in CISS detection, where a magnetoresistance (MR)

signal reveals the effect when changing the magnetization of the ferromagnetic electrode

[10, 11]. The formalism is taken from the work of Yang, et al. [22, 23].

Figure 2.4: Generic 2T circuit containing a chiral component connected in series with a
ferromagnet with a node in the middle. The bias voltage across the circuit is µL − µR =
−eV . Currents from right to left (⇒) are taken as positive and negative from left to right
(⇐). The chiral molecule is assumed to favor electrons with their spin parallel to their
momentum. Adapted from ref. [22].
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In this formalism, the chiral molecule is assumed to have time-reversal symmetry and

spatial-inversion asymmetry that polarizes spin when charge current flows through it,

allowing only one spin orientation to transmit. The exact description of how this takes

place and the role of its spin-orbit coupling is outside the scope of this model. Hence,

throughout this section, it is considered the molecule only allows the transmission of spins

parallel to the electron’s momentum; thus, instead of the usual ↑ and ↓ notation of spin

direction that we have been using so far, we will switch to a → and ← notation.

(a) (b)

Figure 2.5: (a) Representation of ideal CISS effect. Directional spin transmission favors
spin parallel to the electron’s momentum while it flips and reflects the disfavored spin.
Spin-specific electrochemical potentials are defined at both sides of the chiral component.
Adapted from ref. [22] (b) Representation of a ferromagnetic conductor’s spin-dependent
transmission and reflection. Transmission is only allowed when the spin is aligned with
the magnetization direction; otherwise, electrons are reflected. Adapted from ref. [27]

2.3.1 Spin-Charge Transport in the Chiral Component

First, it is necessary to define the spin-space transmission T and reflection R matrices in

the chiral component represented in Fig. 2.5a. For the right-moving electrons,

T▷ =

(
t→→ t←→
t→← t←←

)
, R▷ =

(
r→→ r←→
r→← r←←

)
, (2.65)

and for the left-moving, they are the time-reversed version of the right-moving ones,

T◁ =

(
t←← t→←
t←→ t→→

)
, R◁ =

(
r←← r→←
r←→ r→→

)
. (2.66)
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Using the Landuer-Buttiker formalism and considering the transmission and reflection

matrices above, the current leaving each lead has the form,

(
IR→
IR←

)
=

Ne

h

[
(I− R◁)

(
µR→
µR←

)
− T▷

(
µL→
µL←

)]
, (2.67)

(
IL→
IL←

)
= −Ne

h

[
(I− R▷)

(
µL→,
µL←

)
− T◁

(
µR→
µR←

)]
, (2.68)

where I = I→+I← is the charge current,Is = I→−I← is the spin current, µ = (µ→+µ←)/2

is the (charge) electrochemical potential, and µ = (µ→ − µ←)/2 is the spin accumulation

as in the previous section [22, 24]. From equations (2.67) and (2.68), the transport matrix

Tc for the chiral system is

 I
−IsL
IsR

 = −Ne

h

 t s s
Prr γr γt
Ptt γt γr

µL − µR

µsL

µsR

 (2.69)

where N is the number of spin-degenerate channels in the chiral molecule, e is the electron

charge, h is the Planck constant and the matrix elements t, s, Pt, Pr, γt, and γr are all

linear combinations of the directional transmission and reflection matrices, T and R,

respectively. Elements t and r are the average transmission and reflection probabilities,

respectively, Pt and Pr are the CISS-induced spin polarizations on the transmission and

reflection probabilities, γt and γr describe spin relaxation and spin transport due to spin

accumulation, and s is the charge current generated by the spin accumulation [22]. The
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formalism treats spins separately, hence t+ r = 2. Each of these quantities is defined as:

t = t→→ + t→← + t←→ + t←←, (2.70)

r = r→→ + r→← + r←→ + r←←, (2.71)

γt = t→→ − t→← − t←→ + t←←, (2.72)

γr = r→→ − r→← − r←→ + r←← − 2, (2.73)

Pt = (t→→ − t→← + t←→ − t←←)/t, (2.74)

Pr = (r→→ − r→← + r←→ − r←←)/r, (2.75)

s = t→→ + t→← − t←→ − t←← (2.76)

= −r→→ − r→← + r←→ + r←←. (2.77)

Symmetries are of central importance in solid-state physics. Time-reversal symmetry

refers to microscopic systems that remain unchanged under a time-reversal operation T̂ .

Macroscopic systems follow thermodynamics, and thus, most processes are irreversible.

Onsager showed that in the linear response regime (small perturbations around thermo-

dynamic equilibrium), these processes are subject to constraints imposed by time-reversal

symmetry [23]. Onsager reciprocity relations in the linear regime require that under

time-reversal (that is, magnetization and magnetic field reversal), the transport matrix

satisfies Tij(H,M) = Tji(−H,−M). Considering Onsager reciprocity on Tc gives that

Ptt = Prr = s, and therefore it follows Onsager reciprocity by being symmetric [23, 22].

Connecting the chiral component to the left reservoir as depicted in Fig. 2.4, µsL = 0 and

T reduces to a 2× 2 matrix concerned only on its left interface with the node,

(
I
−Is

)
= −Ne

h

(
t Ptt
Ptt γr

)(
µL − µR

µs

)
. (2.78)
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. The matrix can be written in terms of just Pt rewriting γt and γr,

γt = −t+
Ptt+ s

ηt
= −1 + 2Pt

ηt
t, (2.79)

γr = −t+
Prr + s

ηr
= −1 + 2Pt

ηr
t, (2.80)

where ηt and ηr are defined as,

ηt =
t→→ − t←←
t→→ + t←←

, (2.81)

ηr =
r→→ − r←←
r→→ + r←←

. (2.82)

2.3.2 Spin-Charge Transport in the achiral Ferromagnetic Tun-

nel Junction (FMTJ)

The ferromagnet (F) breaks time-reversal symmetry, and spin accumulation is zero inside

it since spin relaxation is strong [22]. The ferromagnetic tunnel junction (FMTJ) provides

a spin polarization to any out-flowing current. This polarization is defined as PF =

(G→ −G←)/(GF ), where G→(←) is the spin-specific conductance and GF = G→ +G← is

the total conductance. When a spin accumulation is formed at the interface, the FMTJ

generates a charge voltage [24]. Considering that the FMTJ is connected to a reservoir

on its left, the only concern is at its right interface with the node in Fig. 2.4. The

spin-specific currents on the left side are given by:

I→ = −1

e
G→ [µL − (µR + µsR)] , (2.83)

I← = −1

e
G← [µL − (µR − µsR)] . (2.84)

Defining a transmission coefficient 0 ≤ T ≤ 2, the transport matrix TFC is therefore

(
I
Is

)
= −N ′e

h

(
T −PFT

PFT −T

)(
µL − µR

µs

)
. (2.85)
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where N ′ is the number of spin-degenerate channels. TF satisfies Onsager reciprocity rela-

tions on the linear regime by being antisymmetric because a reversal on the magnetization

M corresponds to a sign change of PF [22, 23].

2.3.3 Spin-Charge Transport in 2T geometry

Now, a circuit geometry of two terminals (2T) is considered, as shown in Fig. 2.4. Both

transport matrix equations (2.78) and (2.85) can be rewritten into conductance matrix

equations. Thus, for the chiral component, the elements of the conductance matrix are

g1 =
Ne2

h
t, (2.86)

g2 =
Ne2

h
Ptt = g3, (2.87)

g4 = −
Ne2

h

(
1 +

2Pt

ηr

)
t. (2.88)

Note that g2 = g3 results from the matrix being symmetric due to Onsager reciprocity.

For the FMTJ, the elements of its conductance matrix are

G1 =
N ′e2

h
T, (2.89)

G2 = −
N ′e2

h
PFT = −G3, (2.90)

G4 = −
−N ′e2

h
T. (2.91)

Here G2 = −G3 because of the matrix being antisymmetric. Thus, the conductance

matrices for the chiral component and the FMTJ are

(
I
−Is

)
= −1

e

(
g1 g2
g3 g4

)(
µ− µR

µs

)
, (2.92)

(
I
−Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (2.93)
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There are no L or R subscripts in the currents (charge and spin) because, in the steady

state, both I and Is should be equal on both sides of the node. Therefore, (2.92) and

(2.93) describe the currents at both sides of the node. This allows to write the expressions

for I, µ, and µs as a function of the 2T bias µL − µR

µs =
G3g1 +G1g3

f
(µR − µL), (2.94)

µ = µL −
g23 +G3g3 − g1(G4 + g4)

f
(µr − µR), (2.95)

= µR +
−G2

3 −G3g3 −G1(G4 + g4)

f
(µR − µL), (2.96)

I = −1

e

G1g
2
3 − g1G

2
3 −G1g1(G4 + g4)

f
(µR − µL), (2.97)

f = g23 −G2
3 − (G1 + g1)(G4 + g4). (2.98)

Note that f does not change with either chirality or magnetization reversal since it has a

second-order dependence on g3 and G3 that depend on the CISS-induced spin polarization

of the transmitted electrons, Pt, and on the spin polarization of the out-flowing current

at the ferromagnet, Pt respectively. Charge current I depends on g23 and G2
3, remaining

invariant under both reversals. Consequently, the 2T conductance is invariant under both

asymmetries reversals in the linear response,

G2T =
G1g

2
3 − g1G

2
3 −G1g1(G4 + g4)

f
= G2T (P

2
F , P

2
t ). (2.99)

Because of this, no MR signal should be measured from the edges in the 2T geometry.

This is in agreement with what Onsager reciprocity relations, which state that in the

linear response regime, 2T conductance remains constant under either magnetization M

or magnetic field H reversal [23],

Gij(H,M) = Gij(−H,−M). (2.100)

However, µ and µs are affected by both asymmetries, having a first-order dependence on

g3 and G3.
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The reason why MR vanishes in 2T geometry can be understood as two opposite

processes that cancel each other out in the linear regime. First, due to CISS, spin is

injected and a spin accumulation forms at the node that is detected at the ferromagnet

as a charge voltage due to Silsbee-Johnson spin-charge coupling [24]. This indeed changes

when the ferromagnet magnetization is reversed. In the second process, the ferromagnet

now injects spin into the chiral molecule, and due to Onsager reciprocity, it is detected as

charge voltage.

Yang et al. propose that for MR signals to be measured, an energy relaxation process

is needed inside the device. In Reference [21], Yang et al. also show that it is possible to

measure such MR in the linear regime if the geometry is of more than two terminals.

2.4 Tight-Binding Example Model of the Electronic

Transport Through a Chiral Molecule

As seen in the previous section, the transport matrix of the chiral component is defined by

spin-dependent transmission and reflection coefficients. These coefficients can be obtained

by carrying out a quantum description of the transport through the chiral component.

To show how this can be done, we present a simple example of a tight-binding model of

electron transport. We consider three sites in a helical structure, each with two orbitals,

px and pz. This helix is connected to two leads composed of semi-infinite chains of px

orbitals.

The helix has a radius a, a pitch b, and the angle between two contiguous atoms is

∆ϕ = ϕm − ϕn. We will use cylindrical coordinates, with the helix resting on the XY

plane. For simplicity, we will consider that our atoms are positioned at every half turn,

that is ∆ϕ = π, with the first atom at the bottom with ϕ1 = 0 and the last at b with
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(a) (b)

Figure 2.6: Structure of the example model for the molecule in (a) the XY plane, showing
the px orbitals; (b) in the XZ plane, showing the positions of the three sites in the model
and the pz orbitals.

ϕ3 = 2π. We define the position vector at site n as,

Rn = a

(
cosϕnX̂ + sinϕnŶ +

b∆ϕ

2π
Ẑ

)
. (2.101)

To build the TB Hamiltonian, Following the model of Ref. [17], we must consider all

possible interactions between orbitals in the same atom and different atoms. The spin

transport is defined by the Hamiltonian:

H = H0 +Hlead, (2.102)

where H0 = HTB +HSO. HTB is the TB Hamiltonian on the Slater-Koaster scheme that

describes the overlaps between nearest neighbors’ orbitals.

We will consider that the only interaction between orbitals in the same atom is intrinsic

spin-orbit coupling, given by the Hamiltonian:

HSO = −1

r

∂V

∂r

e

2m2
0c

2
L · S,

= λL · S,
(2.103)
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where V is the atomic potential, m0 is the effective electron mass, L = r × p is the

orbital angular momentum operator, and S is the spin angular momentum operator. In

the |l,ml⟩ basis, we can write the px and pz orbitals as,

|px⟩ = −
1√
2
(|1, 1⟩ − |1,−1⟩), (2.104)

|pz⟩ = |1, 0⟩. (2.105)

Therefore, the matrix elements of the spin-orbit Hamiltonian are given by,

HSO =
|px⟩ |pz⟩

⟨px| 0 iSyξp
⟨pz| −iSyξp 0

where ξp = λℏ2/2 and Sy is given by

Syn = −SX sinϕn + SY cosϕn, (2.106)

where SY is the Pauli matrix representing the electron spin degree of freedom in the Z

axis. Using the Slater-Koaster scheme as in Ref. [17], the overlap between the orbitals

µn and µm at site n and m respectively, are given by

Enm
µnµm

= ⟨µn|V |µm⟩

= (n̂(µn) · n̂(µm))V
π
µnµm

+
(Rnm · n̂(µn))(Rnm · n̂(µm))

|Rmn|2
(V σ

µnµm
− V π

µnµm
),

(2.107)

where Rmn = Rm−Rn, n̂(µn) is the unit vector along the µn orbital direction, and V π,σ
µnµm

are the Slater-Koaster π and σ overlaps [17].

With our example model configuration, we have

n̂(xn) = cosϕnX̂+ sinϕnŶ, (2.108)

n̂(zn) = Ẑ, (2.109)
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and the vector Rmn joining the two atoms is

Rmn = 2a

[
− sin

(
ϕm + ϕn

2

)
sin

∆ϕ

2
X̂+ cos

(
ϕm + ϕn

2

)
sin

∆ϕ

2
Ŷ +

b∆ϕ

2π
Ẑ

]
. (2.110)

With this in mind and considering ϕ1 = 0, ϕ2 = π, and ϕ3 = 2π with ∆ϕ = π, we obtain

the Slater-Koaster overlaps,

Enm
xx = −V π

pp −
V σ
pp − V π

pp

1 + b2/4
, (2.111)

Enm
zz = V π

pp +
b2(V σ

pp − V π
pp)

16a2(1 + b2/4)
, (2.112)

Enm
zx =

b(V σ
pp − V π

pp)

2a(1 + b2/4)
. (2.113)

Note that if b = 0, there’s no overlap between px and pz. With this result and considering

the SO Hamiltonian HSO, we can write the TB Hamiltonian of the three-site-model helix

H0:

H0 = HTB +HSO =

|px1⟩ |pz1⟩ |px2⟩ |pz2⟩ |px3⟩ |pz3⟩
⟨px1| εp iSyξp E12

xx E12
xz 0 0

⟨pz1| −iSyξp εp −E12
xz E12

zz 0 0
⟨px2| E21

xx E21
xz εp iSyξp E23

xx E23
xz

⟨pz2| −E12
xz E12

zz −iSyξp εp −E23
xz E23

zz

⟨px3| 0 0 E32
xx E32

xz εp iSyξp
⟨pz3| 0 0 −E32

xz E32
zz −iSyξp εp

Note that because of the spin degree of freedom, the Hamiltonian matrix is 12×12. We still

have to connect the helix to the leads composed of semi-infinite px orbitals; the overlaps

between them and the helix sites 1 and 2 are purely kinetic terms. The self-energies of

each lead are given by [26]

LΣ1 =
L∆1 − i LΓ1 =

∣∣∣∣∣LV π
pp

0
V pi
pp

∣∣∣∣∣
2(

ε− ε0p
2

+ i

√
(0V π

pp)
2 −

(ε− ε0p)
2

4

)
, (2.114)

RΣ3 =
R∆3 − i 3Γ3 =

∣∣∣∣∣RV π
pp

0
V pi
pp

∣∣∣∣∣
2(

ε− ε0p
2

+ i

√
(0V π

pp)
2 −

(ε− ε0p)
2

4

)
, (2.115)
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where L,RV π
pp are the overlaps of the px orbitals between the first and third site in helix,

and the left and right lead, respectively, 0V π
pp is the overlap of the px orbitals inside the

leads, and ε0p is the energy of the p orbitals in the lead. The lead Hamiltonian is

Hlead = LΣ1|pz1⟩⟨pz1|+ RΣ3|pz3⟩⟨pz3|. (2.116)

Considering this and the TB Hamiltonian, we can write the complete Hamiltonian H

for the system coupled to the leads, summarized in the table below.

H = H0 +Hlead

|px1⟩ |pz1⟩ |px2⟩ |pz2⟩ |px3⟩ |pz3⟩
⟨px1 | εp iSyξp E12

xx E12
xz 0 0

⟨pz1| −iSyξp εp +
LΣ1 −E12

xz E12
zz 0 0

⟨px2 | E21
xx E21

xz εp iSyξp E23
xx E23

xz

⟨pz2| −E12
xz E12

zz −iSyξp εp −E23
xz E23

zz

⟨px3| 0 0 E32
xx E32

xz εp iSyξp
⟨pz3| 0 0 −E32

xz E32
zz −iSyξp εp +

RΣ3

The Green function is given by,

G(R) = [εI −H]−1. (2.117)

where R stands for retarded. From the obtained 12×12 Green matrix and the Fisher and

Lee formula [26], we can relate it to the spin-specific transmission between the leads as

T ↑↑3,1(ε) = 4 LΓ1(ε)G
R
pz3↑,pz1↑

(ε) RΓ3(ε)G
A
pz1↑,pz3↑

(ε), (2.118)

T ↓↓3,1(ε) = 4 LΓ1(ε)G
R
pz3↓,pz1↓

(ε) RΓ3(ε)G
A
pz1↓,pz3↓

(ε), (2.119)

T ↑↓3,1(ε) = 4 LΓ1(ε)G
R
pz3↑,pz1↓

(ε) RΓ3(ε)G
A
pz1↓,pz3↑

(ε), (2.120)

T ↓↑3,1(ε) = 4 LΓ1(ε)G
R
pz3↓,pz1↑

(ε) RΓ3(ε)G
A
pz1↑,pz3↓

(ε), (2.121)

with these being equivalent to t→→, t←←, t→←, and t←→ in the transport matrix formalism.

The correspondent reflection probabilities r are found by simply considering the elements

of the Green matrix of the same site, that is, GR
pzn ,pzn

and GA
pzn ,pzn

.
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Chapter 3

Toward Transport in Nanoscale

structures: Experimental Set-up

3.1 Mechanically Controlled Break Junction

We used a mechanically controlled break junction (MCBJ) set-up to study electron trans-

port through atomic-sized contacts. The device consists of a clamp of two brass pieces

that will hold the sample placed onto a flexible substrate with the pressure exerted by

four nuts at the top. A piezo stack (Thorlabs PK3JMAP1) is placed on a third brass

piece that is moved up and down by a micrometer screw. Thus, the set-up works as a

three-point bending mechanism that bends the flexible substrate with the action of the

piezo. A diagram and picture of the MCBJ are shown in Fig. 3.1a and 3.1b, respectively.

The most common choice for the flexible substrate in literature is a plate of phospho-

rous bronze about 1 mm thick, which is covered with an insulating film, usually Kapton

[28, 29, 30]. Instead, we decided to design 3D-printable PLA flexible substrates, reducing

the costs and complexity of the sample preparation. The printed pieces were 26× 6 mm

and 1 mm thick, with the middle section reduced to half the thickness to ensure a higher
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(a) (b) (c) (d)

Figure 3.1: (a) Diagram of the MCBJ set-up. The clamp comprises two brass pieces that
hold the flexible substrate in place. The micrometer screw moves the piezo up close to
the substrate. (b) Picture of the real set-up, donated by the Laboratory of Molecular
Electronics, Yachay Tech. (C) and (d) show the MCBJ inside its metal enclosure for
noise reduction.

flexibility. Aside from costs, the advantage is that Kapton is no longer needed to insulate

the sample from the substrate, and we can prepare many substrates in less than an hour.

To reduce electromagnetic noise and interference, we placed the electronics inside an

aluminum enclosure, and so was the MCBJ, as seen in Fig. 3.1c and 3.1d. Coaxial cables

were also used to connect everything in the set-up.

This set-up was used to study electron transport in atomic-sized contacts with ho-

mometallic (Au-Au) and bimetallic junctions (Au-Ni) at ambient temperature. In both

cases, conductance (current) traces were measured and analyzed statistically, building

histograms from thousands of traces.

3.2 Electronics

The MCBJ is connected to a set of electronics that serves three functions: constant voltage

supply for the junction, current-to-voltage converter and amplifier, and trigger for the data
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acquisition. Fig. 3.2 shows the entire circuit used for the equipment operation. All the

electronics are powered by a symmetric Vcc = ±10 V source.

Figure 3.2: Circuit diagram of the electronics connected to the MCBJ. Enclosed in green
is the bias voltage circuit that provides a constant supply of Vbias = 200 mV. Enclosed
in blue the trans-impedance amplifier circuit is enclosed in blue that converts the output
current from the junction into an amplified voltage signal. Enclosed in red is the trigger
circuit that compares the output voltage signal from the trans-impedance amplifier to a
selected reference voltage. Depending on whether the signal exceeds or not said reference,
it sends a pulse to the trigger input in the DAQ. The piezo is controlled by Thorlabs
KPZ101, which sends a 100 V triangular signal.

In the bias voltage circuit, LM7805 sends out a constant 5 V. Then, a voltage divider

with a variable resistor controls the bias voltage for the break junction. We used Vbias =

200 mV, to prevent electric noise. When this signal passes through the Au-Au junction,

a small current comes out. The trans-impedance amplifier circuit converts this current to

an amplified voltage signal. This is done by the TL084 op-amp connected to the selected

feedback resistor Rf that determines the amplification factor from 103 to 105. The output

signal then goes to the analog input of the Digilent MCC USB-1208HS DAQ device.

To activate the trigger, the circuit compares the trans-impedance amplifier output V0

with a controllable reference voltage. When the voltage is higher than the reference, the
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Figure 3.3: Aluminum enclosure of the electronics of the MCBJ device depicted on Figure
3.2. The knob allows the amplification selection. The red LED indicates the action of the
trigger circuit.

output from the op-amp will saturate to +Vcc, and −Vcc if it is lower (in fact, it will

saturate to ∼ ±8.529 V). This value is then compared in an XOR gate with either 5 V

or ground. When the selector is at ground, then the output will be high if V0 > Vref and

low otherwise. If instead the selector is at 5 V, then the opposite occurs; the output is

high if V0 < Vref and low otherwise. In this study, the latter is used with Vref ≈ Vcc, such

that the trigger activates when the voltage signal drops from V0.

A controlled high-voltage signal is sent to the piezo element to bend the substrate.

For this purpose, we use Thorlabs KPZ101 K-Cube Piezo Controller, which automatically

controls the piezo element up to 1 kHz. PC-controlled operation is done with LabVIEW

utilizing the device’s control software package, Kinesis. The LabVIEW program sends

positive DC voltage ramps (triangular functions) from KPZ101 to the piezo stack (Thor-

labs PK3JMAP1). The ramps cause repeated elongation and contraction of the piezo,

which bends the substrate, breaking and forming the atomic-size contacts between both

tips of the electrodes.



44

3.3 Homometallic Junctions

To make the homometallic sample, we used a 0.1mm diameter 4N purity (99.99%) Au.

Electrodes were formed by making a notch using a 3D-printed device that consisted of a

scalpel blade whose altitude was mechanically controlled by a micrometer screw. Spring

kept the back of the scalpel under pressure to ensure continuous contact between the blade

and the micrometer. The device is as shown in Figure 3.4b. Several tries were needed to

obtain the desired notch with a proper depth.

(a) (b)

Figure 3.4: Notching mechanism for the preparation of homometallic junction samples.
(a) Diagram of the notching process for the homometallic junction samples. (b) 3D printed
PLA device for notching the sample wires.

This sample was placed in a PLA flexible substrate. To prefix the sample, nail polish

drops were placed at its ends. Then, after letting it dry, epoxy adhesive drops were placed

near the junction, and by allowing them to cure for a few minutes, they were gently spread

to reach the start of the notch. This final fix was left inside a protective glass enclosure

for 24 hours to cure fully. Once the curing process was done, two thin copper probes

(roughly the same diameter as the Au wire) were attached to the sample, covering the

spot with silver paint to enhance electrical contact. The sample is loaded onto the MCBJ,

with the clamp holding the flexible substrate in place.
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Figure 3.5: Sample placed on the PLA flexible substrate. A diagram can be seen in the
upper part, while a picture of the real montage can be seen in the lower part.

The flexible substrate bends under the displacement of the piezo, stretching the wire

and breaking the notch. Then, the piezo contracts, and the substrate returns to its

natural form, squeezing the electrode tips back together and re-forming the contact. This

rupture and junction formation was done continuously. Since no two traces are equal

because of contamination, thermal interaction, electromagnetic noise, contact structure,

etc., hundreds of contact rupture traces were measured.

3.4 Bimetallic Samples

With the same MCBJ set-up previously described, bimetallic junctions can also be stud-

ied, which are junctions where the electrodes are made of different metals. Considering

that some metals have the habitability to wet others [29, 31], we chose Au and Ni, where

the former wets the latter. This is convenient since we want to replicate the set-ups used

in the literature of CISS in further studies. Thus, it requires generating a magnetization

on the ferromagnet (Ni) so spin selection can be measured in I-V curves.

The technique used is described by Tal et al. [29], where studied bimetallic samples

of diverse materials including Au-Ni in a vacuum chamber at 4.2 K. The idea is that the
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(a) (b)

Figure 3.6: (a) Three-point bending device for the bimetallic junction sample prepara-
tions. With the micrometer screw, the device keeps the flexible substrate slightly bent,
allowing us to align the wires on top of it with their tips in contact. After relaxation of
the substrate, the tips squeeze against each other, forming a larger contact. (b) Bimetallic
sample of Au-Ni obtained by this method.

flexible substrate must be kept bent while the sample is prepared. Therefore, an adjustable

three-point bending device was 3D printed, as seen in Figure 3.6a. The amount of bending

done must be small, considering that the action of the piezo in the MCBJ device is of the

order of micrometers. Both sample wires were cut with a sharp tip at one end and placed

on the bent substrate. The same notching mechanism was used for this sharpening, but

this time, instead of calibrating the blade height such that just a notch was made, it was

lowered until it cut through the wire, leaving little tips on each end.

Under a stereoscopic microscope, one of the wires is attached to the substrate with

a drop of nail polish on its back end. The second wire is then attached the same way,

ensuring its tip’s alignment with that of the first one. After the nail polish cures, two

drops of epoxy adhesive are placed near the tips of both wires. The alignment is corrected,

ensuring both tips are in contact, and more epoxy is added if needed, spreading it as close

as possible to the tips, preventing any flow underneath it, and allowing them to cure like

that. The substrate is then relaxed, and the two tips are squeezed together to form a

larger contact. During this process, Au wets Ni as is reported on ref. [29]. To test if the

sample preparation was successful, we tested its continuity with a multimeter to verify

whether the contact between both electrodes was achieved.
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Chapter 4

Results

4.1 Spin-Charge Transport in 3T Geometry

As seen in previous sections, in a 2T geometry circuit where a chiral component is con-

nected in series to a ferromagnet with a node in between, the emergence of an MR signal

to detect CISS is forbidden in the linear response regime according to Onsager reciprocity

relations, due to chirality being invariant under time-reversal [22, 23, 21]. The only way

to measure 2T MR is to break Onsager reciprocity in the nonlinear regime by introduc-

ing energy-dependent transport and energy relaxation in the device [22] or by the Hanle

effect, which does not require a ferromagnetic element.

In the node, spin accumulation µs and electrochemical potential µ are defined, and

spin is preserved. At the same time, energy relaxation takes place because of electron-

phonon interaction. With this in mind, we propose to turn our heads to a 3T geometry

(Fig. 4.1) following the work in ref. [32]. Here, a nonmagnetic metallic layer is in contact

with the ferromagnet, playing the node’s role in the previous model. This addition is

experimentally justified since, in CISS experiments, the molecule needs to be attached to

an affine metal, which can be done using gold with a thiol group attached to the molecule’s

ends [33]. The purpose of this third terminal is to measure the actual contribution of the
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node (now the metallic layer). We impose the condition that this third terminal is a

voltage probe; thus, the net current flowing into and out of it is zero. We aim to measure

the potential difference between this new probe µp and µL.

Figure 4.1: Proposed 3T circuit geometry. A third terminal has been added to the
former node, which is now considered a metal layer in contact with the ferromagnet. This
terminal is a measurement lead; thus, the current that flows into it has to flow out of it,
causing a zero net current.

To allow easier handling, we rewrite the equations that were obtained in Yang Xu and

Van Wees model, (2.94), (2.95) and (2.96):

µs = Γ2(µR − µL), (2.94)

µ = µL − Γ3(µR − µL), (2.95)

= µR + Γ1(µR − µL). (2.96)

The introduced variables Γ1, Γ2, and Γ3 are defined as,

Γ1 =
−G2

3 −G3g3)−G1(G4 + g4)

f
, (4.1)

Γ3 =
g23 +G3g3 − g1(G4 + g4)

f
, (4.2)

Γ2 =
G3g1 +G1g3

f
. (4.3)

It is now possible to consider the contribution of the spin accumulation with respect

to the electrochemical potential µs at the far left of the ferromagnet, µL. Starting from

the interaction of the two induced electrochemical potentials at the node, µ − µs from
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(2.94) and (2.96),

µ− µs = µR + Γ1(µL − µR)− Γ2(µL − µR), (4.4)

we then replace the expression (2.95) for µ referred to µL,

µL − Γ3(µL − µR)− µs = µR + Γ1(µL − µR)− Γ2(µL − µR), (4.5)

µL − µs = µR + (Γ1 − Γ2 + Γ3)(µL − µR). (4.6)

We then obtain the expression for the potential difference between the left reservoir µL

and the electric manifestation of the preference of one spin species against the other due

to CISS in the molecule, that is, the spin accumulation µs,

µL − µs = µR +
g23 −G1g3 −G3g1 −G2

3 − (G1 + g1)(G4 + g4)

f
. (4.7)

Thus, the electrochemical potential difference µL−µs does indeed depend on the reversal

of both magnetization of the ferromagnet or chirality of the molecule since it depends

on G3 and g3, respectively. This allows us to measure the effect of CISS even in the

linear response regime, breaking Onsager reciprocity that is only concerned with the 2T

geometry.

4.1.1 Application of the Transport Matrix Model

Spin Valve: GMR and TMR

The validity of Yang Xu’s model [22, 23], we tackled the classic spin valve for the giant

magnetoresistance (GMR) and tunneling magnetoresistance (TMR) schemes. For this,

we put two ferromagnetic conductors in series.
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Figure 4.2: Spin valve 2T geometry circuit with two ferromagnets F1 and F2 in series.
Considerations about current sign and voltage bias are the same.

The matrix equations for FR and FL, respectively, are given by:

(
I
Is

)
= −Ñ

h

(
T̃ −P̃F T̃

P̃F T̃ −T̃

)(
µ− µR

µs

)
, (4.8)

= −1

e

(
G̃1 G̃2

G̃3 G̃4

)(
µ− µR

µs

)
, (4.9)(

I
Is

)
= −Ne

h

(
T −PFT

PFT −T

)(
µL − µ
µs

)
, (4.10)

= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (4.11)

where the polarizations P̃F and PF depend on the spin-specific conductances of each

ferromagnet:

P̃F =
G̃↣ − G̃↢

G̃↣ + G̃↢

, (4.12)

PF =
G↣ −G↢

G↣ +G↢
. (4.13)

Both matrix equations follow Onsager reciprocity by being antisymmetric under time-

reversal, as previously seen. Following the same procedure as before and considering that

G2 = −G3 and G̃2 = −G̃3, we arrive at the equations for µ, µs, and I,

µ = µL −
−G̃2

3 +G3G̃3 − G̃1(G4 + G̃4)

f
(µR − µL)

= µR +
−G2

3 +G3G̃3 −G1(G4 + G̃4)

f
(µR − µL),

(4.14)

µs =
G3G̃1 +G1G̃3

f
(µR − µL), (4.15)

I = −1

e

−G1G̃
2
3 − G̃1G

2
3 −G1G̃1(G4 + G̃4)

f
(µR − µL), (4.16)
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with f being,

f = −G2
3 − G̃2

3 + 2G3G̃3 − (G1 + G̃1)(G4 + G̃4). (4.17)

Note that the current (4.16) changes depending on whether the magnetization of FL and

FR are parallel or anti-parallel, since G3 and G̃3 depend on PF and P̃F respectively, thus

changing the value of f . If the magnetizations are parallel, the product G3G̃3 is positive,

while when they are anti-parallel, it is negative. The denominator is larger in the latter

case than in the former, thus making the conductance smaller in the anti-parallel and

larger in the parallel configurations:

GGMR =
G1G̃

2
3 + G̃1G

2
3 +G1G̃1(G4 + G̃4)

G2
3 + G̃2

3 − 2G3G̃3 + (G1 + G̃1)(G4 + G̃4)
. (4.18)

Thus, we have that,

GGMR = GGMR(PF , P̃F ), (4.19)

meaning that conductance depends on the magnetization directions, and thus, we have

MR signals in the linear regime. Thus, we recover the classical spin-valve GMR scheme.

To connect with the popular Julliere’s model for GMR, we can see these results in

terms of the density of states (DOS). From Drude’s model, we know that,

σ =
ne2τ

m
, (4.20)

where n is the electron density, τ is the mean free time, and m is the electron mass.

Electron density depends on the DOS,

n =

∫ εF

0

dεg(ε)f(ε). (4.21)

where g(ε) is the DOS and f(ε) is the Fermi-Dirac distribution. For low temperatures

f(ε) ≈ Θ(εF − µi), and (4.21) becomes n ≈ g(εF )εF . The conductance is related to the

conductivity by,

G = σ
A

L
= g(εF )εF

Ae2τ

mL
. (4.22)
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The spin-specific conductances are then,

G↑ = g↑(εF )εF
Ae2τ

mL
, G↓ = g↓(εF )εF

Ae2τ

mL
. (4.23)

For each ferromagnet, we know that its spin polarization is defined in terms of its spin-

specific conductance as PF = (G↑ − G↓)/(G↑ + G↓). From this and considering the

spin-specific conductances, we obtain the spin polarization of each ferromagnet,

Pgi =
g↑i(εF )− g↓i(εF )

g↑i(εF ) + g↓i(εF )
, (4.24)

where i = FL, FR.

The expression for the magnitude of the tunneling magnetoresistance from Julliere’s

model is [24],

GMR =
RAP −RP

RP

=
GP −GAP

GAP

(4.25)

where P means parallel and AP anti-parallel. Considering that both ferromagnets are

equal, we define these resistances as,

RP =
2R↑R↓
R↑R↓

, GP =
1

2
(G↑ +G↓), (4.26)

RAP =
1

2
(R↑ +R↓), GAP =

2G↑G↓
G↑ +G↓

(4.27)

Thus, we can find an expression for the GMR ratio,

GMR =
(G↑ −G↓)

2

4G↑G↓
. (4.28)

If we define α = G↑/G↓, then we can rewrite the ratio as

GMR =
(α− 1)2

4α
, (4.29)
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hence the GMR changes with the value of α, if both spin dependent conductances are

equal, then GMR = 0, that is expected since it means that there’s no spin preference,

thus no spin valve behavior.

TMR is similar to GMR but with an insulating layer between FL and FR, thus form-

ing a tunnel junction. The tunnel current is obtained from Fermi’s golden rule on the

tunneling rate [24] and considering a low bias regime, this gives

Gσ ≈
4π2e2

h
TgσL(εF )gσR(εF ), (4.30)

where σ is the spin direction, and T is the tunneling transmission assumed to be constant.

With this in mind, the expressions for the P and AP conductances are given by [24]

GP = G↑P +G↓P ∝ (g↑Lg↑R + g↓Lg↓R), (4.31)

GAP = G↑AP +G↓AP ∝ (g↑Lg↓R + g↓Lg↑R). (4.32)

Replacing this on the TMR ratio gives,

TMR =
RAP −RP

RP

=
GP −GAP

GAP

≈ 2PgFLPgFR

1− PgFLPgFR

. (4.33)

Note that if both PgFL = PgFR = 1, that is, if both ferromagnets are 100% spin-polarized,

TMR becomes infinite; while if one or both ferromagnets is not polarized (i.e., Pgi = 0),

then the TMR vanishes.

time-reversal Asymmetry in the Chiral Component

In Chapter 2.3, we saw that the transport matrix of the chiral component satisfied Onsager

reciprocity by being symmetric (equal off-diagonal terms). This was because the chiral

component had time-reversal symmetry. It is possible to break this symmetry by consider-

ing a small perturbation with odd time dependence in the transport matrix. Introducing
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this component is analogous to connecting the system to a third probe that emulates

dephasing processes such as electron-electron interaction, electron-phonon interaction, or

inelastic impurity scattering.

Therefore, the transport matrix is:

(
I
−Is

)
= −Ne

h

(
t (Pt − εPD)t

(Pt + εPD)t γr

)(
µL − µR

µs

)
, (4.34)

where ε ≪ 1 is a small parameter and PD is a contribution to the chiral component

spin polarization with time-reversal asymmetry. This modified matrix satisfied Onsager

reciprocity in the linear regime by being antisymmetric:

T1,2(H,M) = (Pt − εPD)t = T2,1(−H,−M) = (Pt − εPD)t. (4.35)

We can proceed as normal and write the conductance equations. For this, we define the

new terms in the chiral matrix:

g̃2 =
Ne2

h
(Pt − εPD)t = g2 + εGD

2 , (4.36)

g̃3 =
Ne2

h
(Pt + εPD)t = g3 + εGD

3 , (4.37)

where the superscriptD stands for decoherence. Note that as before, g2 = g3 and similarly

to the ferromagnet matrix elements, the decoherence terms are such that GD
2 = −GD

3 ,

defined as

GD
2 = −Ne2

h
PDt = −GD

3 . (4.38)

Hence, the conductance matrices at the right and left of the node are,

(
I
−Is

)
= −1

e

(
g1 g̃2
g̃3 g4

)(
µ− µR

µs

)
, (4.39)(

I
−Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
. (4.40)
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From this, we obtain the equations for I, µ, and µs, which have the same form as equations

(2.94)-(2.98) but with the newly defined conductances g̃2 and g̃3. Considering (4.36) and

(4.37), and neglecting terms with ε2, we obtain,

µs =
G3g1 +G1(g3 − εGD

3 )

f
(µR − µL), (4.41)

µ = µL −
g23 −G3g3 − εG3G

D
3 −G1(G4 + g4)

f
(µr − µR), (4.42)

= µR +
−G2

3 −G3g3 + εG3G
D
3 −G1(G4 + g4)

f
(µR − µL), (4.43)

I = −1

e

G1g
2
3 − g1G

2
3 − g1(G4 + g4)

f
(µR − µL), (4.44)

f = g23 −G2
3 + 2εG3G

D
3 − (G1 + g1)(G4 + g4). (4.45)

Note that now, because of the term 2εG3G
D
3 in f , we have that,

GD
2T = GD

2T (PF , PD) =
G1g

2
3 − g1G

2
3 − g1(G4 + g4)

g23 −G2
3 + 2εG3GD

3 − (G1 + g1)(G4 + g4)
, (4.46)

thus, it changes upon time-reversal because of the decoherence PD term in GD
3 , and 2T

MR is detectable. If we let ε→ 0, we recover the results in chapter 2.3. Since ε≪ 1, we

can expand (4.46) around ε = 0 to first order obtaining

GD
2T ≈ G2T + ε

2G3[G1g
2
3 − g1G

2
3 −G1g1(G4 + g4)]G

D
3

[g23 −G2
3 − (G1 + g1)(G4 + g4)]2

+O(ε2), (4.47)

evidencing the change in the (charge) current slope. When we let ε → 0, GD
2T has the

same expression as the usual 2T conductance restricted by reciprocity. To illustrate, a

current plot is shown in Fig. 4.3 using the parameters mentioned in the plots of ref.

[22], and a large ε was used to evidence the difference in both slopes for a reversal in the

ferromagnet’s magnetization direction. It is clear that in the vicinity of zero bias voltage

(linear response), an MR signal can be measured.
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Figure 4.3: Example I-V curves due to the introduction of time-reversal symmetry break-
ing in the molecule’s transport matrix.

4.2 Homometallic Junction

The voltage was measured under ambient conditions as a function of time as the junction

elongates until it breaks. To convert the voltage traces to conductance ones, we use

circuit analysis on the MCBJ. We consider that there’s only one Au atom in the contact;

therefore, across the junction, the current encounters a resistance of RG0 = 1/G0 ≈

12.9kΩ:

Vout = VbiasRf

(
1

RG0

)
, (4.48)

where in out case Rf = 100 kΩ and Vbias = 200 mV, thus Vout ≈ 1, 54955 V. Dividing the

output voltage of the traces by Vout gives us the conductance traces.

Figure 4.4a shows an individual trace of conductance measured during contact rupture.

Each trace has 500 conductance measurements with a time between each measurement

of ∆t = 2µs. The curve shows the expected step-wise decrease of the conductance, with

plateaus formed around 1G0, 2G0, and 3G0. Not all traces were considered in the data

acquisition, only those representing a whole rupture, meaning that the signal reached the

minimum output voltage. The trace also shows an unexpected plateau at 1.5G0, possibly

coming from the intrusion of contaminants in the junction.
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(a) (b)

Figure 4.4: Results of the measurements taken on the Au-Au junction.(a) Individual con-
ductance trace of a contact rupture obtained with the MCBJ device at ambient conditions
with a bias voltage of 200 mV. (b) Histogram built from 5202 accumulated measurements
of conductance traces during contact rupture. Three main peaks can be identified clearly,
with their mean value obtained from the Gaussian fit.

Figure 4.4b shows the histogram built from 5202 accumulated conductance traces.

The three main peaks are clearly visible with mean positions at 0.952± 0.004 G0, 1.819±

0.005 G0, and 2.737± 0.01 G0 obtained from a Gaussian fit. The shift in the peak values

is because of the different geometries the contact can assume for more than one atom in

forming the contact.

Figure 4.5: Configurations obtained from MD simulations right before first contact or
just after breaking: (A) dimer, (B) monomer, (C) double contact dimeric transversal, (D)
double contact dimeric parallel, and (E) double contact monomeric. From ref. [34].

In the work of Sabater et al., [34], they studied jump-to-contact (JC) and jump-out-of-

contact (JOC) phenomena in gold electrodes using molecular dynamics (MD) at a constant
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temperature of 4.2 K. They found that the junction takes five principal structures at

the point of contact or just before breaking: dimer, monomer, double-contact dimeric

transversal, double-contact dimeric parallel, and double-contact monomeric. Dimer and

monomer have mean values of 0.92± 0.07G0 and 0.97± 0.15G0 respectively, while for all

the double contact configurations, the mean value is 1.73± 0.02G0. These structures are

depicted in Fig. 4.5. Our mean conductance values are clearly well within the range of

the DFT/MD results, considering that thermal effects and contaminants are present due

to ambient conditions.

The histogram also shows increased counts in valleys between peaks. This is a conse-

quence of contamination in the junction due to the lack of a controlled atmosphere. The

broadening of the peaks compared to those presented in literature [28] is due to thermal

effects since most of those measurements were taken under cryogenic temperatures. At

0.5G0, many counts were registered and appeared in other measurements taken. Further

investigation is needed to find the real cause of the increased counts there, but due its

sharpness we conclude that the most probable cause might be a faulty connection in the

electronics or a problem with the DAQ device.

4.3 Preliminary Bimetallic Junction Results

To study bimetallic samples at room temperature, three different measurements were

done: a Au-Au sample made with the bimetallic junction sample preparation technique,

that is, two separate pieces of gold wire were aligned, a Ni-Ni sample made with the

homometallic junction sample preparation technique, and a Au-Ni sample. All measure-

ments were done with a 200 mV voltage bias and a 105 amplification factor (Rf = 100 kΩ).

The obtained conductance histograms built from accumulated rupture traces are shown

in Fig. 4.6.
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Figure 4.6: Rupture conductance histograms of homometallic and bimetallic atomic-sized
junctions. (a) Conductance histogram of a homometallic Au-Au junction prepared with
the bimetallic technique aligning two separate gold electrodes. (b) Conductance histogram
of a bimetallic Au-Ni junction. (c) Conductance histogram of a homometallic Ni-Ni
junction.

For the Au-Au sample, 5516 individual rupture traces were taken. The resulting

histogram displays the three expected peaks around the first three multiple integers of the

conductance quantum, but they are less pronounced than those obtained in the previous

section. This might suggest that the bimetallic sample preparation technique results in

weaker contact than the homometallic one. The Ni-Ni conductance histogram was built

from 3072 individual rupture traces taken. Results showed only a decrease in conductance

as the separation between the electrodes increased (with time). No quantization of the

conductance was observed, which was expected since works done on Ni nanocontacts

show that no such quantization occurs in ferromagnetic atomic-sized contacts due to the

combination of the d orbitals providing several partially open conduction channels [35, 36].

But, these works describe a peak around 1.3G0 that is not displayed in our histogram.

This vanishing might be due to oxidation of the junction since the peak was observed for

theoretical calculations at cryogenic temperatures.

In the case of the Au-Ni sample, the conductance histogram was built from 3310

individual rupture traces. As previously mentioned, Tal’s group showed that Au wets the
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tip of the Ni electrode, forming essentially an Au-Au junction [29]. Our results did not

show this behavior. Instead, it had more in common with the homometallic Ni junction,

depicting only a decrease in conductance as the electrode separation increases. It’s worth

noting that the results obtained in ref. [29] were with the sample inside a vacuum chamber

and with a temperature of 4.2 K. Meanwhile, our measurements were done in ambient

conditions, meaning that oxide was formed in the tip of the nickel electrode, changing the

electrical properties of the junction.
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Chapter 5

Conclusions

From the work of Yang et al. [22], we saw that a two-terminal (2T) magnetoresistance

(MR) measurement to determine CISS is forbidden by Onsager reciprocity relations in

the linear regime. An MR signal is only measurable when we are outside the linear regime

[22]. We proposed the 3T alternative, placing a third terminal connected to the node,

where the spin accumulation is defined, imposing the condition that this terminal is a

voltage probe. This geometry breaks Onsager reciprocity since it is only concerned with

2T but allows detecting CISS in the linear regime by measuring the potential difference

between the node (a nonmagnetic metal to which the chiral molecule is coupled) and the

ferromagnet. This configuration follows the idea of an emf emerging from an F/N junction

with the spin being pumped from N, described in Section 2.1.2 and Ref. [24]. In the work

done on CISS in photosystem I [14], a similar electric detection of CISS was used.

Another mechanism involving 2T measurement that circumvents Onsager’s reciprocity

is the introduction of time-reversal symmetry breaking. We modeled this in our Transport

matrix approach as a small antisymmetric term in the matrix that describes the chiral

molecule. With this model, we showed that spin filtering is detected in the 2T set-up in

the linear regime. Time-reversal symmetry breaking can be modeled explicitly through

the coefficients of the transport matrix using Green’s function formalism.
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On the experimental side, we have built a reliable, robust, and complete MCBJ set-

up capable of studying electron transport through atomic-sized contacts in homometallic,

bimetallic, and possibly molecular junctions. The results obtained for the Au-Au junction

showed well-defined peaks in the built histogram, comparable to those under the same

conditions and at cryogenic temperatures in the literature for both the MCBJ and STM-

BJ devices [30, 28].

To implement the measurement of spin-sensitive magnetoresistance, we found in the re-

cent literature [29] the possibility of generating metal-oxide-ferro junctions using bimetal-

lic contacts in the break junction set-up. This will be possible by registering the I-V

curve, depending on the ferro orientation. Further refinements of our set-up are necessary

to achieve this goal.

We performed the first trials of bimetallic contacts with Au-Ni junctions. We first

measured homometallic gold junctions prepared as a bimetallic sample by aligning the

tips of the two electrodes. The results validated the method by showing the expected

conductance histogram depicting peaks around the integer multiples of the conductance

quantum. We then tested homometallic nickel junctions, obtaining a conductance his-

togram different from the literature that depicts a decrease in the measured conductance

as the contact breaks. A similar behavior was observed in the conductance histogram

of the bimetallic Au-Ni junction, disagreeing with the observed wetting of the nickel tip

at 4.2 K, forming suspended Au chains in the junction that gave rise to a conductance

histogram similar to that of homometallic gold samples. Thus, we confirm that we must

implement an atmosphere and temperature control in our set-up to carry out measure-

ments in bimetallic samples.

Carrying out the measurements at ambient conditions implies the inevitable intru-

sion of contaminants in the junction that, combined with thermal effects, account for the

broadening of the peaks and the increased counts in the valleys of the conductance his-

togram of the homometallic sample. A higher number of measurements is needed so that

these effects pale against the actual conductance values being measured. Since we opted
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to utilize PLA 3D-printed strips as our flexible substrates, many repeated measurements

could lead to permanent deformation; a more flexible material like phosphorous bronze

might be the best option. Contamination is a bigger deal for the bimetallic samples be-

cause we must keep the substrate bent and the sample exposed for at least twenty-four

hours to allow the epoxy drops to cure. Therefore, contaminants and oxide accumulate

in the junction in the case of Ni samples. This also means that a high-quality flexible

substrate is a must.

5.1 Future Work

Building on the foundation of this work, we aim to investigate CISS with the MCBJ set-up

to study transport through molecular contacts using oligopeptides. This involves using a

bimetallic junction (Au-Ni) and placing the oligopeptides between both electrodes. We

are currently adapting our set-up to operate inside a vacuum chamber, allowing measure-

ments under low vacuum and in an inert argon atmosphere, controlling the environment

and preventing contamination. We are building a vibration isolation system to enhance

measurement stability, allowing the study of transport through chains of atoms or single

molecules without breaking the contact due to their vibration sensitivity.

We must develop a molecule deposition technique to place the oligopeptides between

the two electrodes. After a brief but insightful discussion with Prof. Oren Tal of the

Department of Chemical and Biological Physics, Weizmann Institute of Science, we have

decided to develop a molecule atomizer like the one they designed in ref. [37]. It heats a

drop of the oligopeptide solution and evaporates it, directing the flush of molecules toward

the junction through a small nozzle. They have also enlightened that to remove the oxide

formed on the junction, high voltage pulses should be applied to inject current from the

Ni to the Au, and manual squeezing should be done to encourage Ni wetting by Au.
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With these additions to our set-up, we plan to measure conductance through a single

oligopeptide and characterize I-V under different magnetization directions of the nickel

electrode to explore the spin-selective transport associated with CISS.
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Appendix A

Transport Matrix for the Chiral

Component

In this section, we will show in detail how the transport matrix for the chiral component is

obtained starting from the Landauer-Buttiker formula. We start from the two spin-space

transmission and reflection matrices for the right and left moving electrons introduced in

the main text [22]:

T▷ =

(
t→→ t←→
t→← t←←

)
, R▷ =

(
r→→ r←→
r→← r←←

)
, (A.1)

T◁ =

(
t←← t→←
t←→ t→→

)
, R◁ =

(
r←← r→←
r←→ r→→

)
. (A.2)

We use the Landauer-Buttiker formula from section 2.2 to find the current that leaves

each lead. For the left lead, we have

IL = e

∫
dε

[
TR,LvL

1

2
NL(ε)fL(ε)− TL,RvR

1

2
NR(ε)fR(ε)

]
, (A.3)



71

where the DOS Ni(ε) = 1/π(dk/dε), and knowing that the group velocity of electrons is

given by vi = dω/dk = 1/ℏ(dε/dk), then we obtain that

Ni(ε) =
1

πℏvi
=

2

hvi
. (A.4)

Replacing the DOS in the current IL, we obtain

IL =
e

h

∫
dε [TR,L(ε)fL(ε)− TL,R(ε)fR(ε)] . (A.5)

If we now consider that, as in section 2.2, the temperature is low and the time-reversal

for the transmission probabilities such that TR,L = TL,R, then we obtain

IL =
e

h
[TR,LµL − TL,RµR] (A.6)

Note that the first term refers to the current injected from the left lead, and the right

one refers to the current coming into it. We can write the first term depending on the

reflection back to the left lead as 1−RL,L:

IL =
e

h
[(1−RL,L)µL − TL,RµR] . (A.7)

If we now consider the spin-dependence of each variable, we can write the spin-space

column vector version:

(
IL→
IL←

)
= −Ne

h

[
(I− R▷)

(
µL→,
µL←

)
− T◁

(
µR→
µR←

)]
, (A.8)(

IR→
IR←

)
=

Ne

h

[
(I− R◁)

(
µR→
µR←

)
− T▷

(
µL→
µL←

)]
, (A.9)

the current on lead L is negative because we have assumed that the current moving from

left to right is negative and from right to left is positive.
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From (A.8) and replacing the directional transmission and reflection matrices, we

obtain

IL→ = −Ne

h
[(1− r→→)µL→ − r←→µL← − t←←µR→ − t→←µR←], (A.10)

IL ← = −Ne

h
[−r→←µL→ + (1− r←←)µL← − t←→µR→ − t→→µR←]. (A.11)

Therefore, we can now find the expressions for I = IL→ + IL←:

I = −Ne

h
[(1− r→→ − r→←)µL→ + (1− r←← − r←→)µL←

−(t←← + t←→)µR→− (t→← + t→→)µR←],

(A.12)

using the fact that µi→ = µi + µsi and µi← = µi − µsi,

I =− Ne

h
[(1− r→→ − r→← + 1− r←← − r←→)µL

+ (1− r→→ − r→← − 1 + r←← + r←→)µsL

− (t←← + t←→ + t→← + t→→)µR

+ (−t←← − t←→ + t→← + t→→)µsR]

. (A.13)

Finally, considering the definitions (2.70)-(2.77), we obtain the equation of the current

across the chiral component

I = −Ne

h
[(µL − µR)t+ µsLs+ µsRs]. (A.14)

Due to continuity, this result should be the same as I = IR→ + IR←.
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Now we find the expression for IsL = IL→ − IL←:

IsL =− Ne

h
[(1− r→→ + r→←)µL→ + (−1− r←← + r←→)µL←

+ (−t←← + t←→)µR→+ (−t→← + t→→)µR←],

=− Ne

h
[(1− r→→ + r→← − 1− r←← + r←→)µL

+ (1− r→→ + r→← + 1 + r←← − r←→)µsL

+ (−t←← + t←→ − t→← + t→→)µR

+ (−t←← + t←→ + t→← − t→→)µsR],

(A.15)

=− Ne

h
[−PrrµL − γrµsL + PttµR − γtµsR]. (A.16)

In this last expression, we consider that Onsager reciprocity needs that Ptt = Prr = s;

thus we write

IsL =
Ne

h
[(µL − µR)Prr + γrµsL + γtµsR]. (A.17)

Following a similar procedure for IsR,

IsR = −Ne

h
[(µL − µR)Ptt+ γtµsL + γrµsR]. (A.18)

Thus, we finally obtain the 3× 3 transport matrix for the chiral component:

 I
−IsL
IsR

 = −Ne

h

 t s s
Prr γr γt
Ptt γt γr

µL − µR

µsL

µsR

 . (A.19)
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Appendix B

Transport Matrix for the FMTJ

In this section, we will show in detail how the transport matrix for the ferromagnetic

tunnel junction (FMTJ) is obtained. We start from the tunnel currents for majority (→)

and minority (←) spin electrons as discussed in ref.[38]:

I→ = G→

(
V − µsR

e

)
, (B.1)

I← = G←

(
V +

µsR

e

)
, (B.2)

where V = −(µL−µ)/e is the voltage bias between the left lead and the node. Replacing

this, we get

I→ = −G→
e

(µL − µ− µsR) , (B.3)

I← = −G←
e

(µL − µ+ µsR) . (B.4)

Hence, we can now find I = I→+ I← and IsR = I→− I←, with the latter being at the left

side of the node:

I = −1

e
[G→µL −G→µR −G→µsR +G←µL −G←µR +G←µsR], (B.5)

= −1

e
[(µL − µR)GF − µsRGFPF ], (B.6)
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IsR = −1

e
[G→µL −G→µR −G→µsR −G←µL +G←µR −G←µsR], (B.7)

= −1

e
[(µL − µR)GFPF − µsRGF ], (B.8)

were we have used the definitions of the Ferromagnet spin-polarization PF = (G→ −

G←)/(G→ + G←) and the total conductance GF = G→ + G←. To distinguish GF from

ideal transmission, a transmission coefficient T (0 ≤ T ≤ 0) is introduced so that we

decouple how well the junction conducts overall from the spin polarization effects [22]:

I = −N ′e

h
[(µL − µR)T − µsRPFT ], (B.9)

IsR = −N ′e

h
[(µL − µR)PFT − µsRT ], (B.10)

therefore, we obtain the ferromagnet’s transport matrix:

(
I
IsR

)
= −N ′e

h

(
T −PFT

PFT −T

)(
µL − µR

µsR

)
. (B.11)
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Appendix C

2T Spin-Charge Transport

With the transport matrices for each component obtained, we can study spin and charge

transport when both are connected in series in a two-terminal (2T) configuration. As in

section 2.3.3, we rewrite the transport equations into conductance equations:

(
I
−Is

)
= −1

e

(
g1 g2
g3 g4

)(
µ− µR

µs

)
, (C.1)

(
I
−Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (C.2)

where the matrix elements for the chiral component are given by:

g1 =
Ne2

h
t, (C.3)

g2 =
Ne2

h
Ptt = g3, (C.4)

g4 = −
Ne2

h

(
1 +

2Pt

ηr

)
t, (C.5)
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where g2 = g3 due to the matrix being symmetric because of Onsager reciprocity. Simi-

larly, the matrix elements for the FMTJ are:

G1 =
N ′e2

h
T, (C.6)

G2 = −
N ′e2

h
PFT = −G3, (C.7)

G4 = −
−N ′e2

h
T. (C.8)

Here, G2 = −G3 because the matrix is antisymmetric. At the steady state, continuity

requires I and Is to be equal at both sides of the node. From C.1 and C.2, respectively,

we have:

I = −1

e
[G1(µL − µ) +G2µs], (C.9)

Is = −
1

e
[G3(µL − µ) +G4µs], (C.10)

I = −1

e
[g1(µ− µR) + g2µs], (C.11)

−Is =
1

e
[g3(µ− µR) + g4µs]. (C.12)

Thus, equating (C.9) and (C.12):

µ =
G1µL + (G2 − g2)µs + g1µR

G1 + g1
. (C.13)

Equating (C.12) and (C.10) with the latter being multiplied by −1:

µ =
G3µL + (G4 + g4)µs − g3µR

G3 − g3
. (C.14)

Now, equating the two obtained equations for µ:

(G3 − g3)[G1µL + (G2 − g2)µs + g1µR] = (G1 + g1)[G3µL + (G4 + g4)µs − g3µR],

[(G3 − g3)(G2 − g2)− (G1 + g1)(G4 + g4)]µs = (g1G3 + g3G1)µL − (G1g3 +G3g1)µR,
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where we define the term on the left-hand side as f = (G3−g3)(G2−g2)−(G1+g1)(G4+g4):

µs =
g1G3 + g3G1

f
(µL − µR). (C.15)

Replacing this expression for µs into (C.13):

µ =
G1µL + g1µR

G1 + g1
+

G2 − g2
G1 + g1

g1G3 + g3G1

f
(µL − µR),

=
(G1µL + g1µR)f + (G2 − g2)(g1G3 + g3G1)(µL − µR)

(G1 + g1)f
,

=
(G1 + g1){[G3(G2 − g2)−G1(G4 + g4)]µL − [g3(G2 − g2)− g1(G4 + g4)]µR}

(G1 + g1)f
,

adding and subtracting [−g3(g2 −G2) + g1(G4 + g4)]µL/f ,

µ = −g3(g2 −G2)− g1(G4 + g4)

f
(µL−µR)+

(G3 − g3)(G2 − g2)− (G1 + g1)(G4 + g4)

f
µL.

Noting that the numerator of the second term is f , then we obtain the expression for µ

referred to the left lead:

µ = µL −
g3(g2 −G2)− g1(G4 + g4)

f
(µL − µR). (C.16)

Replacing now the expression for µs on (C.14):

µ =
G3µL − g3µR

G3 − g3
+

G4 + g4
G3 − g3

g1G3 + g3G1

f
(µL − µR),

=
(G3µL − g3µR)f + (G4 + g4)(g1G3 + g3G1)(µL − µR)

(G3 − g3)f
,

=
(G3 − g3){[G3(G2 − g2)−G1(G4 + g4)]µL − [g3(G2 − g2)− g1(G4 + g4)]µR}

(G3 − g3)f
,

adding and subtracting [G3(G2 − g2)−G1(G4 + g4)]µR/f ,

µ =
G3(G2 − g2)−G1(G4 + g4)

f
(µL − µR) +

G3 − g3
(

G2 − g2)− (G1 + g1)(G4 + g4)fµR.
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The numerator of the second term is once again equal to f ; therefore, we obtain the

expression for µ referred to the right lead:

µ = µR +
G3(G2 − g2)−G1(G4 + g4)

f
(µL − µR). (C.17)

We still need to find I and Is. We look back at equation (C.11) and replace the

expressions for both µ and µs:

I = −1

e

[
G1

g3(g2 −G2)− g1(G4 + g4)

f
(µL − µR) +G2

g1G3 + g3G1

f
(µL − µR)

]
,

= −1

e

G1g2g3 −G1G2g3 −G1g1G4 −G1g1g4 + g1G2G3 +G1G2g3
f

(µL − µR),

simplifying, we obtain the expression for the current in the system:

I = −1

e

G1g2g3 + g1G2G3 −G1g1(G4 + g4)

f
(µL − µR). (C.18)

Where, noting that the bias voltage is given by V = −(µL − µR)/e, thus we have the

expression for the 2T conductance discussed in the main text.

Finally, we find an expression for Is by substituting the expressions of µ and µs in

(C.10):

I = −1

e

[
G3

g3(g2 −G2)− g1(G4 + g4)

f
(µL − µR) +G4

g1G3 + g3G1

f
(µL − µR)

]
,

= −1

e

g2g3G3 −G2G3g3 − g1G3G4 − g1G3g4 + g1G3G4 +G1g3G4

f
(µL − µR),

simplifying, we obtain the expression for the spin current in the system:

Is = −
1

e

G3g3(g2 −G2)− g1g4G3 + g3G1G4

f
(µL − µR). (C.19)
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Note that if we now impose g2 = g3 and G2 = −G3 due to Onsager reciprocity, we get

Is = −
1

e

g23G3 + g3G
2
3 − g1g4G3 +G1G4g3

f
(µL − µR), (C.20)

where the third term on the numerator changes with the magnetization of the ferromagnet

due to its linear dependence on PF , and the fourth term changes with chirality handedness

due to its dependence on Pt, thus Is changes with either time-reversal or spatial inversion,

expected because of it being the spin current.
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