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Resumen

Estudiamos teorias de gauge en espacios no conmutativos més alld del orden dominante en el
limite de Seiberg—Witten, en el contexto de la teoria de cuerdas. Revisamos como la geometria
no conmutativa emerge a partir de un campo de fondo de Kalb—Ramond y cémo, en el régimen
de baja energia caracterizado por g,, ~ €, @' ~ elf? y B ~ €, se obtiene una teorfa efectiva de
gauge no conmutativa sobre el volumen de mundo de la Dp-brana, con pardmetro ¥ oc (B~1)*,
Introducimos correcciones a esta estructura considerando fluctuaciones transversales de la brana,
representadas por campos escalares ¢ asociados a sus deformaciones. A partir de la linealizacién
de la métrica G = n + h, con |hy| < 1, y una modificacién del escalamiento original mediante
B! ~ €12, obtenemos una teorfa efectiva con un pardmetro de no conmutatividad dependiente del
espacio-tiempo de la forma 0¥ (o) = 01" ¢" (o). Estos resultados muestran que la no conmutatividad
puede surgir dindmicamente a partir de los grados de libertad internos de la brana, revelando una
estructura mas rica para las teorias de gauge no conmutativas que la prevista en el limite estdndar
de Seiberg—Witten.

Palabras clave: Geometria no conmutativa, Dp-branas, limite de Seiberg—Witten, teoria de
cuerdas, teorias de gauge, accion de Dirac-Born—Infeld, fluctuaciones transversales, producto estre-

lla.



Abstract

We study gauge theories on noncommutative spaces beyond the dominant order in the Sei-
berg—Witten limit, within the framework of string theory. We revisit how noncommutative geo-
metry emerges from the presence of a background Kalb—Ramond field and how, in the low-energy
regime characterized by g, ~ €, o ~ €2, and B ~ €°, this setting leads to an effective noncom-
mutative gauge theory on the worldvolume of the Dp-brane, with a noncommutativity parameter
6" oc (B71)*. We introduce corrections to this structure by considering transverse fluctuations of
the brane, represented by scalar fields ¢ associated with its deformations. By linearizing the metric
as G =n+h, with |h,,| < 1, and modifying the original Seiberg-Witten scaling through B! ~ €2,
we obtain an effective theory with a space-time-dependent noncommutative parameter of the form
0" (o) = 6" ¢' (o). These results show that space-time noncommutativity can dynamically emer-
ge from internal brane degrees of freedom, revealing a richer structure for noncommutative gauge
theories than that described by the standard Seiberg—Witten limit.

Key words: Noncommutative geometry, Dp-branes, Seiberg—Witten limit, string theory, gauge

theories, Dirac—-Born—Infeld action, transverse fluctuations, star product.
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Chapter 1

Introduction to String Theory

One of the greatest challenges in modern theoretical physics is the formulation of a consistent
quantum theory of gravity. Unlike the other fundamental forces, gravity lacks a quantum descrip-
tion that seamlessly integrates with quantum mechanics. String theory emerges as a compelling
framework that not only provides a quantum theory of gravity but also offers a unified description
of all fundamental forces [1].

Historically, string theory was initially developed to describe the strong interaction and its
underlying mathematical structure [2, 3]. However, it has since evolved into one of the leading
candidates for a unified theory of fundamental forces. The central idea of string theory is the
replacement of point-like particles with one-dimensional strings. This fundamental shift leads to a
key insight: the vibrational modes of strings correspond to different elementary particles [1].

A significant consequence of string theory is that it requires extra spatial dimensions for mathe-
matical consistency. Unlike the familiar four-dimensional spacetime of general relativity, string
theory predicts a higher-dimensional universe. These additional dimensions are hypothesized to be
compactified, meaning they are curled up at extremely small scales and thus remain unobservable
at macroscopic levels. The exact mechanism of compactification and its implications for low-energy
physics remain active areas of research, often explored through Calabi-Yau manifolds and orbifolds
[4, 5].

This paradigm shift from point-like particles to vibrating strings enables the description of
particle properties—such as mass and charge—in terms of vibrational frequencies and modes [5].

Another striking consequence of string theory is the requirement of additional spatial dimensions.

13
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In bosonic string theory, mathematical consistency demands a 26-dimensional spacetime, whereas
superstring theory requires 10 dimensions. These constraints arise from anomaly cancellation and
conformal invariance. To reconcile this with four-dimensional physics, extra dimensions are assumed
to be compactified on small-scale structures, typically modeled by Calabi-Yau manifolds or orbifolds
[4].

One of the most significant contributions of string theory is its potential to provide a framework
for quantum gravity while introducing novel concepts in physics and mathematics, such as dualities
and M-theory. In particular, the dynamics of D,-branes lead to the emergence of noncommutative
quantum field theories (NQFTSs). In the presence of background antisymmetric fields, the low-
energy effective description of D-branes results in deformations of spacetime coordinates, giving
rise to noncommutative geometry. The Seiberg-Witten limit provides a precise formulation of this
connection, offering a bridge between string theory and noncommutative gauge theories—one of the
central topics of this thesis [6]. These topics will be explored in subsequent sections.

To develop these ideas systematically, we begin by reviewing the fundamental formulation of
string theory. We start with the classical relativistic point-particle action as a stepping stone to-
wards understanding the string action. From there, we discuss the quantization of closed strings,
establishing the necessary theoretical and mathematical groundwork. Later sections focus on D,-
branes, their role in string theory, and their implications for noncommutative geometries and field
theories.

Ultimately, this thesis aims to provide a deeper understanding of the fundamental structures that
arise in string theory and to explore how these concepts contribute to our broader comprehension

of quantum field theory and gravity.

1.1. Relativistic Point Action

In physics, the motion of a system is governed by the principle of least action, which states that
a system follows a trajectory that minimizes the action. The action is defined as the integral of the
Lagrangian over time, and the equations of motion are derived from the Euler-Lagrange equations.
To establish a foundation for string theory, we first analyze the action of a non-relativistic free

particle and then extend it to the relativistic case.
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Figure 1.1: A worldline of a particle in Minkowski spacetime. The vertical axis represents the time
coordinate X, while the horizontal axis represents the spatial coordinate X'. The red lines denote
the light cone, where X° = X!, marking the boundary between timelike and spacelike regions. Here,
XY=t

Before introducing the string action, it is instructive to examine the quantization of the relati-

vistic point-particle action, beginning with the classical action of a non-relativistic free particle

_1 2
Sy = 2mfv (t)dt, (1.1.1)

2 = -9 is the squared velocity of the non-relativistic particle. To describe a relativistic

where v
particle, we impose |0| = ¢ = 1. Since special relativity modifies the structure of spacetime, we must
ensure that the action remains invariant under Lorentz transformations. The Euclidean notion of

spatial distance generalizes to Minkowski spacetime through the spacetime interval

ds® = —dt? + da® + dy? + d=*. (1.1.2)

However, transitioning to relativistic dynamics requires identifying a Lorentz-invariant action.

The natural candidate for such an action is the proper time interval, % [4, 7]. Thus, we define

Srocfds. (1.1.3)
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Here, ds is the relativistic interval, illustrated in Figure 1.1, where the worldline of a particle
is depicted. Since the proper time maximizes rather than minimizes the integral, we introduce a
proportionality constant —m, where m is the particle’s mass. This ensures the correct physical

dimensions, yielding

Sy = —m/ds. (1.1.4)

Substituting the expression for the differential area,

ds =/1 - dii;dt, ie{1,2,3)}. (1.1.5)

Alternatively, we introduce a new parameterization to further analyze the action. Let the world-
line of the particle be parameterized as z* = 2#(7), where p € {0,1,2,3}, with 2% = ¢t = ¢ and 2*
denoting the spatial coordinates for i € {1,2,3}. Defining &* = %, the action can be rewritten in

terms of the Minkowski metric
Sy = —m/ dr /=N THIY, (1.1.6)

where 7, = diag(-1,+1,+1,+1) is the Minkowski metric [1].

1.2. Nambu-Goto Action

The next step in the development of string theory is to construct the action for a relativistic
string. The action of a free relativistic point particle is proportional to the proper time along
its worldline. Generalizing this idea to one-dimensional strings, we replace the worldline with a
worldsheet, representing the two-dimensional surface traced by the string as it evolves in spacetime.
The Nambu-Goto action is designed to be proportional to the area of this worldsheet, ensuring a

manifestly Lorentz-invariant description of string dynamics [4].
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Figure 1.2: Illustration of a string worldsheet in spacetime. The vertical axis represents the evolution
parameter 7 (worldsheet time), while the horizontal axis represents the spatial coordinate o along
the string. As the string evolves, it sweeps out a two-dimensional surface in spacetime. For a closed

string, the periodicity condition o — o + 27 holds [1].

Analogous to Eq. (1.1.3), we can express the action of a string as

Sna~ [dA=- ! [ aa, (1.2.1)

2ma’

where dA is the differential area of the worldsheet, as illustrated in Figure 1.2. To achieve this, we
parameterize the worldsheet using two coordinates, o® = (7,0), where 7 is a timelike parameter
and o € [0, 27] is a spacelike parameter. These parameters define a mapping into Minkowski space,
XH* = XH(71,0), where € {0,...,D —1}. For a closed string, we impose the periodicity condition

XH*(o,7) = X*(0 +2m,7) [1]. Thus, the action takes the form

Spy=——t fde/—detfy, (1.2.2)

s=—
2ma

where o/ is the universal Regge slope, related to the string scale Iy by o = [2. The term YaB
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represents the induced metric on the worldsheet, which defines how distances are measured on the
surface swept by the string. Since the string is embedded in a higher-dimensional spacetime, this
metric is constructed using the embedding functions X* (7, 0)

XM XY

Yot = o o (1.2.3)

where 7, = diag(-1,+1,+1,+1) is the Minkowski metric. Defining XH = %ﬂ and X" = 85((:, the

T

components of the induced metric can be written as
" Yrr = XHX u: Measures time evolution.
= Y50 = X" X,: Measures spatial stretching.
" Vg = Xrx /IL: Describes the interaction between time evolution and stretching.

Thus, the metric in Eq. (1.2.3) can be rewritten as

X2 X-X
Y =1 . : (1.2.4)
X . XI XIQ

1.2.1. Symmetries of the Nambu-Goto Action

The Nambu-Goto action exhibits two fundamental symmetries

1. Poincaré invariance of spacetime: This symmetry is characterized by the transformation

parameters A*, and ¢, which are independent of the worldsheet parameters.
2. Reparametrization invariance: This symmetry allows arbitrary reparametrizations of the
worldsheet, o - (o), analogous to gauge symmetries in point-particle mechanics [4, 1].
1.2.2. Equations of Motion

To derive the equations of motion from the Nambu-Goto action, we first define the conjugate

momenta, II” and II?, as

. oL
o (1.2.5)
o - 95 (1.2.6)
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where L is the Lagrangian density of the system, given by

1
=- - . 1.2.
L 27ra’\/ dety (1.2.7)

Since £ depends on both X* and X', the equations of motion follow as
O- 11}, + 9,117, = 0. (1.2.8)
Alternatively, the equations of motion can be expressed as

do(\/— det yy*P 95 XH) = 0. (1.2.9)

1.3. Polyakov Action

The square root in the Nambu-Goto action (1.2.2) poses a technical challenge in quantization,
leading to nonlinear equations of motion. However, there exists an alternative formulation that
is classically equivalent to the Nambu-Goto action but simplifies the quantization process: the
Polyakov action. This formulation removes the square root by introducing an additional field, making

the action more tractable [1].

1
Spy = - f d20v/= det hhP 9, X" 95 X" 1 (1.3.1)

4o’

where h is a new field representing a dynamical metric on the worldsheet. This approach highlights an
important perspective: the Polyakov action describes a set of fields X* coupled to two-dimensional

gravity [1].

1.3.1. Symmetries of the Polyakov Action

As discussed in Section 1.2.1, the Nambu-Goto action exhibits two fundamental symmetries:
Poincaré invariance and reparametrization invariance. The Polyakov action retains these symmetries
but also introduces an additional one— Weyl invariance. This symmetry corresponds to a local

rescaling, or conformal transformation, of the worldsheet metric. Under this transformation, the
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action remains unchanged

hag = iLag = Q(U)hag. (1.3.2)

A common choice is (o) = e?(?), which rescales the metric while preserving angles. This sym-
metry is crucial because it indicates that the dynamics of the string depend only on the shape of
the worldsheet and not on its local scale. Consequently, Weyl invariance constrains the types of

interactions that can be added to the action. For example, terms of the form
f dov/—det AV (X) (1.3.3)

are forbidden, as they violate this invariance.

1.3.2. Gauge Fixing

The Polyakov action exhibits both reparametrization and Weyl invariance, implying that not
all components of the worldsheet metric h,g correspond to physical degrees of freedom. This re-
dundancy complicates the analysis of the system. To simplify the equations of motion and facilitate
quantization, we impose a specific gauge condition to eliminate these extra degrees of freedom. A
convenient choice is

hag = €23, (1.3.4)

This choice simplifies the equations of motion and facilitates the quantization process by making
the theory resemble a two-dimensional conformal field theory (CFT) [4]. In conformal gauge, the
worldsheet metric is taken as hqg = 143, effectively removing independent metric degrees of freedom.
Consequently, the embedding functions X#(7,0) become the only remaining dynamical variables.

Under this gauge choice, the action simplifies to

1
S =- f d%0 9, X" 0 X" Ny (1.3.5)

4o

This formulation is known as the string sigma-model. In the classical framework, gauge fixing
simplifies the equations of motion, making analytical solutions more accessible. In the quantum

framework, fixing the conformal gauge leads to a two-dimensional CF'T, where string excitations
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are interpreted as quantum states [4].

1.4. Polyakov Equations of Motion

In physics, the equations of motion for a system are derived by extremizing the action, follo-
wing the principle of least action. This involves taking the variation of the action with respect to
the relevant fields. For the Polyakov action, varying with respect to the metric field h,g and the
embedding fields X* leads to two distinct equations.

The variation with respect to the worldsheet metric hqg yields

1 2 1Y v 1 w v
55 =~ [ o dhtVR {aaXHaﬁx = s 0, X1 0, X mw} -0,

From this, we can reconstruct the Nambu-Goto action, confirming that both actions are equi-

valent. By setting 7,3 = 0o X*93X"1,,,, we obtain

1
/- dety = 5\/- det h h*P 9, X" XV 17,10 (1.4.1)

On the other hand, varying the action with respect to the fields X* leads to the same equations of

motion as in the Nambu-Goto formulation

1
8Sx = o d%0 /= det hh*P 93 X 006 XV 1)y (1.4.2)

yiye;

This results in the wave equation
Oa (V= dethh®P 9 X ") = 0. (1.4.3)

In addition to the wave equation for X*, the system must satisfy constraints due to gauge fixing.

In conformal gauge, these constraints take the form of the Virasoro constraints
Top = 0. (1.4.4)

These conditions ensure the consistency of the physical states in string theory and eliminate
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unwanted ghost states. While the Polyakov equations of motion describe the classical dynamics of
strings, they also play a crucial role in the quantum theory. The quantization of these equations
leads to the Virasoro algebra, which governs the physical spectrum of string states [4, 1]. However,

we will not delve into the Virasoro algebra in this discussion.

1.5. Closed String Quantization

In this section, we briefly outline the quantization of the closed string, providing a conceptual

overview without delving into detailed calculations.

1.5.1. Boundary Conditions

When solving the equations of motion in string theory, boundary conditions play a crucial role

in classifying strings as either open or closed. The boundary term in the action is given by

1 1% 12
y f A [0 XX |y =1 X6 X g (1.5.1)

The condition X’-6X =0 leads to two possible boundary conditions: one where X’ = 0 and another

where 6.X = 0.

1. Closed string: When the fields X* are periodic functions satisfying

XH*(o,7) = X (0 + 2m,T), (1.5.2)

we have a closed string.

2. Open string: For an open string, the boundary condition X’-§X = 0 can be interpreted as

follows

w If X ;L =0, we impose Neumann boundary conditions, which ensure that the momentum
normal to the worldsheet boundary vanishes. This implies that no momentum flows

through the string endpoints

X, (m,7)=X,(0,7) =0. (1.5.3)
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= If §X* =0, we impose Dirichlet boundary conditions

XP Jpop= XE XM |yeg= X (1.5.4)

Dirichlet boundary conditions break Poincaré invariance; however, they are sometimes una-
voidable. The modern interpretation is that strings can be attached to higher-dimensional

objects called D,-branes [5].

In general, a D-dimensional spacetime can support both types of boundary conditions, with

D - (p+1) Dirichlet conditions and p + 1 Neumann conditions.

1.5.2. Solution to the Equations of Motion

To solve the equations of motion, we introduce light-cone coordinates

ot =Txo. (1.5.5)

In these coordinates, the derivatives, metric, and equations of motion simplify

1
Oy = 5(8Ti80), (1.5.6)
1
Nee =N-==0, Ne_=n_y = 9 (1.5.7)
The wave equation takes the form
0,0_-X"=0. (1.5.8)

The energy-momentum tensor components are

T++ = 8+XH8+XM = O7 T__ = a_Xua_XM = 0. (1.5.9)

T+7 = T7+ = 0. (1.5.10)

The general solution to the wave equation is

XM(o,1) = XR(o7) + X5 (o), (1.5.11)
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where X and X represent the right- and left-moving modes [1]. The constraints satisfy

(0, XRg)* = (0-X1)?=0.

Additionally, X*(o,7) must be real.

1.5.3. Closed-String Mode Expansion

The general solution for X* is

1 1 } 1 :
Xy = St + S (7 - 0) + L1, Y Zate2in(r-o),
n=0

1,1 el
Xf = Jat v SUp(r + o) + Sl ) —ahe ),
n#0

(1.5.12)

(1.5.13)

(1.5.14)

Here, x* represents the center-of-mass position, while p# is the total momentum of the string. The

string length scale [ relates to the string tension via

To ensure that X% and X/ are real, we impose
M _ * ~ _ (= *
oy = (an)™, oL, = (ay)"

Furthermore, we set

Bo_ ~p
Oéo —O[O.

1.5.4. Classical Poisson Brackets and Canonical Quantization

We begin by introducing the canonical momentum

Pt (o,T) = 5575 =TXH

I

(1.5.15)

(1.5.16)

(1.5.17)

(1.5.18)
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From this definition, the Poisson brackets take the form

{P*(o,7),P"(c',7)} = {XH"(0o,7),X"(c',7)} =0, (1.5.19)

{P*(o,7), X" (0", 7)} =n*5(0 - o). (1.5.20)

The mode operators a and @ satisfy the following Poisson bracket relations

{ah, an} ={an,, an} = imn™ dpn0- (1.5.21)

Finally, we impose the following additional condition

{ak &1} = 0. (1.5.22)

1.5.5. Canonical Quantization

To transition from classical to quantum mechanics, we replace Poisson brackets with commuta-

tors, thereby promoting the coordinates to quantum operators [5]

{"'} %i['v']' (1.5.23)

This quantization yields the fundamental commutation relations

[ah, an]=[ah, &) ] =mn™ 0min.o- (1.5.24)

[al,&"] = 0. (1.5.25)

We introduce a convenient rescaling of the mode operators

1
at = ——al, att=——akt . m>0. (1.5.26)

m \/m m? m \/m

This rescaling reveals that the commutation relations of these operators obey the algebra of raising
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and lowering operators for a quantum harmonic oscillator
[, 1] = [@", 3% ") = """ 6mm, for m,n>0. (1.5.27)
However, for the time component, we encounter
[, ap,']=-1. (1.5.28)

This result leads to negative-norm states, which must be eliminated from the physical spectrum.
In analogy with the harmonic oscillator, we construct the physical spectrum using the raising

operator a/ acting on the vacuum state | 0). For a general state | ¢), we can explicitly label the

momentum eigenvalue

| p) =att T atn 110 k). (1.5.29)

Here, the momentum operator p* satisfies

Pl o) =k ). (1.5.30)

From this formulation, it follows that states with an even number of time-component excitations
have positive norm, while states with an odd number of time-component excitations have a negative

norm [5].

1.5.6. Lightcone Gauge

To simplify calculations, we introduce lightcone coordinates

X*= \/g(xo + xPh), (1.5.31)

While this choice of coordinates is not manifestly Lorentz-invariant, this is not a fundamental
issue. Certain symmetries of the classical theory do not survive quantization, a phenomenon known
as anomaly cancellation. In this case, it indicates that the underlying physical theory is not fully

Lorentz-invariant at the quantum level [1].
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In these coordinates, the metric takes the form

ds? = -2dX*dX ™ + Df dXFdXH, (1.5.32)
=1
The solutions to the equations of motion for X* are
X*(o,7)=Xp(c7)+ Xi(a"). (1.5.33)
For X™*, we obtain
X*=z"+ap'r. (1.5.34)

This condition defines the lightcone gauge.
For X~, the solutions take the form

Xg(o™ )——x + = ap o +1\/ Z ane Ao (1.5.35)

n¢0n
X7(7—17 1,,, . ~—72m0 1.5.36
La)—§x+§apa+1 Z% . (1.5.36)
n¥*

Using the Virasoro constraints, we obtain

+oo  D-2

ap =\ =—— > > al_.al. (1.5.37)

p m=—oo =1

1.6. Mass-Shell Condition

In quantum field theory, physical particles must satisfy the mass-shell condition, which relates
their energy and momentum. In string theory, this condition naturally arises due to the constraints
=

imposed by reparametrization invariance and the Virasoro constraints [5, 4]. These constraints

ensure that only states satisfying the mass-shell condition are physically meaningful.

To compute the mass squared, we use

D-2
i 2
M? = —nup/'p” =2"p" = ¥, 7= 55 (N -a). (1.6.1)
p=1 s
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where the number operator N is given by

+00

D-2
N=> > aak (1.6.2)
p=1 1

n=

By using commutators and the well-known Ramanujan result

1
1_|_2_|_3_|_...:C(_1):——7 (163)
12
we obtain the critical dimension of spacetime
2 D-2
M? = —Q(N——). (1.6.4)
1z 24
For a massless state, we require
D-2
— =1 1.6.5
51 (1.6.5)
Solving for D, we find:
D =26. (1.6.6)

Thus, in bosonic string theory, the critical dimension of spacetime is 26 [5, 1].
However, the mass-shell condition also reveals that the lowest-energy state in bosonic string

theory has a negative mass squared, indicating that it corresponds to a tachyonic particle

M?=-Z. (1.6.7)

This suggests that the bosonic string vacuum is unstable. This instability is one of the moti-
vations for considering superstring theory, where spacetime supersymmetry removes the tachyonic
state. In superstring theory, the critical dimension is D = 10, and for our purposes, we adopt this

result [4, 1].



Chapter 2

D-branes and Open Strings

Initially regarded as mathematical boundary conditions for open strings, D,-branes gained
fundamental significance when Polchinski demonstrated that they are dynamical objects carrying
charges under Ramond-Ramond (RR) fields. This insight revolutionized our understanding of non-
perturbative aspects of string theory, leading to breakthroughs in black hole entropy calculations
and gauge-gravity dualities [4, 5, 1].

As discussed in previous sections, the string motion equation (1.5.1) imposes two types of boun-
dary conditions: Dirichlet (1.5.4) and Neumann (1.5.3). When studying string solutions without
periodic constraints (1.5.2), a new class of physical-mathematical structures emerges, D,-branes.
These arise from the interpretation of Dirichlet boundary conditions, which constrain the endpoints
of open strings to move along a p-dimensional surface.

D,-branes are dynamical physical objects that generalize the concept of particles to higher
dimensions. A D,-brane specifically refers to a D,-brane with p spatial dimensions. In supergra-
vity, D,-branes appear as solitonic solutions—black D,-branes—that are charged under Ramond-
Ramond fields. This duality enables a classical treatment of D,-brane dynamics within the super-
gravity framework [8, 9].

The significance of D,-branes and open strings extends to several fundamental areas of physics,
particularly in the study of gauge theory and its connection to string theory. Open strings whose
endpoints are confined to D)-branes naturally describe gauge fields. When multiple D,,-branes coin-
cide, the spectrum of open strings stretching between them leads to a U(NN) gauge theory on the

brane’s worldvolume. This provides a string-theoretic explanation for non-abelian gauge symme-
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tries. The massless modes of these open strings correspond to gauge bosons, indicating that gauge
theories—such as quantum electrodynamics (QED) and quantum chromodynamics (QCD)—can be

understood in terms of strings attached to Dp-branes [10].

Beyond gauge theory, D,-branes play a crucial role in various areas of theoretical physics, inclu-
ding: - Black hole physics, where D,-branes provide a microscopic explanation of black hole entropy
[11]. - AdS/CFT correspondence, a fundamental holographic duality relating gravity in AdS spaces
to conformal field theories [12]. - Brane-world scenarios, which propose extra-dimensional models

to address the hierarchy problem [13].

These topics will be explored in detail in subsequent sections.

2.1. D,-Branes Remarks

We consider the first p + 1 coordinates with Neumann boundary conditions and the remaining

D - (p+1) coordinates with Dirichlet boundary conditions. This leads to

0, X" =0, forpe{0,...,p}, (2.1.1)

X*M0,7)=Xt, XM(m,7)=XF, forpe{p+1,...,D}. (2.1.2)

These conditions indicate that the string endpoints are free to move along a (p+ 1)-dimensional
hypersurface, while transverse motion is restricted. Consequently, the presence of the D,-brane

breaks the original Lorentz symmetry SO(1, D —1) down to SO(1,p) x SO(D -p—-1).

The dynamics of open strings are fundamentally modified by the presence of D,-branes. Neu-
mann boundary conditions allow string endpoints to move freely along the brane, whereas Dirichlet
conditions constrain them to fixed positions in the transverse space. This behavior is illustrated in
Figure 2.1. As a result, open strings are confined to the brane, leading to significant consequences

in field theory and string interactions [5, 4].
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| Dirichlet
t/ \f\
I
—

Neumann

Figure 2.1: Illustration of a D,-brane with an open string. The Neumann boundary conditions allow

movement within the brane, while Dirichlet conditions fix the string endpoints to the brane.

A key consequence of the presence of a Dp-brane is the breaking of Lorentz symmetry. In the
absence of D-branes, the spacetime symmetry is given by SO(1, D - 1). However, the introduction
of a Dp-brane, which extends along (p+1) dimensions, splits the symmetry into SO(1,p) along the
brane and SO(D-p-1) for the transverse space. This symmetry breaking has profound implications,
including modifications to field theories and interactions [10].

Applying the boundary conditions to the string solutions X* (o, 7) obtained in Section 1.5.3, we

obtain:

1. Neumann boundary conditions (0, X" = 0) imply:

ol = at, (2.1.3)

2. Dirichlet boundary conditions (X* = ¢#) lead to:

= p'=0, o =-al. (2.1.4)

From these equations, we observe that only one set of oscillators, a,,, remains free, while the @,
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are constrained by (2.1.3) and (2.1.4).

The dynamics of Dp-branes are described by an effective field theory on their worldvolume.
This theory, known as the Dirac-Born-Infeld (DBI) action, incorporates gauge fields and gravity in
a non-linear fashion. The presence of a determinant structure modifies the usual Maxwell theory,
introducing corrections that become relevant at high energy scales. We will explore this in later

sections [5, 6].

2.2. Open String Quantization

Dirichlet boundary conditions fix the endpoints of open strings at specific points in spacetime.
For our purposes, we promote the coordinates % and momenta p®, where a =0,...,p, as quantum

operators. This implies that quantum states are restricted to lie on the D,-brane.

Using the constraints given in (2.1.3) and (2.1.4), the solutions take the following forms:

= Neumann Boundary Condition States

1 1 i 1 ino-
Xl = Ex“ + 51?1)"0‘ + %ls 3 —ake 7 (2.2.1)
n#0
1 1 i 1 o
XW =k + Z2ptot + ils 3 —ake™n? (2.2.2)
2 2 n#0

The full solution is then given by

1 .
Xk (o,7) = 2"+ Zpir + il > —ale "7 cos(2n0) (2.2.3)
n#0 1

where the subscript IV denotes that this solution arises from Neumann boundary conditions.

= Dirichlet Boundary Condition States

1 i 1 -
Xt= et 2l Y —ale 2.2.4
R 2C 2 STZ:O nane ( )

1, i 1, s
XZL = 56“ - 5[5 7;) ;O[ZG e (225)
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1 ‘
X (o, 7)== 1; > —ake ™ sin(2n0) (2.2.6)

n#0
where D denotes that this solution originates from Dirichlet boundary conditions.

The mode expansion of an open string captures its quantum fluctuations, with each mode
corresponding to a harmonic oscillator. The zero mode represents the classical motion of the string’s
center of mass, while higher modes correspond to quantum excitations that generate particle-like
states in the string spectrum [1].

To transition from classical to quantum mechanics, we follow the standard procedure of replacing

Poisson brackets with commutators

{"'} %i['v']' (2.2.7)

This leads to the fundamental commutation relations
[ah,,an] =[ath,,a; ] = mn™ 0mn.0- (2.2.8)

Working in light-cone coordinates, as in previous sections, we obtain the following equation for the

mass

2 2 i i
M =B Y ¥ al,an+ > Y al,a,-al. (2.2.9)

i=1 n>0 i=p+1n>0

The first sum runs over modes parallel to the brane, while the second sum accounts for modes
perpendicular to the brane. The critical dimension remains D = 26 when a =1 [1].

The fact that both open and closed strings share the same critical dimension is not coinciden-
tal—it is a fundamental result that implies that open strings necessarily contain closed string states.
This can be observed in string interaction theory, where open strings can join to form closed strings
1, 5].

We can express the mass equation in terms of the excitation level N
5 1
M* = J(N_ 1). (2.2.10)

At the ground state (N = 0), we obtain a tachyonic state with half the mass of the closed-

string tachyon. The tachyon is restricted to the brane, but its interpretation suggests that the brane
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itself is unstable and will decay, dissolving into closed string modes [1]. The presence of tachyonic
states in bosonic string theory indicates an unstable vacuum. In superstring theory, the inclusion of
fermionic degrees of freedom through supersymmetry eliminates these tachyons, leading to a more
stable quantum theory.

The ground state satisfies

ol |0;p)=0, n>0, ie{l,....p-1,p+1,...,D-1}. (2.2.11)

2.2.1. First Excited States

The first excited states are massless and can be classified into two categories:

= QOscillators Longitudinal to the Brane:

The states are created by the oscillators a?; | 0;p), where a € {1,...,p—1}, and they lie within
the brane. These states transform under the SO(1,p) Lorentz group. Since these particles are
spin-1, like photons, we introduce a gauge field A, on the brane, which, in quantization, is

identified with these photons [10].

= QOscillators Transverse to the Brane:

The states ol | 0;p), where I € {p+1,..., D1}, transform as scalars under the SO(1,p) Lo-
rentz group of the brane. These can be identified as scalar fields representing brane fluctuations
in the transverse direction. These scalar fields transform as vectors under the SO(D —p - 1)

rotation group transverse to the brane, representing symmetries on the brane worldvolume.

A profound connection exists between open strings and quantum chromodynamics (QCD). In
certain models, quark confinement can be understood as a consequence of string dynamics, whe-
re color-electric flux tubes between quarks behave like open strings ending on a D,-brane. This
reinforces the idea that strong interactions may have a string-theoretic origin [14].

In string field theory, the full set of string excitations is described as field-like objects in an
infinite-dimensional space. The first excited state of the open string naturally appears in this fra-

mework, playing a fundamental role in string-brane interactions [7].
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2.3. D,-Brane Dynamics

The dynamics of D)-branes are governed by the Dirac-Born-Infeld (DBI) action. The DBI action

for a D,-brane is given by

1

2ma!

SpBr = - /dp”é\/—det (Gap + 21 Fp), (2.3.1)

where T}, is the tension of the D,-brane, {* are the worldvolume coordinates (see Figure 2.2), Gy,

is the induced metric on the brane, and F,;, is the field strength of the gauge field A, [10].

Worldsheet World volume

String Brane

Figure 2.2: Worldvolume of a D,-brane and worldsheet of a string in spacetime.

The DBI action provides a non-linear extension of electromagnetism, incorporating higher-order
corrections that become relevant at strong field strengths. This modification arises naturally from
string theory, ensuring that D,-branes behave consistently with both gauge theory and gravity.

For comparison, the Maxwell action for a gauge field is given by
_ 1 dp+1 uv
SMazwell = _Z UFMVF . (232)

The DBI action generalizes this concept by including non-linear interactions between electro-
magnetic fields and the brane’s geometry, extending Maxwell’s theory to strong-field regimes.

The effective theory describing the D,-brane worldvolume is a non-linear gauge theory coupled
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to scalar fields ¢'. These scalars represent the transverse fluctuations of the brane, providing a
geometric interpretation of the Higgs mechanism in gauge theories [6]. The scalar fields can be

incorporated into the DBI action as follows

1
2ma!

Sppr=- / AP e/ = det (ap + 0a?Opi + 2T Fyp). (2.3.3)

In subsequent chapters, we will expand on the idea that these scalar fields represent transverse

fluctuations of the brane. This concept forms a key foundation of our study.



Chapter 3

Seiberg and Witten Limit

In this chapter, we explore the low-energy limit of string theory in the presence of a background
B-field. In 1999, Nathan Seiberg and Edward Witten demonstrated that when a B-field is applied
to a D,-brane, it induces a noncommutative field theory in which higher-order string corrections
are suppressed. In this regime, the dynamics of open strings reduce to those of a noncommutative
gauge theory, where gauge fields interact via the Moyal product.

This framework connects string theory to a deformed version of Yang—Mills theory, modifying its
fundamental symmetries and interaction rules. Understanding this limit provides a bridge between
the high-energy behavior of string theory and the low-energy phenomena described by quantum

field theory. [6]

3.1. Remarks on Noncommutative Geometry and Noncommuta-

tive Quantum Field Theory

Quantum Field Theory (QFT) is a fundamental framework in theoretical physics that combines
classical field theory, special relativity, and quantum mechanics. It provides a comprehensive descrip-
tion of how elementary particles interact and propagate through space-time. QFT has successfully
explained and predicted a wide range of phenomena in particle physics, including the behavior of
electrons, photons, and other fundamental particles [15].

Noncommutative Quantum Field Theory (NQFT) arises from the idea that space-time coordi-

nates may not commute at very small scales, a notion inspired by principles of quantum mecha-

37
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nics and string theory. In conventional QFT, space-time coordinates z* are commutative, meaning
atax? = x¥xh.

Noncommutativity in mathematics is as familiar as matrix algebra. In physics, however, it ap-
pears more subtly. One of the earliest examples occurs in the geometry of phase space, which arises
in quantum mechanics [16, 17]. There, the noncommutative relation between spatial coordinates ¢

and their conjugate momenta p is given by:

[G,p] =il (3.1.1)

This principle can be generalized to space-time itself:

[##,27] = i0™ . (3.1.2)

Here, 0" is a constant antisymmetric matrix quantifying the noncommutativity of space-time. In
this context, when an open string propagates in a background B-field, its endpoints experience
a force analogous to the Lorentz force on a charged particle in a magnetic field. This leads to a
smearing of position coordinates, described by Eq. (3.1.2).

This effect dominates in the Seiberg-Witten limit, where the string length o’ approaches zero

while maintaining a finite noncommutative scale, with * o< (B~1)* [6].

3.1.1. Noncommutative Spaces

The idea of noncommutative spaces in a formal framework originates from Gel’fand and Naimark,
who established a correspondence between commutative algebras and topological spaces. For any
topological space M, we can define an algebra Cy(M) of complex-valued continuous functions. This
correspondence implies that if we know the algebra, we can reconstruct the topological space.

Therefore, if we have a commutative algebra, we can reconstruct an ordinary topological space,
also called a commutative space. Naturally, one may ask: can we replace the commutative algebra
with a noncommutative one to obtain a noncommutative space? The answer is yes [18, 19, 20].

To establish the desired physical correspondence, we start with the space-time coordinates

1

{20,z Lol } in a D-dimensional space and promote them to operators via canonical quanti-

zation: {#°,...,2P}. The commutation relation in Eq. (3.1.2) holds for all space-time coordinates,
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and the matrix 0*¥ specifies their noncommutativity. These operators define a noncommutative
algebra A.

To define fields on noncommutative spaces, we require more than just the algebra A—we also
need calculus tools. Thus, we introduce derivation operators 3# defined over A, along with an

integration operator defined via a trace Tr. These satisfy the following properties [19]:

1. Leibniz Rule: For A, Be A, the derivative 5# satisfies
9,(AB) = (9, A)B + A(9, B), (3.1.3)
If there exists czu € A such that éu A= [CZM, A], then éu is an inner derivation. Otherwise, it is
called an outer derivation.

2. Vanishing Total Derivative: For any A € A,

A~

Trd, A=0 (3.1.4)

3. Trace of Commutator: For A, B € A,

Tr[A,B] =0 (3.1.5)

3.1.2. Example of a Noncommutative Geometry: the R} Space

Since conventional field theory is defined over the space R, the first step toward constructing
a noncommutative field theory is to define a noncommutative version of this space, called ]RQD .
The simplest case is described by the noncommutative and associative algebra Ay, generated by
self-adjoint operators {i’l, ..., 2"} with spectrum R, satisfying Eq. (3.1.2), where 6" is a constant
antisymmetric D x D matrix.

The derivatives on Ré) are defined by the rules:

N

b, =3, (3.1.6)

[0,,0,] = =iCpup. (3.1.7)
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For our purposes, we take Cp, =0 in Eq. (3.1.7), so the derivatives commute.
We can interpret the noncommutativity as a delocalization of points in R”. Due to Eq. (3.1.2),

we also obtain a Heisenberg-type uncertainty relation:
v 1 v
Azt AzY > §|0“ I (3.1.8)

This relation implies that it is impossible to localize an object in RZ)) with resolution finer than
o |12 21, 22].
3.2. Star Product: The Moyal Product

When working with fields on noncommutative spaces, we need to define a product that is consis-
tent with the underlying geometry. To this end, we introduce a deformation of the usual pointwise

product of functions. Let f, g € C®°(RP), then the star product is defined as:

frg=fg+ i h"Bn(f,9), (3.2.1)
n=1

where B, is an n-th order bidifferential operator satisfying the following properties:

1. fxg=fg+O(h),ie., B, defines a deformation of the pointwise product;
2. frg—gx*f=ih{f,g} +O(h3), where {{f,g}} denotes the Moyal bracket;

3. fx1=1x%f=f, ie., the identity function remains the identity;

4. frg=9g~* f, i.e., complex conjugation is an antilinear antiautomorphism.

In this work, the most relevant example of a star product is the **Moyal product**, defined for

smooth functions f and g as

f(x) * g(x) = f(x)er 200" Fv (). (3.2.2)

Here, 0" is the same antisymmetric matrix introduced in Eq. (3.1.2). The Moyal product can be

expanded as a power series
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f(x)*g(x)= 2%0““’1 0T (O 0, )00y - 00, 9). (3.2.3)

Alternatively, the Moyal product can be expressed in integral form

F(@) * () = [ty [ dtuf(y) gluy e @ e, (3.2.4)

1
|det 0] ¢
This expression explicitly exhibits the delocalization inherent to noncommutative spaces. The Moyal
product introduces noncommutativity through the parameter *”, which deforms the multiplication
of functions. As a consequence, interaction terms in the Lagrangian of quantum field theory acquire
additional phase factors, altering the structure of gauge interactions.

Properties of the Moyal Product

The Moyal product has several important mathematical properties that make it suitable for

constructing noncommutative field theories:

= Cyclicity under integration:

[ daf@)g@) = [ dle f@) @) = [ dege) = f(). (3.2.5)

This means that, when integrated over space-time, the star product behaves like the usual
pointwise product. In particular, it is symmetric under the exchange of functions inside the

integral.

» Cyclic property of traces (associativity under cyclic permutations):

[ @)« g@) < @) = [ dwg(a) < (@) « f(2). (3.2.6)

This cyclicity ensures that the trace of a product of fields remains invariant under cyclic

permutations, which is crucial for the consistency of noncommutative gauge theories.

These properties reflect the underlying associativity of the Moyal product and allow for a well-
defined formulation of action principles in noncommutative space.

The Moyal product naturally appears in string theory when open strings propagate in a back-
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ground B-field. In the Seiberg—Witten limit, the low-energy effective theory on the D,-brane beco-

mes a noncommutative gauge theory, where interactions are encoded through the star product.

3.2.1. Noncommutative Lagrangian Formalism

The introduction of the Moyal product modifies the action and interaction terms in quantum
field theory. These modifications lead to the appearance of phase factors in Feynman diagrams,
affecting scattering amplitudes and renormalization properties. One of the key consequences is a
restructuring of ultraviolet (UV) divergences and the emergence of UV/IR mixing.

A straightforward way to construct a noncommutative field theory is to replace the standard
product of fields with the Moyal product, and consider fields as elements of the algebra Ay, which

is a deformation of the algebra of functions over R [21, 22]. For instance:

¢* > pxx (3.2.7)

As an example, consider the scalar field Lagrangian in the commutative case:

1 1 A
Scle] = f d'x (5@@8% - §m2¢2 - Egﬁl) (3.2.8)

To formulate the corresponding noncommutative theory, we apply the deformation given in

Eq. (3.2.7):

1 A
SNC[¢]:fddx(%@@*aﬂ(ﬁ_§m2¢*¢_a¢*¢*¢*¢) (3.2.9)

3.2.2. Physical Problems of the Noncommutative Case

The first major issue encountered when studying noncommutative geometry in physics is the
mixing of space-time coordinates, described by Eq. (3.1.2). This relation explicitly breaks Lorentz
invariance. To illustrate this, consider standard 4-dimensional Minkowski space, where the Lorentz

group is defined as:

SO(1,3) = {A| ATnA =7} (3.2.10)
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Now consider a specific choice of noncommutativity:

00 0 0
00 0 0

o = (3.2.11)
00 0 1
00 -1 0

In this case, all spatial coordinates commute with the time coordinate, preserving causality.

However, the non-zero commutator [y, z] = i breaks the full Lorentz group down to a subgroup:

SO(1,1) x SO(2) € SO(1,3) (3.2.12)

Another major problem introduced by noncommutativity is the breakdown of a key principle in
quantum field theory: the decoupling of short-distance (UV) and long-distance (IR) physics. The
Moyal product induces nonlocality, leading to UV /IR mixing. This mixing can be observed directly
by analyzing the integral form of the Moyal product [Eq. (3.2.2)], where distant points contribute

to local interactions.

As a consequence, many noncommutative quantum field theories lose renormalizability due to

this scale entanglement [22, 21].

A final challenge arises in the formulation of gauge theories in noncommutative space. Several

approaches have been proposed:

s Star-Gauge: Deforming the gauge group action using the star product;

= Twist-Gauge: Deforming the Leibniz rule in gauge transformations;

= Star-Twist Gauge: Combining both deformations above.

The key issue here is that the star-twist approach leads to an infinite family of gauge invarian-
ces. This breaks the principle of uniqueness in physical theories and introduces ambiguities in the

formulation of gauge symmetry [23, 24].
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3.3. Gauge Fields and D,-Branes

The presence of open strings ending on a D,-brane naturally gives rise to gauge field excitations.
The lowest-energy mode of an open string corresponds to a massless vector boson, which behaves
as a gauge field confined to the brane. This provides a direct connection between string theory and
Yang-Mills gauge interactions [4].

In point-particle physics, gauge fields couple to particles via the electromagnetic vector potential

A, The relativistic action for a particle of mass m and charge ¢ is given by:

S=—mcfds+g/d:v“A”
c

In string theory, due to the two-dimensional nature of the string worldsheet parametrized by
(1,0), the gauge field couples only on the boundary. The string action in the presence of a gauge

potential becomes:

1

2ma’

1 2 pya ; u]
[2f2d 00X X, wi [ dr A, 0.7, (3.3.1)

Here, A, is rescaled to include the factor 2ma’. Taking the field expansion X* = XH + 6X*, the

variation of the action becomes:

1

2ma’

S[X +0X] = S[X] + [ (aa)‘(“ DX+ %aaaxu aaaxu)

1 _
+i_[82 dr (FuyéX”BTX“ + §aVFM)\5X)‘6XVaTXH (332)

1 1
+§FMV5XV&,-5Xu + g&,Fu,\éX’\ciX”aTaXﬂ + ) ]
From the variation of the action, we obtain the equations of motion and boundary conditions:

8,0" X" =0, (3.3.3)

(0, X" +iF, 0, X") | =0. (3.3.4)

We observe that the coupling to the gauge field modifies the standard Neumann boundary condition.



45

To compute the string propagator G(z,2"), we must solve:

0,0"G(2,2") = -2ma’6(z - 2'), (3.3.5)

(905G (2,2') +iF,0:Gx(2,2)) | =0. (3.3.6)

o=0

As shown in [25], the solution for the propagator is:

1(1-F 1(1+F
G (z,2") ==a’ |:6/w In|z- 2|+ 3 (m)w In(z-2") + 3 (1 t F)W In(z - z'):| . (3.3.7)

This propagator encodes the modified boundary conditions induced by the background gauge field.
Furthermore, the effective action obtained in this context corresponds to the Dirac—Born-Infeld

(DBI) action, discussed in detail in Section 2.3.

3.3.1. Kalb-Ramond Fields

To generalize electromagnetic interactions in string theory, we must consider fields that can
couple naturally to extended objects. As discussed previously, the electromagnetic vector potential
A,, couples to the endpoints of open strings, i.e., to one-dimensional boundaries. However, for strings
with two worldsheet coordinates (7,0), a natural generalization is a two-form field B,,,, known as

the Kalb—Ramond field.

When a D)p-brane is embedded in a background B-field, the dynamics of open strings ending
on it are altered. In particular, the gauge field strength becomes modified to include effects of the

noncommutative geometry. The action for this coupling is:

l

S =25

/

- fz 20 ¢ B, 0, X" 9, X" (3.3.8)

Here, B,,, is the antisymmetric Kalb-Ramond field (rescaled with 27a’), and Sj is the free string
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action. Varying this action gives:

1
05 = [ don, 0" X 0,6X"
27r04i b (3.3.9)
- [ (BubdX# 0. X" + B X10,6X")
Integrating by parts and simplifying, we obtain:
1 1
55 = —5— [Z A0 1, 00" XPOX" 4 — [ dr (o X+ B, XyoxY| L (3310)
From this, we extract the equations of motion and boundary conditions:
0,0°XH =0, (3.3.11)
(05 X" +iBu0-X")| =0, (3.3.12)
o=

More generally, if the brane worldvolume has an induced metric G,,,, the boundary condition

becomes:

(G0, X" +iB,,0: X")

= 0. 3.3.13
- ( )

Here, p,v denote directions along the D,-brane. As a result, the zero-mode expansion of the open

string solution is modified as:

XH(r,0) =zt +2d (p"'7 - 2mg" B, ,p°c) + Oscillators. (3.3.14)

In the conformal gauge, using the complex coordinates z = 7 + i and z = 7 — i0, the equations of

motion and boundary conditions become:

00X =0, (3.3.15)

(9+ B)uw 0X”

(3.3.16)

o0 (g_B);ngV
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To compute the propagator G*(z,z, 2',z"), we solve the following equations

00G(z, 2,2, 2") = —2ma/5(2 - 2'), (3.3.17)
(9+B)uadG™| =(9-B)uadd™| (3.3.18)

A general solution to Eqgs. (3.3.17)—(3.3.18) takes the form
G (2,2,2',2") = -d' [g“" In|z-2'|+ f*(2) + f“”(Z)] (3.3.19)

The functions f**(z) and f*¥(z) are fixed by the boundary condition (3.3.16). They are given by

P (2) = % {9+ B)  (g-B)g V" (=~ =) + &, (3.3.20)

fr(z) = % {(g-B) g+ B)g '} In(z-2") +dy, (3.3.21)

with constants d}”, d5”. Thus, the full propagator is

1
G (22,7 2) = =o' ¢ Iz~ 2|+ o {(9+ B) (g - B)g ™'} In(= - )
) (3.3.22)
+ {(¢g-B)(g+B)g '} In(z-2") + D" |.
where D" = d'¥ + db” is a constant independent of z, z.
To simplify the propagator, we expand the matrix expressions in terms of symmetric and an-

tisymmetric parts. Define

Gl=(9g+B)lg(g-B)"! (3.3.23)

0=-2ra(g+B) 'B(g-B). (3.3.24)

Note that (g+B) ' =G '+ % and (g- B) ' =G - ;& since (g— B) ™' =[(g+B) '] in this

2ra 2ral?

setup.
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Using these identities, we can rewrite the propagator as

%
G"(2,2,2',7") = —o/|:g‘“’ In|z-2'|+ 1 {(Gi1 + 0 ) (I- Bgil)} In(z-2")

2 2mal
. 9 uw (3.3.25)
+ = {(G_l - —) I+ Bg_l)} In(z-2") + D" |.
2 2o/
With further algebra and simplification, the propagator becomes

1124 _ =

G"(2,z,2',2") = =a'| " In|z - /| + 1G‘“’ In|z -2 + b In |22

2 4o’ z-z
(3.3.26)

zZ—z

1 ! 1
+ §(G_lBg_1)“”ln( )— (OBg_l)“”ln|z—Z'|2+D’“’:|.

z—Z 4o

We now evaluate the propagator at the boundary by taking z = z = 7 and 2’ = 7’ +i0’, with

o’ - 0. In this limit, the logarithm in the first term vanishes because

lz—2|=]z-7] = In|°—

For the remaining terms, we expand

In|z - 2> = In(r - 7). (3.3.27)

To compute the argument of the complex logarithm

In(r-7"+io’) =In|r - 7| in O(x(7 - 7")).

Then, the term

1n(’f_ Z:) = —mie(r—7'), (3.3.28)

zZ-z
where €(x) is the sign function: e(z) =1 if x>0, -1 if 2 <0.

Substituting Eqs. (3.3.27) and (3.3.28) into Eq. (3.3.26), we obtain the propagator on the boun-

dary
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G (7, ') = ~a/ G n(r = 7')? + L e(r - ') (3:3.29)

If 7 > 7/, the time-ordered propagator reads

G (7,7) = (X¥(7)X" (') = =2/ G In|r = 7'| + 20" (3.3.30)

This result encapsulates the essence of noncommutative geometry on the D,-brane worldvolume:
the coordinates do not commute, and their noncommutativity is encoded in the antisymmetric part
of the string propagator. The appearance of the #*¥ term in the time-ordered correlator illustrates
how space-time itself becomes a quantum object at the endpoints of open strings. This beha-
vior marks the emergence of noncommutative gauge theories as effective descriptions of low-energy
dynamics in string theory, highlighting the deep interplay between background fields, boundary

conditions, and the structure of space-time.

3.4. Noncommutative Behavior

When an open string propagates in the presence of a background B-field, its endpoints—attached
to Dp—branes exhibit noncommutative behavior. The coordinates of these endpoints no longer com-
mute, resulting in a noncommutative geometry on the brane worldvolume. Specifically, the B-field
induces a noncommutativity parameter 8*” that modifies the usual commutation relations between
space-time coordinates [6].

From Eq. (3.3.29), we can extract the Operator Product Expansion (OPE) of the X* fields:

X)X (7') = =G In(r = 7') + 20" e(r 7). (3.4.1)

We compute the commutator using this OPE:

[X"(r), X¥(7)] = X)X (') - X" (') X" (r)

. .
7T +%9W—%9W (3.4.2)

=-a'G" In

-7

=M.
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Now, in the strong B-field limit, we find a direct relationship between 6*¥ and the B-field:

(9+B)' =B, (3.4.3)

(9-B) ' =-B™ (3.4.4)

Substituting into the definition of 0

0=-2na'(g+B) 'B(g-B)™"
=91a/B'BB! (3.4.5)
=21’ B7L.

By absorbing the o’ dependence through rescaling, we obtain
0=B"". (3.4.6)
Thus, in the strong B-field limit, the commutator of the coordinates becomes

[(X*(7), X" ()] =i(B~H)*. (3.4.7)

This analysis confirms that in the presence of a strong background B-field, the space-time
coordinates on the Dp—brane become noncommutative. The commutator [ X*, X"] is no longer zero
but proportional to the inverse of the B-field, making #** = (B~1)" the central object characterizing

the noncommutative geometry.

This result illustrates how noncommutativity is not an abstract postulate, but rather an emer-
gent phenomenon arising directly from string dynamics. The modification of the endpoint algebra
underlines the profound role of background fields in determining the effective structure of space-time,

providing a bridge between string theory and noncommutative field theories
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3.5. Low-Energy Limit and Noncommutative Quantum Field Theory

In string theory, the low-energy limit is often taken to simplify the analysis of physical pheno-
mena. This regime focuses on energy scales much lower than the string or Planck scale, where an
effective quantum field theory approximates the full dynamics of strings. It retains essential features

while making the mathematics more tractable.

The limit o - 0 leads to an effective theory on D,-branes described by a noncommutative
quantum field theory. This can be seen through the behavior of operator products, such as the

tachyon vertex operators. Consider the product

6z'p-X(T)eiq-X(T/) _ ei(p+q)~X(T)+[ipuX”(T),z'ql,XV(T’)]+~--

(3.5.1)
_ ip+a) X=[pu X0, X"]
Using the commutator identity
[puX*(7), 0, X" (7)) = qupp (X* (1) XV (") - XV (7") XH(7)) . (3.5.2)
Substituting Eq. (3.5.2) into Eq. (3.5.1) and using the propagator expansion
eip-X(T)eiq-X(Tl) ~ ei(p+q)-X(7’) exp (O‘,GMVP,U,QU ID(T _ TI)Q _ %euypuqy)
(3.5.3)
~ (7_ _ T/)Q&'G””p#qu eip-X « ez’q-X.
In the limit o’ — 0, we obtain
eip'X(T)eiq'X(T') v ePX i o0 X (3.5.4)

Another important consequence of the low-energy limit is the spatial extension of open strings.

The separation between the string endpoints becomes

AXE

extrem

= (2ma’)?g" By pp”. (3.5.5)

Taking the limit o’ - 0, and keeping G, and B, fixed, the effective theory becomes a noncommu-
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tative field theory defined on the D,-brane. Alternatively, we can scale the parameters as

Guw ~ € o ~ 2, B, ~ € (3.5.6)
This implies that in the limit
. AXL e = 0 Gy, (3.5.7)

with 0¥ = (B™1)" as shown previously. The string behaves like a rigid rod on the D,-brane, with

length proportional to its momentum

LM =0"p,. (3.5.8)

The Seiberg—Witten limit reduces the string action to

1
S=—- f dr By, X190, X". (3.5.9)
2 Jox

This is equivalent to the boundary action
1 14
Sboundary = _5 LZ dr BMVXMaTX = Ssw. (3510)

This action generates the noncommutative geometry described in Eq. (3.4.7). The massless open
string modes give rise to gauge fields on the D,-branes. The low-energy effective theory is therefore

a noncommutative gauge theory governed by the Dirac-Born—Infeld Lagrangian

1
As(2m)P () P-3)/2

Vdet(g +2ma/ (B + F)) (3.5.11)

Lppr =

To identify the Yang—Mills coupling constant, we expand the DBI Lagrangian in powers of F

1 1\ (p-3)/2 9ra’ B\ /2
() (det(g+ fie! )) (35.12)

Aym (2m)P2) det G

These results highlight how the Seiberg—Witten limit bridges the gap between string theory

and noncommutative field theory. By isolating the effects of the B-field at low energies, the string
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dynamics reduce to a boundary action that directly encodes noncommutativity. The emergence of
the Dirac-Born-Infeld Lagrangian captures the dynamics of gauge fields on the D,-brane, while its
expansion reveals the effective Yang—Mills coupling in the noncommutative regime.

This framework provides a natural origin for noncommutative gauge theories, showing that
they are not artificially introduced but instead arise as consistent low-energy limits of open string
dynamics in background fields. It emphasizes how geometry, field interactions, and string theory

are deeply interconnected.
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Chapter 4

Transversal fluctuations of Dp-Brane

and non-commutative geometry

In string theory, D,-branes are not rigid objects but can fluctuate in their transverse directions.
These fluctuations correspond to scalar fields ¢? that affect the effective space-time geometry. Sin-
ce non-commutativity is defined by the background B-field and metric, any perturbation in the
transverse direction induces a modification to the noncommutative parameter 8#, leading to new

physical effects.

S 7+ 1)

v

Figure 4.1: Induced metric on a D)-brane: The flat Minkowski metric 7, plus transverse fluctuations
¢'(0*) lead to a curved Worldvolume metric G, describing the brane’s geometry

%)
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Now we will study the transversal directions to the D3-Brane and the relation with the non-
commutation matrix. We are looking for the relation as 0/ (X*) = 6/ ¢'(X*) where ¢'(X") with
i€{p+1,d} are scalar fields associated with transversal fluctuations of the Dp-Brane.

The presence of noncommutative fluctuations on D)-branes has far-reaching implications, from
modified gauge interactions in QCD-like theories to potential applications in holography and black
hole physics [18].

Considering that the coordinates on the D,-Brane are the p + 1 space-time coordinates, we can
fix the gauge given by symmetries of the induced metric (G = 7mn0, X0, X") on the Brane as

follows

XH =ot with pe{0,...,p}. (4.0.1)

This picture is the ”Static gauge.®nd is more convenient for our purpose. The other d — (p + 1)
coordinates are the fields X% = ¢*(X*) which are supposed to depend only on the first p + 1 space-

time coordinates. In this picture, the induced metric takes the form

Gw/ =N + au¢7iau¢ia (4'0'2)

the dynamic for the scalar fields ¢ is given by the Dirac-Born-Infeld action

1

2ma!

f a4/ det (1, + 0,60, 01 + Bu), (4.0.3)

Sppr=-

This framework shows how scalar fields representing transverse fluctuations of D,,-branes become
active participants in the effective geometry. By modifying the induced metric on the brane, these
fields indirectly affect the noncommutative structure through modifications to the parameter 6.

The static gauge provides a natural and convenient setup to describe this mechanism: the embed-
ding coordinates are fixed along the worldvolume, while the transverse degrees of freedom emerge
as dynamical scalar fields. In this setting, the Dirac-Born—Infeld action encapsulates both the geo-
metric deformations and the gauge dynamics on the brane.

This perspective highlights how noncommutative geometry is not just a fixed background struc-

ture, but one that can be influenced by the dynamics of the brane itself, offering new avenues to
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explore interactions between geometry, fields, and string-theoretic degrees of freedom.

4.1. Dynamic of ¢ scalar fields

In the low-energy limit and for B = 0 the Dynamic is governed by an equivalent action for

Klein-Gordon action because the determinant det(n + h) is given by

1
det(n + h) = E€a1a2a3a4€blb2b3b4(na1b1 + halb1 )(77&2b2 + ha2b2)(na3l)3 + ha3b3)(77@4b4 + h’a4b4) (4‘1'1)
taking

1 .
det(n + h) N E€a1a2a3a4€blb2bdb4na1b1 NasbsMazbsNasby
3
=-1+ Z [aOQZ)aOQb - 8a¢aa¢] (4‘1'2)

= 1= 0,60,

so the DBI action transforms into

1 3 A
Sppr® - f d4§\/1 1 OudiO e’

2ma’

- 1 ) (4.1.3)
de | =, 1y . i,
8o fd 5(277 Oui0y® +3)'

N —
~

This expansion shows that, in the low-energy limit and for a vanishing B-field, the Dirac—Born—Infeld
action reduces to a standard kinetic term for scalar fields, similar to the Klein—Gordon action. The
leading-order contribution describes the propagation of transverse brane fluctuations, encoded in

the fields ¢°, in a flat background.

The derivation emphasizes that the DBI action not only captures nonlinear effects at higher
orders but also smoothly recovers conventional field theory behavior when expanded around small
field gradients. This reinforces the interpretation of ¢’ as physical scalar fields living on the brane

worldvolume, whose dynamics are consistent with a relativistic field theory in the low-energy regime.
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4.2. Beyond the Seiberg-Witten Limit with transversal fluctua-

tions
As we know G = g — (Bg’lB)W the non-commutative matrix 6** takes the form

0=-2ra'(g+B) ' B(g-B)™"
=2ra/B™' (1+9B™ -gB* - gB'gB™) (4.2.1)

=2ra'B71 (I-gB'gB™").

Changing g = G + Bg~! B, we obtain

0 =2ra’B7' [I-(GB™"' +Bg ") (GB™' +Bg™")], (4.2.2)

if we write the explicit form of as B — 2wa’B because B = B(a') is the term

1
GB'+Bg !> —,GB_1 +2ra’Bg!
21“)‘ (4.2.3)
~ GB™!

2ma

)

in the o’ - 0 limit, the equation (4.2.2) takes the form

1

0=B"-
(2ma’)?

B'GaB'GB™. (4.2.4)

So we can define #° = B! and 6! = —WB_IGB‘IGB‘1 where (1) comes to be a modification
from the dominant order of Seiber-Witten Limit so in this case we can use the linalization of G = n+h

with h,, <1 as follows

1
o) = —F(B—lnB—lnB—l +B'B'hB '+ B'hB'yB' + B'hB'hB™Y), (4.2.5)
yixes

we define C' = B~'9B~' an symmetric matrix, § = B"'nB 9B~ a skew-symmetric matrix, and

w=B""B'hB'+ B'hB~'nB~' = ChB~! + B"'hC in notation index
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W = CHhag(B™) + (B ) hosCP"
= C"has(B™HP + (B P hg O (4.2.6)
= hasK"P,

as we know that G, = + 8u¢iau¢i 50 hyy = 3u¢>i3u¢i if 8u¢iau¢i «1

huw = 0ud' 0y i = 0p(¢' 0, b:) — (9,0091) 9", (4.2.7)

SO

W = O (91 0d; ) KHPY — (00Bpi ) K ' (4.2.8)

defining KM; = (0,0p¢i) K reBr and 0a0p¢; constant over the Dp-Brane so

g 1 v 7 afv Vot
(00) =~ Grayp (B + 0a(@'030) K122 - K i6)
1 4 ' (4.2.9)
= Gy (K10 = " = (01036 K1),
The non-commutative matrix 6 is given by
v - v 1 V1 v % afv
oM = (B~H + (27704')2(’@ 10" = B = D, (¢ D) KMPYY, (4.2.10)

we are looking for small fluctuations of the Brane, so ¢(0) < 1 and 9,¢(c) < 1 in this case ¢'dg¢;

is a second order term, therefore the equation (4.2.9) is given by

(9(1))W _ (27;,)2 (KM — B, (4.2.11)

In this case, equation (4.2.10) takes the form

1
(2mal)?

oM = (B + (KH 3¢ - B™), (4.2.12)

now if we introduce a dependence in € for B and o/, in the Seiberg Witten Limit they take B ~ €”

because the B-Field is constant in their limit, we now consider a variation of this limit, we asume
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that B-Field depends on € as follows
Guw~e o~ BTlL 2 (4.2.13)

assuming that for every e we have a constant B- field for other physical variables. Now we can take

1

(BT - (2ra’)?

g = (), (4.2.14)
because they are at the same € range (61/ 2) so the equation (4.2.12) is primarily governed by KC*;¢*,

so we have

0" (o) = 0" ;¢ (o). (4.2.15)

So, the commutator for this approximation is given by modify (3.5.2)

[X*(r), X" ()] = %9“”j(¢j(X“(T))6(T ~7) = ¢ (X ()e(r - 7)) (4.2.16)

= 20N (X(7) + T (X)), (4:217)

where X are the D,-Brane so when 7 — 7’ we have
P

[XH, XY =i0" ;¢ (o). (4.2.18)

This analysis extends the standard Seiberg—Witten framework by incorporating modifications
to the noncommutative parameter " arising from brane fluctuations. In particular, we have shown
that small transversal displacements of the D,-brane induce a space-time dependent noncommuta-
tivity of the form 0 (o) = 01" ¢' (o).

This leads to a generalized commutation relation between space-time coordinates, where the
noncommutativity is dynamically modulated by scalar fields living on the brane. Such a deformation
suggests that noncommutative geometry is not merely a rigid background effect, but a dynamical
feature sensitive to the internal degrees of freedom of the brane itself. This opens the door to a

richer structure in the effective field theory, potentially relevant in contexts where the geometry and



the matter fields are deeply intertwined.
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Chapter 5

Conclusions

Beyond the Seiberg-Witten limit, the noncommutative matrix *¥ receives higher-order correc-
tions, given by (4.2.10). These corrections modify gauge interactions on the brane, introducing new
physics beyond the leading order this was discussed at the last chapter.

In this thesis, we have explored gauge theories in noncommutative spaces beyond the leading
order in the Seiberg-Witten limit. Our study provides deeper insight into how noncommutative
geometry emerges in string theory and its implications for gauge field dynamics on D,-branes.

One of our main results is the extension of the Seiberg-Witten limit by incorporating transversal
fluctuations of Dp—branes. We demonstrated that these fluctuations modify the noncommutative
structure of space-time, leading to corrections in the noncommutativity parameter *¥. This suggests
that the effective field theory on D,-branes can exhibit new dynamical behaviors beyond standard
noncommutative gauge theories.

To formalize these concepts, we established a mathematical framework for working in noncom-
mutative spaces using the deformation product, also known as the star-product. In particular, we
employed the Moyal product due to its clear physical interpretation and relevance in noncommuta-
tive field theory.

Additionally, we revisited the role of the Kalb-Ramond field in inducing noncommutativity. By
analyzing the low-energy limit, we confirmed that the presence of a background B-field leads to
a noncommutative gauge theory on the brane, governed by the DBI action. This reinforces the
connection between string theory and noncommutative field theories, emphasizing the crucial role

of background fields in shaping the effective geometry of the system.

63
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Another key finding was the study of gauge field propagators in noncommutative spaces. We de-
rived explicit expressions showing how noncommutativity affects two-point functions and introduces
new interaction structures. These results highlight the fundamental differences between conventio-
nal and noncommutative quantum field theories, particularly the interplay between ultraviolet and
infrared divergences, a phenomenon known as UV/IR mixing.

Our work extends the understanding of noncommutative gauge theories in string theory, demons-
trating that transversal brane fluctuations and background fields introduce significant corrections
to space-time noncommutativity. These findings open new avenues for further exploration, inclu-
ding studying higher-order corrections, the implications for holography, and possible experimental
signatures in quantum gravity models.

At higher energy scales and in the presence of stronger B-fields, the standard Seiberg—Witten
limit

g = (B—l)uu

undergoes significant modifications. In this regime, the new variation is given by equation (4.2.10).

Although this correction might initially be interpreted as the primary contribution to 8, our
(B1)?

a'?

analysis reveals an additional constant term of order along with a term that depends explicitly
on the transverse fluctuations ¢*(c).
Furthermore, when considering the scaling B! ~ €!/2, the constants can be chosen such that

their sum is zero. This choice leads to a noncommutativity matrix of the form

0 (0) = 0" (o),

which indicates that the noncommutativity is directly proportional to the fluctuations of the D,-
brane. In other words, the loss of commutativity is induced by the transverse fluctuations of the
brane.

The presence of higher-order corrections in the noncommutativity parameter not only highlights
the limitations of the conventional Seiberg—Witten limit but also reveals a deeper, dynamical in-
terplay between the background B-field and the intrinsic fluctuations ¢(co) of the D,-brane. This
dynamic noncommutativity implies that spatial variations in the brane’s transverse directions di-

rectly influence the commutative properties of the worldvolume, thereby linking the geometrical
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deformation to the brane’s fluctuations. Such insights open up intriguing possibilities for further
exploration, including a more comprehensive analysis of higher-order corrections and their implica-

tions for the stability and physical properties.
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