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Resumen

Estudiamos el comportamiento del potencial efectivo que experimentan campos bosoénicos y fer-
midnicos cargados en el entorno de un agujero negro de Reissner-Nordstrom. Analizamos en detalle
las diferencias entre las configuraciones angulares de momento / = j = 0y £ = j = 1, evaluando
cémo varian la altura y la anchura de la barrera de potencial al modificar la masa m, la carga ¢ y la
frecuencia w de la particula. En el régimen de energias 3—62 < w < Wmax, Mmostramos que fermiones

+

y bosones presentan perfiles distinguibles de potencial efectivo, con barreras més permeables en el
caso fermiénico. Se identifican explicitamente las regiones con tunelamiento mediante analisis grafi-
co y sombreado, permitiendo una interpretacion visual directa de la supresién exponencial de la
emision. En el limite m > 1, se verifica que el potencial efectivo se vuelve independiente del espin,
unificdindose en una forma universal dominada por f(r)m?. Se discuten las implicaciones de estos
resultados en el contexto de la radiacion de Hawking-Schwinger y se plantea como trabajo futuro
la extensién del andlisis a los regimenes subextremal, extremal y superextremal, asi como a otras
soluciones tipo agujero negro.

Palabras clave: Reissner-Nordstrom, potencial efectivo, emisién de particulas, bosones, fermiones,

WKB, Hawking-Schwinger, régimen clésico



Abstract

We study the behavior of the effective potential experienced by charged bosonic and fermionic
fields in the background of a Reissner-Nordstrom black hole. We analyze in detail the differences
between angular configurations of momenta ¢ = j = 0 and ¢ = j = 1, evaluating how the height
and width of the potential barrier vary with the mass m, charge ¢ and frequency w of the particle.
In the energy regime z—Q < w < Wmax, We show that bosons and fermions display distinguishable
effective potential proﬁlZs, with fermions encountering more permeable barriers. Tunneling regions
are explicitly identified through graphical analysis and shading, providing a visual interpretation of
the exponential suppression of emission. In the limit m > 1, the effective potential becomes spin-
independent, collapsing into a universal form dominated by f(r)m?. We discuss the implications
of these results in the context of Hawking-Schwinger radiation, and propose as future work the
extension of the analysis to subextremal, extremal and superextremal black holes, as well as to
other black hole spacetimes.

Key words: Reissner-Nordstrom, effective potential, particle emission, bosons, fermions, WKB,

Hawking-Schwinger, classical limit.
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Capitulo 1

Introduccion

Los agujeros negros son una de las manifestaciones més extremas de la gravitacién en el univer-
so. El descubrimiento de estos enigmaéticos y asombrosos objetos fue posible gracias a la teoria de
la relatividad general, propuesta por Albert Einstein en 1915, que es la mejor teoria cldsica sobre
campos gravitacionales formulada hasta la actualidad[l, 2]. En 1974, Hawking[3] hizo un descubri-
miento que revolucionaria el estudio de estos objetos masivos, los agujeros negros no eran tan negros
como se pensé; emitian radiacién[4], una radiaciéon de muy baja energia, si, pero al fin y al cabo,
radiaciéon. Hasta 1974, se pensaba que los agujeros negros no podian emitir ningtin tipo de radia-
ciéon dado que se pensaba que los agujeros negros no seguian las leyes de la termodindmica, pero
aplicando principios de teoria cuantica de campos, Hawking logré demostrar que los agujeros negros
no solo seguian las leyes de la termodindmica, sino que también posefan una temperatura asociada,
por lo tanto debian emitir radiaciéon. Por otra parte, el agujero negro en el que nos centraremos
en este trabajo es el de Reissner-Nordstrom, o agujero negro cargado, aunque veremos primero lo
hecho para Schwarzschild, dado que asi resultara mas sencillo entender los conceptos explorados. El
efecto Schwinger|[5], descubierto casi un cuarto de siglo antes que la radiacién de Hawking, describe
la produccién de pares en un campo eléctrico intenso. Como es posible que un agujero negro esté
cargado, esperarfamos que el agujero negro pierda masa y energia también mediante este proceso.
Mientras que ha habido gran cantidad de investigacion acerca del espectro de la radiacion de particu-
las no cargadas de los agujeros negros, para lo cual el estudio del efecto Schwinger es irrelevante,
as{ como también sobre la naturaleza de la produccién de Schwinger fuera de un agujero negro

cargado, con los efectos térmicos ignorados, no ha habido un estudio certero sobre el rol combinado

13
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que poseerian dichos efectos sobre la naturaleza de la emisién desde un agujero negro eléctricamen-
te cargado. Cuando los dos procesos se consideran juntos, usualmente se los aplica para diferentes
tipos de particula, es decir, uno considera la radiacién de Hawking de fotones, y la producciéon de
Schwinger de electrones. En este trabajo, se busca tener claro cémo la tasa total de emisién de
un tipo particular de particulas cargadas, especificamente bosones y fermiones con espin, viene de-
terminada por los dos procesos de produccién. No solamente es interesante entender la naturaleza
de la radiacién en el caso general, sino que también es importante estudiar cémo se comporta el
decaimiento de los agujeros negros en ciertos limites teéricamente interesantes|6].

Este trabajo estd dividido en 6 capitulos: en este capitulo introducimos los objetivos del trabajo,
asi como también la motivacion del mismo, en el segundo capitulo veremos tanto las generalidades
fisicas de la radiacion de Hawking y de la produccién de Schwinger en espacio-tiempo plano, asi
como también las soluciones a las ecuaciones de campo de Einstein que se vieron involucradas en
la elaboracién de esta tesis, concretamente la de Schwarzschild y la de Reissner-Nordstrom. En el
tercer capitulo tomaremos en cuenta ambos efectos para dar con una férmula exacta para la tasa de
pérdida de energia de los agujeros negros cargados, asi como también estudiaremos la radiaciéon de
Hawking como efecto tinel propuesta en [7] y veremos la dependencia exponencial de la transmisién.
En el cuarto capitulo presentaremos los resultados y haremos gréaficos para los distintos escenarios
en el potencial efectivo obtenido a partir de las ecuaciones de onda estudiadas en los anexos, asi
como también se discuten los resultados obtenidos. Finalmente, en el quinto capitulo se presentan
las conclusiones y el trabajo futuro a realizarse.

En este trabajo nos proponemos realizar un analisis en profundidad del potencial efectivo obtenido
para fermiones y bosones, asi como también para particulas clasicas dado que el estudio[6] mencio-
na pero no analiza exhaustivamente este potencial efectivo. Hay ciertos limites interesantes en el
potencial efectivo que podrian ayudar a entender mejor como emergen las particulas cargadas desde
un agujero negro.

Usaremos la convencién (— + ++) para la métrica. Para simplicidad de los célculos haremos

¢ =h=4ney = G = kp = 1 (unidades naturales).



Capitulo 2

Teoria preliminar

En este capitulo se estudiara toda la teoria preliminar requerida para entender el proceso de

tunelamiento cuantico, incluyendo ecuaciones de campo de Einstein.

2.1. Soluciones de Schwarzschild y Reissner-Nordstrom a las ecua-

ciones de campo

Las ecuaciones de campo son un conjunto de 10 ecuaciones, que describen las propiedades
geométricas del espacio-tiempo y la interaccién entre la materia y la energia, la forma general de

las ecuaciones es

1
R, — ing = 81T, (2.1)

donde R, es el tensor de Ricci, mismo que se obtiene contrayendo el tensor de curvatura de Riemann
(éste 1dltimo mide la curvatura espacio-temporal) y la forma explicita del tensor de Riemann en

términos de los simbolos de Christoffel es

RS, = 0,0y — 0,10, + 0\ T), —T0, T,

para obtener el tensor de Ricci se baja un indice del tensor de curvatura y luego se contraen indices

del tensor de Riemann (o viceversa), asi pues

R;,LV = gpagunguy>

15
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R es el escalar de Ricci (se obtiene contrayendo el tensor de Ricci, asi: R = g R,,,,, g"¥ es el inverso
de la métrica), g, es el tensor métrico determinado por las condiciones espacio-temporales y T},
es el tensor energia-momentum que determina el flujo lineal de energia y de momento lineal en este
contexto.
La primera solucién a la ecuacién (2.1) fue encontrada por Schwarzschild. Esta describe el campo
gravitacional exterior a un objeto estdtico y esféricamente simétrico [1, 8, 9, 10]. La solucién de
Schwarzschild viene dada por:

ds® = — <1 - 25}4[) dt* + <1 - in>_1 dr® + 1r2d6? + r? sin® 9dg°. (2.2)
donde M es la masa del agujero negro, (t,r,0,¢) son coordenadas esféricas en un espacio-tiempo
estatico. La derivacién de la métrica de RN a partir de las ecuaciones de campo de Einstein se

muestra detalladamente en el anexo (6.1), siguiendo los pasos detallados ahi se llega a (2.3)

oM Q> oM 2\ !
ds? = — (1 - — + QQ) dt? + (1 - —+ QQ) dr?® 4 r2d6* 4 r* sin® 0d¢p>. (2.3)
r r r r
donde M es la masa mencionada en (2.2) y @ es la carga del agujero negro.
A continuacién introduciremos el concepto de superficies y vectores de Killing, esenciales para

comprender la fisica del horizonte de sucesos, asi como la temperatura de Hawking, cantidad esencial

para los calculos posteriores.

2.2. Superficies y vectores de Killing

! Hipersuperficies y vectores ortogonales
Una hipersuperficie ¥ es el conjunto de puntos donde una funcién escalar f es constante, y su vector

ortogonal se define como (con V indicando derivada covariante):

¢H=g"V,f. (2.4)

Lo estudiado ac4 se basa en lo hecho en [11]
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En el caso especial de hipersuperficie nula, el vector ortogonal también es tangente a la superficie,
y sus curvas integrales son geodésicas nulas que generan completamente la hipersuperficie.
Campos vectoriales de Killing

Un campo de Killing K es aquel que deja invariante la métrica bajo la derivada de Lie
ﬁ[‘{'g“y =0 = VK, +V, K, =0,

estos vectores codifican simetrias del espacio-tiempo. Si un campo de Killing es tipo tiempo y ortogo-
nal al hipersuperficies tipo espacio, el espacio-tiempo se dice estatico. Ademads, si es asintéticamente
plano, se puede normalizar como

KFK,(r — o0) = 1.

Horizontes de Killing

Un horizonte de Killing es una hipersuperficie nula 3 donde un campo de Killing x* se anula:

XMX,LL|E =0.

Este vector es simultdneamente ortogonal y tangente a 3, y sus curvas integrales son geodésicas
nulas.
Corrimiento al rojo y energia de Killing La energia de Killing de una particula con cuadri-

momento p* a lo largo de una geodésica es

Ex = —p"K,, (2.5)

aqui K, es un vector de Killing, y permanece constante a lo largo de la curva geodésica. La frecuencia

w de un fotén observada por un observador con cuadrivelocidad U* es
— _ph
w=—p"'U,. (2.6)
Para observadores estacionarios (proporcionales a K*), existe un factor de corrimiento al rojo

V = /-K'E,, (2.7)
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y la relacion entre frecuencias observadas en dos puntos es
w1V1 = (UQVQ (2.8)

En el caso del espacio-tiempo de Reissner-Nordstrom, cuya métrica tiene la forma derivada en la
seccidn anterior, podemos computar el factor de corrimiento al rojo directamente sabiendo que el

campo vectorial de Killing es, K= 0y, dando asi

2M 2
V= 1——+Q—2. (2.9)
T T

Como los observadores estacionarios no viajan a lo largo de las geodésicas, tienen una cuadriacele-
racion propia definida por

at = U°V,U", (2.10)

Gravedad superficial
La gravedad superficial k se asocia a horizontes de Killing, donde el campo x* cumple con la ecuacién
de la geodésica

X'Vux" = —rx". (2.11)

Esta cantidad mide, desde el infinito, la aceleracién que un observador estacionario justo fuera del

horizonte necesitaria para permanecer alli:

k= lim Va,
O0—=%

donde a* es la ecuacién (2.10), y V es el factor de corrimiento al rojo calculado con (2.7). También

puede calcularse mediante (2.12)
2 1 %
2 = = (V) (7). (212)

Este conjunto de conceptos, a saber, hipersuperficies, vectores de Killing, corrimiento al rojo y
gravedad superficial es fundamental para entender la estructura causal y térmica de los horizontes

de sucesos en relatividad general y teoria cudntica de campos en espacios curvos, como veremos
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més adelante. Ahora que ya hemos estudiado los conceptos clave de la matemética detras de los
horizontes de sucesos, estudiaremos brevemente los horizontes de la métrica de RN.

Tenemos que f(r) = gi. Para encontrar los horizontes de sucesos hacemos f(r) = 0, dado que por
lo visto en la seccién anterior, el horizonte de sucesos, que en este caso en particular es equivalente
al horizonte de Killing, es una hipersuperficie nula con vectores tipo tiempo perpendiculares a ésta.

Esto pasa tnicamente cuando Q% < M?,

r? —2Mr+Q*=0
_2M £ /(2M)? - 4Q?

2
_2M £ 2/ M2 — Q2
- 2

T+

T+

re =M+ +/ M? - Q2

Aqui tomamos el signo mas, la solucién con signo menos corresponderia a un horizonte de Cauchy,
que no interesa para el propédsito del presente estudio, pues el horizonte del cual emanan las particu-
las es el horizonte de sucesos. Asi pues, ry = M + y/M? — Q?. Esta métrica, al igual que la de
Schwarzschild presenta una singularidad en » = 0. Como ya se discutié anteriormente, esta solucién
2
tiene que reducirse a la de Schwarzschild si @ = 0. Ademas, si r = 20 la métrica se reduce a la
de Minkowski, por otro lado, si Q? = M?, estas hipersuperficies convergen a una tnica superficie
localizada en r = M, y si Q% > m? la métrica es singular en todas partes excepto en el origen, en

otras palabras es una singularidad desnuda. Luego de haber estudiado estos conceptos clave veremos

como se aplican en las leyes de la mecdnica de agujeros negros.

2.3. Leyes de la mecanica de agujeros negros

En 1973, Jim Bardeen, Brandon Carter y Stephen Hawking[12] propusieron y formularon un
conjunto de 4 leyes que gobiernan el comportamiento de los agujeros negros. Estas leyes nos recuer-
dan a las 4 leyes de la termodinamica. Esta analogia fue percibida inicialmente como puramente

formal y una coincidencia, sin embargo un tiempo después se hizo claro que los agujeros negros eran,
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de hecho, sistemas termodinamicos. El paso crucial para esta interpretacion fue el descubrimiento
de Hawking en 1974 [3] que los procesos cudnticos permiten a un agujero negro emitir un flujo
térmico de particulas. Es, por lo tanto, posible que un agujero negro esté en equilibrio térmico con
otros sistemas termodindmicos. Las leyes de la mecanica de los agujeros negros, entonces, son una
descripcién de la termodindmica de los agujeros negros. Se explicard la relacién entre la mecdnica
y la termodindmica de los agujeros negros en la siguiente seccién, a continuacién se dard una breve
descripcién de las leyes, junto con una aplicacién de las leyes en el agujero negro de nuestro interés
(de RN).

Ley Cero

La ley cero de la mecéanica de los agujeros negros establece que la gravedad superficial de un agujero
negro estacionario es uniforme sobre todo el horizonte de eventos.

Primera Ley

La primera ley para los agujeros negros estacionarios dice que el cambio de energia esta relacionado

con el cambio de area, de momento angular, y carga eléctrica por:
dM = SidA +QdJ + ®dQ, (2.13)
T

donde M, es la masa total del agujero negro, x es la gravedad superficial del agujero negro, A es el
area del horizonte de sucesos, €2 es la velocidad angular, J es el momento angular, ® el potencial
electrostatico, @) es la carga eléctrica. Antes de estudiar esta primera ley para el agujero negro de
nuestro interés, vamos a estudiarla para el caso mas simple, el de Schwarzschild, en este caso, tanto
Q) como ® valen cero ya que el agujero negro de Schwarzschild no presenta carga ni movimiento

rotatorio. Para Schwarzschild quedaria entonces,

dM = 2L 4A.
81

Para calcular k se tiene
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donde ry = 2M entonces, f'(r) vendrd dado por la derivada de la componente gy de (2.2),

Fr) = 2 (1 - 2M> -2

" dr r

Usando la expresién para k:

Sustituyendo en la expresion de la primera ley queda entonces,

_dA
327 M

aM

La solucién de Reissner-Nordstrom es no rotante, pero a diferencia de la de Schwarzschild estd
cargada, por lo tanto Q = 0 y ® # 0, entonces QdJ = 0y &dQ # 0, respectivamente. Quedaria
entonces,

AM = 2 dA + ®dQ.
8T
Usando la expresién para « se llega a (2.14)

M2 N2
oo M Q7 (2.14)
T+

Sustituyendo el valor de &, la primera ley queda:

/M2 — O2 /M2 — O2
dM — MY Q7 ga s wdg - avt = V900 4 aag (2.15)
87 (M + \/M? — Q?)? 8mry

Ahora hablaremos de la segunda ley de la mecanica de agujeros negros.
Segunda Ley
La segunda ley de la mecéanica de agujeros negros establece que si la condicién de energia nula

se satisface, consistente en que para todo vector nulo k* se debe cumplir la siguiente relacién
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T,wkFk” > 0, entonces el drea de un agujero negro no puede decrecer:

AA>0 (2.16)

Tercera Ley

La tercera ley establece que si el tensor energia-momentum es acotado y satisface la condicién de
energfa débil, consistente en que para todo vector tipo tiempo v# se cumple la condicién T}, v#v” > 0,
entonces la gravedad superficial de un agujero negro mo puede ser reducida a cero dentro de un
intervalo finito de tiempo.

Un agujero negro extremal se da, en el caso de Reissner-Nordstrom, cuando M = (@, y tiene
gravedad superficial kK = 0, ya que cuando M = @Q, el numerador de la ecuacién (2.14) se anula[12,
6]. Un razonamiento equivalente es pensar que bajo las condiciones establecidas en el tensor energia-
momentum, es imposible que un agujero negro se vuelva extremal en un intervalo temporal finito.
Ahora que ya hemos visto las 4 leyes de la mecanica de agujeros negros, estamos listos para estudiar

el paralelismo existente entre dichas leyes y las de la termodinamica.

2.4. Termodinamica de agujeros negros

Las cuatro leyes de la mecénica de agujeros negros recuerdan, a las leyes de la termodindmica,
con k ejerciendo el rol de una temperatura, A el de la entropia y M el de la energia interna. El
descubrimiento por parte de Hawking de que los procesos cudnticos (se va a estudiar estos en la
siguiente seccién) dan lugar a un flujo térmico de particulas desde los agujeros negros implica que
se comportan como sistemas termodindmicos [1, 2].

En 1974[13], Bekenstein extendi6 la analogia termodindmica de los agujeros negros, preguntandose si
se podia asignar sentido fisico a la entropia y a la temperatura de estos objetos. Consideré distintas
formas del intercambio de calor, relacionandolo con la gravedad superficial, el area del horizonte
y la masa irreducible. Usando una analogia con una maquina térmica tipo Carnot, argumento
inicialmente que los agujeros negros tendrian eficiencia del 100 %, sugiriendo una temperatura cero.
Sin embargo, incorporando efectos cuanticos derivados del principio de incertidumbre, concluyé que
debia existir un limite minimo para el tamano de una caja de radiaciéon térmica introducida al

agujero negro, imponiendo asi un limite superior a la eficiencia y estableciendo que el agujero negro
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debe tener una temperatura distinta de cero.

Ademads, usando nuevamente el principio de incertidumbre, Bekenstein[13] mostré que absorber una
particula incrementa inevitablemente el area del horizonte en una cantidad proporcional a h. Este
resultado implica que no es posible un proceso perfectamente reversible y confirma una relacion
fundamental entre la entropia de un agujero negro y su area. Finalmente este resultado abre paso
al vinculo entre la entropia y la informacién contenida dentro de un agujero negro, conectado con
la teoria de la informacion de Shannon.

La conexién entre entropia e informacion es clave: la entropia mide la incertidumbre sobre el estado
interno de un sistema. Shannon demostré que la entropia se expresa como S = — > p; Inp; donde
p; es la probabilidad de que se dé el estado i. Cuando se adquiere informacion nueva sobre un
sistema, su entropia disminuye (AI = —AS). Por ejemplo, al comprimir isotérmicamente un gas
ideal, la entropia baja porque las moléculas estan més localizadas y hay mayor informacién sobre
sus posiciones. Aplicando estos conceptos a los agujeros negros, se plantea que su entropia refleja la
inaccesibilidad de informacién acerca de sus configuraciones internas compatibles con sus pardmetros
macroscépicos (masa, carga y momento angular). Asi, Bekenstein propuso que la entropia del agujero
negro esta relacionada con el drea del horizonte de eventos, asumiendo inicialmente una dependencia
general Spr = f(A). Diversos argumentos fisicos indican que esta funcién no puede ser proporcional
aVvA (generaria contradicciones fisicas), por lo cual la eleccién més simple consistente con las leyes

fisicas es:

Spu =4, (2.17)

donde ~ es una constante dimensionalmente igual a L=2. Dado que no existe en relatividad
general una constante asi, recurriendo a la mecdnica cudntica surge naturalmente la escala de

Planck, estableciendo:

LA
Spu = A
P
donde & es adimensional y del orden de la unidad.

Utilizando un argumento basado en la minima pérdida de informacién[14] (al menos 1 bit cuando

una particula cae dentro del agujero negro), se encuentra que el valor especifico podria ser:
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In2
Spy = —A
BH 2@)

Esto implica que los agujeros negros tienen una temperatura finita, dada por:

Tpu = (2.18)

8ré’

donde & representa el coeficiente proporcional entre drea y entropia.

Aunque inicialmente paraddjica, esta temperatura fue confirmada posteriormente por Stephen
Hawking mediante calculos de teoria cudntica de campos en espacios curvos, demostrando asi la

validez de los argumentos de Bekenstein.

2.5. Radiacién de Hawking

En los anos 70, surgieron ideas sobre la conexién entre la entropia y el area de un agujero ne-
gro, pero inicialmente esto parecia contradictorio porque los agujeros negros clasicos tendrian una
temperatura nula. Zel’dovich[15] sugirié que efectos cudnticos podrian resolver esta contradiccién.
En 1974[3], Hawking mostré que, efectivamente, los agujeros negros irradian térmicamente debido
a efectos cuanticos, asignandoles una temperatura definida y confirmando que poseen entropia pro-
porcional al area del horizonte.

Esta radiacién de Hawking puede entenderse intuitivamente como particulas que se tunelan cuanti-
camente a través del horizonte de eventos, aunque el clculo formal se basa en QFT 2 en espacios
curvos.

En QFT, las particulas se interpretan como excitaciones de campos cuanticos, descritas por esta-
dos en un espacio de Hilbert. El vacio cuantico no es trivial; contiene fluctuaciones del campo que
producen una densidad infinita de energia. Ademas, la eleccién del vacio depende del marco de
referencia utilizado, lo que da lugar a efectos fisicos observables.

La eleccién del vacio depende de cémo se definen los modos del campo. Las transformaciones de Bo-

golyubov relacionan diferentes expansiones modales, dando lugar a definiciones distintas de vacio.

2Teoria cudntica de campos por sus siglas en inglés.
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La consecuencia es crucial: el vacio para un conjunto de observadores puede contener particulas
vistas desde otro marco de referencia. Este fenémeno implica que la nocién de vacio y particula no
es absoluta, sino relativa al observador y a su elecciéon de coordenadas.

Una situacién particularmente importante ocurre con observadores acelerados. Para un observador
acelerado uniformemente en espacio-tiempo plano plano, una onda monocromatica medida desde
un marco inercial experimenta un corrimiento al rojo exponencial, lo que implica que su frecuencia
observada disminuye exponencialmente en el tiempo propio del observador acelerado.

Al analizar este fenémeno mediante transformadas de Fourier, se descubre que el espectro observa-
do corresponde exactamente a un espectro térmico tipo Planck con una temperatura bien definida,

conocida como la temperatura de Unruh, dada por

hx

= 2.19
27TC/€B ( )

Tu

donde « es proporcional a la aceleracién del observador. Este resultado es una manifestacién profun-
da de la relacion entre aceleracion, horizontes y radiacién térmica que exploraremos en esta seccién.
La teorfa cudntica de campos describe particulas como excitaciones de un campo cudntico®, similar
a un conjunto infinito de osciladores armonicos. Un estado con particulas se representa mediante
la distribucién n(k), que indica el nimero de particulas con momento k, y puede escribirse en el

espacio de Hilbert de la forma que se muestra en (2.20)

) = In1,n2,...) = [{n(k)}) - (2.20)

La energia E' y el momento P de este estado cuantico deberia ser la suma de las contribuciones de

cada una de las particulas y se espera que sea
E = Zn(k‘)wk; P = Z n(k)k, donde wy, = V k2 + m? (2.21)

Los resultados en las ecuaciones (2.20) y (2.21) describen la dindmica de una coleccién de osciladores

armonicos independientes, cada uno asociado a un modo de onda k. La accidn clasica correspondiente

3Esto es solo un ejemplo del tratamiento estandar de QFT considerando el campo escalar.
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es invariante de Lorentz y se muestra en la ecuacién (2.22)
1 4 I 2 42
S = ) d*x[0,0"p + m=¢~]. (2.22)

Mediante transformadas de Fourier, se conecta directamente la descripcién del campo ¢(z,t) con
una coleccién infinita de osciladores armonicos, identificando asi claramente cémo surge la invarian-
cia relativista.

El estado fundamental o vacio del campo cuéntico se construye multiplicando los estados funda-

mentales de todos los osciladores

wio) = [T ()" e (~gnlant’) = Vew -3 [ Ehanial]. 2

k

lo que implica una distribucién de probabilidad para las configuraciones del campo. Esto muestra
que, incluso en el vacio, existen fluctuaciones cuanticas no triviales y una densidad energética infinita,
cuya regularizacion es problematica en QFT.

En la interpretacién de Heisenberg se introducen operadores de creacién a! y destruccién a, con las
reglas de conmutacion estandar, lo que permite expresar el campo cuantico en términos de estos

operadores:

d3k » ,
o(t, x) = /W[@kezkm +afe ™), (2.24)

donde kx = k;z*, y derivar las reglas de conmutacién a tiempos iguales:

[b(z, 1), 7(y,1)] = i6°(z — y); [p(x, 1), ¢y, )] = [ (2, ), m(y, )] = 0. (2.25)

Esta formulacion es el punto de partida convencional para estudiar fenémenos cudnticos en teoria
de campos[1].

En teoria cudntica de campos es posible realizar diferentes expansiones modales del campo escalar
usando diferentes conjuntos de soluciones a la ecuacion diferencial del oscilador arménico. Conside-
rando un campo escalar ¢(¢,z) de la forma que se presenta en (2.26):

3 X .
o(t,x) :/(Qiir)lzm[akvk(t)elkz+a;f€v,:(t)e—2kz]7 (2.26)
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donde vg(t) es la solucién de la ecuacion diferencial i, —|—w,%vk = 0 con la condicién de normalizacién
i(i}kvz — ’Uk’l'JZ) =1.
Una transformacién particularmente ttil es la llamada transformacion de Bogolyubov, definida por

(2.27)

u(t) = agvr(t) + Brog(t), con |og|? — |Bk]? = 1. (2.27)

Esta transformacion genera nuevos operadores de creacién y destruccion, relacionados con los ori-
ginales por

ap = agb + 5;17;; by, = apay + 5;&};.

Como consecuencia de estas transformaciones, surgen diferentes definiciones del estado de vacio: el
vacio asociado al conjunto original de operadores (ay) y otro vacio asociado a los nuevos operado-
res (by). El estado fundamental original no es vacio respecto al nuevo conjunto de operadores, y
viceversa. En particular, el valor esperado del niimero de particulas del nuevo conjunto en el vacio

original es:

2 (0] bLbg |0), = |81

Este hecho implica que el concepto de vacio no es absoluto ni universal: depende de como definamos
los modos de frecuencia positiva y negativa. Aunque la definicién de vacio basada en frecuencias
estrictamente positivas es invariante bajo transformaciones lorentzianas (observadores inerciales),
esta propiedad no se mantiene al considerar sistemas acelerados o presencia de campos externos.
En conclusion, la nociéon de vacio y particula no es generalmente covariante, sino que depende de
la eleccién de las coordenadas temporales y los modos de frecuencia asociados. Esto es crucial para
comprender fenémenos como la radiacion de Hawking en presencia de campos gravitacionales y
aceleraciones.

En teoria cuantica de campos en espacios curvos, la aparicion de efectos térmicos esté estrechamente
relacionada con el corrimiento al rojo exponencial observado por observadores acelerados. Para

ilustrar esto consideramos dos casos:

1. Observador en movimiento uniforme (Relatividad especial)

Un observador que se mueve con velocidad constante v respecto a un marco inercial observa



28

una onda monocromatica de frecuencia ) como

OIT(7), X (7)] = ¢[r] = exp —irQy(1 - v) = exp (—mu/ 1 ;Z) .

Esto es simplemente el efecto Doppler relativista, donde la frecuencia observada se corre hacia

el rojo (disminuye), pero sigue siendo monocromética
1—-w
Qobs = Qiny/ ——.
obs in 1+

2. Observador en movimiento acelerado uniforme
Consideraremos ahora un observador con aceleracién constante k. Su trayectoria es:

X(r)= %cosh(/w); T(r)= %sinh (KT).

Una onda originalmente monocromatica, vista por este observador acelerado, presenta un
corrimiento exponencial al rojo. La frecuencia instantanea medida decrece exponencialmente
con el tiempo propio 7:

w(T) = Qexp (—kT).

Al calcular la transformada de Fourier del campo con respecto al tiempo propio, aparece un espectro

de potencia de tipo Planck dado por:

v[f(=v)] = %7 con B = 2n (2.28)

Este resultado revela la existencia de una temperatura asociada a la aceleracién dada por (2.19).
La aceleracién constante induce un espectro térmico sobre el vacio cuantico, lo que muestra que la
nocién del vacio depende del observador. Este fenémeno es la base del Efecto Unruh y explica la
radiacién de Hawking en agujeros negros.

La teorfa cudntica de campos (QFT) en espacio-tiempo curvo predice que el vacio depende del sis-
tema de referencia usado. En particular, para observadores acelerados uniformemente (observadores

de Rindler), los modos del campo escalar experimentan un corrimiento al rojo exponencial, lo que
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implica que ondas monocromaéticas observadas desde un marco inercial parecen decrecer exponen-
cialmente en frecuencia respecto al tiempo propio del observador acelerado. Este fenémeno lleva a
un espectro térmico tipo Planck caracterizado por la temperatura de Bekenstein-Hawking (2.19).
Para un agujero negro de RN (con masa M y carga (Q), la temperatura especifica es

M2_Q2

Ty =
2
2rr il

(2.29)

Es resultado de transformaciones modales de Bogolyubov, que hacen que el vacio inicial se per-
ciba como lleno de particulas en un marco futuro o un efecto tinel cuantico[7]: pares particula-
antiparticula son creados cerca del horizonte, y una particula puede escapar (radiacién Hawking)
mientras la otra es absorbida por el agujero negro.

La radiacion térmica pura obtenida hasta ahora es idealizada. En situaciones reales, la emisién Haw-
king es modulada por el factor de cuerpo gris, asociado al potencial efectivo que rodea al agujero
negro. Para estudiar estos efectos, se emplea el método WKB aplicado a barreras de potencial que
permiten obtener la radiacién efectiva observada a grandes distancias.

El vacio cudntico en presencia de horizontes (acelerados o gravitacionales) se manifiesta como un
estado térmico para observadores restringidos por estos horizontes. Esta propiedad fundamental ex-
plica fenémenos esenciales como la radiacion de Hawking, estableciendo profundas conexiones entre
gravedad, aceleracion, termodindmica y teoria cudntica de campos que describen una situacién en
equilibrio térmico a una temperatura T = /27 (donde k es la gravedad superficial del horizonte
de eventos) tanto como un observador confinado a una regién D es concebido.

En su derivacién original, Hawking analizé un campo cudntico en el espacio-tiempo de un agujero
negro en formacién (colapso gravitacional), demostrando que el estado inicial de vacio no permanece
en la misma configuracién de vacio en el futuro lejano. Matematicamente, esto se estudia mediante
transformaciones de Bogolyubov, que relacionan los modos del campo definidos antes (pasado) y
después (futuro) del colapso. Un modo de frecuencia w definido en el futuro lejano puede expresarse

como combinacién lineal de modos del pasado con una ecuacién similar a la ecuacién (2.26)

out __ in inf
a " = apay + Buay’.
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El coeficiente S, # 0 indica que el vacio inicial contiene particulas reales al final del proceso.

El nimero medio de particulas emitidas en cada modo w es

1
nw)=——7—-, (2.30)
exp—F1
Ty

» Signo (—) para bosones (estadistica de Bose-Einstein).
» Signo (+) para fermiones (estadistica de Fermi-Dirac).

La ecuacién (2.30) es exactamente la distribucién térmica esperada para un objeto que emite ra-
diacién como un cuerpo negro a temperatura (2.19) donde & es la gravedad superficial del agujero
negro (para RN, Ty estd dada por (2.29)). Cerca del horizonte, fluctuaciones cudnticas producen
pares particula-antiparticula. Una particula cae dentro del agujero negro, mientras que la otra es-
capa hacia el infinito, apareciendo como radiaciéon térmica para un observador distante.

Esto implica que la emisién sigue una distribucién de Bose-Einstein (bosones) o Fermi-Dirac (fer-
miones) asi mismo confirma que los agujeros negros son objetos termodindmicos con temperatura
Tpy y entropia S = 1 (proporcional al area del horizonte). El resultado final permite calcular
tasas de emisién de energia, masa y carga del agujero negro integrando sobre todos los modos,
determinando asi su evolucién en el tiempo.

En resumen, el calculo original de Hawking revela que los agujeros negros emiten espontaneamente
particulas segun el espectro térmico dado en (2.30), comportdndose como cuerpos negros cuanticos
con una temperatura bien definida por la ecuacién (2.19).[3, 1]

Un agujero negro cargado de masa M puede entenderse como la combinacion de:
M = Mirr + U7

donde

= M, es la masa irreducible, asociada al ntcleo inextraible del agujero negro

Q2

= U es la energia almacenada en el campo eléctrico externo (U 5
Ty

> , la cual puede extraerse

parcialmente de manera clasica sin disminuir Mj,,.
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El area del horizonte, A, depende mondétonamente de M. De la segunda ley de la mecénica de
agujeros negros (2.16) se sigue que dMj,y > 0. Unicamente la energia ligada al campo exterior puede
ser extraida integramente sin reducir el area.

Para la emisién de una particula con energia w y carga ¢, la primera ley toma la forma:

7\/]\42_622@4_ ﬁ7 (2.31)

8mrs Ty

siw < g® (P es el potencial electrostético), no se requiere disminuir el drea (dA > 0); es un proceso
clasicamente permitido. Por otro lado, si w > q®, se necesita dA < 0, lo cual solo es posible mediante
efectos cuanticos (radiacién de Hawking).

Para un agujero negro extremal, (M = @), se anula la gravedad superficial k y el area deja de
ser diferenciable en ese punto. En ese limite, la ecuacién (2.31) sugiere w = ¢, pero fisicamente no
es factible que el agujero negro emita estas particulas si kK = 0. La tercera ley de la mecédnica de
agujeros negros impide el decrecimiento del area hasta ese extremo.

El régimen cudntico (radiacién de Hawking) permite emisiones con w > q®. Tras establecer este
marco heuristico de emisién de agujeros negros cargados, se explorara el efecto Schwinger (produc-

cién de pares debida a campos intensos) y su interaccién con la radiaciéon de Hawking.

2.6. Producciéon de Schwinger en espacio-tiempo curvo

El efecto Schwinger es una descripcién semi-clasica de la creacion de pares de particula-antiparticu-
la en el vacio en presencia de campo eléctricos intensos. Se supone que el campo eléctrico alrededor de
un agujero negro de RN posee una intensidad elevada y alrededor pueden surgir pares de particulas,
., Qué pasaria si eso sucede justo en el horizonte de eventos? Esta pregunta es la que nos plantea-
mos aqui y daremos con la respuesta. Debido a la magnitud y complejidad de los cédlculos que se
hacen en esta seccién solo incluiremos una breve descripcién matematica de éstos y los resultados.
A continuacién presentaremos el Lagrangiano de Euler - Heisenberg y una breve descripcion de
cémo se obtiene este Lagrangiano matematicamente y asi mismo usaremos este Lagrangiano para
derivar la accién efectiva para fermiones de espin 1/2 en campos electromagnéticos uniformes, asi

como describir la polarizaciéon del vacio y la produccion de pares en espacio-tiempo plano. Este
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Lagrangiano es la base de lo que hizo Schwinger en 1951[5]. 4.

2.6.1. Lagrangiano de Euler-Heisenberg

El Lagrangiano de Euler-Heisenberg (1936)[17] describe las correcciones no lineales a la electro-
dindmica cldsica de Maxwell debido a efectos cuanticos, especialmente la creacion de pares electron-
positrén y la polarizacién del vacio en campos electromagnéticos intensos. Se parte del Hamiltoniano

de Dirac en presencia de un campo electromagnético externo:

A~

H =~"(py — eAy,) —me (2.32)

donde A, es el potencial vector del campo electromagnético, e es la carga del electrén, y v son las
matrices de Dirac. La idea es resolver estas ecuaciones para electrones y positrones en presencia de
un campo externo constante.

El vacio cudntico no es trivial; campos fuertes generan fluctuaciones del vacio (pares electrén-
positrén virtuales), lo que altera la estructura del vacio y, por tanto, las propiedades del campo
electromagnético. Debido a la invariancia de Lorentz, el Lagrangiano efectivo solo puede depender

de dos invariantes:

« F=FE2-B? (que también es F),, F*, la contraccién de los tensores de campo electromagnéti-

o).

« G=FE-B (que también es F, WF’ # donde FM es el tensor dual que explicitamente estd dado

~ 1
por FH = ie“mﬂFa[g).

Euler y Heisenberg derivaron[17], usando principios de la recién creada QED (Electrodindmica

cuédntica por sus siglas en inglés), la forma general del Lagrangiano efectivo como una funcién de

4Los célculos realizados se basan en lo presentado por Kim en [16]
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los invariantes de Lorentz

L(Fw) = f(F,9)

Para campos electromagnéticos débiles comparados con la intensidad critica (alrededor de 1,3 X
10718V /m), se obtiene la expansién en potencias de los invariantes

82
45m4

€

L= %(EZ C B4 S (B2 B2 4 7(E- BY), (2.33)

donde el primer término es el lagrangiano clasico de Maxwell, mientras que el segundo es la correccién
cuantica, donde « es la constante de estructura fina, y m,. es la masa del electrén.

En 1951, Julian Schwinger[5] propuso un método elegante para derivar esta accién efectiva mediante
la integracion de campos fermiénicos usando la representacion del tiempo propio. Luego de seguir
los pasos de Schwinger, especificados en [5], concluimos que el resultado final para la accién efectiva

es:

Seff :/d4$£eff(F,ul/)a

donde el lagrangiano efectivo L.ss para fermiones de espin 1/2 es similar al que encontraron Hei-
senberg y Euler, pero con diferentes coeficientes que dependen de los fermiones y de las correcciones
cuéanticas.

El lagrangiano efectivo es (es es la multiplicacién de la carga del electrén por el tiempo propio)

1 [ 5 ,Recosh(esX) 2,
- F-— OSSR 2 2.34
Lers d 87?/0 ds s3 [(68) gImcosh(esX) 3(68) Fl (2:34)

donde
X =[2(F—ig)"/? = X, —iX,.

La parte real es Re cosh (esX) = cosh (esX;) cos (esX;) y la parte imaginaria es Im cosh (esX) =

R h (esX
sinh (esX, ) sin (esX;). Usando estas expresiones se puede reescribir el cociente Recosh (esX) como:
Im cosh(esX)
R h (esX h(esX X;
ecosh (esX)  cosh(esX;)cos(esX;) — coth (es X, )cot(esX,)

Imcosh(esX)  sinh(esX,)sin(esX;)
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Sustituyendo esto en la accién efectiva de la ecuacién (2.34) obtenemos:

1 & 2
Lepf=—F— 82/ [(68)29 coth (esX,)cot(esX;) — 1 — §(€S)Qf" , (2.35)
7™ Jo

La parte imaginaria describe la produccién real de pares electrén-positrén desde el vacio (efecto
Schwinger). Por otra parte, la parte real de (2.35) da lugar a la polarizacién del vacio, que modifica
las propiedades clasicas del campo electromagnético.

Para un campo eléctrico puro B = 0, X, = 0,X; = FE, la ecuacién (2.35) conduce a la tasa de

produccién de pares dada en (2.36):

’I?/iTTI’LQ

1 & [(eE\? ————
21m£e:4ﬂ32‘1(n> e eE . (2.36)
n=

Estas partes imaginarias determinan la persistencia del vacio (transicién de vacio a vacio) durante

un tiempo T y un volumen V es:
| (0, fueral |0, dentro) |? = ¢~2VTTmLe, (2.37)

por lo tanto conducen a la creacién de un par antiparticula-particula. Cabe destacar que las tasas
de produccion de pares (2.33), (2.36) y la polarizacién del vacio son vélidas inicamente para cam-
pos uniformes. Estas féormulas obtenidas pueden ser utilizadas tanto como los campos varien muy
lentamente en la regién de interés. Hay muchas situaciones, incluyendo los agujeros negros cargados,
donde los campos son intensos pero no uniformes. En las siguientes subsecciones, usando un método

candnico, derivaremos las tasas de produccién vélidas incluso cuando el campo no es homogéneo.

2.6.2. Método canodnico para la produccion de pares

El método canodnico ofrece una forma directa y general para estudiar la produccion de pares
particula-antiparticula, ya que no sélo aplica para bosones, sino para fermiones también, resolviendo
explicitamente las ecuaciones de movimiento. A diferencia de enfoques basados en integrales de
camino, este método permite una interpretacién inmediata del proceso de creacién cuantica de
pares.

Considerando un campo eléctrico en la direccién z, con vector potencial A = —Ftk, la ecuacién de
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Klein - Gordon que gobierna el comportamiento temporal de cada modo de Fourier se reduce a:
07 — (ks + qBt)? — (m? + k2 + k)] = 0. (2.38)

Esta ecuacién describe una particula en un potencial tipo oscilador invertido dependiente del tiempo.
Las soluciones de esta ecuacién se expresan en términos de funciones paraboloidales, y al analizar
sus comportamientos asintéticos se deducen los coeficientes de Bogolyubov up v vk, mismos que
permiten calcular el nimero de particulas creadas:

kD +m?

—27a
Nk = |Vk 2 = e kL Qg
| ‘ ? L 2qE

(2.39)

Por otro lado, la persistencia del vacio (2.37), definida como la probabilidad de no producir particu-

las, esta dada por:
1 1
0, sal|0 7 = = : 2.40
(0,50, em) P = o = 1o (2.40)

Dado que por |ux|? — |vx|?> = 1, ambas cantidades estédn ligadas, mostrando claramente que la
creacién de particulas es complementaria a la persistencia del vacio. Mayor creacion de particulas
implica menor persistencia del vacio, y viceversa. Visto de otra manera, si se crean particulas el
vacio ya no es vacio y pasa a ser ocupado por las particulas creadas recientemente debido al efecto
Schwinger.

La tasa de produccién total de pares (accién efectiva imaginaria en un espacio d 4 1 dimensional es:

mrmz

oo (d+1)/2 _
2ImLb :iZm(He%%): 1 > (=t b e eE
VT £ (2m) £~ n ’
L n=

relacionando elegantemente la estructura matematica con el proceso fisico de produccién cuantica
de pares particula-antiparticula en presencia de campos eléctricos intensos dependientes del tiempo.

Con un potencial escalar Ag = —FEz, la ecuacién de Klein-Gordon se reduce a (2.41)

(02 — (w+ qEz)* + (m” + k7 )]¢uk, = 0. (2.41)
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Esta ecuacion describe un potencial parabdlico invertido. La solucién general de esta ecuacion
puede expresarse en términos de funciones paraboloidales E(ay, ) dadas por la ecuacién (2.42),

/2
dependientes del parametro adimensional & = —E(w +qEz):
q

Pue, (§) = cE(ax, ) (2.42)

2 2
ks +m
2qF
asociado a la produccién de pares particula-antiparticula en campos eléctricos intensos.

con ap, = . Esstas soluciones son especialmente ttiles para estudiar el efecto ttnel cuantico

Al analizar el comportamiento asintético de esta solucién, se encuentra que cuando z — —oo (antes

de la barrera):
- 2
i
2 —152 2 Z%
buk, = Ak, |?e + By, me . (2.43)

y cuando z — oo(después de la barrera):

52
(bwkj_ = CkJ_ \/3614 (244)

Estos términos representan ondas incidentes (Ay, ), reflejadas (By, ), y transmitidas (Cy, ). Las
amplitudes Ay , By, v Ck, se relacionan directamente con los coeficientes de Bogolyubov g y v,

controlando asi la creacién de particulas. Concretamente:

» Probabilidad de transmisién (tunelaje):

Cy 2 1
P =" = : 2.45
= ’ Akl 1+ 627”1’”— ( )
» Probabilidad de reflexién (no tunelaje):
oo | Bl 1 (2.46)
ki — AkJ_ - 1+ G_Qﬂakl : :

Estas probabilidades pueden ser entendidas de forma semiclédsica utilizando la accién instanténica,

que representa el costo energético para que la particula atraviese la barrera de potencial mediante
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tunel cuantico. La accién instantonica para este sistema estd dada por

1

Sk, = 5 %dz\/(m +k1)2— (w+qE2)2. (2.47)

Considerando multiples eventos de tunelamiento (instantones y anti-instantones), la probabilidad
total de produccién de pares (transmisién) se escribe como una suma geométrica alternante en

términos de la accidn instanténica:

1
1+ e 2%k,

b 1

_ nb __
ki 1 +€ZSkJ_’

kL —
para bosones, mientras que para fermiones es posible obtener unas relaciones similares (teniendo en
cuenta el principio de exclusién de Pauli):

Pf — e_ZﬂakL Pnf =1— e_QﬂakL
k'J_ ’ kJ_

Finalmente, la parte imaginaria de la accién efectiva, que cuantifica directamente la tasa de pro-

duccién de pares en ambos casos, esta dada por

n7rm2

o0 (d+1)/2
2ImLb = ! > (=t (eE> e €E | (2.48)
n
n=1

(2m)

para el caso bosénico, en el caso fermidnico, la parte imaginaria de la accién efectiva es

2
nmTm
9 X /ep\ [@HD/2 _
oImeS — e E . 2.4
HLCe (27.(_)51 ; ( n ) € € ( 9)

En resumen, en el calibre dependiente del espacio, la producciéon de pares en campos eléctricos
intensos se interpreta naturalmente como un efecto tunel cudntico, donde la accién instantdnica
determina exponencialmente la tasa de creacion de particulas, mientras que los coeficientes de
Bogolyubov proporcionan la conexién entre el enfoque semiclésico y el tratamiento cudntico riguroso.

Para particulas de espin o, se anade un término de acople espin-campo como se muestra en (2.50),

[~ (8, +iqAL) (0 +iqAy) + m? + 2icqE]®(t, ) = 0. (2.50)
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Las soluciones siguen conservando estructura paraboloidal, pero con el pardmetro a;, modificado
_ kzi +m? + 2ioqE
+ 2qF

ag . Las formas asintoticas de la funcién de onda son las mismas que obtuvimos

[z -
para (2.43) y (2.44), de tal manera que para £ = —oo (con @), = @e 4°)
(bwa_ = Akl(pwkj_ - Bk‘J_SOZJkL?

y para £ = 0o

*
(b"-)kL = Ck;lg@ka.

Sin embargo, la principal diferencia para particulas con espin radica en la forma en que se manifiesta

la conservacién del flujo debido a la naturaleza de cada particula:

» Bosonica (sin restriccién por principio de exclusion):

El flujo conservado es:

Tp(B) = i d* — i* D, |Ag, |2 = |B, > + |Cr, %, (2.51)

de modo que la reflexiéon es mayor a 1:

2 2
Ch
=1+ |- . 2.52
Ay, ( )

i
Ag,

» Fermidnica (Restringidas por el principio de exclusién):

El flujo conservado es la corriente de Dirac

Jp(9) = dv'e, A, 2+ |Cr, 1> = By, [, (2.53)

lo que implica una reflexion menor que uno:

2 2

Cro " 1, (2.54)

Ap,

b
Ap,

:1_‘

Si se definen los coeficientes de transmisiéon 7' = |C/A|? y reflexién R = |B/A|?, a partir de (2.52)

o0 (2.54), surge una aparente paradoja al considerar la reversién temporal del problema (el llamado
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conjunto simple)

~ 1
R=— 2.55
- (255)

Esta aparente inconsistencia se conoce como la paradoja de Klein y surge del hecho de que en este
conjunto invertido temporalmente, los coeficientes de reflexiéon pueden tomar valores mayores que
uno para fermiones. Sin embargo, al analizar correctamente la situacién fisica[l8], se aclara que
dicha amplificacién por reflexién superior a la unidad realmente ocurre con bosones (no con fer-
miones), destacando que la produccién de pares particula-antiparticula es esencial para la correcta
interpretacién del fenémeno.

Para relacionar los coeficientes de transmision y reflexion con el fin de resolver el problema, necesi-
tamos comprender la naturaleza de las ecuaciones de conservacion de flujo. Para bosones, hay una

corriente conservada,

Jb((b) = 7’¢8$¢* - Z¢* e (2.56)

la cual se conserva en el sentido de que 9,.J, = 0. Para las condiciones de borde simples descritas

anteriormente, esto da la ley de conservacién
kil AP — ki B* = k,[C)? (2.57)

Para fermiones, el hecho de que el potencial efectivo en la ecuacién (2.50) es complejo implica que

esta cantidad no se conserva. En este caso, debemos usar la conservacién de la corriente de Dirac

Jp =yt (2.58)

En las regiones asintéticas x = Foo, el las soluciones a la ecuacion de Dirac son ondas planas.
Escribiendo 2 = w 4+ gA; y numerando las componentes del espinor ¢ como ; se puede demostrar
que

Jf(1h) o % Z To(i) (2.59)

Como 2 es negativa en la asintota derecha, vemos que, aunque una particula en la izquierda con
dependencia espacial exp (ikz) corresponde a un flujo positivo, una particula a la derecha con de-

pendencia espacial exp (ikx) corresponde a un flujo negativo. Para las condiciones de borde simples,
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esta ley de conservacién se convierte en

ki oze ks e s
—|A —|B|* = —|C
G IAP = GBI = SICP,
el término en la derecha es negativo. En el caso més simple que k; = k, las dos ecuaciones de

conservacion simples se reducen a

A = |B* = |CP,
AP = |B]* = —|CI*.
Dividiendo las ecuaciones simples de conservacién de la energfa para |A|?, las leyes de conservacién

para bosones y fermiones respectivamente pueden ser escritas en términos de los coeficientes de

transmisién y reflexién como

k.
ny = KT := k—T:R—l (2.60)
1
By, |? Cr, |7
donde R = ' 1 Ll yT = 1 =1 (R > 1 implica amplificacién de modos por el campo, de forma
ki ki

similar a las transformaciones de Bogolyubov)

2

WAL ] R (2.61)

9,

ny=KIT =

donde denotamos por K a los prefactores positivos que involucran ratios de momento. Podemos

relacionar el coeficiente de transmisién simple con el fisico usando la relacién dada en (2.55):

T
= =, Bosénico (2.62)
1-KT
T .
T=—— Fermiénico (2.63)
1+ KT

para el nimero de bosones y fermiones creados simplemente multiplicamos el T' obtenido por el
factor K recuperando asi las forma presentadas en (2.60 y 2.61) Estos 2 ultimos resultados se

pueden agrupar elegantemente en la ecuacién

n=+(R-1) (2.64)
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La ecuacién (2.64) en términos de teoria cudntica de campos, estaria relacionado con el valor espe-
rado del operador niimero, o equivalentemente con el cuadrado del coeficiente de Bogolyubov que
mezcla estados de particulas y antiparticulas debido al campo eléctrico. Nikishov [18], demostré que
este nimero se puede obtener analizando las soluciones de scattering: un coeficiente de reflexién
mayor que 1 implica que el campo inyecté particulas adicionales, cuyo conteo es precisamente R —1
(bosénicos).

La creacion de pares particula-antiparticula en campos eléctricos intensos puede analizarse en térmi-
nos de probabilidades de transicion entre estados de vacio y estados con pares creados. La estadistica
de Bose-Einstein y la de Fermi-Dirac determinan diferencias fundamentales en estas probabilidades
debido al principio de exclusiéon de Pauli.

Veremos primero qué pasa con el caso bosénico, en este caso, no existe limite en la ocupacién
de estados, permitiendo multiples pares en un mismo estado cudntico. La conservacion total de

probabilidad se expresa mediante una serie geométrica:

P
1l=P(1+P+P+P+..)= ﬁ, (2.65)
— 41

donde
s Py es la probabilidad de transicién vacio-vacio (ningin par creado),
= P es la probabilidad de creacién de un par en un estado especifico.

El nimero medio de pares creados (Ny) estd dado por la serie ponderada

Py Py

(2.66)

Las relaciones explicitas entre probabilidades y nimero medio de pares para bosones son (2.67) y

(2.68):
1
Py=—— 2.
0= TNy (2.67)
N
p =" (2.68)

1—|—Nb
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donde N, es el nimero medio de pares creados.

Por otra parte, para el caso fermidnico, se debe tomar en cuenta el principio de exclusién, debido
a esto cada estado cuantico unicamente puede alojar un solo par fermiénico. Por tanto, solo dos
eventos son posibles en cada estado: la no produccién de pares (FPp) o la creacién de exactamente

un par (P;). La conservacién total de la probabilidad es entonces simplemente:
Po+Py-Pi=1= Py(1+P)=1 (2.69)
El ntimero medio de pares creados Ny para fermiones se reduce a:
Ny=PF - P, (2.70)

y, resolviendo (2.70) en términos explicitos, se obtiene

_ N
C1- N

Py=1- Ny, P (2.71)

Estas ecuaciones reflejan la relaciéon entre las probabilidades y el nimero medio de pares en el
contexto de la estadistica de Fermi-Dirac, donde la creacion de pares estd limitada a un méaximo de
un par por estado cudntico debido al principio de exclusién de Pauli.

Matematicamente, también se puede relacionar n con 7'. Usando las 2 relaciones derivadas en (2.64)
para los distintos casos, en ambos casos tenemos n = T'. En literatura del efecto Schwinger se suele
expresar la tasa de produccién en funcién de la probabilidad de transmisién a través de la barrera.

Si T es la probabilidad de que ocurra la creaciéon de 1 par, entonces para bosones:

» La probabilidad de no producir pares es N = 1 — P (con P = T') porque se pueden crear
multiples bosones.

s Para fermiones la probabilidad de no producir pares es N = TP debido a que solo 1 par

puede ser creado.

De estas distribuciones se deduce que el niimero medio n de pares creados es 1 (bosénico) y

P . .
5P (fermidnico) Si despejamos P = KT, esto coincide con n = KT cuando P es pequeno, pero
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tenemos que

T
ny = = bosoénico (2.72)
1-KT
T .
ng=-——= fermionico (2.73)
1+ KT

Sin embargo, en el limite de baja ocupacién (una produccién rara de pares, T' < 1), ambas se
reducen a n =~ T. Entonces R — 1 = T.

Hasta aqui se ha estudiado el concepto de creacién de pares en el espacio plano de Minkowski,
sin embargo debido a que no estamos en espacio plano sino en espacio curvo (estamos estudiando
radiacién de Hawking debido a creacién de pares en el agujero negro de RN), se tiene que generalizar
la ecuacién de Klein-Gordon y de Dirac a espacios curvos y eso es lo que haremos en el siguiente
capitulo tanto para Schwarzschild, pero antes de pasar a estudiar las ecuaciones de Klein-Gordon y

Dirac introduzcamos el cdlculo de la tasa total de radiacién.
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Capitulo 3

Tasa total de radiacion

3.1. Factor de cuerpo gris

En la derivacion ideal de la radiacion de Hawking se supone inicialmente que cualquier particula
puede escapar al infinito, pero en la practica esto es imposible, puesto que para ello las particulas
emitidas deben atravesar el campo gravitatorio del agujero negro. El espacio-tiempo exterior actia
como un potencial de dispersién: algunas componentes de las ondas emitidas son reflejadas de
vuelta al agujero negro y solo una fraccién de estas ondas llega realmente a ser transmitidas hacia el
infinito. A esa fraccién de escape se le conoce como factor de cuerpo gris o(w). Matemdaticamente,
o(w) puede relacionarse con coeficientes de transmisién 7T'(w) y reflexién R(w) obtenidos al resolver
la ecuacién de onda radial del campo en el fondo del agujero negro (veremos esto mas en detalle
en las siguientes secciones). Por ejemplo, para un modo dado, si R(w) es la probabilidad de que
la particula sea reflejada hacia el agujero negro (absorbida inversamente), entonces 1 — R(w) es la
probabilidad de transmisién hacia el infinito; este 1 — R(w) corresponde a o(w). En el calculo de
Hawking, estos coeficientes aparecen cuando se convierte el niimero medio de particulas en tasa de
escape observada: antes de integrar sobre todos los modos se multiplica la ecuacién (2.30) por
o(w) para incorporar el hecho de que solo una parte de las particulas de frecuencia w logra escapar
al infinito. Si no hubiera dispersién (es decir, si o(w) = 1 para todos los modos), el agujero negro
seria un emisor perfectamente negro y la potencia emitida seguiria exactamente la ley de Stefan-
Boltzmann para un drea emisora igual a la del horizonte. En la préctica, o(w) depende de w (y del

espin de la particula), modulando el espectro puro de cuerpo negro. Para agujeros de Schwarzschild,

45
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o(w) tiende a ser cercana a 1 (débilmente dependiente de w salvo a muy baja energia), por lo que
el espectro Hawking es casi térmico. En agujeros cargados o considerando particulas con carga,
o(w) puede suprimir fuertemente ciertas frecuencias. En resumen, los coeficientes de transmisién
y reflexién no alteran la forma bésica de n(w) dada por la distribucién térmica, pero escalan la
intensidad efectiva de cada modo que logra escapar, convirtiendo el espectro en gris en vez de
perfectamente negro.

Para calcular esta tasa total a la que un agujero negro pierde energia (masa) debido a la radiacién
de Hawking, se incorpora el factor de cuerpo gris o(w) que modifica la emisién térmica pura. A
continuacién se detalla matemdaticamente paso a paso. Primero se parte desde la ecuacién (2.30) y
se la convierte en una tasa de pérdida de energia multiplicando la cantidad de particulas emitidas
en cada modo por su energia w y se suma sobre los modos permitidos

_aM

e dw w n(w)(factor de modulacién),

donde M es la masa del agujero negro, el factor de modulacién aqui es el factor de cuerpo gris o(w),
que describe cudntas de estas particulas emitidas en el horizonte logran escapar al horizonte. En el
caso ideal, este factor seria 1, pero en la practica depende del tipo de particula y de las condiciones
del agujero negro.

En un andlisis méas detallado, el factor de cuerpo gris o(w) se introduce en la expresién para corregir

el espectro de emisiéon. De manera general:
dM d®k
T =9 an(w)a(w),

aqui g es el numero de grados de libertad internos del campo.

Usando la relacion de dispersién relativista:
A3k = Ank?dk = Ankwdw,

y considerando k = vw? — m2, la integral se expresa en términos de w:

dM /dwak o(w) (3.1)

Cdt 212 ew/Tu 31
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La ecuacion (3.1) describe la tasa total de pérdida de energia del agujero negro. En ausencia de un
campo gravitatorio que module la emisién o(w) se aproxima por la seccién eficaz del horizonte, lo
que llevaria a la ley de Stefan-Boltzmann en el caso de un agujero negro de Schwarzschild.

La ecuacién (3.1) se obtiene integrando la energia w de los modos emitidos, ponderada por la
ocupacion térmica n(w) y el factor de cuerpo gris o(w). La presencia de o(w) modifica la intensidad
de la radiacién respecto a un espectro puramente térmico y tiene un impacto crucial en el espectro

observado.

3.2. Radiacién de Hawking como efecto tiinel

La radiacién de Hawking puede interpretarse como un proceso de tunelaje cudntico[7, 19]: pares
particula-antiparticula se crean cerca del horizonte, y uno de los miembros del par logra cruzar el
horizonte —ya sea hacia fuera o hacia dentro— cambiando el balance energético del sistema. Esta
imagen es andloga a la produccién de pares en un campo eléctrico intenso (efecto Schwinger),
discutido en el capitulo anterior, y difiere de las derivaciones originales, donde la conservacién de la
energia no se impone explicitamente.

Para describir fenémenos en el horizonte, es necesario elegir coordenadas que, a diferencia de las
coordenadas de Schwarzschild, no son singulares en el horizonte. Si recordamos relatividad especial,
vemos que la métrica para un cuerpo en movimiento relativista en coordenadas esféricas puede

escribirse de la siguiente manera:

2 2
ds® = (1 = ;) a4 a4 a0 (3.2)
v
-2

Comparando esto con la métrica de Schwarzschild, véase la ecuacién (2.2) con ¢ = 1 obtenemos
2M [2M
que v = =—— — v = y/ —. Siguiendo los pasos de Painlevé y Gullstrand se obtiene la métrica de
r r
Painlevé-Gullstrand, misma que sigue siendo singular en = 0 y es regular en = 2M , el horizonte

de eventos ya no es una singularidad y se puede tratar problemas de horizonte con esta métrica(3.2).
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Ahora, la relacién diferencial entre coordenadas es

dt = dT — 1 __dr. (3.3)

La solucién a la ecuacion diferencial es

b= ut V2R 4+ oM YT VM (3.4)
VT V2M

u en esta ecuacién es el tiempo de Schwarzschild. Con esta eleccion el elemento de linea es

oM oM
ds? = — (1 — ) du® + 2\/>dudr + dr? + r2dQ? (3.5)
T T

Ahora ya no hay singularidad en » = 2M, y el verdadero caracter del espacio-tiempo, siendo es-
tacionario, pero no estatico, se manifiesta. Estas coordenadas fueron introducidas por Painlevé.
Su utilidad en estudios sobre la mecanica cuantica de los agujeros negros se hace evidente en este
estudio y en el trabajo en el cual se basa este.

Para nuestros propdsitos, una de las caracteristicas cruciales de estas coordenadas es que son es-
tacionarias y no singulares a lo largo del horizonte. Entonces, es posible definir un estado de vacio
efectivo requiriendo que aniquile los modos que llevan frecuencia negativa con respecto a t; dicho
estado va a verse esencialmente vacio para un observador en caida libre mientras este pasa a través
del horizonte de eventos. Las geodésicas nulas radiales son dadas por la condicién dt = 0, finalmente
llegamos a

B Y il (3.6)

La solucién con signo positivo corresponde a geodésicas salientes, mientras que la solucién con signo
negativo corresponde a geodésicas entrantes, bajo la asuncién implicita de que u se incrementa en
el futuro.
- dr :
En el limite r — oo, T +1. ¢ = 1 entonces recuperamos la velocidad de la luz.
U
En el horizonte de eventos r = 2M, la velocidad de la luz saliente del centro del agujero negro

r
es i 0. No puede escapar del horizonte de eventos, en su lugar la luz queda atrapada dentro
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del horizonte de eventos (como ya demostramos anteriormente, un agujero negro si puede emitir
radiacién, si suponemos efectos cudnticos en el horizonte de sucesos). Como la luz se mueve mas
rapido que cualquier otra cosa, la materia solo puede caer hacia dentro en el horizonte de eventos.
Cualquier cosa que cruce el horizonte hacia el interior queda irrevocablemente aislada del exterior.
A continuacién, consideramos la dindmica de una particula libre para obtener la accién, denotada

por S, ignorando la parte angular, en un escenario curvado como
dx”
S = /pudl‘“ Pu = MGuy dr

donde 7 es el tiempo propio a lo largo de la linea de mundo de la particula y p* es su cuadrimo-
mento fisico. La dindmica radial de particulas masivas en el espacio-tiempo de Schwarzschild est4

determinado por las ecuaciones:

oM 2M
(1—)@2—2 — (3.7)
T

Esta es la condicién de normalizacién para el cuadrivector velocidad.

La segunda ecuacién proviene de la conservacion de la energia. Se sabe que, para una métrica con una
coordenada temporal v que no depende del tiempo (es decir, es estacionaria), la cantidad conservada
asociada a la energia de la particula es el momento conjugado con respecto a esa coordenada wu.

El momento conjugado p, es

Pu = m(guuu + guﬂ‘")- (3.8)

Dado que la energia es una cantidad conservada definimos w como el valor constante del momento

conjugado dividido por la masa:

w:—<1—2i”>u+\/?f (3.9)

La ecuacion (3.9) es la geodésica correspondiente a la independencia temporal de la métrica; en
términos del momento definido en la ecuacién (3.8), puede ser escrito como p, = —w, y entonces

w tiene la interpretacién de la energia de la particula medida desde el infinito. Resolviendo estas



50

ecuaciones para 1 y 7 da:

/ 2M

Sustituyendo (3.10) en (3.9) da

2M 2M 2M
(1—>u:wi\/\/w2—1+ (3.11)
T T T

Estas ecuaciones describen la dinamica radial de una particula masiva en el espacio-tiempo de

Schwarzschild en coordenadas de Gullstrand-Painlevé. La eleccién de los signos + estd relacionada
con la direccién radial del movimiento de la particula. 4+ se corresponde con particulas saliendo del
horizonte de sucesos, mientras que — se corresponde con particulas entrantes, y como ya se dijo
anteriormente, w es un parametro que se corresponde con la energia medida por un observador en
reposo ubicado en el infinito.

Como la longitud de onda tipica de la radiacién estd en el orden del tamano del agujero negro,
uno podria dudar de una descripcién de ésta como una particula puntual. Sin embargo, cuando la
onda saliente es seguida del revés hacia el horizonte, su longitud de onda, medida por observadores
locales se corre de manera creciente hacia el azul. Cerca del horizonte, el niimero cuantico asociado
al radio se aproxima hacia el infinito y la aproximacién de particula puntual o semicldasica WKB se
justifica.

La radiacién de Hawking se puede comprender como un efecto tinel de una particula (por ahora
consideremos una particula sin carga, desprovista de momento angular y de espin) de energia w
que cruza el horizonte desde una posicién inicial 7 hasta la posicién final ry mientras la masa del
agujero negro decrece en w unidades de energia y como la energia es masa, y como ya vimos que
la masa esté relacionada con el tamano del agujero negro, entonces la conclusion es que el agujero
negro decrece de M a M — w, por lo que, el horizonte de eventos decrece de 2M a 2(M — w). La
barrera de potencial no existe antes de la salida de la particula del horizonte de eventos, sino que es
la propia particula la que al provocar la contracciéon del horizonte, crea la barrera. La accién clasica

S para la trayectoria esta dada por

Ty Ty Dr , Ty M—w H
S:/ drp, :/ dr/ dp, :/ dr/ d—,, (3.12)
0 0 0 () M r
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donde p, es el momento radial de una particula, p/. es una variable muda y se ha usado la ecuacién

0H
de Hamilton-Jacobi (7" =3 ) para obtener la ultima igualdad.
Pr

Haciendo el cambio de variable H = M — w y utilizando la ecuacién (3.10) para particulas salientes

T R R Ry
T T

Tomando en cuenta que rg > rg > rg y que f(rg) = 0, esta integral serd compleja y asumiendo

se obtiene

(3.13)

que la parte imaginaria de la accién puede ser atribuida completamente al residuo del polo, ésta

puede ser calculada ficilmente haciendo r — ry = €’’. Para el agujero negro de Schwarzschild con
2(M — w
flry =1~ M=)

r
nos interesa, porque esté relacionada con la tasa de emisiéon mediante efecto tiinel, o semiclésica I'

ImS:/ /l QJ\ZT = dw'
0 Jry 1_«/wiie
r

Aunque esta trayectoria radial hacia adentro pareceria, a simple vista, ser clasicamente permitida,

la integral (3.13) quedaria, para la parte imaginaria de la accién, que es la que

(3.14)

es una trayectoria que clasicamente estd prohibida porque es el mismo horizonte aparente el que se
estd contrayendo. De hecho, los limites de la integral (3.14) indican que, a lo largo de la trayectoria
que no estd permitida de manera clésica, la particula saliente empieza en r = 2M — ¢, justo dentro
de la posicién inicial del horizonte, y atraviesa el horizonte que se contrae para materializarse en
r =2(M — w) + ¢, justo afuera de la posicién final del horizonte.

De manera alternativa, y siguiendo los mismos pasos que se ha seguido hasta ahora, la radiacién de
Hawking también puede ser entendida como una creacién de pares justo en el borde del horizonte,
con la particula de energia negativa tunelando hacia el agujero negro. Como dicha particula se
propagaria hacia atras en el tiempo, tenemos que revertir el tiempo en las ecuaciones de movimiento.

[2M
Del elemento de linea de la ecuacién (3.5), vemos que el tiempo revertido corresponde a / — —
r

[2M
—41/ —. Ademas, como la antiparticula cae hacia dentro del agujero negro, y por lo tanto, anade
,

energia al agujero negro, se reemplaza M — M + w. Entonces la particula con energia negativa
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entrante tiene, haciendo la misma integral (3.14):

2(M + )
r

—w  pro d
ImS = Im/ / L dw' = dmw(M — g),
0 Ty 2
14

Los dos canales, tunelaje de particulas o antiparticulas, contribuyen a la tasa del proceso de Hawking
entonces, en un calculo mas detallado, uno tendria que sumar sus amplitudes para obtener la tasa
semiclédsica de tunelaje. Sea como sea, dichas consideraciones Unicamente afectarian al prefactor.

En cualquier caso, la parte exponencial de la tasa semicldsica de emisién, de acuerdo con [20], es

w
—8mw (M—f
e

1‘\ ~ 6—2Im5 — 2) — 6+ASBH7 (315)

donde se ha expresado el resultado de manera més natural en términos del cambio de la entropia
de Bekenstein-Hawking. Cuando el término cuadratico en w es despreciado, la ecuacién (3.15) se
reduce al factor de Boltzmann para una particula con energia w con § = Ti{ = 8r M. La correccién
de w? proviene de la fisica de la conservacién de la energia, la cual eleva por si misma la temperatura,
efectiva del agujero mientras radia. Que este resultado exacto deba ser correcto puede ser visto en
términos fisicos considerando el limite en el cual la particula emitida se lleve la masa entera del agu-
jero negro (correspondiente a la transformacién del agujero negro en una capa saliente. Solamente
puede existir un tnico estado asi. Por otro lado, hay e B# estados en total. La mecénica estadistica
entonces avala que la probabilidad de encontrar una capa conteniendo toda la masa de un agujero
negro es proporcional a e SBH,

Siguiendo la matematica de la ecuacién (2.28) y suponiendo que el término cuadratico es despre-
ciable, esto implica que hay un flujo espectral propio de una temperatura inversa de 8w M:

_ dw |T(w)?

- = Al 1
pw) = 5 (3.16)

donde |T'(w)|? es el coeficiente de transmisién dependiente de la frecuencia w para una particula
saliente que alcanza la infinidad futura sin dispersion hacia atras. Surge de un andlisis mas completo
de los modos, cuyo comportamiento semi-clasico se ha estado discutiendo en [7].

La técnica anterior puede ser aplicada también a la emisién desde un agujero negro cargado. Cuando



53

la radiacion lleva consigo la carga del agujero negro, los cdlculos son complejos por el hecho de que
la trayectoria ahora también estd sujeta a fuerzas electromagnéticas. Por ahora nos restringiremos
a radiacién no cargada proveniente de un agujero negro de Reissner-Nordstrom. La derivacién de
esta radiacién sigue los mismos pasos que el anterior caso.

Partimos de la métrica de Reissner-Nordstrom (Véase la ecuacién (2.3)), como ya se mencioné
anteriormente esta métrica presenta una singularidad en el horizonte ry = M + /M2 — Q?, y el
objetivo es transformar las coordenadas de tal manera que ya no exista esa singularidad.

Para eliminar la singularidad en el horizonte, realizamos una transformacién de coordenadas a un
nuevo tiempo u que serd regular en r = rgy. La forma general de la transformacién de coordenadas
es:

u=t+ f(r)

donde f(r) es una funcién de r que se elegird adecuadamente para eliminar la singularidad.
Para simplificar la métrica y eliminar la singularidad, elegimos f(r) de tal forma que el término dr?

cancele la singularidad en el horizonte. Para ello se escoge

df — /2Mr - Q?

dr 2M  Q?

Con esta eleccién, la métrica toma la forma no singular:

oM 2 oM 2
ds? = — [1 - 22 4 Q@ dt> + 24/ == — Q—dtdr + dr? 4+ r2dQ? (3.17)
r r2 r r2

d
Finalmente integramos —df para calcular la forma de u:
r

B r—/2Mr — Q? Q% — M? VM2 —Q2\/2Mr — Q2
u=t+2y/2Mr — Q?+M In <r+ 2M7“—Q2)+ M2_Q2arctanh < Uy >
(3.18)

Este término es el que transforma el tiempo de RN ¢ al tiempo regularizado de Painlevé u, eliminando
asi la singularidad en el horizonte.

La ecuacién de movimiento para una particula saliente (sin masa y sin carga), siguiendo el mismo
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proceso que ya hemos hecho para Schwarzschild, es

. dr oM Q?
7 =1—4/— -

con M — M — w cuando la gravitacién propia de la particula es incluida. La parte imaginaria de la

accion (siguiendo lo ya hecho para Schwarzschild) es:

@[ dr p
ImS = Im (—dw"),
0 Ty 1 2(M — w’) Q2

La integral en r presenta una singularidad en el horizonte del agujero negro, rg = M + \/m .
Para evaluar la parte imaginaria de la accién, deformamos el contorno en el plano complejo alrededor
de esta singularidad (de manera similar a lo ya hecho para Schwarzschild). La contribucién a la
accién proviene de los polos en 7.

La singularidad en rg produce un término de residuo que es responsable de la parte imaginaria de

la accién. Al evaluar la integral de residuo obtenemos

ImS = 47 (w <M— f) — (M — w) /(M —w)?— Q% + M/M? — Q?) .

2

La tasa de emisién de Hawking estd relacionada con la acciéon imaginaria a través de

T ~ e—QImS

Sustituyendo el valor de ImS calculado en el paso anterior, se obtiene la tasa de emisién Hawking

para el agujero negro de RN,

8 ( (M w) (M —w)/(M—w)2—Q2+M+/M? Q?)

=8| w il —w —w)*—Q*+ —

F~e 2 = eASBH (3.20)
La presencia de carga en el agujero negro de RN introduce un término adicional dependiente de la
carga que no existia en la expresiéon que se obtuvo para Schwarzschild.

Expandiendo para w < M, se puede aproximar la variacién de la entropia ASgy al primer orden

en w. Retomando lo que ya se hizo para Schwarzschild, es posible concluir que la ecuacién (3.20),
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a primer orden, es consistente con el resultado de la emisién térmica a la temperatura de Hawking,
para un agujero negro cargado.

Nuevamente, la conservacion de la energia implica que el resultado exacto tiene correcciones de mas
alto orden en w, esto es lo que vamos a hacer mas adelante, considerando también la contribucion
debido a la produccién de Schwinger en el campo eléctrico del agujero negro. Ademas de eso, como
la tasa de emisién tiene que ser real, la presencia de la raiz cuadrada en la ecuacién (3.20) asegura
que la radiacién més alld de la extremalidad no es posible. Al contrario que en las derivaciones
anteriores, aqui la tercera ley de la termodinamica actia obligando al agujero negro a tener M > Q.
Veremos ahora el tunelaje de particulas cargadas a través del horizonte en RN antes de combinar

los 2 procesos de tunelamiento.

3.2.1. Tunelaje a través del horizonte en RN

Ahora emulemos lo ya hecho para Schwarzschild para una particula cargada moviéndose en un
fondo de RN. En las coordenadas de Painlevé-Gullstrand, definidas por el elemento de linea (3.17).
Las ecuaciones andlogas a (3.7) y (3.9), se derivan de manera andloga, para particulas cargadas en

un fondo de RN son:

9" pupy = —m?, (3.21)

esta es la condicion de dispersion relativista para una particula masiva en un espacio-tiempo curvo.
Es decir, el cuadrimomento p,, de una particula de masa m debe cumplir con (3.21). Esta condicién
es la generalizacién en espacio-tiempo curvo de la relacién de dispersién clisica E? — p? = m2.

La segunda ecuacién es

P, :=p,+qA, = —w. (3.22)

En (3.22) se introduce la nocién de momento canénico en presencia de un campo electromagnético.
En este caso, la particula estd acoplada débilmente a un potencial electromagnético A, por lo que
su momento canénico es la suma del momento fisico p, y el término ¢A,. Debido a que el fondo
es estacionario, la componente correspondiente a la direccién temporal (la coordenada u en PG) se
conserva. Esta cantidad conservada se identifica con —w, donde w es la energia medida en el infinito.
En resumen (3.21) y (3.22) son la condicién de masa para una particula en un espacio-tiempo curvo,

y la condicién de conservacién de la energia (incluyendo el acople electromagnético) para la particula
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en un fondo estatico. Estas ecuaciones son el punto de partida para el analisis de la emision por
tunelaje, ya que permiten expresar la dindmica del proceso en términos de cantidades conservadas
y condiciones de borde en el horizonte del agujero negro.

Estas ecuaciones se pueden resolver simultdneamente para obtener explicitamente el momento radial
pr. Recordemos que tenemos (3.21) y (3.22), partiendo de alli, se busca una expresién explicita
para p, (momento radial), asumiendo movimiento netamente radial, en coordenadas de Painlevé-
Gullstrand. La métrica en estas coordenadas tiene la forma presentada en (3.17), la condicién (3.21),

haciendo explicitos los términos relevantes, toma la forma general (para movimiento radial):

uw, 2 rr, 2 2

9"y + 29" pupr + 9" Py = —m”.

La condicién (3.22) permite sustituir p, = —w — ¢A,. Haciendo esta sustitucién, obtenemos una

ecuacion cuadratica en términos de p,:

uu, 2 rr. 2 2

9“'py + 29" pupr + g p; = —m=,

resolviendo esta ecuacién cuadratica para p,, se obtiene la ecuacion (3.23)

pr = Jl"\/ﬁ(w +qAu) + j”\/(w +qAy)? — fm? (3.23)

La expresién obtenida corresponde al momento radial necesario para describir la dindmica radial de
una particula cargada en el fondo de RN. En sintesis, la ecuacién (3.23) es simplemente la solucién
explicita para el momento radial, obtenida al despejar p, a partir de las ecuaciones fundamentales
(3.21) y (3.22).

El potencial electromagnético del agujero negro de RN estd escrito en coordenadas estandar (t,7),
debemos llevarlo a una forma regular en coordenadas de Painlevé-Gullstrand. Inicialmente, el po-
tencial electromagnético de un agujero negro de RN en coordenadas estdndar es conocido y dado

por

Q

Aud‘fc“ = _?dt
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Sin embargo al pasar a coordenadas de Painlevé-Gullstrand definidas por (3.17), el término dt
resulta singular en el horizonte, porque alli f = 0. Por lo tanto, aunque la métrica en coordenadas
de Painlevé-Gullstrand es regular en el horizonte, el potencial electromagnético en la forma original
—th no lo es.

r
Para resolver esta situacién, se realiza una transformacion de calibre usando una funcién escalar

adecuada. La transformacion de calibre general es:
Ay — Ay +0ux,

donde elegimos precisamente x para compensar la singularidad en el horizonte, de modo que el

potencial electromagnético quede regular alli. Concretamente, se elige
X = t— u,

al reorganizar términos y escoger adecuadamente esta transformacion, se obtiene la forma simplifi-

cada y regular

Q

r

A=—"du (3.24)

De este modo, la ecuacién (3.24) no es més que el potencial electromagnético original del agujero
negro cargado, expresado ahora en coordenadas de Painlevé-Gullstrand luego de una transformacién
de calibre especialmente elegida para eliminar singularidades espurias en el horizonte. Como A
ahora estd bien definido y es real en todas partes, no contribuye una parte imaginaria a la accion
de tunelaje. Unicamente tenemos que preocuparnos de la contribucién de p,..

La idea general es describir el proceso de emisién de particulas por el agujero negro mediante un
proceso de tunelamiento. Este proceso se describe mediante la accion clasica de la particula, que en

el formalismo semiclasico se escribe como

S = /P”dx“, (3.25)

donde el momento candnico en presencia de un campo electromagnético viene dado por (3.22). En

este caso particular, como se explicé anteriormente, el potencial electromagnético A, es regular
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en el horizonte (3.24), por lo que no introduce contribuciones imaginarias adicionales al integrarse
alrededor del horizonte. Asi, para evaluar la parte imaginaria de la accién al atravesar el horizonte,

basta con considerar tinicamente el término del momento fisico p,,

ImS = Im/pudm“

Para movimiento netamente radial, la accién relevante es radial, es decir, dz* = (du, dr,0,0). Dado
que la coordenada relevante para estudiar el cruce del horizonte es la coordenada radial r, la accion

imaginaria radial se reduce a evaluar la integral

ImS = Im/pTdr,

utilizando la ecuacién previa (3.23), la funcién que representa una singularidad en el horizonte es
precisamente m, puesto que en el horizonte del agujero negro de RN, f(ry) = 0. Por lo que,
la tnica contribucién imaginaria viene de evaluar esta integral en la vecindad del horizonte, donde
existe un polo en 1/f(r).

Para calcular esta contribucién imaginaria, usamos el método estandar de variable compleja: al en-
contrar un polo en r = r, integramos alrededor del polo mediante un pequeno contorno en el plano

complejo, tomando la semicircunferencia en el semiplano complejo superior, la parte imaginaria de

la accién queda finalmente como
m(w —qQ/r+)

2
S —
tm f'(ry)

. (3.26)

Esta ecuacién es una forma compacta y elegante que encapsula la fisica del tunelaje mediante un
residuo sencillo en la estructura de la métrica del agujero negro.
La temperatura de Hawking esta relacionada directamente con esta derivada en el horizonte por la

expresion estandar de termodinamica de agujeros negros
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por tanto, se puede expresar el residuo directamente en términos de la temperatura del agujero

negro

1 1 1
fes <f>,~:u T ) 4Ty

sustituyendo esto en la expresién (3.26), tenemos inmediatamente

I w-—q?

ImS =27 (w — ¢P) 70 5T,

Ahora sabemos que la probabilidad de tunelamiento semicldsica P esta relacionada con la accién
imaginaria mediante:
P = e—2ImS

)

sustituyendo la expresién anterior llegamos directamente a la ecuacién (3.27)
exp [—2ImS] = exp[—(w — ¢®)/TH]. (3.27)

Esta expresién muestra claramente que el proceso de emisiéon de particulas cargadas desde el ho-
rizonte del agujero negro es andlogo al factor de Boltzmann estdndar que se observa en sistemas
termodinamicos cldsicos, con temperatura T y energia corregida por el potencial eléctrico q®.

La ecuacién (3.27) es el resultado inmediato de relacionar la accién de tunelaje 3.26) con la tem-
peratura de Hawking mediante la derivada de la métrica en el horizonte, nétese que aqui Tx es la
temperatura calculada en el capitulo anterior. Es, en definitiva, un factor de Boltzmann generalizado
que incluye la energia electromagnética asociada a la carga de la particula emitida por el agujero

negro.

3.3. Ecuacion bosdnica

En el caso de particulas bosénicas cargadas en este escenario la de Klein-Gordon (6.10) rige,
haciendo lo especificado en la secciéon 6.2 es posible reducir la ecuacion de Klein-Gordon a una
ecuacién tipo Schrodinger vedse la ecuacién (3.28)

2 2 2 2
dR+<1_2i\4+C£2) (m2+z(l+1)+21‘4_2¢?>3+<w_q§> R=0.  (3.28)

dr? r2 r3 rd
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De la misma manera, se puede proceder con la ecuacién de Dirac.

3.4. Ecuacién fermionica

La ecuacion que gobierna el comportamiento de particulas fermiénicas cargadas en este escenario
es la de Dirac, haciendo los pasos mostrados en (6.3) se llega a una expresién de onda anéloga a

6.23:

— (& + ZQTQ)2 U +020; = f <m + W) i+ <A§ - ?32) <a* 0 <at + qu)) \Ifi—iafi—?%.
(3.29)

La ecuacién (3.29) es una ecuacién diferencial radial que incluye la dependencia temporal, términos

de derivadas radiales usando la coordenada tortuga 7, y términos de potencial asociados a la masa,

momento angular de espin y cargas del agujero negro y la particula, respectivamente. Esta ecuacion

se puede simplificar atin més con el procedimiento que seguiremos a continuacion.

El primer paso es suponer una dependencia armoénica en el tiempo para la funcién de onda, lo cual

permite hacer separacion de variables. Se toma un ansatz de la forma
Ui(r,t) = e ™y (r),

donde w es la frecuencia angular asociada. Esto es, hemos factorizado la dependencia temporal como
e~ ™! Al hacer esto, cualquier derivada temporal 0; actuando sobre ¥; se puede reemplazar por un
factor algebraico en términos de w.

Se sustituye explicitamente la dependencia temporal en la ecuacién (3.29). Con esta sustitucién, se
pasa del dominio temporal al dominio de las frecuencias, convirtiendo asi, las derivadas temporales
en potencias de w.

iqQ\’
En (3.29) aparece el operador — <8t + ) actuando sobre ;. Luego de una sustitucién de la
r

solucién temporal de la ecuacion diferencial se llega a:

. 2 2
(o 52 = (o= 22)
T T
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Asi el término temporal de la ecuacién (3.29) se transforma en un término algebraico (w — qr>2
multiplicando a ¥;. Al mismo tiempo, la derivada radial de segundo orden permanece igual (pues
no hemos alterado la parte espacial).

Después de ese paso, la parte izquierda de (3.29) se convierte en

2
<OJ — q> ‘1’1 + 83\111

r

La parte derecha sigue conteniendo los términos de potencial y acoplamiento, que trataré en el
siguiente paso. El siguiente paso es aplicar la aproximaciéon WKB al orden dominante para simplificar
la ecuacién diferencial. Pero antes de aplicar la aproximacién WKB al orden dominante, veremos

condiciones de borde de la ecuacién diferencial.

3.5. Condiciones de borde

En el caso de los campos (bosénicos o fermiénicos) en el fondo de un agujero negro de RN, las
condiciones de borde més importantes en el andlisis de las ecuaciones de segundo orden, tanto la de

Klein-Gordon como la de Dirac reducidas a un problema radial, se suelen imponer en
» El horizonte externo (r = ry),
» ¢l infinito r, — oo.

En las ecuaciones diferenciales (3.28 y 3.29), al aproximarnos al horizonte (r = r4) el factor de la
métrica f(r) tiende a cero, lo cual simplifica la ecuacién cerca de 4. En el andlisis habitual, la clave

es:

= Causalidad: las ondas fisicas cerca del horizonte deben ser Unicamente entrantes si pensamos
en un proceso de scattering desde el punto de vista de un observador externo. Sin embargo,

cuando hay un potencial eléctrico, la nocién de entrante o saliente requiere mas cuidado.

= Signo de la energia: si la energia efectiva en el horizonte, w — ¢® gy es positiva, una onda con
momento entrante (momento radial negativo implica un flujo hacia el agujero); si esa energia

es negativa, el sentido se invierte.
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En [6] se concluye que la condicién fisica es que, al horizonte, solo haya un modo con momento
entrante (o dicho de otra manera, un modo que viaja hacia el agujero negro, y no una combinacién

de ondas entrantes y salientes). Eso se traduce a que la solucién cerca del horizonte tenga la forma
U (ry) = Ce Wma@/r4)rs

descartando el término con exponencial et @=4Q/m+)r«  Tal simplificacién fija D = 0 en ¥ =

Ce 8+ 4 Det« Esta es la condicién de borde en el horizonte.
» SiQ)=w-—¢qQ/ry >0, laonda e~ ®¥+ representa un modo entrante al agujero negro.

= Si 2 < 0, esa misma exponencial corresponde a momento radial negativo, pero la velocidad de
grupo sigue siendo entrante por la relacién de dispersién (son burbujeos que se mueven hacia

el horizonte).

En cualquiera de los casos, el criterio es no incluir la solucién que fisicamente representaria onda
saliente desde el horizonte, la cual seria no causal en este planteamiento.
Para r — 00, o equivalentemente r, — 00, el potencial gravitatorio y eléctrico se debilitan, y la

ecuacién diferencial tiende a una forma parecida a

A2

_ 1.2
—d—rz_k v,

donde k = vw? — m2. La solucién asintética tipica es una combinacién de exponentes

Wao(r,) = Ae™Hr 4 Betibr

En un analisis de transmision, interpretamos
= Ae” ™ como la onda saliente (hacia +00),
= Be'*™ como la onda entrante (desde +00).

Para hallar la tasa de transmision, se compara la amplitud de la onda en el horizonte con la amplitud

de la onda saliente a infinito. A menudo se fijan convenios como:
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= Solo onda saliente a infinito: se impone B = 0 si estamos pensando en la solucién de transmi-

sién pura desde el horizonte.

= Mis comtinmente, se realiza un anglisis inverso de dispersién: se hace incidir una onda Bet "

desde 400 y se mira cudnta fraccién atraviesa el horizonte y cudnta se refleja.

En la derivacion de la radiacién, se invoca la imagen con tiempo reverso para relacionar el coeficiente
de reflexién R con la seccién eficaz de absorcién. Asi, dependiendo de la convencién, a veces se toma
onda pura incidiendo desde infinito y onda saliente hacia el horizonte o al revés.

Interpretacion fisica

= Si se estudia la emisién espontanea desde el agujero negro, ¥ representa el modo que sale a

infinito y no se incluye un modo entrente desde infinito.

» Si se hace dispersién inversa (onda incidiendo desde lejos, la condicién es B # 0, A # 0, y uno

relaciona los flujos para obtener Ry T.

Recapitulando, en el modo entrante se descarta la componente que corresponderia a una onda

saliente cerca del horizonte. Esto se traduce en

P ~ e Hw—aQ/r )y

ik

En la condicién en el infinito, la solucién asintética es U ~ Ae %7 4+ Bet ™ Dependiendo del

problema fisico:

» Para emisién espontdnea, usualmente se considera tinicamente la onda saliente a infinito (es

decir, B = 0).

» Para dispersién inversa, se incluye una onda entrante (B # 0) y se determina el coeficiente de

reflexién y transmision comparado con la onda saliente A.

Estas son las condiciones de borde que se aplican a la ecuacion diferencial radial en un agujero negro,
tanto para campos bosénicos y fermiénicos. Cada una refleja la causalidad y la interpretacion del

flujo de energia cerca del horizonte, asi como la naturaleza libre de la onda a grandes distancias. El
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coeficiente de transmisién T estd dado simplemente por |C//A|? para bosones y >, |Ci|2/ Y, |4i|%,
donde el indice representa la componente espinorial.
Ahora que ya hemos visto las condiciones de borde de la ecuacién diferencial a resolver, estamos

listos para abordar el método WKB.

3.6. Método WKB

Para comenzar con el método primero supongamos que tenemos una ecuacién diferencial del
tipo
— +U(x)-=+V(z) =0, (3.30)
x

donde V(z) es, en esencia, grande, del orden p? = M. Entonces tratamos una solucién de la forma
y = exp(iW (z)),

y expandimos W (z) = pWo+ Wi +--- yV = pu®Vo+uVi +--- y U = Uy + - -- en potencias de p.

Las ecuaciones a orden cero y primer orden vienen dadas por

— 2 (W)? + 1V = 0,

ipW( = 2uWEWT +ipUg W + pvy = 0.
La ecuacién de orden cero se resuelve por

Wo = i/\/%dm = /kdm, (3.31)

y la ecuacién de primer orden queda

ik! — 2kW{ + iUpk + V1 =0

2kW1 =ik + iUk + V3

k'/
W, = z? +iUo + % (3.32)
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Si V1 es imaginario y Uy y k son reales, esto significa que Wj es un imaginario puro, y por lo tanto

la ecuacién de primer orden dicta cémo la amplitud de la onda varia con la posicién. Por ejemplo,

podemos considerar la ecuaciéon de Dirac anterior con A = ¢ = 0 para simplificar. Entonces

Vo =w? — fm?

iwo df

Vi= %% an
1 df

Uo = _ﬁ dr

Con estos componentes, el nimero de onda local es

k(r) = Vo (r) = Vw? — f(r*)m?

(3.33)

(3.34)

(3.35)

este k(r*) es real para las regiones donde w? > fm? (que incluye el horizonte y el exterior del agujero

negro si w es la energia es la energia del modo emitido). Ademas, si consideramos o = —1, sabemos

de la ecuacién (6.66) que una onda con este espin debe ser saliente en el horizonte, lo que corresponde

con tomar k > 0. En este caso se puede resolver la ecuacién (3.32) para W, reemplazando los valores

de (3.33-3.35):

K1 df iw(—1) df
w! =4-— —j— 2L X 7 7
VY TS A T T ofk dry

e

Integrando queda

. 7 1 df w
2W1_“nk_2/dr*fd7«* (1—E)

Esta ecuacion se puede integrar directamente y queda

1 1 _ fm?
U

(3.36)
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Tomando la constante C' = 0 (se absorberd en la normalizacién de la solucién), reemplazamos en la

expresién de 2W;

. 2 2
oWy =ilnk — ~ |2In 1+\/1—fﬂ —ilnk—iln 1+\/1—fﬂ
2 w? w?

Dividiendo ambos lados por 2, obtenemos W;

i i fm? i k

Recordemos que W; es puramente imaginario, por lo que se puede escribir W7 = iA(r.) donde

A(ry) € R. En efecto definimos

A(ry) = 1ln i ,
S Y A
ARVA A
w

que es real. Asi, W = iA(r,). Entonces la solucion WKB hasta primer orden es

O (“’J“k(r*))m exp (z/ de) (3.38)

k(ro) \ k(ry)

Ahora que ya hemos visto la aproximacién WKB de primer orden veremos los resultados obtenidos

y la discusién.



Capitulo 4
Resultados y Discusion

4.1. Tunelamiento a través del campo eléctrico

Hemos ya establecido que el niimero medio de particulas emitidas por el agujero negro depende
del coeficiente de transmisién con las condiciones de borde entrantes en el horizonte. Generalmente,
determinar este coeficiente de transmisién requiere que se resuelva numéricamente las ecuaciones
(6.20) y (3.29). Sin embargo, usando el método WKB se puede encontrar aproximaciones para 7.
Para regiones clasicamente prohibidas (donde Vog > E), el momento clasico se vuelve imaginario y

definimos un parametro S (accién de tunel)
Tout
S:/ dr*\/Veg(r*) — E (4.1)

donde los limites 74, y 7oy son los puntos de retorno clasicos (donde la raiz cuadrada se anula).
Entonces, siguiendo los pasos de la actual secciéon (WKB estdndar), la probabilidad de tunelamiento

€s

KT ~ e 29, (4.2)

En este articulo en particular la barrera Vs; surge tanto por efectos gravitacionales como electro-
magnéticos. Al aplicar la aproximacién WKB a la ecuacién de Klein-Gordon (6.16) o a la de Dirac
(3.29), se obtiene directamente esta relacién fundamental del método WKB para la transmision,
que precisamente es (4.2), donde T es la cantidad relevante que mide la transmisién a través de la

barrera. La diferencia con la forma estandar de 7' es solo en la definicién precisa de las variables

67



68

involucradas (como el factor K), pero en esencia es la misma expresion general obtenida por apro-
ximaciéon WKB.

La ecuacién (4.2) es la aproximacion WKB al orden més bésico (primer orden). Sin embargo, es bien
conocido en mecdanica cuantica y en QFT que este método puede mejorarse mediante correcciones
sucesivas. En particular, para ciertos tipos de potenciales (como aquellos que se reducen localmente
a osciladores armonicos invertidos cerca de puntos de retorno cldsicos), la aproximaciéon WKB puede
ser exacta si se consideran ciertas correcciones adicionales.

De hecho, como el articulo lo menciona explicitamente (y lo hemos estudiado ya), se sabe (por
ejemplo, en problemas clasicos como la produccién de pares en un campo eléctrico constante -
efecto Schwinger- o la radiacién Hawking) que la forma exacta de la transmisién puede escribirse

en términos de factores estadisticos como

1

kP 1
eSS F1’

(4.3)
siendo el 4+ para fermiones y el — para bosones. Este resultado aplica al problema de la transmision
ingenua. Esto ocurre cuando el problema original se reduce efectivamente a un potencial cuadratico
cerca de los puntos de retorno cldsicos, lo cual es exactamente lo que sucede en la cercania del
horizonte de un agujero negro y en la presencia de campos eléctricos intensos.

Este resultado tiene una interpretacién fisica. La expresién WKB simple e 2%

se interpreta como
la probabilidad de atravesar una barrera cldsica de potencial; sin embargo, en un contexto cuanti-
co completo, considerando efectos cuédnticos adicionales (como reflexiones internas en la barrera o
interaccién con el campo electromagnético), la transmisién se modifica y adopta una forma més
general tipo distribucién estadistica (Bose-Einstein o Fermi-Dirac).

En otras palabras, la ecuacién (4.3) introduce explicitamente el cardcter estadistico cudntico de las
particulas emitidas; para bosones, la probabilidad aumenta debido al efecto de emision estimulada
(factor Bose-Einstein -1 en el denominador),mientras que para fermiones, la probabilidad disminuye
debido al principio de exclusién de Pauli (factor Fermi-Dirac +1 en el denominador). El articulo [6]
senala que aunque la aproximacién WKB original (4.2) es ttil y correcta a primer orden, la forma

exacta conocida en problemas estandar, como emisién de particulas en un campo constante, sugiere

que esta correccién (4.3) es més apropiada.
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De hecho, el articulo [6] menciona explicitamente que esta expresién coincide con la transmisién
exacta para el caso de un potencial tipo oscilador invertido, por lo que representa una mejora sig-
nificativa respecto a la expresion original més sencilla del método WKB.

En resumen, la ecuacién (4.3) surge al considerar correcciones exactas del método WKB para cier-
tos potenciales efectivos tipicos de produccién cuéntica de particulas (como el efecto Schwinger
y radiacién Hawking). Tiene una clara interpretacion fisica en términos de estadisticas cuanticas
(Bose-Einstein o Fermi-Dirac), asi como también representa una mejora con respecto a la férmula
bésica WKB (4.2), siendo una aproximacién més precisa (y a veces exacta) del fenémeno estudiado
(radiacién de particulas cargadas).

T es el coeficiente de transmisién simple, obtenido directamente de la aproximacion WKB para el
problema original de la barrera de potencial. T" es el coeficiente de transmision fisico, que incorpora
correctamente las condiciones fisicas de borde y flujo, especialmente cruciales cuando se tiene emi-
sién de particulas en presencia de campos gravito-electromagnéticos. K es el factor geométrico o
cinematico que relaciona los flujos de particulas entre diferentes regiones del espacio-tiempo. Recor-
dando las ecuaciones de flujo para bosones (2.62) y fermiones (2.63), si ahora usamos la expresién
exacta (4.3) y sustituimos estas relaciones en la ecuacién ya mencionada, resulta un fenémeno muy

especial:

» Para bosones, sustituyendo KT =

25 1
1
- T  K(E-1) 1 B 1
C1-KT 1 K(E-1)-1+1  K(e* -1)
S e25 1

Pero como este célculo puede complicarse debido a los factores adicionales (K), [6] expone
claramente que después de realizar esta sustitucion, el resultado que se obtiene es simplemente
(se anula el —1 y el +1)

KT =e 29, (4.4)

= De manera similar, para fermiones se llega nuevamente a la misma expresién al realizar la
sustitucion correcta. La complejidad se simplifica de manera elegante llegando nuevamente a

(4.4).
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Es decir, la estructura del problema es tal que, aunque uno empieza con una distribuciéon de Bose-
Einstein o Fermi-Dirac exacta (4.3) para el coeficiente simple, al introducir las correcciones fisicas
de condiciones de borde y factores de flujo correctos (2.62 y 2.63), se recupera finalmente la forma
sencilla del WKB estédndar (4.4). Esta aparente simplificacién es destacada de manera explicita co-
mo enganosamente sencilla, puesto que encapsula de manera elegante todas las correcciones fisicas
anteriores.

La ecuacién (4.4) representa un resultado importante y 1til del andlisis del articulo:

Indica que, después de considerar correctamente todas las correcciones fisicas (estadisticas cudnti-
cas, efectos del campo electromagnético, factores cinematicos de flujo, etc.), el resultado neto es
que la probabilidad de transmisién fisica a través del potencial efectivo (agujero negro y campo
electromagnético) queda dada, en la aproximacién WKB mads precisa, por una forma exponencial
simple tipo WKB clésico (4.4). Esto implica que, aunque los efectos estadisticos (bosones o fer-
miones) son relevantes inicialmente, se incorporan finalmente en los factores externos del problema
(definicién correcta de flujos y condiciones de frontera), simplificando la expresién final a una forma

exponencial estandar, las integrales de tunelaje vienen dadas por

2
S= [y (B0 (s D B2 (0 g
r r T T

en el caso bosdénico, mientras en el caso fermidénico, por

5 N QY (e UL (Y, o

Las ecuaciones (4.5-4.6) surgen directamente del potencial efectivo que aparece en las ecuaciones

tipo Schrodinger obtenidas anteriormente, véase (6.16) y (6.60). Recordemos que el método WKB
establece que la accién clésica asociada al tunelamiento cudntico a través de una barrera potencial

efectiva se calcula integrando el momento imaginario clésico a través de la regién prohibida (donde

Tsal
S:/ 1/‘/'6]0]0(7"*)61’/“*,

al sustituir explicitamente el potencial efectivo Ve s¢(r) encontrado anteriormente, obtenemos exac-

el potencial efectivo es positivo

tamente las ecuaciones (4.5) y (4.6).
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Las integrales representan el esfuerzo clasico requerido para que la particula atraviese la barrera
de potencial formada conjuntamente por el campo gravitacional y el campo eléctrico del agujero
negro cargado. Las raices del integrando definen los puntos clasicos de retorno, donde la particula
cambia de una regién permitida a una prohibida, delimitando asi, la regién de tunelamiento. El
término w — ¢@/r muestra explicitamente cémo el campo eléctrico modifica la energia efectiva de
la particula al moverse en el fondo cargado.
Por otro lado, el término (j + 1/2)2/r? refleja directamente la presencia del momento angular total
j del fermién, caracteristico de la ecuaciéon de Dirac. Este término diferencia claramente la ecua-
cién fermiénica (4.6) de la ecuacién bosénica (4.5), que involucra un término diferente, (¢ + 1)/r?,
caracteristico de campos escalares o bosénicos. La estructura general de estas acciones muestra cla-
ramente cé6mo la geometria del agujero negro, la masa m de la particula, la carga ¢ de la particula,
y la carga () del agujero negro modifican conjuntamente el potencial de tunelamiento.
La principal diferencia entre (4.5) y (4.6) radica en los términos de potencial, mientras que los
bosones poseen potencial

(e+1)  2M  2Q?

2
m+ e+ -
r2 3 A

los fermiones poseen potencial
i +1/2)2
o UH1/2°
r

Esto refleja explicitamente el origen espinorial frente al origen escalar del campo analizado. Los
términos adicionales gravitacionales aparecen naturalmente para bosones debido a la estructura
especifica de la ecuacién de Klein-Gordon; para fermiones estos términos no aparecen en la simpli-
ficacion WKB a primer orden por razones algebraicas (relacionadas con la forma de la ecuacién de
Dirac y los términos subdominantes descartados).

Consideremos la forma general de la accién WKB obtenida anteriormente, por ejemplo para fer-
miones (4.6), si tomamos el limite en que la masa de la particula es muy grande comparada con la
curvatura local. Tipicamente se toma el limite puntual, donde la longitud de Compton 1/m es muy
pequenia respecto a la escala caracteristica del agujero negro, entonces los términos que contienen
factores 1/r? (como (j + 1/2)?/r%, y términos andlogos para bosones) son despreciables frente al
término m?. En este limite simplificado, el término dominante dentro del primer paréntesis es cla-

ramente m?, ya que es mucho més grande que cualquier término con 1/72, 1/73, etc. Por tanto, se
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puede realizar la simplificacién

4+ 1/2)2
m2+(ﬂ+ /2) ~ 2

r? ’

realizando exactamente la misma aproximacion en el caso bosénico (4.5), también obtenemos el mis-
mo resultado, pues todos los términos adicionales son subdominantes en el mismo limite. Entonces,

la integral de accion se reduce a:

Y ) ()

la ecuacion (4.7) corresponde exactamente a lo que se obtendria analizando el movimiento de una

particula puntual relativista cargada (con masa m y carga ¢) en un espacio-tiempo curvo de RN, sin
considerar efectos cudnticos o espinoriales explicitos. En este limite, la particula puede entenderse
cldsicamente como moviéndose con una energia efectiva w—q@ /r, influenciada tanto por la gravedad
del agujero negro (término métrico) como por su campo electromagnético (potencial eléctrico ¢@Q /7).
La interpretacion fisica es clara y directa: esta integral representa la accién clasica asociada al tuinel
cuéntico en la aproximacién semiclésica (WKB), donde el efecto dominante es simplemente la masa
(energia de reposo grande) de la particula. Los efectos adicionales (espin, efectos gravitacionales
menores de orden superior, etc.) se desprecian en este limite.

Este limite es especialmente 1til porque simplifica significativamente los calculos y permite obtener
férmulas analiticas explicitas para la tasa de emisién de particulas masivas desde agujeros negros
cargados. Esta simplificacion ayuda a extraer conclusiones fisicas claras sobre cémo se comporta la
emision de particulas cargadas, tanto mediante radiacién Hawking como mediante la produccién de
pares tipo Schwinger.

En el limite que el agujero negro es mas grande que la longitud de onda de la particula, esperariamos
ser capaces de entender la emisién desde la perspectiva de una particula puntual, sin referencia a
las ecuaciones de campo. De hecho, notamos que una particula puntual en movimiento relativista

en nuestro fondo de agujero negro tiene relacién de dispersién

" pup, = —m?
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La ecuacion anterior es la relacién general para la dinamica clasica relativista de una particula de
masa m. La métrica de RN tiene la forma presentada en (2.3), por lo que, la ecuacién para una

particula moviéndose de manera radial se simplifica a:

9it(p")? + grr(p")? = —m?,

sustituyendo los elementos métricos explicitamente tenemos

El momento conjugado generalizado, en presencia del campo electromagnético con potencial A,
viene dado por (3.8). Para la componente temporal, considerando que el potencial electromagnético
tiene la forma

Q
AU — —7dt,

entonces

P =pi +qA; = —w,

donde w es la energia total observada en el infinito, despejando, tenemos el momento temporal

original p'

con esta relacion, se puede reescribir la ecuacién de la geodésica radial que describimos anteriormente

- w—qQ/r ? 1 "2 — 2
f““)( 70r) >+f(7°)(p) =

simplificando este resultado se obtiene la ecuacién explicita

f<1r> (“’ B qf2>2 — ) = m? (4.8)

Esta ecuacién describe la conservacién relativista de la energia para una particula puntual con
masa m y carga ¢, que se mueve en el espacio-tiempo curvo generado por el agujero negro cargado

con masa M y carga (). Esta es la condicién que determina las regiones clasicamente permitidas
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2 ] . . . . . , .
(p"" > 0) y prohibidas del movimiento radial, fundamentales para analizar procesos cudnticos como
el tinel a través de barreras de potencial asociadas a la métrica y al campo electromagnético.
El momento radial p” entonces es imaginario entre los dos radios r; y ro determinados al resolver

la ecuacién (4.8) con p” = 0, determinemos esos radios. Hacemos p” = 0 en dicha ecuacién y queda

o)

(Mm? — wqQ) £ /(Mm? — wqQ)? — (m? — w?)(¢?Q* — Qm?)
2(m? — w?)

rio— - . (4.9)

La accién para una particula moviéndose desde el horizonte hasta el infinito entonces adquiere una

parte imaginaria dada por

T2 ) 2
ImS = |p(r)|dr = \/(1 _ M + Q2> m2 — (w - qQ> drs, (4.10)

2
- - T r T

donde 71 y 72 son los radios calculados en (4.9) a partir de (4.8).
Hagamos un analisis detallado de la integral de tiinel WKB en el limite de particula puntual masiva,
donde la masa de la particula es suficientemente grande como para simplificar considerablemente el

andlisis. La integral que aparece en (4.10) es

T2
Ims = / Ip(r)].
r1

con el momento radial dado por

e 1 w — )2 —m2f(r
P = sl - 0@ = o)

este momento radial se obtiene despejando p” de la ecuacién (4.8). En el limite considerado (mM >
1), esta integral puede ser evaluada analiticamente, dando lugar a una expresién que derivé Kh-
riplovich en su articulo [21]. La férmula exacta obtenida en [6] proviene directamente del andlisis

realizado en [21], especializado en el caso donde la energia w es menor que el potencial eléctrico del
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agujero negro en el horizonte, ¢@Q /7, proporcionando asi la forma explicita presentada

m*(qQ — (w — k) M)
k(k+w) ’

ImS = k=+vw?—m? (4.11)

La expresion derivada por Khriplovich muestra claramente cémo la accién imaginaria, y por ende,
la probabilidad de tiunel, depende de la masa m, la carga ) del agujero negro, la carga ¢ de la
particula y la energia w. Esta expresién también representa la accién para un proceso especifico
de emisién con una barrera de tunelamiento que surge de la combinacién del campo gravitacional
y electromagnético del agujero negro, destacando especialmente el efecto de la masa grande en la
dindmica cuéntica del proceso.

Determinaremos explicitamente el valor maximo de energia wy,q, para la cual existe una barrera de
tunelamiento adicional en el potencial efectivo para particulas cargadas masivas en el espacio-tiempo
de RN al imponer la condicién critica para la existencia del médximo en la barrera que corresponde
a la transicion entre las regiones permitida y prohibida cldsicamente, (p" = 0 en la ecuacién (4.8))
y realizando la derivada de la ecuacion correspondiente con respecto a r, se obtiene una expresion
para la energia maxima, asi pues

2 VM?—@Q? *Q* — m*M?

g
(@ -m?) QM@ — ) + @ )P =) (4.12)

Wmaxz = M

Esta energia maxima wy,q, representa el umbral superior de energias para las cuales una particula
cargada emitida desde el agujero negro experimenta una barrera adicional, generando una supresion
exponencial adicional en la emision de radiacién de Hawking. La existencia de este limite superior
implica que particulas con energia por encima de este umbral no tendran dicha barrera de potencial,
por lo que su emisién no sera suprimida adicionalmente por este mecanismo especifico.

Se puede obtener una posicién radial en la cual el valor de la energia w sea (4.12) y esta posicién
radial se obtiene a partir del andlisis del potencial efectivo para particulas cargadas masivas en el
limite de masa grande mM > 1. Para ciertas energias (w < wpaqq) €xiste una barrera adicional que
separa la regién cldsicamente prohibida de la permitida. La posicién de esta barrera estd determinada
por la condicién de maximo del potencial efectivo, es decir, imponiendo la condicién de primer orden

sobre la derivada del potencial efectivo. Al realizar este procedimiento explicitamente, resolviendo
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la ecuacién resultante para la posicién radial r, se obtiene justamente la ecuacién (4.13)

?-Q | VM- Qel - o= (4.13)

rmaz = Mo aZ — M2 ’ m

Este radio es el radio especifico donde se ubica la barrera de potencial maxima, relevante para
el andlisis del tunel cuantico. Esta posicién depende especificamente de los parametros fisicos del
problema: la masa m y la carga ¢ de la particula, asi como de la masa M y carga () del agujero
negro. La existencia de este radio especifico implica que las particulas emitidas desde el agujero
negro deben superar una barrera adicional para escapar al infinito, lo que genera una supresion
exponencial adicional en la tasa de emisién. La ecuacién (4.13) refleja asi la geometria especifica
del potencial efectivo, resaltando como los pardmetros fisicos determinan la estructura del potencial
alrededor del agujero negro cargado.

Ahora que ya tenemos la energia maxima evaluamos explicitamente la integral de tinel WKB en el

régimen especifico de particulas con energias en el rango

qQ

— < w < Wmaz,
T+

en el limite de masa grande (mM > 1). Esta integral originalmente se expresa como el lado izquierdo
de (4.10), donde los puntos 71 y r2 vienen dados por (4.9) que son soluciones de la ecuacién (4.8).
En el limite de masa grande y usando métodos analiticos y aproximaciones en el régimen indicado,

esta integral se puede resolver exactamente, resultando en la expresién explicita de aca abajo

wqQ — 2w M +m>M n gMQ + wQ? — 2wM?
k M2 — (2

JS/m =

(4.14)

La ecuacién (4.14) describe la accién imaginaria para el tunelamiento cudntico en presencia de un
agujero negro cargado. Este resultado es clave para entender cémo la probabilidad de emisién (a
través del factor exponencial €23%) est4 influenciada por los parametros fisicos del sistema (energfa,
carga, masa y pardametros del agujero negro). Esta ecuacién muestra claramente la dependencia no
trivial del resultado del tunelamiento respecto a las caracteristicas fisicas tanto del agujero negro
como de las particulas emitidas.

Enfatizamos el resultado cualitativo de que, al menos en el limite de particula puntual, habra una
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supresién adicional exponencial de radiacién con energia menor a wy,q;, comparado con el espectro

predicho por las distribuciones de bosones y fermiones.

4.2. Un proceso de tunelaje combinado

Hemos visto cémo los factores de distribucién térmicos y los coeficientes de transmisién en

(2.52) y (2.54) pueden ser calculados tratando la emisién como un proceso de tunelamiento. En esta
seccion final, aplicaremos el razonamiento probabilistico estudiado en la seccién de probabilidades
para proveer una interpretacién de tasa total de emision, que involucra el producto de esos dos
factores, como un proceso combinado de tunelamiento, primero a través del horizonte y luego del
campo eléctrico.
Vemos la emision como un proceso de dos fases. Primero, la particula tunela a través del horizonte.
Para particulas con w > ¢®, la particula resultante es real (en términos de que esta posee energia
positiva en el horizonte) y pueden escapar al infinito. Para particulas con energia negativa en el
horizonte, podemos ver este proceso de tunelamiento como un reajuste del niimero de particulas en el
mar de Dirac afuera del horizonte. Las particulas en este mar de Dirac después pueden tunelar hasta
el infinito. Haremos este andlisis en términos de matrices densidad aunque solo pueden ser pensadas
como descripciones de las distribuciones de probabilidad. En el caso fermiénico este proceso es
claro, mientras que en el caso bosénico este proceso es algo mas oscuro debido a la ausencia de una
descripcién tipo mar de Dirac del vacio bosénico veamos mas a detalle primero el caso fermidnico,
debido a que es més sencillo de entender.

En el caso fermionico la matriz densidad es

pr = N 0) (0| + Ny Py |1) (1 (4.15)

La accién de tunelaje Py = exp [—(w — ¢®)/Tpy] corresponde a la probabilidad relativa de produc-
cién de un par particula-antiparticula (interpretada en términos del mar de Dirac) debido al tiinel
cuantico a través del horizonte. Esta probabilidad da lugar a un estado mixto representado por la
matriz densidad pyr. La matriz densidad describe las probabilidades relativas de que no se produzca
ninguna particula (]0)) y de que se produzca exactamente una particula en el mar de Dirac (|1)).

El factor Ny es un factor de normalizacién que garantiza que las probabilidades sumen 1, y se
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determina imponiendo la condicion

1

N NPy =1= Ny = .
H+ NgLH H 1+ Py

La ecuacion (4.15) muestra explicitamente cémo el proceso cuantico de tunelamiento desde el agujero
negro genera una distribucion probabilistica en la produccién de particulas, particularmente clara
para fermiones (debido a la interpretacién del vacio en términos del mar de Dirac). La matriz
densidad pp refleja el estado del sistema justo después del tinel por el horizonte, pero antes de
considerar el segundo paso del proceso, que es el tunelamiento adicional a través del campo eléctrico
hacia el infinito.

Ahora, considerando el segundo paso del proceso, al principio, la particula tunela a través del
horizonte, este paso se describe con la matriz densidad (4.15). Luego, tinicamente el estado |1),
que representa la presencia de una particula en el mar de Dirac, puede realizar un segundo ttunel a
través del campo eléctrico externo para convertirse en una particula real que llegue hasta el infinito.
Este segundo tinel estd descrito por la probabilidad relativa Ps = KT. Al considerar este segundo
proceso, el estado |1) se convierte parcialmente en el estado |1), que representa una particula real

en el infinito. Esto produce la matriz densidad total en el infinito:
poo = N [0) (0] + Ng Py Ns |1) (1| + Nu PpNsPs [1) (1] . (4.16)
Los factores de normalizacion Ny y Ng garantizan la correcta normalizacién de probabilidades en

cada paso. Ng se determina imponiendo la misma condicién anterior, asi pues

1

Ng+ NgPg =1= Ng = .
s+ Nglg :>51+Ps

La ecuacién (4.16) indica cémo el estado final detectado en el infinito resulta del proceso combinado
de tunelamiento (a través del horizonte y posteriormente a través del campo eléctrico). Los términos
corresponden explicitamente a un estado de vacio (ninguna particula detectada), un estado con una
particula en el mar de Dirac que no alcanza el infinito y finalmente, un estado en el que una particula
escapa exitosamente hacia el infinito. La estructura refleja claramente cémo el proceso de emision

es una secuencia probabilistica de eventos, enfatizando el cardcter mixto del estado final.
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Ahora, a partir de (4.15) y (4.16), podemos evaluar el nimero de particulas fermiénicas detectadas
en el infinito luego del proceso combinado de tunelamiento cudntico a través del horizonte y el
campo eléctrico externo del agujero negro cargado.

Para ello, primero recordamos que la matriz densidad final viene dada por (4.16), aqui, el operador
nimero n Unicamente cuenta las particulas reales detectadas en el infinito. Por lo tanto, al tomar
la traza del producto del operador niimero n con la matriz densidad poo, solo el término con el
estado |1) contribuye, ya que los estados con barra (representando particulas en el mar de Dirac)

no corresponden a particulas reales detectadas, realizando la traza se obtiene
ny = Tr(nps) = NuPrNgPs,

sustituyendo explicitamente las definiciones anteriores resulta en la forma compacta

B 1 KT
Tl Y @ a®/Ten | { KT

(4.17)

La expresion muestra claramente que la tasa de emisién fermidnica final es un producto de dos
factores, por un lado, un factor térmico estilo Fermi-Dirac, que describe la emision térmica debida
al horizonte del agujero negro, mientras que, por otro lado hay un factor adicional, que representa
la probabilidad de transmision a través del campo eléctrico fuera del agujero negro. Esto indica
claramente que la emisién total no es simplemente térmica, sino que es modificada adicionalmente
por la presencia del campo eléctrico externo al horizonte.

Ahora, haremos el andlisis para el caso bosénico, que como ya se menciond anteriormente, es mas
complejo debido a la inexistencia de una descripcion sencilla del vacio bosénico (no existe un ”mar
de Dirac”bosénico estdndar). En el articulo [6], se adopta una interpretacién alternativa para los
bosones en la cual se introducen estados con niimeros negativos de particulas (denotados con una
barra, como |n)), donde el vacio bosénico corresponde al estado con —1 particulas por modo, el
proceso de tunelamiento a través del horizonte se interpreta como una repoblacién de estos estados
de energia negativa, generando una serie infinita de estados posibles con ntumeros crecientes de
particulas y la estructura especifica de esta matriz densidad surge al considerar que cada estado

bosénico con —n particulas tiene una probabilidad relativa dada por potencias inversas de Pp.
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Con esta interpretacion, la matriz densidad es

pag = Ny <1> 1]+ PIH 12) (2| + Pl}{ 13) (3| + - - - +etc> : (4.18)

con condicién de normalizacién dada por
Ng=1—— Py = e~ (w—a®)/Tpn

La ecuacién (4.18) describe la matriz densidad py que representa un estado mixto en el horizonte
del agujero negro, formado tras el primer paso de tunelamiento. Cada término de la suma corres-
ponde a la probabilidad relativa de encontrar un nimero especifico de particulas (negativas, en
esta interpretacién particular del vacio bosénico) después del tunel inicial a través del horizonte. La
forma explicita refleja como la probabilidad de ocupacion de estos estados decrece con factores de
1/ Py, mostrando claramente la estructura geométrica de estas probabilidades.

Para hallar la expresién bosénica anédloga a (4.16) se tiene que recordar que los bosones no cumplen
con el principio de exclusion de Pauli, por lo que varios bosones pueden estar en el mismo estado

cudntico, entonces tomemos el estado |1)
1) (1] = Ns(|0) (0] + Ps [1) (1] + P§ [2) (2| + - --), (4.19)

Esta ecuacién describe cémo evoluciona el estado inicial |1), que representa una ocupacién negativa
del vacio bosénico en el contexto del tunelamiento, hacia el estado final. Inicialmente, el estado
bosénico |1) (que contiene particulas con energfas negativas como estados vacios rellenados”) puede
generar particulas reales en el infinito a través del tunelamiento. La probabilidad de producir n
particulas reales en el infinito sigue una distribucién geométrica dada por el factor Pg, de modo
que el estado inicial se convierte en una suma probabilistica sobre todos los estados posibles |n). El
factor Ng = 1— Pg se introduce para garantizar que la distribucién probabilistica esté correctamente
normalizada.

La ecuacién (4.19) muestra explicitamente que, partiendo del estado |1), la probabilidad de generar
ningtin estado de particula real (|0)) es Ng, la probabilidad de generar exactamente una particula

real (|1)) es NgPg, y asi sucesivamente, formando una distribucién infinita en términos de Ps. Esto
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refleja que, en el contexto bosdnico, puede producirse un nimero arbitrario de particulas debido al
caracter ilimitado de la estadistica bosénica.

A continuacién nos preguntamos qué pasa con el estado resultante en el infinito para el estado
doblemente ocupado |2), después de tunelar a través del campo eléctrico. Si cada particula en este
estado es independiente de la otra, esperamos que la distribucién de probabilidad sea la suma de 2
distribuciones con la misma media. Similarmente, esperamos que el estado |n) tunele a un estado
descrito por n distribuciones geométricas independientes. La suma de distribuciones geométricas

independientes e idénticas es descrita por la distribuciéon binomial negativa, asi pues

ol (=P 3 (") Pk . (4.20)
k=0

Este resultado indica que, partiendo del estado |72) (con n particulas negativas, la probabilidad final
de detectar exactamente k particulas reales es dada por la distribucién binomial negativa. El fac-
tor binomial ("”L]kf_l) refleja la multiplicidad combinatoria del proceso, mostrando cémo multiples
particulas bosénicas contribuyen independientemente a la creacién final de particulas reales detecta-
das en el infinito. Esta expresién proporciona un entendimiento claro del cardcter probabilistico del
proceso de emision bosénica desde un agujero negro cargado, destacando cémo multiples particulas
negativas inicialmente presentes pueden contribuir a la generaciéon de multiples particulas reales
observadas.

Ahora, que ya hemos explorado las implicaciones de que no haya un claro analogo al mar de Dirac
fermidénico en bosones, estamos listos para ver la matriz densidad total en el infinito, y de manera
similar al caso fermidénico, aqui se combinan los dos procesos de tunelamiento, el tunelamiento a
través del horizonte y el posterior tunelamiento a través del campo eléctrico, para ello combinamos
directamente las dos ecuaciones (4.18) y (4.20), sustituyendo (4.20) en cada término de la matriz
densidad (4.18), y se obtiene

=N P per S (M) R G (421)

n=1 k=0

Esta expresion describe de forma exacta cémo la distribucion final observada en el infinito resulta de

la combinacién probabilistica del proceso de emisién de particulas bosénicas desde un agujero negro
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cargado. Se puede interpretar directamente como una suma doble sobre todas las configuraciones
posibles, indicando cémo la probabilidad es resultado de la combinacion de multiples procesos de
tunelamiento. La complejidad de la expresién refleja el cardcter puramente bosénico del proceso,
en el que un numero arbitrario de particulas puede producirse con distribuciones probabilisticas
claramente identificadas.

De manera similar a lo hecho en el caso fermiénico, evaluamos el nimero medio de particulas
bosénicas detectadas en el infinito, luego del proceso combinado de tunelamiento cudntico desde
un agujero negro cargado, descrito previamente en las ecuaciones (4.18)-(4.21), para ello tomamos
la traza del operador nimero n, que solo cuenta estados con k particulas reales sobre la matriz

densidad

- n n > n+k—1
ny = tr(npe) = Nig g Pi (1 — Py) g k( f )PfqC
n=1 k=0

Al realizar esta suma explicitamente (que se simplifica usando propiedades de distribuciones bino-

miales negativas y series geométricas), se obtiene

B 1 KT
1—exp((w—¢q®)/Tpu)1 - KT

np (4.22)

La expresion resultante muestra que la emisién bosénica estd descrita por un factor similar a una
distribucién tipo Bose-Einstein modificada por la probabilidad de tunelamiento a través del campo
eléctrico externo. El factor 1KII;T representa la modificaciéon adicional debida al segundo proceso
de tunelamiento a través del potencial eléctrico externo. Esta ecuacién contrasta directamente con

el resultado fermiénico (4.17), resaltando la diferencia fundamental entre estadisticas bosénicas y

fermionicas en el proceso de emisién desde agujeros negros cargados.

4.3. Analisis grafico de los potenciales efectivos

Ahora haremos un analisis grafico de los potenciales efectivos para diferentes casos con el poten-
cial efectivo siendo lo que se encuentra dentro de la raiz que a su vez es integrando de las ecuaciones
(4.5,4.6,4.7), en el primero variamos m mientras g se mantiene fijo (¢ = 0,1) para £ = j = 0,1 nos
enfocaremos en agujeros negros subextremales con estos pardmetros (M = 1,Q = 0,8), adicional-

mente, la frecuencia de oscilacién w = 0,5
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Figura 4.1: Potencial efectivo para fermiones y bosones al variar m

En la figura (4.1) vemos claramente la distincién entre bosones y fermiones. Para el caso bosénico
(¢ =0,1) vemos que la masa m posee un impacto considerable en la altura y forma del potencial
efectivo. A medida que la masa aumenta, la barrera se incrementa notablemente, dificultando el atin
mas el paso de particulas masivas desde el agujero negro. La presencia de momento angular no nulo
amplifica este efecto. Por otra parte, para el caso fermiénico (j = 0,1) existe un comportamiento
similar con respecto a la masa, aunque nuevamente es més simple en comparacién con el bosénico.
El incremento de la masa m provoca un aumento en la barrera, pero la estructura del potencial es
més simple debido a que tinicamente depende del término cuadrético en (j + 1/2)2.

En el segundo andlisis variamos ¢ mientras m se mantiene fijo y se muestra en 4.2
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Figura 4.2: Potenciales efectivos para fermiones y bosones m = 0,1 cuando variamos ¢

La barrera potencial aumenta significativamente con ¢. Para ¢ = 1, la barrera potencial es no-
tablemente més alta debido al término del momento angular, mostrando cémo particulas cargadas
con momento angular enfrentan una mayor resistencia al tinel cudntico. Por otro lado, para el
caso fermidnico similarmente, al aumentar la carga g, la barrera del potencial crece claramente. Sin
embargo, en comparacion con el caso bosonico, la barrera para fermiones es menos compleja, debido
a la inexistencia de los términos adicionales gravitacionales. El potencial fermidnico es més sencillo
estructuralmente, y el efecto de la carga es mas directo.

Estos gréaficos destacan claramente las diferencias entre particulas bosénicas y fermiénicas al in-
teractuar con el campo gravito-electromagnético de un agujero negro de RN, proporcionando una
visién clara del papel que juegan la carga, la masa y el momento angular.

Ahora haremos el andlisis para m > 1(el caso de la ecuacién (4.7)), ndétese que acé los fermiones y

los bosones son indistinguibles debido al dominio del término f(r)m?:
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Potencial efectivo en el limite de masa grande (m>>1), q=0.1
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Figura 4.3: Barrera de potencial cuando m > 1

Notamos que, al incrementar la masa m, la barrera potencial se vuelve extremadamente pronun-

ciada. Esto significa que particulas masivas encuentran mayores dificultades para escapar mediante

tunel cudntico desde el horizonte del agujero negro. La carga g en este caso (fijada a 0.1) juega

un papel menor siendo la masa m el factor determinante del comportamiento del potencial. En

resumen, este limite representa claramente un escenario cldsico o cuasi-clasico, donde la dindmica

cuantica se reduce a un comportamiento muy cercano al de una particula clasica masiva en un campo

gravito-electromagnético intenso, haciendo que la distincién entre bosones y fermiones desaparezca.

Ahora analizamos un caso donde m = ¢ = 0 como el caso de fotones (bosones) o neutrinos sin

masa (fermiones). En este caso simplificado extremo, el potencial efectivo se reduce principalmente

a efectos puramente gravitacionales y dependientes del momento angular ¢y j, ademds del término

constante relacionado con la frecuencia w.

Potencial efectivo sin masa ni carga (m=q=0), w=0.5, £=j=0

Potencial efectivo sin masa ni carga (m=q=0), w=0.5, f=j=1

Boson £=0
Fermion j=0

Bosén 1=1
Fermion j=1

10 2

Potencial efectivo para particulas sin

10

masa ni carga (m = g = 0)
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Para ¢ = j = 0, tanto el potencial bosénico como el fermiénico, son casi idénticos y presentan
una estructura bastante sencilla. La barrera de potencial es originada exclusivamente por la geo-
metria del agujero negro (efectos gravitacionales) y a la energia de la onda incidente w. Por otro
lado, para £ = j = 1, se observa una barrera potencial gravitacional mas pronunciada debido al
momento angular. Los potenciales bosénico y fermiénico son muy similares, destacando la relevancia
primordial del momento angular sobre los otros efectos que hemos considerado anteriormente.

El an4lisis mostrado en (4.4) corresponde a particulas sin masa ni carga, por ejemplo fotones, gravi-
tones o neutrinos sin masa, mostrando cémo estas particulas se propagan tinicamente en presencia
del campo gravitacional del agujero negro cargado. La barrera de potencial depende exclusivamente
del momento angular y de la frecuencia, determinando como estas ondas puramente gravitacionales
o electromagnéticas son dispersadas por el agujero negro.

En resumen, al eliminar la masa y la carga, los potenciales efectivos se simplifican enormemente,
resaltando que la dinamica del campo en este caso depende Unicamente de la geometria del espacio-
tiempo y del momento angular.

Ahora haremos un anélisis en el caso m = 3 bajo distintos valores de frecuencia comenzando con

w = 0,2 hasta w = 1,2, el andlisis se muestra en

Potencial efectivo Veg(r) para distintos valores de w desde w=0.2
0.2
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Figura 4.5: Distintos valores de w

A frecuencias bajas (w = 0,2), la barrera de potencial es pequena y existe una amplia regién
cldsicamente prohibida (positiva). Conforme aumenta la frecuencia w, la barrera de potencial evo-
luciona claramente, desplazandose y modificando su estructura de manera notable. Las regiones

cldsicamente permitidas (donde Veg < 0) se hacen mas amplias conforme aumenta w, indicando que
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particulas con energias mas altas tienen mayor probabilidad de superar esta barrera de potencial.
La figura (4.5) proporciona una clara visualizacién del efecto de la frecuencia sobre la estructura
del potencial efectivo y permite una mayor comprensiéon de cémo la emisién de particulas depende
directamente de su energia w.

Hay un régimen ¢Q/r; < w < wWpmar donde wpq, estd dado por (4.12), donde el tunelamiento
cuantico es menos probable debido a la existencia de una barrera adicional que debe atravesar la
particula fuera del horizonte. El articulo original [6] demostré analiticamente que si la frecuencia de
la particula w se sitia por encima de ¢@)/r (es decir, la energia electrostética en el horizonte) pero
por debajo de cierta energia maxima wi,q., entonces la particula enfrenta un obstdculo potencial

en el exterior.

Potencial efectivo y regién de tinel: % < W < Wmax

0.2y Bos6n w=0.310 —— Boson w=0.503

—=—- Fermién w=0.310 —-- Fermion w=0.503
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Figura 4.6: Régimen ¢Q/r4 < w < wpmaz con m = 0,6 y ¢ = 0,5

La figura (4.6) confirma este resultado: para w apenas mayor que gQ/r4, Vers(r) exhibe un
maximo local positivo. En este rango, aunque la particula tiene energia suficiente para ser real
en el horizonte (w > q®p) por lo que no necesita tunelizar el horizonte mismo, atin encuentra una
barrera mas afuera, debida a la competencia entre la atraccién gravitatoria y la repulsion o atraccién

eléctrica.
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4.4. Discusion

En esta seccién discutimos la estructura del potencial efectivo en varios regimenes fisicos, incor-
porando un andlisis grafico complementario. En particular, examinamos el limite de masa grande,
los casos de masa y carga nula, asi como también analizamos el caso en que w varfa. Esta discusién
subraya cémo varia la barrera de potencial efectiva con los pardmetros w, m y ¢, clarificando y
enriqueciendo las conclusiones del articulo original[6].

En el limite clasico (m > 1), en este régimen (4.3) (mucho mayores que la escala de energia consi-
derada), se recupera el comportamiento cldsico del potencial. La figura (4.3) muestra que al tomar
m — oo, las expresiones para la acciéon de tunel y la forma del potencial efectivo de bosones y
fermiones coinciden, elimindndose las diferencias debidas al espin. Esto concuerda con la expecta-
tiva de que una particula con longitud de onda de Compton muy pequena (masa elevada) puede
tratarse como un punto cldsico atravesando la regién de campo, independiente de su estadistica
cuantica. Asi, la barrera de potencial experimentada por particulas bosonicas o fermiénicas resulta
esencialmente la misma. Fisicamente, esto implica que en el limite m > 1 el proceso de emision
ya no distingue entre bosones y fermiones - ambos tipos de particulas siguen la misma trayecto-
ria clasica fuera del agujero negro, con tasas de transmision practicamente idénticas. De hecho, la
distribucién de ocupacion se acerca al régimen de Maxwell-Boltzmann (clédsico), donde los factores
de estimulo bosénico o la exclusién fermidnica son irrelevantes, coherente con la desaparicién de
diferencias estadistico-cudnticos en este limite.

En el caso m = g = 0, el potencial efectivo es negativo en todo el exterior, como se puede apreciar
en la figura (4.4) y no presenta un punto de retorno - el campo no ejerce fuerza eléctrica ni hay masa
en reposo que genere una barrera, por lo que la particula se propaga libremente desde el horizonte
hasta el infinito una vez creada. En suma, la presencia de una barrera de potencial exterior estd
ligada a m, q > 0; si ambos desaparecen, el potencial efectivo se torna trivial y no impide la emision
de particulas (consistente con la radiacién de Hawking usual para fotones neutros).

Se identifica ademéas un régimen de energias en el cual aparece una barrera de potencial adicio-
nal fuera del horizonte (4.6). De hecho, inmediatamente fuera del horizonte (r 2 r) el término
(w — qQ/r) puede superar a m en la condicién de movimiento, permitiendo una regién inicialmen-

te permitida; sin embargo, a distancias mayores el potencial electrostdtico ¢@/r disminuye y el
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término de masa m? domina localmente, generando un pico en V, ff que actiia como una segunda
barrera de potencial. La posicién de esta segunda barrera 7., dado por la ecuacién (4.13) y su
altura disminuyen al incrementar w: a medida que w se aproxima a wWyqq, €l pico de V,¢r se reduce
y se desplaza hacia el horizonte, hasta finalmente desaparecer cuando w > Wpmaee. En w = wWinee la
barrera se vuelve tangencial al eje de la energia (altura cero) y para w superiores el potencial efec-
tivo es completamente negativo fuera del horizonte (ninguna regién prohibida clasicamente). Este
comportamiento concuerda con la figura 4 del articulo original ([6]), donde se ilustré la regién en
el plano (w,r) en que existe momento radial imaginario: por debajo de w = ¢®p (linea punteada)
hay siempre una region de tunel, y notablemente también aparece una region estrecha de tunel
levemente por encima de q®p, la cual termina en wy,q,. Los resultados graficos hacen vivida esta
caracterfstica: mostrando cémo, en dicho intervalo, el perfil de V., posee un doble punto de retorno
(r1, r2) que delimita una barrera finita. La particula debe tunelar a través de esta barrera exterior
para alcanzar el infinito, incluso cuando su energia supera la carga del agujero negro por particula
en el horizonte. Ahora vamos a discutir la dependencia con w, m, ¢, las graficas del potencial efecti-

vo permiten observar de forma clara cémo varia la barrera con los parametros fisicos de la particula.

» Frecuencia w: Como se aprecia en la figura (4.6), una mayor energia w del modo tiende a
disminuir la altura y anchura de la barrera. Para w < ¢Q/r+ (o por debajo de m si ¢ = 0),
la barrera es pronunciada y amplia, pudiendo incluso extenderse desde el horizonte hasta el
infinito (caso extremo en que la particula no tiene energia para escapar clasicamente. Al cruzar
w = q@Q/r4,, la barrera ya no toca el horizonte pero sigue presente més afuera; conforme w se
incrementa dentro del rango permitido, la amplitud de la barrera decrece hasta anularse en
Wmaz- Para w > wmaee 1o queda rastro de barrera: el potencial efectivo es negativo en todo el
exterior, indicando que la particula con energia sobre-umbral puede escapar libremente (aparte

del decaimiento exponencial tipico de la distribucién de Hawking a alta energia).

= Masa m: Una mayor masa en reposo favorece la apariciéon de barreras. Incluso en ausencia

de carga eléctrica (¢ = 0), un valor grande de m implica que se requerird w > m para que

2

la particula sea libre a infinito; si w < m, la diferencia m? — w? acttia como una barrera

gravitacional (asociada a la energia de ligadura necesaria para extraer una particula masiva
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del pozo gravitatorio del agujero negro. Cuando ademds ¢ # 0, un m grande extiende el
régimen de existencia de la barrera adicional: se encuentra que wy,q,; aumenta con m (para g
fijo), lo que significa que para particulas mas masivas requieren energias mayores para que la
barrera exterior desaparezca. En nuestros graficos (4.3) se observa que, manteniendo w fijo por
debajo de ¢Q/r, al incrementar m el pico de V4, crece (Vnel];é ~ m?) y la regién prohibida

se ensancha. Por el contrario, en el limite m — 0 la barrera tiende a desaparecer como ya se

discuti6 y se muestra en (4.4).

Carga ¢: La carga de la particula influye en la forma del potencial a través del término ¢Q/r.
Un ¢ mayor (en valor absoluto) implica una interaccion electrostatica mas fuerte con el campo
eléctrico del agujero negro. Si ¢ tiene el mismo signo que @ (repulsién eléctrica), un valor gran-
de de g eleva la energia electrostética ¢@)/r; en el horizonte, aumentando el umbral ¢Q/r
que w debe superar para no comenzar con energia negativa. Esto, como se aprecia en la figura
(4.2), tiende a desplazar la barrera hacia regiones mas externas: efectivamente una particula
muy cargada siente una fuerza eléctrica intensa, de modo que cerca del horizonte es fuerte-
mente impulsada hacia afuera (reduciendo temporalmente la barrera alli), pero puede quedar
frenada mas lejos donde la repulsion decrece. El resultado es que para ¢ grandes, la barrera
adicional aparece a distancias mayores y suele ser mas estrecha en r (con un intervalo [rq, rg]
mas cercano entre si), aunque persiste en un rango mas amplio de energias (pues wy,q, también
crece con ¢ en términos absolutos cuando ¢ > m). Por otro lado, si ¢ tiene signo opuesto al de
@ (atraccion eléctrica), una |g| grande profundiza la barrera efectiva: la particula es atraida
hacia el horizonte, aumentando la altura de V¢s; y dificultando su escape. En cualquier caso
q = 0 elimina por completo esta barrera electrostatica adicional volviendo al escenario pura-

mente gravitacional ya descrito.

Este andlisis gréfico complementa las afirmaciones de [6], proporcionando una visién clara de los

procesos de emisién. En particular confirma que existe una supresién adicional exponencial en las

tasas de emision para energias w < wpq, atribuible precisamente a la presencia de la barrera de

potencial exterior identificada en V.s¢(r). Las graficas presentadas aqui hacen tangible cémo dicha

barrera bloquea parcialmente las particulas salientes obligando a un proceso de tunel (anédlogo al
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efecto Schwinger) incluso después del tunelaje a través del horizonte. Esto aclara la interpretacién
fisica: la radiacién de particulas desde agujeros negros cargados puede verse como un proceso de
doble tunel - primero a través del horizonte (radiacién de Hawking) y luego a través de la barrera
electrostética exterior - consistente con la descripcién combinada que propone el articulo. Asimismo,
la confluencia entre los casos fermidnico y bosénico en el limite m — oo corroborada en (4.3) refuerza
la idea de que las diferencias de espin (como la amplificacién bosénica o la exclusién fermiénica) se
manifiestan inicamente cuando los efectos cuanticos son importantes; en el régimen clasico ambas
estadisticas producen el mismo potencial efectivo y por tanto, la misma fisica de emisién. En resu-
men, el andlisis grafico presentado no sélo ilustra cuantitativammente las dependencias de Vf; con
w, m, q; sino que también ofrece un respaldo visual de los mecanismos discutidos en el trabajo ori-
ginal[6] - desde la desaparicién de la distincién bosén/fermién en altas masas, hasta la aparicién de
una barrera de potencial suplementaria que explica la reduccién en la emisién para ciertas energias.
Estas observaciones fortalecen la interpretacion del proceso de emisién de particulas cargadas como
un fenémeno tunel en 2 etapas y aportan una comprension més intuitiva de los distintos regimenes

fisicos involucrados.
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Capitulo 5

Conclusiones

En este trabajo se ha llevado a cabo un anilisis detallado del potencial efectivo asociado a
particulas cargadas, tanto bosénicas como fermidnicas, propagandose en el entorno de un agujero
negro de Reissner-Nordstrom. El estudio se centré en las diferencias entre los perfiles del potencial
efectivo para distintas configuraciones angulares, asi como el impacto que tienen la masa m, la carga
q y la frecuencia w de la particula sobre la forma del potencial.

En primer lugar, se confirmé que los términos angulares introducen diferencias sustanciales entre
bosones y fermiones. En el caso { = j = 0, la ausencia de una barrera centrifuga da lugar a un
potencial dominado por la competencia entre la atraccién gravitacional y la repulsion (o atraccién)
electrostatica. Por otro lado, para £ = j = 1, el potencial presenta una barrera pronunciada cuyo
perfil depende sensiblemente de los pardmetros m, ¢, w. Se observé que el término angular (j+1/2)2
en el caso fermiénico genera una barrera sistemdaticamente mas baja que su contraparte bosénica
(£ + 1), con lo cual los fermiones encuentran una regién de tinel mds angosta, implicando una
menor supresion exponencial en el escape.

El andlisis grafico realizado para diferentes valores de masa y carga mostré que, al aumentar la
masa de la particula, el potencial efectivo se eleva globalmente, aumentando la altura y anchura
de la barrera. Esto sugiere que la emisién espontianea de particulas masivas estd méas suprimida,
coherente con lo esperado en el contexto del mecanismo de Schwinger y de la distribucién térmica
de Hawking. Asi mismo, se verific que el aumento de la carga ¢ incrementa el término electrostédtico
en el potencial efectivo, debilitando o eliminando la barrera para particulas de la misma carga que el

agujero negro, y reforzandola para particulas de carga opuesta. Especial atencion se presté al régimen
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qQ

_~ < w < Wmax, donde se generaron graficos comparativos entre bosones y fermiones para distintos
+

valores de w dentro de ese intervalo. En dicho régimen, se encontré que es posible distinguir entre
estadistica bosonica y fermidnica mediante la forma del potencial efectivo: los fermiones enfrentan
barreras mas bajas y mds permeables, lo que potencialmente puede reflejarse en una mayor tasa
de emisién. Se introdujo ademds una visualizacién explicita de las regiones de efecto tunel (donde
Vet (1) > 0) mediante sombreado gréfico, ilustrando claramente cémo varia la probabilidad de escape
de acuerdo a la naturaleza de la particula.

Finalmente, se explord el limite cldsico m > 1, en el cual se verificé que el término dominante
en el potencial efectivo es f(r)m?, tanto para bosones como para fermiones. En este régimen, las
diferencias debidas al espin o al momento angular se tornan despreciables, y los potenciales efectivos
se unifican en una forma universal, determinada casi exclusivamente por la métrica de fondo y el
valor de m. Esto justifica que, para particulas muy masivas, la emisién espontanea esté fuertemente
suprimida y que las diferencias entre bosones y fermiones sean irrelevantes.

Queda como trabajo pendiente un andlisis del potencial efectivo en los tres regimenes geométricos
del agujero negro: subextremal (Q < M), extremal (QQ = M) y superextremal (QQ > M). Este
andlisis permitird una identificacién con mayor precision del papel del horizonte de sucesos y su
degeneracién en la formacién de barreras de potencial, asi como el efecto de la ausencia de horizonte
en la dindmica de propagacién de particulas cargadas.

Por 1ltimo seria relevante investigar si el marco metodolégico aqui empleado -basado en el andlisis
grafico, la clasificacién de acuerdo al espin de las particulas, y la expansién WKB- es aplicable a
otras soluciones de agujeros negros, tales como las geometrias de Kerr-Neumann, RN-AdS o incluso
modelos de agujeros negros regulares. Explorar dichas extensiones permitiria evaluar la robustez del
trabajo y contrastar cémo la rotacion, la constante cosmoldgica o la regularizacion cuantica afectan

la emision de particulas cargadas y el perfil de los potenciales efectivos asociados.



Capitulo 6
Anexos

6.1. Anexo A: Derivacion de la métrica de RN

Se resolvera las ecuaciones de campo de Einstein y se derivara la solucién de RN. Hay simetria
esférica, por lo tanto el sistema de coordenadas elegido serd el esférico. Cuando @@ — 0 la solucién

deberd aproximarse a la de Schwarzschild, misma que se muestra en (6.1)

2M oM\ !
ds? = — <1 - r) dt® + <1 - r> dr? + r2d#? + r? sin® 0d¢?. (6.1)

Otra propiedad que deberia tener la métrica es que el espacio-tiempo debe ser asintoticamente
plano. En otras palabras, la métrica deberia aproximarse al espacio-tiempo de Minkowski cuando

r — 00, esto quiere decir que la métrica, usando coordenadas esféricas deberia aproximarse a
ds? = —dt? + dr? + r2d6? + r? sin? 0do>.
Un espacio-tiempo curvo (pero que todavia presenta simetria esférica) en general tiene la forma
ds® = —A(t,r)dt® + B(t,r)dr® 4+ r*(d6? + sin® 0d¢p?),

se puede asumir que A y B no son dependientes del tiempo, sin embargo, el caso general puede
depender del tiempo asi que en este caso lo tendremos en cuenta hasta que posteriormente se haya

demostrado que no depende explicitamente del tiempo. Como se esta trabajando en el vacio con un
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campo electromagnético se deberia usar el tensor energia-momentum electromagnético dado por

14 1 174
T = g F* Fog — FFFY. (6.2)
Este tensor describe el flujo de energia electromagnética y momento en el espacio-tiempo. Las

propiedades de este tensor incluyen simetria (T#" = T"*) y no tener traza:

1
T =T} = guT" = S 9uwg" F*" Fos — gas ' Fjj

1
4

— F™FE,, — F*F,, =0.

(4F" Fy) — F*"E,,

Las ecuaciones de Einstein, entonces, se ven reducidas a:
Ry, = 8rT),

Donde

Ry = RS, = 0.1, — 0,15, + rgarﬁy - rgyrga (6.3)

Calcular los simbolos de Christoffel de la métrica es tedioso y ocupa tiempo asi que los simbo-
los de Christoffel y el tensor de Ricci fueron generados con la ayuda de un software de algebra

computacional. Los simbolos de Christoffel diferentes a cero son:

Fo = 2/}4

F(ln = F%o = %a F?l = 54

F81 = F(l)() = 2{17 Féo = i;

F%2 = F%l = %’ Ph = 233!

le)’s = F%l = %7 P%l = —%

13, = T3, = cotd, Ty = —mgw

'3, = —sinfcosh
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donde el punto representa derivada con respecto a t y la prima con respecto a r. Para el tensor de

Ricci las componentes no nulas son:

A (A B A" A B B (A B

4B \ A B 2B Br 2B 4B\ A B

g AN BY A B BB (4B o

UW=74a\Aa"B) 24" Br 2B 4A\A B '

r (A B 1

- (22 )2 .
Roo 5B (A B) 5 + (6.6)
R33 = Rggsin29 (6.7)

B

Ro1 = Rig = — 6.8
o =R = 2 (6:5)

Esto es lo mas lejos que podemos llegar generalizando a un campo gravitacional esféricamente
simétrico. Para determinar A y B necesitamos resolver las ecuaciones de campo de Einstein, esto
quiere decir que es necesario especificar el tensor energia-momentum. En este caso en particular el
tensor energia-momentum viene dado en términos de la métrica y el tensor electromagnético F,, .
Dada la simetria esférica del objeto de estudio, el campo eléctrico sélo presenta componente radial.

Ademas esta componente radial no debe depender de 6 o ¢, entonces se tiene que:

E, = E, = Ei(t,r) = Fo1 = —Fi

Todas las demés componentes son cero puesto que no hay corrientes ni monopolos magnéticos. En

forma matricial esto es

[

&

o
o o o o
o o o o
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Las componentes del tensor energia-momentum pueden ser calculadas mediante la ecuacion 6.2.

Considere el primer término en los paréntesis. Llevando a cabo la suma da:

1

Zg,uuFaBFaﬁ
1
= ZgW( FooF®0 + Fo Ft
1
= Zguu(FloFlo + F()lFOl)
1 01 1 01
= ZQW(QFMF ) = ig;meF :

Para el segundo término queda:
gu,é’FuaFMV = gl/,BF,LLOFBO + glz,é’F,ulFB1 = gulFuOFlo + gqumFOl,
entonces se puede escribir la ecuacién 6.2 como

1
Tuu = iguyFﬂlFOI - gulF,uOFlo - gVOFl,LlFOl'

Las componentes del tensor energia-momentum son ficiles de obtener. Se tiene:
1 01 01
Too = 5900F01F — gooFor F

1 A
= —59001'7011?01 = —§F01F01

1
T = —g11Fo1 F°' — g11 For F

2

1 B
= —sguku " = S Fp P

2 2

1 2
Toy = 5922F01F01 = —EFmFOl

1 .

T33 = 5933F01F01 = Tyesin’0

Las deméas componentes del tensor energia momento son cero. Como Ty, = 0, entonces Ryg; = 0
y con la ecuacién 6.8 concluimos que B = 0, mismo que implica que B no puede depender de t.

Notamos que
Too | T
0, 2
1B
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Por lo tanto esto implica que

De lo anterior se obtiene:

A B 0

Lo cual implica que el producto AB es constante con respecto a r. Se puede escribir esto como

AB = f(1),
donde f(t) es alguna funcién que no depende de r. Como ahora tenemos la relacién goo = —f/g11
(como A = —gpo y B = g11, se puede demostrar facilmente que

Fo1 = googn F*' = — fF".

Ahora resolveremos las ecuaciones de Maxwell. La ecuacién 6.2 no provee de informacién adicional
debido a la inexistencia de monopolos magnéticos, y note que es directamente satisfecha conside-

rando el caso u =0, v =1y p=0:

00Fo1 + 0o Fio + 01Fo0 = OoFo1 — OoFo1 = 0.

Similarmente para otros casos puede ser demostrado que 0,F},, + 0, F,, + 0,F},, es cero. Usando la

definicién de derivada covariante de un tensor contravariante, nos quedaria

0= 0,F" +T¢ F 4 T% Fo#

Para p = 1 lo anterior se convierte en

0=09yF0+ 1., Fo 4 1Y F'o
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El segundo término de la ecuacién anterior se va

D4 F® = TP+ T4, P4 = TP+ T o

porque I‘(l)l = F%O = 0. El tercer término también se anula

Iy, F'* = F'T0, +Tg + T8 +Ts) =0

porque todos los simbolos de Christoffel dentro del paréntesis son nulos. Entonces terminamos con

0=y F'°.

Esto es, F'¥ o E, no debe depender del tiempo, entonces tenemos E, = E,.(r). Usando p = 0 la
ecuacién se convierte en

0=0F' +1° Fov 1% FOo

Similarmente el segundo término se anula aunque el tercero no. Tenemos

FZWFOQ =TIy, F" = FOl(F&)o +T5, +T% + F?:&)

A B2 2
_por (4 B4\ 40
B <2A * 2B * r> rF
como
A B 1 1

La ecuacion ahora luce como

2
0=0,F" +=F"
r

La cual es una ecuacion diferencial de primer orden con solucién

01 Ccte
F —_— 7«.727
lo que permite escribir
cte
E.=—
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Si se usa el teorema de Gauss se llega a la conclusién de que la constante de integracion es @, y
tenemos

Q
Er,«:ﬁ

Esto es, se obtuvo la ley de Coulomb.

Se esta muy cerca de obtener la forma final de la métrica de RN. Solo necesitamos hallar una forma
maés explicita de A y B en términos de r. Esto puede ser hecho considerando una de las ecuaciones
de campo,

R22 = 87TT22.

Para el lado izquierdo se tiene:

r (A B 1 10
R22——<A—B>—B+1——far(7u4)+1

las cuales se obtienen sustituyendo B = —f/A y B’ = fA’/A? y usando la regla del producto. Para

el lado derecho usamos la ecuacion 6.9 y se obtiene

10 &1
Ay 1= 22

Con E? = Q?/r* esto puede ser escrito como

2
Op(rd)=f— SWT—Q

Si ahora integramos esto se convierte en

donde C(t) es una funcién que puede depender del tiempo. Cuando @ = 0 la métrica debe reducirse
a la métrica de Schwarzschild. Cuando la gravedad es débil (cuando r es grande) la componente
goo del tensor métrico debe aproximarse a 1 — 2M /r. Entonces en este limite, si la geodésica debe

ser como el movimiento de la gravedad Newtoniana, debemos tener que f = 1 (lo que implica que
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AB =1) y que C(t) = —2M. Ay B pueden ser escritos como

oM 2

— (1 S ——— QQ> 0 0 0

T T

oM 2\ !
0 (1 S — QQ> 0 0
Guv = T T
0 0 72 0
0 0 0 r2sin%0

y en forma de ecuacion es

oM Q? oM Q2!
ds? = — (1 - + %) de?® + (1 - + %) dr? + r2d#? + r? sin® 0d¢>.

Ahora se tiene la métrica completa de RN obtenida desde las ecuaciones de campo de Einstein junto

a las ecuaciones de Maxwell.

6.2. Anexo B: Generalizacion de la ecuacion de Klein-Gordon a

espacios tipo agujero negro

6.2.1. Ecuacion de Klein-Gordon en espacio de Schwarzschild

La ecuacion de Klein-Gordon describe el comportamiento de un campo escalar ¢ en el espacio-
tiempo y es fundamental en la teorfa cudntica de campos. En presencia de un campo gravitacional,
como el de un agujero negro, el espacio-tiempo es curvo y la ecuacién de Klein-Gordon en un espacio-
tiempo curvo debe ser formulada usando la relatividad general. La forma general de la ecuacién de

Klein-Gordon en un espacio-tiempo es:

(VAV, +mP)e =0 (6.10)
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Donde V, es la derivada covariante asociada a la métrica del espacio-tiempo g"”, m es la masa de
la particula escalar y los indices p, v corren sobre las coordenadas espaciotemporales.

Para un espacio-tiempo tipo agujero negro, la métrica g,, describe la geometria alrededor de un
agujero negro. Consideremos, por ahora, la métrica de Schwarzschild, que representa un agujero
negro no rotante y no cargado de la forma que se muestra en (2.2). En este escenario la ecuacién

de Klein-Gordon se transforma en

ig;au(ﬁg“”ﬁm) +m?p =0, (6.11)

ﬁ

4

donde g = det(gu) = —r sin?@, y ¢" son las componentes del tensor métrico contravariante.

Expandiendo la ecuacién (6.11) en coordenadas de Schwarzschild tenemos

1

10 Op(sin 00y ) + 2 !

2 i 2 ; - 92 2,
0id + 50n(r°f(r)0:d) + 5~ . Sin298¢¢+m ¢ =0, (6.12)

no

La ecuacién (6.12) toma en cuenta la curvatura del espacio-tiempo debido al campo gravitatorio del
agujero negro y se reduce a la forma estandar de la ecuacién de Klein-Gordon en el espacio-tiempo
plano cuando f(r) — 1, en términos de M cuando M — 0.

Para el caso de agujeros negros rotantes o cargados, la métrica g, difiere, y la ecuacién (6.11)

debera ser ajustada segun el caso. El procedimiento general sigue el mismo patrén:

1. Escribir la métrica especifica para el agujero negro en cuestion.

2. Calcular las derivadas covariantes usando dicha métrica.

3. Sustituimos en la ecuacion de Klein-Gordon.
La ecuacién de Klein-Gordon en un espacio-tiempo tipo agujero negro incorpora los efectos de la
curvatura del espacio-tiempo y es esencial para estudiar campos escalares en campos gravitacionales
intensos, tales como los que se encuentran cerca de agujeros negros. Sus soluciones pueden proveer

visién sobre fenémenos como la radiacion de Hawking y el comportamiento del campo cudntico en

espacio-tiempo curvo.
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6.2.2. Ecuacién de Klein-Gordon en el caso de RN (campo no cargado)

De manera similar a lo ya hecho para Schwarzschild se puede obtener la ecuaciéon de Klein-
Gordon en el espacio de RN, que no sélo incluye efectos de curvatura debido a la masa, sino que
también incluye los efectos debido a la carga del agujero negro. Partimos de la ecuacién (6.11)
adaptando la ecuacion a la situacién actual.

Al expandir la ecuacién en coordenadas esféricas, obtenemos

fi 2 i 2 1 . ; 2 2, _
f(?") at ¢ + 7”2 87”(T f(r)ar¢) + 7”2 Sineae(bln 98@¢) + T‘2 sin2 98<p¢ +m d) - Oa (613)
donde
. 2M | Q?
flr)=1- T2

Se calcula explicitamente cada término, para el término temporal queda

1
N

0,(v/=gg"'0r0) = \/Lgat <r2 sin 6 <—f(1r)> at¢> ,

dado que 72 sin 6 no depende de t, se tiene

1 sl N1,
Hat< ) 8”5)‘ %

Para el término radial tenemos

O (V9 0r8) = =0, s 0 (1)0,6),

—g V=9

ﬁ

se simplifica a
1 2 . _ l 2
= sin@ar(r sinf - f(r)0,¢) = T28r(r f(r)oro).

Para el término angular en 6 queda

L

0,
e

(V=05"000) = =00 (r%sind - 5000,
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simplificando:

m@g (Sln 089¢) .

Para el término angular en ¢:

1 1 1
0,(V=gg%°0p¢) = ——0y (r2sinf - ———0)
=50 VT99700) = =g ¢(T T g ”¢>’

ﬁ

simplificando queda

1 1 I
r2 sin 98@ (sin@a@(ﬁ) o2 sin208(’0¢'

Uniendo todos los términos se obtiene la ecuacion de Klein-Gordon completa y es

b

. 1
o) Dp(sin B0y) + maﬁ +m?p=0 (6.14)

1 1
2 2
0y ¢ + 2 Or(r°f(r)0ro) + 2 5in 0

La ecuacion (6.14) muestra explicitamente cémo la presencia de la masa M y la carga eléctrica del
agujero negro afectan al comportamiento del campo escalar ¢.

Podemos notar que en el término temporal, el factor f(lr) modula la evoluciéon temporal del campo
debido al potencial gravitacional y electrostatico, mientras que, la derivada radial estd influenciada
por f(r), misma que incluye los efectos gravitacionales debidos a la masa y carga del agujero negro,
asi mismo, los términos angulares reflejan la simetria esférica del espacio-tiempo y f(r) no influye
sobre ellos, finalmente, el término m?¢ representa la contribucién de la masa del campo escalar.
El siguiente paso es incorporar el operador de momento angular en la ecuacién (6.14). Esto permite
separar variables y simplificar las derivadas angulares. Partimos de (6.14) y sustituimos el operador
de momento angular al cuadrado L? que en coordenadas esféricas es

2|1 r L o
L* = [Smec’)@(bmeae) + sin206<p ,

por lo tanto, las derivadas angulares en la ecuacién de Klein-Gordon pueden escribirse como
1
0

11 , 2] LA
= gm0+ rgee] =~ o
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la ecuacion finalmente se transforma en

1

L2
it O F(1)0:0) — 0+ m*o =0, (6.15)

Proponemos una solucién a la ecuacién (6.15) mediante separacién de variables
oL, 1,0, ) = eithR(r)YVlm(e’ ®),

donde:
s ¢ ! es la dependencia temporal con frecuencia w,
» R(r) es la funcién radial a determinar,

» Y}, (0,¢) son los armonicos esféricos, que satisfacen

Al sustituir ¢ en la ecuacion:

i PR + 5 (20 ) Vi S ROV 4 2RV = 0

dividimos ambos lados por Y},

% dR(r)) i+ 1)R(r) - m2R(r) =0,

d
o CenRe) + g (o) -

Reescribimos la ecuacién (6.15) de forma que la ecuacién diferencial solo conserva la parte radial y

queda

o MRS LU

La ecuacion (6.16) es una ecuacién diferencial ordinaria para R(r) que incluye tanto los efectos del
momento angular como los del potencial gravito-electrostatico. Esta ecuacién puede interpretarse
como la de una particula bajo un potencial efectivo, que incluye términos debido a la curvatura

espacio-temporal y al momento angular. Los valores de [ representan los diferentes modos angulares
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del campo escalar, andlogos a los orbitales en mecanica cudntica. La ecuacion (6.16) puede resolverse
utilizando técnicas estandar, como métodos numéricos o analiticos aproximados, dependiendo de
los valores de M, @, w, m y L.

Al considerar que el momento angular se relaciona con las derivadas angulares, hemos simplificado
la ecuacién de Klein-Gordon en el fondo de RN a una forma que separa la variable radial de las
angulares. Esto nos permite analizar el comportamiento del campo escalar ¢ en términos de modos
radiales y angulares, facilitando el estudio de la radiacion de Hawking de bosones cargados.

Ahora introducimos la coordenada tortuga r, en la ecuacién (6.15). La coordenada tortuga es una
herramienta esencial para estudiar la propagacién de ondas cerca del horizonte de eventos de un
agujero negro.

Partimos de la ecuacién (6.15), sustituyendo L? por [(I+1), a continuacién proponemos una solucién

de la forma
R(r)

¢(t> T, 97 90) = e_thT}/lm(97 90)

Sustituimos la soluciéon propuesta en la ecuaciéon de Klein-Gordon:

w? R(r) 1 d d (R(r) I(l+1) R(r) R(r)
—%Tylm‘Fﬁ% <T2f(r)d7“ ( . >>Y2m— 2 . Yim‘f’szYlm

Simplificamos utilizando las propiedades de los armonicos esféricos y reorganizamos la ecuacién,

después de simplificar, obtenemos la ecuacién radial

d*R(r) w? L (+1)  f(r) dR(r) 2 1 - =
ir? LW 2R fr) dr f(r)] R(r) =0,

ahora si introducimos la coordenada tortuga al calculo y queda

st (10 B L = gy (2 )] ey =0

d d
Sustituimos i f(r)d—r*, y obtenemos
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donde el potencial efectivo Verf(r) es
UE! '(r
Verp(r) = f(r) <( 3 ) w2 4 fi )> : (6.17)
Calculamos la derivada de f(r):
d
!/
S (1=
o= (1- 2+

Sustituimos f(r) y f(r) en Veys (6.17) y queda

V) — ) <z<z; D 42 1 <2M _ 25;)) | (6.18)

r2
Recordando la derivacion de la coordenada tortuga, queda que la ecuacién radial se reduce a:

d’R(ry)

ar. T [w? = Veps(r(r))]R(rs) =0, (6.19)

la ecuacion (6.19) es una ecuacién de onda 1D, lo que facilita el anélisis de soluciones y la aplicacién
de condiciones de contorno.

Al introducir la coordenada tortuga, se ha transformado la ecuaciéon de Klein-Gordon en una ecua-
ciéon de onda 1D que es méas adecuada para el andlisis de fendmenos fisicos en el entorno de un
agujero negro de RN. Este enfoque es esencial para profundizar en la comprensién de los procesos
cudnticos en espacio-tiempos curvos. También vemos que si hacemos M = () = 0 recuperamos la
forma minkowskiana de la ecuacién de Klein-Gordon. En la siguiente seccion veremos la ecuacién
de Klein-Gordon para el campo escalar cargado teniendo en cuenta el acoplamiento minimo del

agujero negro.

6.2.3. Ecuacion de Klein-Gordon en espacio-tiempo curvo con acoplamiento

electromagnético

La ecuacion de Klein-Gordon para un campo escalar cargado en un espacio tiempo curvo es:

(9" (Vi = 1qAu) (Vo — igAy) — m®)¢ = 0, (6.20)
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donde A, son las componentes del cuadrivector potencial y en el caso de RN se reducen a (debido a
la ausencia de rotacién, el campo eléctrico del agujero negro no genera un campo magnético y por

lo tanto las componentes asociadas al campo magnético son cero)

A, = (?,6) : (6.21)

sustituimos los componentes de la métrica inversa y el potencial electromagnético en la ecuacion

(6.20), expresamos la ecuacién en términos de las coordenadas

1

) (0 —iqA)? o + f(r)(0r — igAs) o + %2 <8§ + cot 00y +

1 32> —m?¢p =0,

sin?6 ¥

notamos en la ecuacién (6.21) que A, = Ag = A, = 0, por lo que estos términos desaparecen.

El término temporal es

2 2
—f(i)(at - igA o =~ (at - z‘qf?> - (at - ch3> .

El término radial es

pero se debe considerar la forma correcta para preservar la hermiticidad y la conservacion de la
corriente. En coordenadas esféricas y espacio-tiempo curvo, el operador radial adecuado es

1
-9

or(vV=99""0r9),

ﬁ

como g"" = f(r), el término radial se convierte en

SO (1)0,0).

El término angular se establecié que es igual al operador momento angular al cuadrado, entonces

reunimos todos los términos de la expresién y queda

1 S| L?
5 (2-1%2) 0+ 0021000 - o= mto =0,
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todos los términos se estan multiplicando por ¢ por lo que podemos reescribir esta ecuacién

I PR A S SRR S
[ i) (at T) + 50 (2 f(r)0r) — ¢ =0. (6.22)

La ecuacién de Klein-Gordon obtenida se muestra en (6.22), esto es, para un campo escalar cargado
en el fondo de un agujero negro de RN, y resulta crucial para el estudio de la interacciéon del campo
escalar cargado con el entorno gravitacional y electromagnético de un agujero negro cargado, asi
como también para hacer andlisis de cémo las ondas escalares cargadas son dispersadas o absorbidas
por el agujero negro.

Ahora, demostraremos que al expandir el campo escalar cargado en armonicos esféricos y al intro-
ducir la coordenada tortuga r,, la parte radial de la ecuacién de Klein-Gordon en el fondo de un
agujero negro de RN se puede escribir de la siguiente manera

d2
[_er + Veff(T)] R(r) = eR(r) (6.23)

con

2
Veff:f('f') <m2+l(l;1)+m_w>_<w_qc?> _'_(o‘)Z_?nZ)7

r3 rd

Partimos de la ecuacién (6.22) y proponemos una separacién de variables del tipo

o=y, 60.0)

usando el valor propio del operador angular y usando el hecho de que 9;¢p = —iw¢ se reemplaza en

la ecuacién (6.22), entonces obtenemos

[— L (—iw - zc‘;Q>2 + i@ (r2f(r)0,) — M —m? RY)Ylm(Q,go) =0,

r2 " r2
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la dependencia angular se factoriza y simplifica con los armonicos esféricos. Enfocandonos en la

ecuacion radial para R(r):

2

Definimos la coordenada tortuga r, mediante

dr 1
dr flr)

La segunda derivada con respecto a r se convierte en

d d , d?

d
=TG- = g = F0 g+ P F0)

dry’

al reorganizar el operador radial es comun introducir un factor de R(r) sobre r para simplificar la
forma, pero aqui ya hemos factorado R(r)/r desde el principio.

Después de sustituir y reorganizar los términos, la ecuacion radial se puede escribir en la forma

2R(r 2 2
d*R(r) W2 —m2— (Jc(r)l(lJrl) + f(r)ym? +f(7‘)2ri]\34 _ f(r)i% — () <w _ ‘iﬂ?) )

dr?

_l’_

R(r) =0,

r2

movemos todos los términos excepto el primero al otro lado

2
d*R(r) _ (w2 _ mQ)R(T) — f(r) <m2 + l(l:; D) + 2 - 2312 - (w N q?) ) R(r),

dr? 73

reescribimos esta ecuaciéon como:

2
R0 | <m2 Ly 2M 2P <w _ ‘-’Q> ) R(r) = —(w? = m?)R(r),

dr2 r2 r3 rd

multiplicando por —1 queda

2
d*R(r) ) (m2 Ll 2M 200 (w _ qu> ) R(r) = (w? — m})R(r),

dr? 72 73 rd
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definimos € = w? — m?, asf, la ecuacién queda

2
_dQR(T) 4 f(?") <m2 + l(l:; 1) + % _ ﬁ — <w — C]CQ) -+ (wQ — m2)> R(T) = ER(T),

dr? rd r

2

observamos que (w? —m?) = €, por lo que podemos agruparlos

2
_d2R(T) + f(?") <m2 + l(l —; 1) + % _ ﬁ — (w — qT:Q> —+ (wQ — m2)> R(?“) = ER(T),

2
drz T

definimos el potencial efectivo Vsy(r)

2 2
Verp(r) = f(r) <m2 Llasy 2 207 (w - qu> + (w? — m2)> , (6.24)

r2 3 A

con esta definicién, la ecuacién toma la forma presentada en (6.23). Al expandir el campo escalar
cargado en armonicos esféricos y cambiar a la coordenada tortuga, la ecuacién radial de Klein-

Gordon en el fondo de un agujero negro de RN se reduce a una ecuacién tipo Schrédinger con un

2

potencial efectivo V. ;¢(r) y un término € = w? — m?. La cual es equivalente a (3.28)

2
d2R+<1 oM Q2> <m2+z(z+1)+21\4_2Q2>R+<w_qf2> R—0

- _ + _—
dr? r r2 7r2 r3 rd

La ecuacién (3.28) es util para analizar la dispersién, modos cuasinormales, estados ligados y otros
fenémenos fisicos asociados con la propagacién de campos escalares en campos gravitacionales y
electromagnéticos intensos. Ahora que hemos obtenido la ecuacién tipo Schrodinger para el caso
bosénico, haremos lo mismo para el caso fermidnico, asociando los fermiones a su ecuacién carac-

teristica, la ecuacién de Dirac, de igual manera que lo hicimos a lo largo de estas tres subsecciones.

6.3. Anexo C: Ecuacion de Dirac

La ecuacion de Dirac, en relatividad especial, es

(i7" O —m)Y =0, (6.25)
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donde y* son las matrices de Dirac que satisfacen el algebra de Clifford {y*,~7"} = 2n*". Sin embar-
go, cuando pasamos a un espacio-tiempo curvo con métrica g,,,, ya no se puede usar directamente
~* como en el caso plano, ni la derivada parcial 9, como si nada. Para generalizar la ecuacién de

Dirac a un espacio-tiempo curvo, se introducen 2 conceptos clave

» Campo de la tétrada (o vierbein) ey, que relaciona el indice p del espacio-tiempo curvo con

el indice plano a.
= Conexién de espin I', adecuada para campos de espin 1/2.

Lo presentado aqui sigue el razonamiento de [22] hasta el procedimiento para sacar la ecuacién de

onda, de ahi en mas es razonamiento del anexo de [6].

6.3.1. Formalismo de la tétrada y espinores

Hasta ahora, hemos usado bases asociadas a coordenadas especificas para describir vectores y
covectores. Sin embargo, podemos elegir bases mas generales que no estén ligadas a un sistema
coordenado particular. Estas bases generales se denominan tétradas (o wvielbein), formadas por

vectores e, que cumplen la condicién de ortonormalidad respecto a la métrica g, :

9(€asep) = Nab (6.26)

donde 7144 es la métrica de Minkowski en espacio-tiempo Lorentziano. Las tétradas permiten relacio-
nar indices curvos (coordenados) con indices planos (locales). En particular, relacionan las matrices

de Dirac curvas (7*) con las matrices planas 7* mediante (6.27)

M = ety (6.27)
Si cambiamos una tétrada inicial por otra, las bases estdn relacionadas por una matriz A:

el = AGnk, (6.28)

y se demuestra que A es necesariamente una matriz de Lorentz. Por ello, estas transformaciones se

llaman transformaciones locales de Lorentz.
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Al introducir espinores en relatividad general, estos transforman como objetos escalares bajo trans-
formaciones de coordenadas, pero requieren una transformacion especial bajo rotaciones de tétradas.
La derivada parcial no preserva esta propiedad, por lo cual es necesario reemplazarla por una deri-

vada covariante, lo cual serd abordado en la seccion siguiente.

6.3.2. Derivada covariante de un espinor y la conexién de espin

Al generalizar la derivada parcial d,, a la derivada covariante D, para campos espinoriales en
relatividad general, introducimos correcciones debidas a la curvatura mediante la conexion espinorial

I',,, escribiendo:

Vo = 0u + Ty,

Esta derivada covariante debe transformar adecuadamente bajo transformaciones locales de Lorentz,
cumpliendo con la ecuacién (6.29)

Dy = LD, (6.29)

Lo que determina cémo I';, cambia bajo dichas transformaciones.

Para que la derivada covariante sea consistente (preserve la métrica y la estructura del dlgebra
de Clifford generada por las matrices de Dirac curvadas 4 = ehv%, se impone la condicién de
compatibilidad métrica:

D, =0. (6.30)

Esto implica que la conexién espinorial I', debe tener la forma especifica:

1
F,u = EWAB,MYA’YB (6.31)

donde wapy, es la conexién de espin (coeficientes de Fock-Ivanenko) dada por las tétradas ej; y los

simbolos de Christoffel F/);V

Wuab = €qV ey = €q(Ouevp — I’ﬁye,\ b)- (6.32)
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. Estos coeficientes son antisimétricos en los indices planos (a,b). Finalmente, la ecuacién de Dirac

en espacios curvos para particula libre con masa m es:

(iv“ Do — m)ip = 0. (6.33)

que puede escribirse explicitamente en términos de coordenadas generales como

(i7*D, —m)p =0 (6.34)

donde D, = 0, + I';,. Esta ecuacién incorpora naturalmente la estructura geométrica del espacio-

tiempo mediante las tétradas y la conexién espinorial

6.3.3. La Interaccién Electromagnética

Generalmente uno deberd anadir un vector miltiplo de la matriz unidad a la solucién (6.31). De
esta manera se puede generalizar los I', para el caso donde un potencial electromagnético arbitrario

A, estd presente. Simplemente hacemos los reemplazos:

T, — T, +igA,l (6.35)

D, — Dy, +igA,lI, (6.36)

donde g es la carga de la particula descrita por ¢. Por lo que, la ecuacién (6.34) ahora se generaliza

a
iV Dy —map = 0,
W“(au + iun + Fu)w —my =0,
e 1 AB | .
iy (eo + JWABCY Y + quC> —my =0, (6.37)
donde

A, = eé’yCAu = 'yceéAu =~“Ac.
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Esto es consistente con el procedimiento de acople minimo que se estudié en la seccidon anterior
cuando lo estudiamos para el caso de Klein-Gordon. Como ya vimos en el caso de la ecuacién de
Klein-Gordon, para RN el potencial electromagnético las componentes Ac del potencial electro-
magnético debido al campo eléctrico del agujero negro son
A= (Ao, Ar, Ag, As) = (20
_(07 1,412, 3)_ 770 )
de tal manera que igAy = zﬁ Habiendo visto las herramientas necesarias para el estudio de
r
la ecuacién de Dirac en espacios curvos, antes de estudiar la ecuacién de Dirac en Schwarzschild

haremos un breve repaso de las matrices Gamma, pues esto es crucial para entender cémo cambia

la ecuacion de Dirac en las diferentes métricas.

6.3.4. Las matrices Gamma

Las matrices de Pauli 2 x 2 vienen dadas por
ol = , 02 = 0% = (6.38)

Para una particula libre de espin 1/2 de masa m escribimos la ecuacién de Dirac en el espacio-tiempo
de Minkowski como se muestra en la ecuacién (6.25), donde v es un espinor de 4 componentes y
las matrices v 4 x 4 satisfacen la relacién de anticonmutacién de las matrices «y, pero recordando
que estamos en el espacio-tiempo de Minkowski y por lo tanto {7, 7%} — {y4,75}, g% — n4B,

donde € = *1 y las condiciones de hermiticidad
(v =10,

elevamos y bajamos los indices usando la métrica n, v = n4B~3p.



Representacion estandar de Dirac-Pauli

En la representacién estandar, tenemos

(Y°)? =1, (Y*)? =—1
Demostracion:
I 0 I 0 I, +0x0 Ib x04+0x —Iy
(7°)? = =

0 —1I 0 —I OxIo+—-Irx0 0x0+ (—IQ)(—IQ)

I, 0
(%) =

0 I
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(6.39)

(6.40)

Para probar la segunda parte de (6.40), usamos la ecuacién (6.38) y la segunda parte de (6.39),

concretamente con K = 1.

0 0 0 1
. 0 of 0 0 10
Y= = )
—ot 0 0 -1 0 0
-1 0 00
elevamos al cuadrado la matriz
0 0 0 1 0 0 01 -1 0 0
12 0 0O 1 0 0 0 1 0 0O -1 0
(v)" = =

0 -1 00 0 -1 00 0 0o -1

|
—_
o
o
o

|
—_
o
o
e
]
)
o
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Ahora que ya vimos la representacién matricial de las matrices v estamos listos para emprender un

viaje al horizonte de eventos del agujero negro de Schwarzschild y de RN.

6.3.5. Ecuacién de Dirac en la métrica de Schwarzschild

En esta seccién se estudiard y calcularan los coeficientes de Fock-Ivanenko y las ecuaciones
de Dirac resultantes para la métrica de Schwarzschild dada en (2.2). Las matrices 7 estdn en la
representacion estandar, sin embargo, debido a la signatura elegida, debemos multiplicar cada una
de las matrices por +i. La métrica de Schwarzschild viene dada por (2.2) y elegimos las 1-formas y

vectores correspondientes que satisfacen la ecuacién (6.26),

e? = rdf, eo = —0p,
r

e3 = rsinfde e3 =

= Og.
37 rsing ?

Las expresiones anteriores son los campos de la tétrada de un observador estacionario. El indice
a = 0,1, 2, 3 denota la componente local de Lorentz” (o del espacio de Minkowski) con 74, =

diag(—1,+1,+1,41). Las inversas cumplen
ebes = ob, (6.41)

Calculamos los coeficientes de espin no nulos y recordamos la antisimetria de la conexién espinorial.

A continuacién calcularemos las derivadas covariantes de e% y para no alargar excesivamente, se
indica la idea:

1. Calcular 3#(663). Casi todas son cero excepto cuando la componente eﬁB depende de la coor-

denada p.
B v
2. Sumar I'ye.

3. Determinar las combinaciones para cada par (A, B) y cada p.
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En la métrica de Schwarzschild, los simbolos de Christoffel Fﬁ,, no nulos se concentran en expresiones

con (t,r) y (0, ). Por ejemplo,

s t
tty Ftrv

T 0
FGQ’ Fr@’

p
Logr Lrgs

F§)¢, Fg)(z), etc.

De la forma de e%, se ve que:

l€6:

depende sélo de r.

1
f(r)
e] = +/f(r) depende de r.

1
. ef = - depende de r.

W

—— depende de r y 6.
rsin

Por tanto al examinar V#e% para u = t,7,0, ¢, se ve que no todas las combinaciones son distintas

de cero. Solo surgen un pufiado de componentes no triviales.

Del célculo, se obtiene que las inicas combinaciones (A, B, 1) no nulas son (salvo antisimetria) las

siguientes:
1. wig con p =t.
2. wo1 con p=0.
3. ws1 con u = ¢.
4. wse con pu = ¢.
Todas las deméds se anulan (veremos abajo el por qué).

1. Par (1,0) con pp =t

1
= Se encuentra que wip: # 0 porque e} = 0 depende de r, y I't, = 0 pero I}, # 0

puede intervenir cuando se combina con ef.
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s FEl resultado da

M
w10t — R (6.42)
r
2. Par (2,1) con p =46

= Al tomar Vgef , la tinica parte que no se anula proviene de Oy si ef dependiese de 6 o si

F'gye‘l’ fuera no cero.

= Se halla esquematicamente

warg =/ f(r) (6.43)
3. Pares (3,1) y (3,2) con u = ¢

= Andlogamente, los términos w3y ¥ wsag surgen de la dependencia de eg en 6 y de los

Christoffel ', , I'%,.

= Se obtiene

w3ig =/ f(r)sinb, (6.44)

w324 = cos 0 (6.45)
Conceptualmente, los demads coeficientes se anulan por dos razones principales:
1. La tétrada no depende de ciertas coordenadas:

= ¢! v €] no dependen de 6 o ¢.

] eg y eg no dependen de t.

Por lo tanto, 8,&% = 0 en muchos casos. También, muchos simbolos de Christoffel se anulan

para combinaciones que mezclarian, por ejemplo, ¢ con 6 en Schwarzschild.

2. Simetria esférica y diagonalidad:
Al no haber términos cruzados dtdf, dtd¢, drdf en la métrica, los Fﬁ,, que conectarian direc-
ciones disjuntas desaparecen (o no aportan a V”eg).
Asi, por ejemplo wyy v w3p no tienen forma de encenderse pues no hay manera de producir

esos emparejamientos a través de la derivada covariante.
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En pocas palabras:

Los coeficientes nulos son aquellos para los cuales la derivada covariante se anula. ‘

Ahora vamos a calcular los coeficientes de Fock-Ivanenko de la métrica usando (6.31) y proyectando
sobre el espacio plano de Minkowski, para ello utilizamos la proyeccion I'c = e’éfﬂ, usando eso en
la ecuacién (6.31) queda

1
Lo =eil, = Ze’éwABM’yA’yB (6.46)

Ahora, hacemos el cdlculo con u =t, r, 0, ¢ y los pares AB no nulos que nos quedaron, para ello
usamos las relaciones derivadas anteriormente (ecuaciones (6.42-6.45)).

Para C=pu=t, A=1, B=0 quedaria

1 1 1 M
T, == t 1,0 _ =~ 1.0
t 4615“-}1015'7 Y 4 f(T‘) 7"27 A
1 1
notamos que y4y8 = 5[7‘4,73] + 5{7’4, 7B} v nos queda
1 1 M
T, =~ —27140.
t 4 f(T) T2 v
entonces simplificando queda
1
I'i=—|(1-— . 6.47
1= 53 < . ) Yy (6.47)
Para C' = p=r, A=2, B =0 quedaria
1 r 2.0
I, = 1Erw2orY Y = 0
entonces
r,=0. (6.48)

ParaC=u=60, A=2, B=1 queda

1
Iy = Zezwm(ﬂz’Yl
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quedaria entonces
1 1

11 2MN\ o 1 2MN\ 9
Tp=>=(1-"=) 2292 = — (1- =) 242! (6.49)
4r r 2r r

Finalmente para C' = p = ¢ hay una suma debido a que 2 parejas de coeficientes sobreviven

A=3,B=1yA=3 B=2:

1 1
Iy = Eejngwfy%l + Zeiw32¢’7372
1
1 1 2M N\ 2 1
Iy =~ —sinf |1 — — 2 3yt 4+ —— cos 0342
4 | rsind r rsin 6

Haciendo uso de la identidad previamente mencionada y simplificando términos queda:

1

1 2M N\ 9 cot 6
Ty =5, (1 - T) LA = (6.50)

Finalmente, combinando las ecuaciones (6.47-6.49) llegamos a

[10(e60: +To) + 7' €10, + 77 (€509 + T'2) + 77 (€505 + Ta)]p — map = 0. (6.51)

6.3.6. Ecuacion de Dirac en RN

Para RN es analogo, inicamente se aniade el término de la carga del agujero negro, asi pues

. 1
0= oM Q?
(-
T T
2M Q2
a=\l-——+7
e =r
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De nuevo calculamos los coeficientes de la conexién de espin wap,, de acuerdo con la ecuacién de la

conexion de espin y andlogamente sale, para A=1, B=0, u =1t

M Q?
e 6.52
wiot T2 TS ) ( )
mientras que, para A =2, B=1, u =0
oM Q?
waig = \/1— -t 5= f(r), (6.53)

para A=3, B=1, 2, u = ¢ queda

w31 =/ f(r)sinf (6.54)

w324 = cos 0 (6.55)

2M | Q?
con f(r)=1—-—+ Q—z De la misma manera que en el caso anterior, usando la ecuacién (6.31)
r T

y las ecuaciones (6.52-6.55), encontramos los coeficientes de Fock-Ivanenko de la métrica de RN:

1
T, = 1 <M_QQ> <1_W+Qz> 271707 (6.56)

2 \ r2 r3 r r2

analogamente al caso de Schwarzschild, en la métrica de RN,

I, =0, (6.57)
1
Ty = ?17« (1 - ¥ + ?;) 242, (6.58)
1
I'y= % (1 - ¥ + ?22) 2 3yt + %7372. (6.59)

Finalmente combinando las ecuaciones (6.56-6.59), llegamos a una expresién analoga para RN (sin
acoplamiento electromagnético) de la ecuacién de Dirac, para tener una expresién para el caso
con acoplamiento electromagnético se usa la ecuacién (6.37) en la que se promueve la derivada
covariante a otra derivada covariante que incluye el término con acoplamiento electromagnético

(véase la ecuacién (6.37) pero el procedimiento para obtener los coeficientes de conexién de espin es
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andlogo, asi que no se volvera a repetir el procedimiento. Ahora que hemos obtenido la ecuacién de
Dirac explicitamente para la métrica de Schwarzschild y de RN (con o sin acople electromagnético),
se puede elevar al cuadrado para obtener una ecuacién tipo Klein-Gordon, eso es lo que se hara en

la siguiente subseccién.

6.3.7. Ecuacién de Onda

Para obtener una ecuacién de onda tipo Klein-Gordon (parecida a (6.12)) se tiene que elevar al
cuadrado la ecuaciéon de Dirac. Este procedimiento es el mismo para las 2 métricas en particular,
pero en general resulta aplicable a cualquier métrica.

En una métrica curva, la ecuacién de Dirac puede escribirse, usando la notacién de tétradas y la
derivada covariante de un espinor ¥ como se muestra en (6.34). Para elevar al cuadrado la ecuacién

de Dirac, se multiplica por el operador conjugado
(in" Dy +m).
Asi partiendo de la ecuacién (6.34), se obtiene
(4D + m)(i9" D, — m) = 0,
el producto de operadores se desarrolla como
(¥’ Dy +m)(iv*' D,y — m) = = (v D,y"D,, — m2).

El signo — adicional proviene de la multiplicacién ¢ x i. Por consiguiente, la ecuacién resultante es

(v D,y D, —m?) = 0. (6.60)

El término clave es

’YUDV'Y#D/M
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en espacio-tiempo se cumple la identidad
y 1
v DD, = D'D,, + ZR’ (6.61)

donde D, es la derivada covariante de espin y I es el escalar de Ricci, mismo que ya se demostré

que es cero en el caso de las métricas de Schwarzschild y RN, por lo que (6.61) se reduce a
v D,A"D, = DD, (6.62)

La derivada covariante D, que actia sobre un espinor es D, = 9, +I';, donde I';, son matrices que
codifican la conexién de espin. Cuando en la expresién compacta se escribe D*D,,, se estd aplicando
dos veces esta derivada de espin:
— v
D'D,V = ¢""D,D,¥.
Si desglosamos D, D, en derivadas ordinarias y en I';,, surgen exactamente los términos:

= la parte que corresponde al laplaciano escalar V% sobre U,
» términos lineales en I';, que se combinan como 2I" - 0,
= términos cuadréticos I',I'¥,

= términos con V,I'* (derivada de la conexién de espin, que puede incluir conmutadores y

también la parte debida a la conexién de Levi-Civita).

Por eso en la literatura, a veces se ve la identidad (en notacién bastante esquemética):
DFD,VU = V3 + 2(T*0,)¥ + IV + (V,TH)¥

Ambas formas son representaciones del mismo operador: la primera es la forma compacta y la otra
es la forma expandida explicitamente en términos de la conexién de Fock-Ivanenko.

En el caso de las métricas de Schwarzschild o de RN en el vacio, ocurre que:

1. La curvatura escalar R = 0.

2. La forma especifica de I';, se simplifica bastante debido a la simetria esférica y a la ausencia

de otras fuentes de curvatura (salvo la masa central).



126

En muchas referencias, al elevar al cuadrado la ecuacién de Dirac se llega a:
(D*D,, +m*) W & (VE+2T -0+ T2 + V,TF +m?)¥

El desglose en V%, r-o,ry V. I'" es la misma operacion, solo que escrita paso a paso.
Ahora haremos explicitamente la sustitucién usando la coordenada tortuga, la forma de la derivada

covariante y los 4 coeficientes de Fock-Ivanenko I'" que obtuvimos (6.47-6.50) queda

L2 1 M2 t20 2M
S__f_CO_z‘g018t+\:277j012(cot9+269)+2

Ly ot sy 2T
r2 Af rt 202 42 f 2 i

0
r2siné ot r2sin 0

(6.63)

0138¢,

1 9 Ao 2

donde Lg es el operador momento angular usual de la mecénica cuantica. Esta ecuacién tan dificil
de manejar, no solo no es diagonal en el espacio espinorial, al contrario de la contraparte plana,
sino que no se reduce a la ecuacién de onda en el horizonte o el infinito espacial. Para obtener una
ecuacién manejable y reducible a la ecuacién de onda se hace la sustitucién en la ecuacién diferencial
de primer orden

U =7 f1/4/sin 60 (6.64)

donde rf1/4\/sin@ = S(r, #), definimos un nuevo campo espinorial dado por
U =S"1(r, 0),

i.e.

1 -
U= WW. (6.65)

Nuestro objetivo es sustituir (6.65) en la ecuacién de Dirac que obtuvimos y ver como la parte
relacionada con la conexion de espin se cancela.

Debido a que ¥ = S0, cualquier derivada Ou tiene 2 términos:
9,V = 9,[S7] = —~57%(9,8)¥ + 5719, ¥

Consideramos cada coordenada

1. Derivada temporal (direccién t):
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Como S(r,0) no depende de t,
A0 = 4'S71o, D,

. Derivada azimutal (direccién ¢):

De manera similar, S(r, ) no depende de ¢,

7¢8¢\If = 7¢S‘18¢\i1.

. Derivada radial: para la derivada radial, obtenemos 2 partes:
VOV =" [=S7%(0,9)¥ + 59, V]

El término —4"S~2(9,8)¥ se combinard con la parte de I'(r, ) que depende de f(r) y su
derivada f'(r). Debido a que la conexién de espin para Schwarzschild posee un término pro-
d

, , 2M o
porcional a f'(r) = a \1— )y uno encuentra que todas esas contribuciones se cancelan
r r

si se sigue el factor S~2(9,.5).
. Derivada polar: similar a la anterior se obtienen dos partes
000 = ~P[—S5720,ST + S19y ).

1
Mientras tanto, I'(r, #) tiene una pieza proporcional a 7% cot 6, el término —3 cot 8 proveniente
1
de la derivada de S se combina con —{—5 cot 6 presente en la conexién de espin y se cancelan.
Cuando todas las piezas se combinan, vemos que los términos extra de la derivada de S(r,0)

precisamente cancelan lo términos de conexion de espin de I'(r,#). Concretamente,
VOS] + D(r, 0)[S™" ] = S~ 149, T,

una vez que las cancelaciones se efectiian.

Por lo tanto, la ecuacion de Dirac se convierte en

Sflfy“f)ﬂ\i/ =mS~1¥
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o después de multiplicar ambos lados por S se obtiene una ecuacién anédloga a (6.25)

Por lo tanto, después de aplicar la transformacién del campo a V¥ la ecuacién de Dirac en Schwarzs-
child colapsa a

VO, U = m¥ (6.66)

comportandose asi, de manera muy similar al operador de Dirac en el espacio plano. Esto simplifica
enormemente el andlisis subsecuente.
Uno siempre puede elegir los espinores de tal forma que sean funciones propias del operador momento
angular

9y

LV := (ae + ) U = -z, (6.67)
sin 6

2
donde el autovalor \ satisface \? = (j + 2> como la particula posee espin medio, el momento
angular total j puede ser cualquier medio entero, de forma que A\? puede ser cualquier entero positivo.

Para obtener una ecuacién de onda diagonalizable se multiplica por v/f. Definimos el operador

2 = \/f1"9,.

Al multiplicar (6.66) por \/f, queda

AV = \/fy10, ¥ = m\/f,

llamaremos a este tltimo lado m¥ con m = m+/f para abreviar en el siguiente paso.
Para aislar algo que luzca como —8? + 9?2 (es decir, un operador tipo onda), se toma la ecuacién
anterior y se aplica de nuevo un operador tipo 479, o, de forma andloga, se contempla 220,

De manera esquemaética:
1. Partimos de
ov = mV.
2. Aplicamos nuevamente 9 u otra combinacién equivalente (teniendo cuidado con los conmuta-

dores, pues /f y 9, no conmutan). El objetivo es que al expandir surjan

» un término —d? + 9?2 (el término de .°nda”de la izquierda,
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» un término que recoja f(m? 4 ---) (tipico de los potenciales efectivos en la ecuacién

resultante),

= correcciones adicionales que, tras agruparse y usar las propiedades de v#~", dan la pieza

713*(. S

3. De este modo se obtiene una ecuacion con la estructura

—9? + 0%)¥ = (términos con f(---)¥) + (términos que involucran d, y ~'.
t

Tras realizar estas expansiones el resultado es
A2 i\
(—0F +)v =f <m2 + r2> U 4410, <m\/f+ Z;/77071> . (6.68)

Podemos simplificar aiin més esta ecuacién sustituyendo en la forma de primer orden. El objetivo

A\f01>

es desplegar el término v'0, <m\f f+ ¥ y reorganizarlo para que aparezcan derivadas

de U (del tipo 0,V y 9,V y factores que, en tltima instancia, adoptan la forma proporcional a —-
r

Se vera el procedimiento de manera esquematica:

1. Separar y expandir la derivadda 0,:

El término critico en (6.68) es
P
1o, (m\/f+ 1;/77071> U,

podemos expandir la derivada de un producto de funcién por ¥ asi:

a) Derivada de la parte escalar mf—{— f oAl
b) Derivada de ¥, ya que en general 0, [qﬁ(r)\Il(r)] = ¢ (r)U + ¢(r)0, ¥

Es decir

o (7 + LY [ AT s (7 L)

La notacion (m\f + denota la derivada de esta funcién escalar respecto de r,.

Z\Fo1)
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Recordemos que P f (7’)5

2. Agrupar los términos con 0,V

0, V. Buena parte de la forma final de

\f01>

Al expandir aparece un término ~* (m\f +

la ecuacién consiste en reconocer que <m\/f + Tf,yo,yl> estd construida para combinarse
con 0,V o, en ciertos textos, con la combinacién 0, — o0.

En la versién final a la que queremos llegar, a menudo se define o = +1 (el signo del espin
radial) y se aprovecha que iy’y! puede intercambiarse por 08; o ow cuando se sustituye la
dependencia temporal e~ Aunque los detalles exactos varfan de acuerdo a la convencién

de las matrices v*, la clave es que

» 799! actiia como una matriz, que al proyectarse en los componentes espinoriales, puede
convertirse en una derivada temporal efectiva 9;¥ (o un factor w¥) cuando el modo tiene

la forma e,

M
= Aparecen factores proporcionales a 5 porque Oy Vv Vo ( > generan combinaciones
M

como 5
r

M
3. En Schwarzschild, como no hay mds términos adicionales, queda unicamente el factor — que
r
multiplica la combinacién de derivadas 0,V (y, en ciertos textos, ;).

El resultado final, tras reordenar, se puede escribir como

A2 M
(=0} + 0 = f <m2 + 7«2> v+ 5DV,

donde D es un operador de primer orden (por ejemplo Oy — 00; dependiente de cémo se
absorban los v#. El término con ~'0, (( f—i— \F 70 1) \I/> Sse rompe en una parte
+ f 7041 ‘Ifque pasa al " potencial efectivo”) y otra parte | m + \F Yyt ) Al v
Y
. . o . Z)\\F 401
(que, junto con proyecciones espinoriales, se reescribe como — | my/f + ——— 0V o

similar).

La razén de que se obtenga esta forma de la ecuacién es que, tras esas expansiones y el uso de la

condicién de espin ¢ = 41 se diagonaliza la accién de 499! en los componentes de ¥. Para cada



131

componente espinorial se obtiene, en esencia,

A2 M DYRE
(02 + )W, = f <m2 + r2) i+ 5 (0 — 00) + j; (7/°0); (6.69)

El dltimo término de esta udltima ecuacién es el Unico que no es diagonal en el espacio espinorial.
Como analizaremos esta ecuacion usando el método WKB, este dltimo término no contribuye al
orden dominante de la solucién en la aproximacion WKB y adicionalmmente este término tnica-
mente introduce correcciones subdominantes que, en ultima instancia, para el calculo de la tasa de
emisién o el factor exponencial de tunelaje, son irrelevantes.

Para RN (sin acople electromagnético) el proceso es andlogo, inicamente se anade el término de la
carga a la conexion de espin, asi pues llegamos a

r2

2 2 3/2
(-0t + awi = f (w4 25 Jwr (- %) @ -oow+ e 0

Reintroduciendo el potencial electromagnético da una ecuacién muy similar a esta. Hay un término
de acople espin-campo, es decir, el término o E de la ecuacién (2.50) que actia de manera anédloga
y redefinimos la derivada covariante para incluir el potencial electromagnético de la forma que se

muestra en (6.36)

- <5t + qu) Ui4+020; = f <m+ W) ‘I/z+<2\f; - Q2> <5* -0 (at + quQ>> \If@-—iaf%?

r rs

v;
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