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Nombre del Director de Programa: Daŕıo Niebieskikwiat

T́ıtulo académico: Doctor en F́ısica

Director del programa de: Maestŕıa en F́ısica
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A mis profesores y compañeros por haber compartido su conocimiento y experiencia.

A mi tutor de tesis Ernesto Contreras por compartir su gúıa y conocimiento del tema.
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Resumen

Estudiamos el comportamiento del potencial efectivo que experimentan campos bosónicos y fer-

miónicos cargados en el entorno de un agujero negro de Reissner-Nordström. Analizamos en detalle

las diferencias entre las configuraciones angulares de momento ℓ = j = 0 y ℓ = j = 1, evaluando

cómo vaŕıan la altura y la anchura de la barrera de potencial al modificar la masa m, la carga q y la

frecuencia ω de la part́ıcula. En el régimen de enerǵıas
qQ

r+
< ω < ωmax, mostramos que fermiones

y bosones presentan perfiles distinguibles de potencial efectivo, con barreras más permeables en el

caso fermiónico. Se identifican expĺıcitamente las regiones con tunelamiento mediante análisis gráfi-

co y sombreado, permitiendo una interpretación visual directa de la supresión exponencial de la

emisión. En el ĺımite m≫ 1, se verifica que el potencial efectivo se vuelve independiente del esṕın,

unificándose en una forma universal dominada por f(r)m2. Se discuten las implicaciones de estos

resultados en el contexto de la radiación de Hawking-Schwinger y se plantea como trabajo futuro

la extensión del análisis a los reǵımenes subextremal, extremal y superextremal, aśı como a otras

soluciones tipo agujero negro.

Palabras clave: Reissner-Nordström, potencial efectivo, emisión de part́ıculas, bosones, fermiones,

WKB, Hawking-Schwinger, régimen clásico
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Abstract

We study the behavior of the effective potential experienced by charged bosonic and fermionic

fields in the background of a Reissner-Nordström black hole. We analyze in detail the differences

between angular configurations of momenta ℓ = j = 0 and ℓ = j = 1, evaluating how the height

and width of the potential barrier vary with the mass m, charge q and frequency ω of the particle.

In the energy regime
qQ

r+
< ω < ωmax, we show that bosons and fermions display distinguishable

effective potential profiles, with fermions encountering more permeable barriers. Tunneling regions

are explicitly identified through graphical analysis and shading, providing a visual interpretation of

the exponential suppression of emission. In the limit m ≫ 1, the effective potential becomes spin-

independent, collapsing into a universal form dominated by f(r)m2. We discuss the implications

of these results in the context of Hawking-Schwinger radiation, and propose as future work the

extension of the analysis to subextremal, extremal and superextremal black holes, as well as to

other black hole spacetimes.

Key words: Reissner-Nordström, effective potential, particle emission, bosons, fermions, WKB,

Hawking-Schwinger, classical limit.
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4.3. Análisis gráfico de los potenciales efectivos . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4. Discusión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5. Conclusiones 93

6. Anexos 95

6.1. Anexo A: Derivación de la métrica de RN . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2. Anexo B: Generalización de la ecuación de Klein-Gordon a espacios tipo agujero negro102

6.2.1. Ecuación de Klein-Gordon en espacio de Schwarzschild . . . . . . . . . . . . . 102

6.2.2. Ecuación de Klein-Gordon en el caso de RN (campo no cargado) . . . . . . . 104

6.2.3. Ecuación de Klein-Gordon en espacio-tiempo curvo con acoplamiento electro-
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Caṕıtulo 1

Introducción

Los agujeros negros son una de las manifestaciones más extremas de la gravitación en el univer-

so. El descubrimiento de estos enigmáticos y asombrosos objetos fue posible gracias a la teoŕıa de

la relatividad general, propuesta por Albert Einstein en 1915, que es la mejor teoŕıa clásica sobre

campos gravitacionales formulada hasta la actualidad[1, 2]. En 1974, Hawking[3] hizo un descubri-

miento que revolucionaŕıa el estudio de estos objetos masivos, los agujeros negros no eran tan negros

como se pensó; emit́ıan radiación[4], una radiación de muy baja enerǵıa, śı, pero al fin y al cabo,

radiación. Hasta 1974, se pensaba que los agujeros negros no pod́ıan emitir ningún tipo de radia-

ción dado que se pensaba que los agujeros negros no segúıan las leyes de la termodinámica, pero

aplicando principios de teoŕıa cuántica de campos, Hawking logró demostrar que los agujeros negros

no solo segúıan las leyes de la termodinámica, sino que también poséıan una temperatura asociada,

por lo tanto deb́ıan emitir radiación. Por otra parte, el agujero negro en el que nos centraremos

en este trabajo es el de Reissner-Nordström, o agujero negro cargado, aunque veremos primero lo

hecho para Schwarzschild, dado que aśı resultará más sencillo entender los conceptos explorados. El

efecto Schwinger[5], descubierto casi un cuarto de siglo antes que la radiación de Hawking, describe

la producción de pares en un campo eléctrico intenso. Como es posible que un agujero negro esté

cargado, esperaŕıamos que el agujero negro pierda masa y enerǵıa también mediante este proceso.

Mientras que ha habido gran cantidad de investigación acerca del espectro de la radiación de part́ıcu-

las no cargadas de los agujeros negros, para lo cual el estudio del efecto Schwinger es irrelevante,

aśı como también sobre la naturaleza de la producción de Schwinger fuera de un agujero negro

cargado, con los efectos térmicos ignorados, no ha habido un estudio certero sobre el rol combinado

13
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que poseeŕıan dichos efectos sobre la naturaleza de la emisión desde un agujero negro eléctricamen-

te cargado. Cuando los dos procesos se consideran juntos, usualmente se los aplica para diferentes

tipos de part́ıcula, es decir, uno considera la radiación de Hawking de fotones, y la producción de

Schwinger de electrones. En este trabajo, se busca tener claro cómo la tasa total de emisión de

un tipo particular de part́ıculas cargadas, espećıficamente bosones y fermiones con esṕın, viene de-

terminada por los dos procesos de producción. No solamente es interesante entender la naturaleza

de la radiación en el caso general, sino que también es importante estudiar cómo se comporta el

decaimiento de los agujeros negros en ciertos ĺımites teóricamente interesantes[6].

Este trabajo está dividido en 6 caṕıtulos: en este caṕıtulo introducimos los objetivos del trabajo,

aśı como también la motivación del mismo, en el segundo caṕıtulo veremos tanto las generalidades

f́ısicas de la radiación de Hawking y de la producción de Schwinger en espacio-tiempo plano, aśı

como también las soluciones a las ecuaciones de campo de Einstein que se vieron involucradas en

la elaboración de esta tesis, concretamente la de Schwarzschild y la de Reissner-Nordström. En el

tercer caṕıtulo tomaremos en cuenta ambos efectos para dar con una fórmula exacta para la tasa de

pérdida de enerǵıa de los agujeros negros cargados, aśı como también estudiaremos la radiación de

Hawking como efecto túnel propuesta en [7] y veremos la dependencia exponencial de la transmisión.

En el cuarto caṕıtulo presentaremos los resultados y haremos gráficos para los distintos escenarios

en el potencial efectivo obtenido a partir de las ecuaciones de onda estudiadas en los anexos, aśı

como también se discuten los resultados obtenidos. Finalmente, en el quinto caṕıtulo se presentan

las conclusiones y el trabajo futuro a realizarse.

En este trabajo nos proponemos realizar un análisis en profundidad del potencial efectivo obtenido

para fermiones y bosones, aśı como también para part́ıculas clásicas dado que el estudio[6] mencio-

na pero no analiza exhaustivamente este potencial efectivo. Hay ciertos ĺımites interesantes en el

potencial efectivo que podŕıan ayudar a entender mejor cómo emergen las part́ıculas cargadas desde

un agujero negro.

Usaremos la convención (− + ++) para la métrica. Para simplicidad de los cálculos haremos

c = ℏ = 4πε0 = G = kB = 1 (unidades naturales).



Caṕıtulo 2

Teoŕıa preliminar

En este caṕıtulo se estudiará toda la teoŕıa preliminar requerida para entender el proceso de

tunelamiento cuántico, incluyendo ecuaciones de campo de Einstein.

2.1. Soluciones de Schwarzschild y Reissner-Nordström a las ecua-

ciones de campo

Las ecuaciones de campo son un conjunto de 10 ecuaciones, que describen las propiedades

geométricas del espacio-tiempo y la interacción entre la materia y la enerǵıa, la forma general de

las ecuaciones es

Rµν −
1

2
Rgµν = 8πTµν , (2.1)

donde Rµν es el tensor de Ricci, mismo que se obtiene contrayendo el tensor de curvatura de Riemann

(éste último mide la curvatura espacio-temporal) y la forma expĺıcita del tensor de Riemann en

términos de los śımbolos de Christoffel es

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ,

para obtener el tensor de Ricci se baja un ı́ndice del tensor de curvatura y luego se contraen ı́ndices

del tensor de Riemann (o viceversa), aśı pues

Rµν = gραg
µνRα

σµν ,

15
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R es el escalar de Ricci (se obtiene contrayendo el tensor de Ricci, aśı: R = gµνRµν , g
µν es el inverso

de la métrica), gµν es el tensor métrico determinado por las condiciones espacio-temporales y Tµν

es el tensor enerǵıa-momentum que determina el flujo lineal de enerǵıa y de momento lineal en este

contexto.

La primera solución a la ecuación (2.1) fue encontrada por Schwarzschild. Ésta describe el campo

gravitacional exterior a un objeto estático y esféricamente simétrico [1, 8, 9, 10]. La solución de

Schwarzschild viene dada por:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (2.2)

donde M es la masa del agujero negro, (t, r, θ, ϕ) son coordenadas esféricas en un espacio-tiempo

estático. La derivación de la métrica de RN a partir de las ecuaciones de campo de Einstein se

muestra detalladamente en el anexo (6.1), siguiendo los pasos detallados ah́ı se llega a (2.3)

ds2 = −
(
1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (2.3)

donde M es la masa mencionada en (2.2) y Q es la carga del agujero negro.

A continuación introduciremos el concepto de superficies y vectores de Killing, esenciales para

comprender la f́ısica del horizonte de sucesos, aśı como la temperatura de Hawking, cantidad esencial

para los cálculos posteriores.

2.2. Superficies y vectores de Killing

1 Hipersuperficies y vectores ortogonales

Una hipersuperficie Σ es el conjunto de puntos donde una función escalar f es constante, y su vector

ortogonal se define como (con ∇ indicando derivada covariante):

ζµ = gµν∇νf. (2.4)

1Lo estudiado acá se basa en lo hecho en [11]
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En el caso especial de hipersuperficie nula, el vector ortogonal también es tangente a la superficie,

y sus curvas integrales son geodésicas nulas que generan completamente la hipersuperficie.

Campos vectoriales de Killing

Un campo de Killing K⃗ es aquel que deja invariante la métrica bajo la derivada de Lie

LK⃗gµν = 0 ⇒ ∇µKν +∇νKµ = 0,

estos vectores codifican simetŕıas del espacio-tiempo. Si un campo de Killing es tipo tiempo y ortogo-

nal al hipersuperficies tipo espacio, el espacio-tiempo se dice estático. Además, si es asintóticamente

plano, se puede normalizar como

KµKµ(r → ∞) = 1.

Horizontes de Killing

Un horizonte de Killing es una hipersuperficie nula Σ donde un campo de Killing χµ se anula:

χµχµ|Σ = 0.

Este vector es simultáneamente ortogonal y tangente a Σ, y sus curvas integrales son geodésicas

nulas.

Corrimiento al rojo y enerǵıa de Killing La enerǵıa de Killing de una part́ıcula con cuadri-

momento pµ a lo largo de una geodésica es

EK = −pµKµ, (2.5)

aqúıKµ es un vector de Killing, y permanece constante a lo largo de la curva geodésica. La frecuencia

ω de un fotón observada por un observador con cuadrivelocidad Uµ es

ω = −pµUµ. (2.6)

Para observadores estacionarios (proporcionales a Kµ), existe un factor de corrimiento al rojo

V =
√
−KµKµ, (2.7)
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y la relación entre frecuencias observadas en dos puntos es

ω1V1 = ω2V2 (2.8)

En el caso del espacio-tiempo de Reissner-Nordström, cuya métrica tiene la forma derivada en la

sección anterior, podemos computar el factor de corrimiento al rojo directamente sabiendo que el

campo vectorial de Killing es, K⃗ = ∂t, dando aśı

V =

√
1− 2M

r
+
Q2

r2
. (2.9)

Como los observadores estacionarios no viajan a lo largo de las geodésicas, tienen una cuadriacele-

ración propia definida por

aµ = Uσ∇σU
µ, (2.10)

Gravedad superficial

La gravedad superficial κ se asocia a horizontes de Killing, donde el campo χµ cumple con la ecuación

de la geodésica

χµ∇µχ
ν = −κχν . (2.11)

Esta cantidad mide, desde el infinito, la aceleración que un observador estacionario justo fuera del

horizonte necesitaŕıa para permanecer alĺı:

κ = ĺım
O→Σ

V a,

donde aµ es la ecuación (2.10), y V es el factor de corrimiento al rojo calculado con (2.7). También

puede calcularse mediante (2.12)

κ2 = −1

2
(∇µχν)(∇µχν). (2.12)

Este conjunto de conceptos, a saber, hipersuperficies, vectores de Killing, corrimiento al rojo y

gravedad superficial es fundamental para entender la estructura causal y térmica de los horizontes

de sucesos en relatividad general y teoŕıa cuántica de campos en espacios curvos, como veremos
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más adelante. Ahora que ya hemos estudiado los conceptos clave de la matemática detrás de los

horizontes de sucesos, estudiaremos brevemente los horizontes de la métrica de RN.

Tenemos que f(r) = gtt. Para encontrar los horizontes de sucesos hacemos f(r) = 0, dado que por

lo visto en la sección anterior, el horizonte de sucesos, que en este caso en particular es equivalente

al horizonte de Killing, es una hipersuperficie nula con vectores tipo tiempo perpendiculares a ésta.

Esto pasa únicamente cuando Q2 ≤M2,

f(r) = 1− 2M

r
+
Q2

r2
= 0

r2 − 2Mr +Q2 = 0

r± =
2M ±

√
(2M)2 − 4Q2

2

r± =
2M ± 2

√
M2 −Q2

2

r± =M ±
√
M2 −Q2.

Aqúı tomamos el signo más, la solución con signo menos correspondeŕıa a un horizonte de Cauchy,

que no interesa para el propósito del presente estudio, pues el horizonte del cual emanan las part́ıcu-

las es el horizonte de sucesos. Aśı pues, r+ = M +
√
M2 −Q2. Esta métrica, al igual que la de

Schwarzschild presenta una singularidad en r = 0. Como ya se discutió anteriormente, esta solución

tiene que reducirse a la de Schwarzschild si Q = 0. Además, si r =
Q2

2M
la métrica se reduce a la

de Minkowski, por otro lado, si Q2 = M2, estas hipersuperficies convergen a una única superficie

localizada en r = M , y si Q2 > m2 la métrica es singular en todas partes excepto en el origen, en

otras palabras es una singularidad desnuda. Luego de haber estudiado estos conceptos clave veremos

cómo se aplican en las leyes de la mecánica de agujeros negros.

2.3. Leyes de la mecánica de agujeros negros

En 1973, Jim Bardeen, Brandon Carter y Stephen Hawking[12] propusieron y formularon un

conjunto de 4 leyes que gobiernan el comportamiento de los agujeros negros. Estas leyes nos recuer-

dan a las 4 leyes de la termodinámica. Esta analoǵıa fue percibida inicialmente como puramente

formal y una coincidencia, sin embargo un tiempo después se hizo claro que los agujeros negros eran,
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de hecho, sistemas termodinámicos. El paso crucial para esta interpretación fue el descubrimiento

de Hawking en 1974 [3] que los procesos cuánticos permiten a un agujero negro emitir un flujo

térmico de part́ıculas. Es, por lo tanto, posible que un agujero negro esté en equilibrio térmico con

otros sistemas termodinámicos. Las leyes de la mecánica de los agujeros negros, entonces, son una

descripción de la termodinámica de los agujeros negros. Se explicará la relación entre la mecánica

y la termodinámica de los agujeros negros en la siguiente sección, a continuación se dará una breve

descripción de las leyes, junto con una aplicación de las leyes en el agujero negro de nuestro interés

(de RN).

Ley Cero

La ley cero de la mecánica de los agujeros negros establece que la gravedad superficial de un agujero

negro estacionario es uniforme sobre todo el horizonte de eventos.

Primera Ley

La primera ley para los agujeros negros estacionarios dice que el cambio de enerǵıa está relacionado

con el cambio de área, de momento angular, y carga eléctrica por:

dM =
κ

8π
dA+ΩdJ +ΦdQ, (2.13)

donde M , es la masa total del agujero negro, κ es la gravedad superficial del agujero negro, A es el

área del horizonte de sucesos, Ω es la velocidad angular, J es el momento angular, Φ el potencial

electrostático, Q es la carga eléctrica. Antes de estudiar esta primera ley para el agujero negro de

nuestro interés, vamos a estudiarla para el caso más simple, el de Schwarzschild, en este caso, tanto

Ω como Φ valen cero ya que el agujero negro de Schwarzschild no presenta carga ni movimiento

rotatorio. Para Schwarzschild quedaŕıa entonces,

dM =
κ

8π
dA.

Para calcular κ se tiene

κ =
f ′(rH)

2
,
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donde rH = 2M entonces, f ′(r) vendrá dado por la derivada de la componente gtt de (2.2),

f ′(r) =
d

dr

(
1− 2M

r

)
=

2M

r2
.

Usando la expresión para κ:

κ =
M

r2H

κ =
M

(2M)2
→ κ =

1

4M
.

Sustituyendo en la expresión de la primera ley queda entonces,

dM =
dA

32πM
.

La solución de Reissner-Nordström es no rotante, pero a diferencia de la de Schwarzschild está

cargada, por lo tanto Ω = 0 y Φ ̸= 0, entonces ΩdJ = 0 y ΦdQ ̸= 0, respectivamente. Quedaŕıa

entonces,

dM =
κ

8π
dA+ΦdQ.

Usando la expresión para κ se llega a (2.14)

κ =
M2 −Q2

r+
(2.14)

Sustituyendo el valor de κ, la primera ley queda:

dM =

√
M2 −Q2

8π(M +
√
M2 −Q2)2

dA+ΦdQ→ dM =

√
M2 −Q2

8πr2+
dA+ΦdQ (2.15)

Ahora hablaremos de la segunda ley de la mecánica de agujeros negros.

Segunda Ley

La segunda ley de la mecánica de agujeros negros establece que si la condición de enerǵıa nula

se satisface, consistente en que para todo vector nulo kµ se debe cumplir la siguiente relación
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Tµνk
µkν ≥ 0, entonces el área de un agujero negro no puede decrecer :

∆A ≥ 0 (2.16)

Tercera Ley

La tercera ley establece que si el tensor enerǵıa-momentum es acotado y satisface la condición de

enerǵıa débil, consistente en que para todo vector tipo tiempo vµ se cumple la condición Tµνv
µvν ≥ 0,

entonces la gravedad superficial de un agujero negro no puede ser reducida a cero dentro de un

intervalo finito de tiempo.

Un agujero negro extremal se da, en el caso de Reissner-Nordström, cuando M = Q, y tiene

gravedad superficial κ = 0, ya que cuando M = Q, el numerador de la ecuación (2.14) se anula[12,

6]. Un razonamiento equivalente es pensar que bajo las condiciones establecidas en el tensor enerǵıa-

momentum, es imposible que un agujero negro se vuelva extremal en un intervalo temporal finito.

Ahora que ya hemos visto las 4 leyes de la mecánica de agujeros negros, estamos listos para estudiar

el paralelismo existente entre dichas leyes y las de la termodinámica.

2.4. Termodinámica de agujeros negros

Las cuatro leyes de la mecánica de agujeros negros recuerdan, a las leyes de la termodinámica,

con κ ejerciendo el rol de una temperatura, A el de la entroṕıa y M el de la enerǵıa interna. El

descubrimiento por parte de Hawking de que los procesos cuánticos (se va a estudiar estos en la

siguiente sección) dan lugar a un flujo térmico de part́ıculas desde los agujeros negros implica que

se comportan como sistemas termodinámicos [1, 2].

En 1974[13], Bekenstein extendió la analoǵıa termodinámica de los agujeros negros, preguntándose si

se pod́ıa asignar sentido f́ısico a la entroṕıa y a la temperatura de estos objetos. Consideró distintas

formas del intercambio de calor, relacionándolo con la gravedad superficial, el área del horizonte

y la masa irreducible. Usando una analoǵıa con una máquina térmica tipo Carnot, argumentó

inicialmente que los agujeros negros tendŕıan eficiencia del 100%, sugiriendo una temperatura cero.

Sin embargo, incorporando efectos cuánticos derivados del principio de incertidumbre, concluyó que

deb́ıa existir un ĺımite mı́nimo para el tamaño de una caja de radiación térmica introducida al

agujero negro, imponiendo aśı un ĺımite superior a la eficiencia y estableciendo que el agujero negro
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debe tener una temperatura distinta de cero.

Además, usando nuevamente el principio de incertidumbre, Bekenstein[13] mostró que absorber una

part́ıcula incrementa inevitablemente el área del horizonte en una cantidad proporcional a ℏ. Este

resultado implica que no es posible un proceso perfectamente reversible y confirma una relación

fundamental entre la entroṕıa de un agujero negro y su área. Finalmente este resultado abre paso

al v́ınculo entre la entroṕıa y la información contenida dentro de un agujero negro, conectado con

la teoŕıa de la información de Shannon.

La conexión entre entroṕıa e información es clave: la entroṕıa mide la incertidumbre sobre el estado

interno de un sistema. Shannon demostró que la entroṕıa se expresa como S = −
∑
pi ln pi donde

pi es la probabilidad de que se dé el estado i. Cuando se adquiere información nueva sobre un

sistema, su entroṕıa disminuye (∆I = −∆S). Por ejemplo, al comprimir isotérmicamente un gas

ideal, la entroṕıa baja porque las moléculas están más localizadas y hay mayor información sobre

sus posiciones. Aplicando estos conceptos a los agujeros negros, se plantea que su entroṕıa refleja la

inaccesibilidad de información acerca de sus configuraciones internas compatibles con sus parámetros

macroscópicos (masa, carga y momento angular). Aśı, Bekenstein propuso que la entroṕıa del agujero

negro está relacionada con el área del horizonte de eventos, asumiendo inicialmente una dependencia

general SBH = f(A). Diversos argumentos f́ısicos indican que esta función no puede ser proporcional

a
√
A (generaŕıa contradicciones f́ısicas), por lo cual la elección más simple consistente con las leyes

f́ısicas es:

SBH = γA, (2.17)

donde γ es una constante dimensionalmente igual a L−2. Dado que no existe en relatividad

general una constante aśı, recurriendo a la mecánica cuántica surge naturalmente la escala de

Planck, estableciendo:

SBH = α̂
A

l2P
,

donde α̂ es adimensional y del orden de la unidad.

Utilizando un argumento basado en la mı́nima pérdida de información[14] (al menos 1 bit cuando

una part́ıcula cae dentro del agujero negro), se encuentra que el valor espećıfico podŕıa ser:
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SBH =
ln 2

2l2P
A

Esto implica que los agujeros negros tienen una temperatura finita, dada por:

TBH =
κ

8πα̂
, (2.18)

donde α̂ representa el coeficiente proporcional entre área y entroṕıa.

Aunque inicialmente paradójica, esta temperatura fue confirmada posteriormente por Stephen

Hawking mediante cálculos de teoŕıa cuántica de campos en espacios curvos, demostrando aśı la

validez de los argumentos de Bekenstein.

2.5. Radiación de Hawking

En los años 70, surgieron ideas sobre la conexión entre la entroṕıa y el área de un agujero ne-

gro, pero inicialmente esto parećıa contradictorio porque los agujeros negros clásicos tendŕıan una

temperatura nula. Zel’dovich[15] sugirió que efectos cuánticos podŕıan resolver esta contradicción.

En 1974[3], Hawking mostró que, efectivamente, los agujeros negros irradian térmicamente debido

a efectos cuánticos, asignándoles una temperatura definida y confirmando que poseen entroṕıa pro-

porcional al área del horizonte.

Esta radiación de Hawking puede entenderse intuitivamente como part́ıculas que se tunelan cuánti-

camente a través del horizonte de eventos, aunque el cálculo formal se basa en QFT 2 en espacios

curvos.

En QFT, las part́ıculas se interpretan como excitaciones de campos cuánticos, descritas por esta-

dos en un espacio de Hilbert. El vaćıo cuántico no es trivial; contiene fluctuaciones del campo que

producen una densidad infinita de enerǵıa. Además, la elección del vaćıo depende del marco de

referencia utilizado, lo que da lugar a efectos f́ısicos observables.

La elección del vaćıo depende de cómo se definen los modos del campo. Las transformaciones de Bo-

golyubov relacionan diferentes expansiones modales, dando lugar a definiciones distintas de vaćıo.

2Teoŕıa cuántica de campos por sus siglas en inglés.
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La consecuencia es crucial: el vaćıo para un conjunto de observadores puede contener part́ıculas

vistas desde otro marco de referencia. Este fenómeno implica que la noción de vaćıo y part́ıcula no

es absoluta, sino relativa al observador y a su elección de coordenadas.

Una situación particularmente importante ocurre con observadores acelerados. Para un observador

acelerado uniformemente en espacio-tiempo plano plano, una onda monocromática medida desde

un marco inercial experimenta un corrimiento al rojo exponencial, lo que implica que su frecuencia

observada disminuye exponencialmente en el tiempo propio del observador acelerado.

Al analizar este fenómeno mediante transformadas de Fourier, se descubre que el espectro observa-

do corresponde exactamente a un espectro térmico tipo Planck con una temperatura bien definida,

conocida como la temperatura de Unruh, dada por

TBH =
ℏκ

2πckB
(2.19)

donde κ es proporcional a la aceleración del observador. Este resultado es una manifestación profun-

da de la relación entre aceleración, horizontes y radiación térmica que exploraremos en esta sección.

La teoŕıa cuántica de campos describe part́ıculas como excitaciones de un campo cuántico3, similar

a un conjunto infinito de osciladores armónicos. Un estado con part́ıculas se representa mediante

la distribución n(k), que indica el número de part́ıculas con momento k, y puede escribirse en el

espacio de Hilbert de la forma que se muestra en (2.20)

|ψ⟩ = |n1, n2, ...⟩ = |{n(k)}⟩ . (2.20)

La enerǵıa E y el momento P de este estado cuántico debeŕıa ser la suma de las contribuciones de

cada una de las part́ıculas y se espera que sea

E =
∑

n(k)ωk; P =
∑

n(k)k, donde ωk =
√
k2 +m2 (2.21)

Los resultados en las ecuaciones (2.20) y (2.21) describen la dinámica de una colección de osciladores

armónicos independientes, cada uno asociado a un modo de onda k. La acción clásica correspondiente

3Esto es solo un ejemplo del tratamiento estándar de QFT considerando el campo escalar.
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es invariante de Lorentz y se muestra en la ecuación (2.22)

S = −1

2

∫
d4x[∂µ∂

µϕ+m2ϕ2]. (2.22)

Mediante transformadas de Fourier, se conecta directamente la descripción del campo ϕ(x, t) con

una colección infinita de osciladores armónicos, identificando aśı claramente cómo surge la invarian-

cia relativista.

El estado fundamental o vaćıo del campo cuántico se construye multiplicando los estados funda-

mentales de todos los osciladores

Ψ[ϕ(x)] =
∏
k

(ωk

π

)1/4
exp

(
−1

2
ωk|qk|2

)
= N̄ exp

[
−1

2

∫
d3k

(2π)3
ωk|qk|2

]
, (2.23)

lo que implica una distribución de probabilidad para las configuraciones del campo. Esto muestra

que, incluso en el vaćıo, existen fluctuaciones cuánticas no triviales y una densidad energética infinita,

cuya regularización es problemática en QFT.

En la interpretación de Heisenberg se introducen operadores de creación a† y destrucción a, con las

reglas de conmutación estándar, lo que permite expresar el campo cuántico en términos de estos

operadores:

ϕ(t, x) =

∫
d3k

(2π)3/2
√
2ωk

[ake
ikx + a†ke

−ikx], (2.24)

donde kx = kix
i, y derivar las reglas de conmutación a tiempos iguales:

[ϕ(x, t), π(y, t)] = iδ3(x− y); [ϕ(x, t), ϕ(y, t)] = [π(x, t), π(y, t)] = 0. (2.25)

Esta formulación es el punto de partida convencional para estudiar fenómenos cuánticos en teoŕıa

de campos[1].

En teoŕıa cuántica de campos es posible realizar diferentes expansiones modales del campo escalar

usando diferentes conjuntos de soluciones a la ecuación diferencial del oscilador armónico. Conside-

rando un campo escalar ϕ(t, x) de la forma que se presenta en (2.26):

ϕ(t, x) =

∫
d3k

(2π)3/2
[akvk(t)e

ikx + a†kv
∗
k(t)e

−ikx], (2.26)
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donde vk(t) es la solución de la ecuación diferencial v̈k+ω
2
kvk = 0 con la condición de normalización

i(v̇kv
∗
k − vkv̇

∗
k) = 1.

Una transformación particularmente útil es la llamada transformación de Bogolyubov, definida por

(2.27)

uk(t) = αkvk(t) + βkv
∗
k(t), con |αk|2 − |βk|2 = 1. (2.27)

Esta transformación genera nuevos operadores de creación y destrucción, relacionados con los ori-

ginales por

ak = αkbk + β∗kb
†
k; bk = αkak + β∗ka

†
k.

Como consecuencia de estas transformaciones, surgen diferentes definiciones del estado de vaćıo: el

vaćıo asociado al conjunto original de operadores (ak) y otro vaćıo asociado a los nuevos operado-

res (bk). El estado fundamental original no es vaćıo respecto al nuevo conjunto de operadores, y

viceversa. En particular, el valor esperado del número de part́ıculas del nuevo conjunto en el vaćıo

original es:

v ⟨0| b†kbk |0⟩v = |βk|2.

Este hecho implica que el concepto de vaćıo no es absoluto ni universal: depende de cómo definamos

los modos de frecuencia positiva y negativa. Aunque la definición de vaćıo basada en frecuencias

estrictamente positivas es invariante bajo transformaciones lorentzianas (observadores inerciales),

esta propiedad no se mantiene al considerar sistemas acelerados o presencia de campos externos.

En conclusión, la noción de vaćıo y part́ıcula no es generalmente covariante, sino que depende de

la elección de las coordenadas temporales y los modos de frecuencia asociados. Esto es crucial para

comprender fenómenos como la radiación de Hawking en presencia de campos gravitacionales y

aceleraciones.

En teoŕıa cuántica de campos en espacios curvos, la aparición de efectos térmicos está estrechamente

relacionada con el corrimiento al rojo exponencial observado por observadores acelerados. Para

ilustrar esto consideramos dos casos:

1. Observador en movimiento uniforme (Relatividad especial)

Un observador que se mueve con velocidad constante v respecto a un marco inercial observa
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una onda monocromática de frecuencia Ω como

ϕ[T (τ), X(τ)] = ϕ[τ ] = exp−iτΩγ(1− v) = exp

(
−iτΩ

√
1− v

1 + v

)
.

Esto es simplemente el efecto Doppler relativista, donde la frecuencia observada se corre hacia

el rojo (disminuye), pero sigue siendo monocromática

Ωobs = Ωin

√
1− v

1 + v
.

2. Observador en movimiento acelerado uniforme

Consideraremos ahora un observador con aceleración constante κ. Su trayectoria es:

X(τ) =
1

κ
cosh (κτ); T (τ) =

1

κ
sinh (κτ).

Una onda originalmente monocromática, vista por este observador acelerado, presenta un

corrimiento exponencial al rojo. La frecuencia instantánea medida decrece exponencialmente

con el tiempo propio τ :

ω(τ) = Ω exp (−κτ).

Al calcular la transformada de Fourier del campo con respecto al tiempo propio, aparece un espectro

de potencia de tipo Planck dado por:

ν|f(−ν)|2 = β

eβν − 1
, con β =

2π

κ
(2.28)

Este resultado revela la existencia de una temperatura asociada a la aceleración dada por (2.19).

La aceleración constante induce un espectro térmico sobre el vaćıo cuántico, lo que muestra que la

noción del vaćıo depende del observador. Este fenómeno es la base del Efecto Unruh y explica la

radiación de Hawking en agujeros negros.

La teoŕıa cuántica de campos (QFT) en espacio-tiempo curvo predice que el vaćıo depende del sis-

tema de referencia usado. En particular, para observadores acelerados uniformemente (observadores

de Rindler), los modos del campo escalar experimentan un corrimiento al rojo exponencial, lo que
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implica que ondas monocromáticas observadas desde un marco inercial parecen decrecer exponen-

cialmente en frecuencia respecto al tiempo propio del observador acelerado. Este fenómeno lleva a

un espectro térmico tipo Planck caracterizado por la temperatura de Bekenstein-Hawking (2.19).

Para un agujero negro de RN (con masa M y carga Q), la temperatura espećıfica es

TBH =

√
M2 −Q2

2πr2+
(2.29)

Es resultado de transformaciones modales de Bogolyubov, que hacen que el vaćıo inicial se per-

ciba como lleno de part́ıculas en un marco futuro o un efecto túnel cuántico[7]: pares part́ıcula-

antipart́ıcula son creados cerca del horizonte, y una part́ıcula puede escapar (radiación Hawking)

mientras la otra es absorbida por el agujero negro.

La radiación térmica pura obtenida hasta ahora es idealizada. En situaciones reales, la emisión Haw-

king es modulada por el factor de cuerpo gris, asociado al potencial efectivo que rodea al agujero

negro. Para estudiar estos efectos, se emplea el método WKB aplicado a barreras de potencial que

permiten obtener la radiación efectiva observada a grandes distancias.

El vaćıo cuántico en presencia de horizontes (acelerados o gravitacionales) se manifiesta como un

estado térmico para observadores restringidos por estos horizontes. Esta propiedad fundamental ex-

plica fenómenos esenciales como la radiación de Hawking, estableciendo profundas conexiones entre

gravedad, aceleración, termodinámica y teoŕıa cuántica de campos que describen una situación en

equilibrio térmico a una temperatura T = κ/2π (donde κ es la gravedad superficial del horizonte

de eventos) tanto como un observador confinado a una región D es concebido.

En su derivación original, Hawking analizó un campo cuántico en el espacio-tiempo de un agujero

negro en formación (colapso gravitacional), demostrando que el estado inicial de vaćıo no permanece

en la misma configuración de vaćıo en el futuro lejano. Matemáticamente, esto se estudia mediante

transformaciones de Bogolyubov, que relacionan los modos del campo definidos antes (pasado) y

después (futuro) del colapso. Un modo de frecuencia ω definido en el futuro lejano puede expresarse

como combinación lineal de modos del pasado con una ecuación similar a la ecuación (2.26)

aoutω = αωa
in
ω + βωa

in†
ω .
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El coeficiente βω ̸= 0 indica que el vaćıo inicial contiene part́ıculas reales al final del proceso.

El número medio de part́ıculas emitidas en cada modo ω es

n(ω) =
1

exp
ω

TH
∓ 1

, (2.30)

Signo (−) para bosones (estad́ıstica de Bose-Einstein).

Signo (+) para fermiones (estad́ıstica de Fermi-Dirac).

La ecuación (2.30) es exactamente la distribución térmica esperada para un objeto que emite ra-

diación como un cuerpo negro a temperatura (2.19) donde κ es la gravedad superficial del agujero

negro (para RN, TBH está dada por (2.29)). Cerca del horizonte, fluctuaciones cuánticas producen

pares part́ıcula-antipart́ıcula. Una part́ıcula cae dentro del agujero negro, mientras que la otra es-

capa hacia el infinito, apareciendo como radiación térmica para un observador distante.

Esto implica que la emisión sigue una distribución de Bose-Einstein (bosones) o Fermi-Dirac (fer-

miones) aśı mismo confirma que los agujeros negros son objetos termodinámicos con temperatura

TBH y entroṕıa S =
A

4
(proporcional al área del horizonte). El resultado final permite calcular

tasas de emisión de enerǵıa, masa y carga del agujero negro integrando sobre todos los modos,

determinando aśı su evolución en el tiempo.

En resumen, el cálculo original de Hawking revela que los agujeros negros emiten espontáneamente

part́ıculas según el espectro térmico dado en (2.30), comportándose como cuerpos negros cuánticos

con una temperatura bien definida por la ecuación (2.19).[3, 1]

Un agujero negro cargado de masa M puede entenderse como la combinación de:

M =Mirr + U,

donde

Mirr es la masa irreducible, asociada al núcleo inextráıble del agujero negro

U es la enerǵıa almacenada en el campo eléctrico externo

(
U =

Q2

2r+

)
, la cual puede extraerse

parcialmente de manera clásica sin disminuir Mirr.
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El área del horizonte, A, depende monótonamente de Mirr. De la segunda ley de la mecánica de

agujeros negros (2.16) se sigue que dMirr ≥ 0. Únicamente la enerǵıa ligada al campo exterior puede

ser extráıda ı́ntegramente sin reducir el área.

Para la emisión de una part́ıcula con enerǵıa ω y carga q, la primera ley toma la forma:

−ω =

√
M2 −Q2

8πr2+
dA− qQ

r+
, (2.31)

si ω ≤ qΦ (Φ es el potencial electrostático), no se requiere disminuir el área (dA ≥ 0); es un proceso

clásicamente permitido. Por otro lado, si ω > qΦ, se necesita dA < 0, lo cual solo es posible mediante

efectos cuánticos (radiación de Hawking).

Para un agujero negro extremal, (M = Q), se anula la gravedad superficial κ y el área deja de

ser diferenciable en ese punto. En ese ĺımite, la ecuación (2.31) sugiere ω = q, pero f́ısicamente no

es factible que el agujero negro emita estas part́ıculas si κ = 0. La tercera ley de la mecánica de

agujeros negros impide el decrecimiento del área hasta ese extremo.

El régimen cuántico (radiación de Hawking) permite emisiones con ω > qΦ. Tras establecer este

marco heuŕıstico de emisión de agujeros negros cargados, se explorará el efecto Schwinger (produc-

ción de pares debida a campos intensos) y su interacción con la radiación de Hawking.

2.6. Producción de Schwinger en espacio-tiempo curvo

El efecto Schwinger es una descripción semi-clásica de la creación de pares de part́ıcula-antipart́ıcu-

la en el vaćıo en presencia de campo eléctricos intensos. Se supone que el campo eléctrico alrededor de

un agujero negro de RN posee una intensidad elevada y alrededor pueden surgir pares de part́ıculas,

¿Qué pasaŕıa si eso sucede justo en el horizonte de eventos? Esta pregunta es la que nos plantea-

mos aqúı y daremos con la respuesta. Debido a la magnitud y complejidad de los cálculos que se

hacen en esta sección solo incluiremos una breve descripción matemática de éstos y los resultados.

A continuación presentaremos el Lagrangiano de Euler - Heisenberg y una breve descripción de

cómo se obtiene este Lagrangiano matemáticamente y aśı mismo usaremos este Lagrangiano para

derivar la acción efectiva para fermiones de esṕın 1/2 en campos electromagnéticos uniformes, aśı

como describir la polarización del vaćıo y la producción de pares en espacio-tiempo plano. Este
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Lagrangiano es la base de lo que hizo Schwinger en 1951[5]. 4.

2.6.1. Lagrangiano de Euler-Heisenberg

El Lagrangiano de Euler-Heisenberg (1936)[17] describe las correcciones no lineales a la electro-

dinámica clásica de Maxwell debido a efectos cuánticos, especialmente la creación de pares electrón-

positrón y la polarización del vaćıo en campos electromagnéticos intensos. Se parte del Hamiltoniano

de Dirac en presencia de un campo electromagnético externo:

Ĥ = γµ(pµ − eAµ)−me (2.32)

donde Aµ es el potencial vector del campo electromagnético, e es la carga del electrón, y γµ son las

matrices de Dirac. La idea es resolver estas ecuaciones para electrones y positrones en presencia de

un campo externo constante.

El vaćıo cuántico no es trivial; campos fuertes generan fluctuaciones del vaćıo (pares electrón-

positrón virtuales), lo que altera la estructura del vaćıo y, por tanto, las propiedades del campo

electromagnético. Debido a la invariancia de Lorentz, el Lagrangiano efectivo solo puede depender

de dos invariantes:

F = E⃗2−B⃗2 (que también es FµνF
µν , la contracción de los tensores de campo electromagnéti-

co).

Fµν =



0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


G = E⃗ · B⃗ (que también es FµνF̃

µν , donde F̃µν es el tensor dual que expĺıcitamente está dado

por F̃µν =
1

2
εµναβFαβ).

Euler y Heisenberg derivaron[17], usando principios de la recién creada QED (Electrodinámica

cuántica por sus siglas en inglés), la forma general del Lagrangiano efectivo como una función de

4Los cálculos realizados se basan en lo presentado por Kim en [16]
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los invariantes de Lorentz

L(Fµν) = f(F ,G)

Para campos electromagnéticos débiles comparados con la intensidad cŕıtica (alrededor de 1,3 ×

10−18V/m), se obtiene la expansión en potencias de los invariantes

L =
1

2
(E2 −B2) +

8α2

45m4
e

((E2 −B2)2 + 7(E ·B)2), (2.33)

donde el primer término es el lagrangiano clásico de Maxwell, mientras que el segundo es la corrección

cuántica, donde α es la constante de estructura fina, y me es la masa del electrón.

En 1951, Julian Schwinger[5] propuso un método elegante para derivar esta acción efectiva mediante

la integración de campos fermiónicos usando la representación del tiempo propio. Luego de seguir

los pasos de Schwinger, especificados en [5], concluimos que el resultado final para la acción efectiva

es:

Seff =

∫
d4xLeff (Fµν),

donde el lagrangiano efectivo Leff para fermiones de esṕın 1/2 es similar al que encontraron Hei-

senberg y Euler, pero con diferentes coeficientes que dependen de los fermiones y de las correcciones

cuánticas.

El lagrangiano efectivo es (es es la multiplicación de la carga del electrón por el tiempo propio)

Leff = −F − 1

8π

∫ ∞

0
ds
e−m2s

s3

[
(es)2GRe cosh(esX)

Im cosh(esX)
− 1− 2

3
(es)2F

]
, (2.34)

donde

X = [2(F − iG)]1/2 = Xr − iXi.

La parte real es Re cosh (esX) = cosh (esXr) cos (esXi) y la parte imaginaria es Im cosh (esX) =

sinh (esXr) sin (esXi). Usando estas expresiones se puede reescribir el cociente
Re cosh (esX)

Im cosh(esX)
como:

Re cosh (esX)

Im cosh(esX)
=

cosh(esXr) cos(esXi)

sinh(esXr) sin(esXi)
= coth (esXr)cot(esXi)
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Sustituyendo esto en la acción efectiva de la ecuación (2.34) obtenemos:

Leff = −F − 1

8π2

∫ ∞

0

[
(es)2G coth (esXr)cot(esXi)− 1− 2

3
(es)2F

]
, (2.35)

La parte imaginaria describe la producción real de pares electrón-positrón desde el vaćıo (efecto

Schwinger). Por otra parte, la parte real de (2.35) da lugar a la polarización del vaćıo, que modifica

las propiedades clásicas del campo electromagnético.

Para un campo eléctrico puro B = 0, Xr = 0, Xi = E, la ecuación (2.35) conduce a la tasa de

producción de pares dada en (2.36):

2ImLe =
1

4π3

∞∑
n=1

(
eE

n

)2

e
−
nπm2

eE . (2.36)

Estas partes imaginarias determinan la persistencia del vaćıo (transición de vaćıo a vaćıo) durante

un tiempo T y un volumen V es:

| ⟨0, fuera| |0,dentro⟩ |2 = e−2V T ImLe , (2.37)

por lo tanto conducen a la creación de un par antipart́ıcula-part́ıcula. Cabe destacar que las tasas

de producción de pares (2.33), (2.36) y la polarización del vaćıo son válidas únicamente para cam-

pos uniformes. Estas fórmulas obtenidas pueden ser utilizadas tanto como los campos vaŕıen muy

lentamente en la región de interés. Hay muchas situaciones, incluyendo los agujeros negros cargados,

donde los campos son intensos pero no uniformes. En las siguientes subsecciones, usando un método

canónico, derivaremos las tasas de producción válidas incluso cuando el campo no es homogéneo.

2.6.2. Método canónico para la producción de pares

El método canónico ofrece una forma directa y general para estudiar la producción de pares

part́ıcula-antipart́ıcula, ya que no sólo aplica para bosones, sino para fermiones también, resolviendo

expĺıcitamente las ecuaciones de movimiento. A diferencia de enfoques basados en integrales de

camino, este método permite una interpretación inmediata del proceso de creación cuántica de

pares.

Considerando un campo eléctrico en la dirección z, con vector potencial A = −Etk̂, la ecuación de
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Klein - Gordon que gobierna el comportamiento temporal de cada modo de Fourier se reduce a:

[∂2t − (kz + qEt)2 − (m2 + k2x + k2y)]ϕk = 0. (2.38)

Esta ecuación describe una part́ıcula en un potencial tipo oscilador invertido dependiente del tiempo.

Las soluciones de esta ecuación se expresan en términos de funciones paraboloidales, y al analizar

sus comportamientos asintóticos se deducen los coeficientes de Bogolyubov µk y νk, mismos que

permiten calcular el número de part́ıculas creadas:

Nk = |νk|2 = e−2πak⊥ , ak⊥ =
k2⊥ +m2

2qE
. (2.39)

Por otro lado, la persistencia del vaćıo (2.37), definida como la probabilidad de no producir part́ıcu-

las, está dada por:

| ⟨0, sal|0, en⟩ |2 = 1

|µk|2
=

1

1 + |νk|2
. (2.40)

Dado que por |µk|2 − |νk|2 = 1, ambas cantidades están ligadas, mostrando claramente que la

creación de part́ıculas es complementaria a la persistencia del vaćıo. Mayor creación de part́ıculas

implica menor persistencia del vaćıo, y viceversa. Visto de otra manera, si se crean part́ıculas el

vaćıo ya no es vaćıo y pasa a ser ocupado por las part́ıculas creadas recientemente debido al efecto

Schwinger.

La tasa de producción total de pares (acción efectiva imaginaria en un espacio d+1 dimensional es:

2ImLb
eff =

1

V T

∑
k⊥

ln (1 + e−2πak⊥ ) =
1

(2π)d

∞∑
n=1

(−1)n+1

(
eE

n

)(d+1)/2

e
−
nπm2

eE ,

relacionando elegantemente la estructura matemática con el proceso f́ısico de producción cuántica

de pares part́ıcula-antipart́ıcula en presencia de campos eléctricos intensos dependientes del tiempo.

Con un potencial escalar A0 = −Ez, la ecuación de Klein-Gordon se reduce a (2.41)

[−∂2z − (ω + qEz)2 + (m2 + k2⊥)]ϕωk⊥ = 0. (2.41)
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Esta ecuación describe un potencial parabólico invertido. La solución general de esta ecuación

puede expresarse en términos de funciones paraboloidales E(ak⊥) dadas por la ecuación (2.42),

dependientes del parámetro adimensional ξ =

√
2

qE
(ω + qEz):

ϕωk⊥(ξ) = cE(ak⊥ , ξ) (2.42)

con ak⊥ =
k2⊥ +m2

2qE
. Estas soluciones son especialmente útiles para estudiar el efecto túnel cuántico

asociado a la producción de pares part́ıcula-antipart́ıcula en campos eléctricos intensos.

Al analizar el comportamiento asintótico de esta solución, se encuentra que cuando z → −∞ (antes

de la barrera):

ϕωk⊥ = Ak⊥

√
2

|ξ|
e
−
i

4
ξ2

+Bk⊥

√
2

|ξ|
e
i
ξ2

4 . (2.43)

y cuando z → ∞(después de la barrera):

ϕωk⊥ = Ck⊥

√
2

ξ
e
i
ξ2

4 (2.44)

Estos términos representan ondas incidentes (Ak⊥), reflejadas (Bk⊥), y transmitidas (Ck⊥). Las

amplitudes Ak⊥ , Bk⊥ y Ck⊥ se relacionan directamente con los coeficientes de Bogolyubov µk y νk,

controlando aśı la creación de part́ıculas. Concretamente:

Probabilidad de transmisión (tunelaje):

P b
k⊥

=

∣∣∣∣Ck⊥

Ak⊥

∣∣∣∣2 = 1

1 + e2πak⊥
. (2.45)

Probabilidad de reflexión (no tunelaje):

Pnb
k⊥

=

∣∣∣∣Bk⊥

Ak⊥

∣∣∣∣2 = 1

1 + e−2πak⊥
. (2.46)

Estas probabilidades pueden ser entendidas de forma semiclásica utilizando la acción instantónica,

que representa el costo energético para que la part́ıcula atraviese la barrera de potencial mediante
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túnel cuántico. La acción instantónica para este sistema está dada por

Sk⊥ =
1

2

∮
dz
√

(m+ k⊥)2 − (ω + qEz)2. (2.47)

Considerando múltiples eventos de tunelamiento (instantones y anti-instantones), la probabilidad

total de producción de pares (transmisión) se escribe como una suma geométrica alternante en

términos de la acción instantónica:

P b
k⊥

=
1

1 + e2Sk⊥
, Pnb

k⊥
=

1

1 + e−2Sk⊥
,

para bosones, mientras que para fermiones es posible obtener unas relaciones similares (teniendo en

cuenta el principio de exclusión de Pauli):

P f
k⊥

= e−2πak⊥ , Pnf
k⊥

= 1− e−2πak⊥

Finalmente, la parte imaginaria de la acción efectiva, que cuantifica directamente la tasa de pro-

ducción de pares en ambos casos, está dada por

2ImLb
e =

1

(2π)d

∞∑
n=1

(−1)n+1

(
eE

n

)(d+1)/2

e
−
nπm2

eE . (2.48)

para el caso bosónico, en el caso fermiónico, la parte imaginaria de la acción efectiva es

2ImLf
e =

2

(2π)d

∞∑
n=1

(
eE

n

)(d+1)/2

e
−
nπm2

eE . (2.49)

En resumen, en el calibre dependiente del espacio, la producción de pares en campos eléctricos

intensos se interpreta naturalmente como un efecto túnel cuántico, donde la acción instantónica

determina exponencialmente la tasa de creación de part́ıculas, mientras que los coeficientes de

Bogolyubov proporcionan la conexión entre el enfoque semiclásico y el tratamiento cuántico riguroso.

Para part́ıculas de esṕın σ, se añade un término de acople esṕın-campo como se muestra en (2.50),

[−ηµν(∂µ + iqAµ)(∂ν + iqAν) +m2 + 2iσqE]Φ(t, x) = 0. (2.50)
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Las soluciones siguen conservando estructura paraboloidal, pero con el parámetro ak⊥ modificado

ak⊥ =
k2⊥ +m2 + 2iσqE

2qE
. Las formas asintóticas de la función de onda son las mismas que obtuvimos

para (2.43) y (2.44), de tal manera que para ξ = −∞ (con φωk⊥ =

√
2

|ξ|
e
−
i

4
ξ2

)

ϕωk⊥ = Ak⊥φωk⊥ −Bk⊥φ
∗
ωk⊥

,

y para ξ = ∞

ϕωk⊥ = Ck⊥φ
∗
ωk⊥

.

Sin embargo, la principal diferencia para part́ıculas con esṕın radica en la forma en que se manifiesta

la conservación del flujo debido a la naturaleza de cada part́ıcula:

Bosónica (sin restricción por principio de exclusión):

El flujo conservado es:

Jb(ϕ) = iϕ∂xϕ
∗ − iϕ∗∂xϕ, |Ak⊥ |

2 = |Bk⊥ |
2 + |Ck⊥ |

2, (2.51)

de modo que la reflexión es mayor a 1:

∣∣∣∣Bk⊥

Ak⊥

∣∣∣∣2 = 1 +

∣∣∣∣Ck⊥

Ak⊥

∣∣∣∣2 . (2.52)

Fermiónica (Restringidas por el principio de exclusión):

El flujo conservado es la corriente de Dirac

Jf (ϕ) = ϕ̄γ1ϕ, |Ak⊥ |
2 + |Ck⊥ |

2 = |Bk⊥ |
2, (2.53)

lo que implica una reflexión menor que uno:

∣∣∣∣Bk⊥

Ak⊥

∣∣∣∣2 = 1−
∣∣∣∣Ck⊥

Ak⊥

∣∣∣∣2 < 1. (2.54)

Si se definen los coeficientes de transmisión T = |C/A|2 y reflexión R = |B/A|2, a partir de (2.52)

o (2.54), surge una aparente paradoja al considerar la reversión temporal del problema (el llamado
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conjunto simple)

R̃ =
1

R
(2.55)

Esta aparente inconsistencia se conoce como la paradoja de Klein y surge del hecho de que en este

conjunto invertido temporalmente, los coeficientes de reflexión pueden tomar valores mayores que

uno para fermiones. Sin embargo, al analizar correctamente la situación f́ısica[18], se aclara que

dicha amplificación por reflexión superior a la unidad realmente ocurre con bosones (no con fer-

miones), destacando que la producción de pares part́ıcula-antipart́ıcula es esencial para la correcta

interpretación del fenómeno.

Para relacionar los coeficientes de transmisión y reflexión con el fin de resolver el problema, necesi-

tamos comprender la naturaleza de las ecuaciones de conservación de flujo. Para bosones, hay una

corriente conservada,

Jb(ϕ) = iϕ∂xϕ
∗ − iϕ∗∂xϕ (2.56)

la cual se conserva en el sentido de que ∂xJb = 0. Para las condiciones de borde simples descritas

anteriormente, esto da la ley de conservación

kl|Ã|2 − kl|B̃|2 = kr|C̃|2 (2.57)

Para fermiones, el hecho de que el potencial efectivo en la ecuación (2.50) es complejo implica que

esta cantidad no se conserva. En este caso, debemos usar la conservación de la corriente de Dirac

Jf = ψ̄γ1ψ (2.58)

En las regiones asintóticas x = ±∞, el las soluciones a la ecuación de Dirac son ondas planas.

Escribiendo Ω = ω + qAt y numerando las componentes del espinor ψ como ψi se puede demostrar

que

Jf (ψ) ∝
1

Ω

∑
i

Jb(ψi) (2.59)

Como Ω es negativa en la aśıntota derecha, vemos que, aunque una part́ıcula en la izquierda con

dependencia espacial exp (ikx) corresponde a un flujo positivo, una part́ıcula a la derecha con de-

pendencia espacial exp (ikx) corresponde a un flujo negativo. Para las condiciones de borde simples,
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esta ley de conservación se convierte en

kl
Ωl

|Ã|2 − kl
Ωl

|B̃|2 = kr
Ωr

|C̃|2,

el término en la derecha es negativo. En el caso más simple que kl = kr las dos ecuaciones de

conservación simples se reducen a

|Ã|2 − |B̃|2 = |C̃|2,

|Ã|2 − |B̃|2 = −|C̃|2.

Dividiendo las ecuaciones simples de conservación de la enerǵıa para |A|2, las leyes de conservación

para bosones y fermiones respectivamente pueden ser escritas en términos de los coeficientes de

transmisión y reflexión como

nb = KT :=
kr
kl
T = R− 1 (2.60)

donde R =

∣∣∣∣Bk⊥

Ak⊥

∣∣∣∣2 y T =

∣∣∣∣Ck⊥

Ak⊥

∣∣∣∣2 (R > 1 implica amplificación de modos por el campo, de forma

similar a las transformaciones de Bogolyubov)

nf = KT =

∣∣∣∣krΩl

klΩr

∣∣∣∣2 T = 1−R (2.61)

donde denotamos por K a los prefactores positivos que involucran ratios de momento. Podemos

relacionar el coeficiente de transmisión simple con el f́ısico usando la relación dada en (2.55):

T =
T̃

1−KT̃
, Bosónico (2.62)

T =
T̃

1 +KT̃
Fermiónico (2.63)

para el número de bosones y fermiones creados simplemente multiplicamos el T obtenido por el

factor K recuperando aśı las forma presentadas en (2.60 y 2.61) Estos 2 últimos resultados se

pueden agrupar elegantemente en la ecuación

n = ±(R− 1) (2.64)
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La ecuación (2.64) en términos de teoŕıa cuántica de campos, estaŕıa relacionado con el valor espe-

rado del operador número, o equivalentemente con el cuadrado del coeficiente de Bogolyubov que

mezcla estados de part́ıculas y antipart́ıculas debido al campo eléctrico. Nikishov [18], demostró que

este número se puede obtener analizando las soluciones de scattering: un coeficiente de reflexión

mayor que 1 implica que el campo inyectó part́ıculas adicionales, cuyo conteo es precisamente R−1

(bosónicos).

La creación de pares part́ıcula-antipart́ıcula en campos eléctricos intensos puede analizarse en térmi-

nos de probabilidades de transición entre estados de vaćıo y estados con pares creados. La estad́ıstica

de Bose-Einstein y la de Fermi-Dirac determinan diferencias fundamentales en estas probabilidades

debido al principio de exclusión de Pauli.

Veremos primero qué pasa con el caso bosónico, en este caso, no existe ĺımite en la ocupación

de estados, permitiendo múltiples pares en un mismo estado cuántico. La conservación total de

probabilidad se expresa mediante una serie geométrica:

1 = P0(1 + P1 + P 2
1 + P 3

1 + ...) =
P0

1− P1
, (2.65)

donde

P0 es la probabilidad de transición vaćıo-vaćıo (ningún par creado),

P1 es la probabilidad de creación de un par en un estado espećıfico.

El número medio de pares creados (Nb) está dado por la serie ponderada

Nb = P0(P1 + 2P 2
1 + 3P 3

1 + ...) =
P0P1

(1− P1)2
. (2.66)

Las relaciones expĺıcitas entre probabilidades y número medio de pares para bosones son (2.67) y

(2.68):

P0 =
1

1 +Nb
, (2.67)

P1 =
Nb

1 +Nb
(2.68)
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donde Nb es el número medio de pares creados.

Por otra parte, para el caso fermiónico, se debe tomar en cuenta el principio de exclusión, debido

a esto cada estado cuántico únicamente puede alojar un solo par fermiónico. Por tanto, solo dos

eventos son posibles en cada estado: la no producción de pares (P0) o la creación de exactamente

un par (P1). La conservación total de la probabilidad es entonces simplemente:

P0 + P0 · P1 = 1 =⇒ P0(1 + P1) = 1. (2.69)

El número medio de pares creados Nf para fermiones se reduce a:

Nf = P0 · P1, (2.70)

y, resolviendo (2.70) en términos expĺıcitos, se obtiene

P0 = 1−Nf , P1 =
Nf

1−Nf
(2.71)

Estas ecuaciones reflejan la relación entre las probabilidades y el número medio de pares en el

contexto de la estad́ıstica de Fermi-Dirac, donde la creación de pares está limitada a un máximo de

un par por estado cuántico debido al principio de exclusión de Pauli.

Matemáticamente, también se puede relacionar n con T . Usando las 2 relaciones derivadas en (2.64)

para los distintos casos, en ambos casos tenemos n = T . En literatura del efecto Schwinger se suele

expresar la tasa de producción en función de la probabilidad de transmisión a través de la barrera.

Si T es la probabilidad de que ocurra la creación de 1 par, entonces para bosones:

La probabilidad de no producir pares es N = 1 − P (con P = T ) porque se pueden crear

múltiples bosones.

Para fermiones la probabilidad de no producir pares es N =
1

1 + P
debido a que solo 1 par

puede ser creado.

De estas distribuciones se deduce que el número medio n de pares creados es
P

1− P
(bosónico) y

P

1 + P
(fermiónico) Si despejamos P = KT̃ , esto coincide con n = KT̃ cuando P es pequeño, pero
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tenemos que

nb =
T̃

1−KT̃
bosónico (2.72)

nf =
T̃

1 +KT̃
fermiónico (2.73)

Sin embargo, en el ĺımite de baja ocupación (una producción rara de pares, T ≪ 1), ambas se

reducen a n ≈ T . Entonces R− 1 ≈ T .

Hasta aqúı se ha estudiado el concepto de creación de pares en el espacio plano de Minkowski,

sin embargo debido a que no estamos en espacio plano sino en espacio curvo (estamos estudiando

radiación de Hawking debido a creación de pares en el agujero negro de RN), se tiene que generalizar

la ecuación de Klein-Gordon y de Dirac a espacios curvos y eso es lo que haremos en el siguiente

caṕıtulo tanto para Schwarzschild, pero antes de pasar a estudiar las ecuaciones de Klein-Gordon y

Dirac introduzcamos el cálculo de la tasa total de radiación.
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Caṕıtulo 3

Tasa total de radiación

3.1. Factor de cuerpo gris

En la derivación ideal de la radiación de Hawking se supone inicialmente que cualquier part́ıcula

puede escapar al infinito, pero en la práctica esto es imposible, puesto que para ello las part́ıculas

emitidas deben atravesar el campo gravitatorio del agujero negro. El espacio-tiempo exterior actúa

como un potencial de dispersión: algunas componentes de las ondas emitidas son reflejadas de

vuelta al agujero negro y solo una fracción de estas ondas llega realmente a ser transmitidas hacia el

infinito. A esa fracción de escape se le conoce como factor de cuerpo gris σ(ω). Matemáticamente,

σ(ω) puede relacionarse con coeficientes de transmisión T (ω) y reflexión R(ω) obtenidos al resolver

la ecuación de onda radial del campo en el fondo del agujero negro (veremos esto más en detalle

en las siguientes secciones). Por ejemplo, para un modo dado, si R(ω) es la probabilidad de que

la part́ıcula sea reflejada hacia el agujero negro (absorbida inversamente), entonces 1 − R(ω) es la

probabilidad de transmisión hacia el infinito; este 1 − R(ω) corresponde a σ(ω). En el cálculo de

Hawking, estos coeficientes aparecen cuando se convierte el número medio de part́ıculas en tasa de

escape observada: antes de integrar sobre todos los modos se multiplica la ecuación (2.30) por

σ(ω) para incorporar el hecho de que solo una parte de las part́ıculas de frecuencia ω logra escapar

al infinito. Si no hubiera dispersión (es decir, si σ(ω) = 1 para todos los modos), el agujero negro

seŕıa un emisor perfectamente negro y la potencia emitida seguiŕıa exactamente la ley de Stefan-

Boltzmann para un área emisora igual a la del horizonte. En la práctica, σ(ω) depende de ω (y del

esṕın de la part́ıcula), modulando el espectro puro de cuerpo negro. Para agujeros de Schwarzschild,
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σ(ω) tiende a ser cercana a 1 (débilmente dependiente de ω salvo a muy baja enerǵıa), por lo que

el espectro Hawking es casi térmico. En agujeros cargados o considerando part́ıculas con carga,

σ(ω) puede suprimir fuertemente ciertas frecuencias. En resumen, los coeficientes de transmisión

y reflexión no alteran la forma básica de n(ω) dada por la distribución térmica, pero escalan la

intensidad efectiva de cada modo que logra escapar, convirtiendo el espectro en gris en vez de

perfectamente negro.

Para calcular esta tasa total a la que un agujero negro pierde enerǵıa (masa) debido a la radiación

de Hawking, se incorpora el factor de cuerpo gris σ(ω) que modifica la emisión térmica pura. A

continuación se detalla matemáticamente paso a paso. Primero se parte desde la ecuación (2.30) y

se la convierte en una tasa de pérdida de enerǵıa multiplicando la cantidad de part́ıculas emitidas

en cada modo por su enerǵıa ω y se suma sobre los modos permitidos

−dM
dt

=

∫
dω ω n(ω)(factor de modulación),

dondeM es la masa del agujero negro, el factor de modulación aqúı es el factor de cuerpo gris σ(ω),

que describe cuántas de estas part́ıculas emitidas en el horizonte logran escapar al horizonte. En el

caso ideal, este factor seŕıa 1, pero en la práctica depende del tipo de part́ıcula y de las condiciones

del agujero negro.

En un análisis más detallado, el factor de cuerpo gris σ(ω) se introduce en la expresión para corregir

el espectro de emisión. De manera general:

−dM
dt

= g

∫
d3k

(2π)3
ω n(ω)σ(ω),

aqúı g es el número de grados de libertad internos del campo.

Usando la relación de dispersión relativista:

d3k = 4πk2dk = 4πkωdω,

y considerando k =
√
ω2 −m2, la integral se expresa en términos de ω:

−dM
dt

= g

∫
dω ω2k

2π2
σ(ω)

eω/TH ∓ 1
. (3.1)
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La ecuación (3.1) describe la tasa total de pérdida de enerǵıa del agujero negro. En ausencia de un

campo gravitatorio que module la emisión σ(ω) se aproxima por la sección eficaz del horizonte, lo

que llevaŕıa a la ley de Stefan-Boltzmann en el caso de un agujero negro de Schwarzschild.

La ecuación (3.1) se obtiene integrando la enerǵıa ω de los modos emitidos, ponderada por la

ocupación térmica n(ω) y el factor de cuerpo gris σ(ω). La presencia de σ(ω) modifica la intensidad

de la radiación respecto a un espectro puramente térmico y tiene un impacto crucial en el espectro

observado.

3.2. Radiación de Hawking como efecto túnel

La radiación de Hawking puede interpretarse como un proceso de tunelaje cuántico[7, 19]: pares

part́ıcula-antipart́ıcula se crean cerca del horizonte, y uno de los miembros del par logra cruzar el

horizonte –ya sea hacia fuera o hacia dentro– cambiando el balance energético del sistema. Esta

imagen es análoga a la producción de pares en un campo eléctrico intenso (efecto Schwinger),

discutido en el caṕıtulo anterior, y difiere de las derivaciones originales, donde la conservación de la

enerǵıa no se impone expĺıcitamente.

Para describir fenómenos en el horizonte, es necesario elegir coordenadas que, a diferencia de las

coordenadas de Schwarzschild, no son singulares en el horizonte. Si recordamos relatividad especial,

vemos que la métrica para un cuerpo en movimiento relativista en coordenadas esféricas puede

escribirse de la siguiente manera:

ds2 =

(
1− v2

c2

)
dt2 +

dr2

1− v2

c2

dr2 + r2dΩ2 (3.2)

Comparando esto con la métrica de Schwarzschild, véase la ecuación (2.2) con c = 1 obtenemos

que v2 =
2M

r
→ v =

√
2M

r
. Siguiendo los pasos de Painlevé y Gullstrand se obtiene la métrica de

Painlevé-Gullstrand, misma que sigue siendo singular en r = 0 y es regular en r = 2M , el horizonte

de eventos ya no es una singularidad y se puede tratar problemas de horizonte con esta métrica(3.2).



48

Ahora, la relación diferencial entre coordenadas es

dt = dT −

√
2M

r

1− 2M

r

dr. (3.3)

La solución a la ecuación diferencial es

t = u+ 2
√
2Mr + 2M ln

√
r −

√
2M

√
r +

√
2M

, (3.4)

u en esta ecuación es el tiempo de Schwarzschild. Con esta elección el elemento de ĺınea es

ds2 = −
(
1− 2M

r

)
du2 + 2

√
2M

r
dudr + dr2 + r2dΩ2 (3.5)

Ahora ya no hay singularidad en r = 2M , y el verdadero carácter del espacio-tiempo, siendo es-

tacionario, pero no estático, se manifiesta. Estas coordenadas fueron introducidas por Painlevé.

Su utilidad en estudios sobre la mecánica cuántica de los agujeros negros se hace evidente en este

estudio y en el trabajo en el cual se basa este.

Para nuestros propósitos, una de las caracteŕısticas cruciales de estas coordenadas es que son es-

tacionarias y no singulares a lo largo del horizonte. Entonces, es posible definir un estado de vaćıo

efectivo requiriendo que aniquile los modos que llevan frecuencia negativa con respecto a t; dicho

estado va a verse esencialmente vaćıo para un observador en cáıda libre mientras este pasa a través

del horizonte de eventos. Las geodésicas nulas radiales son dadas por la condición dt = 0, finalmente

llegamos a

dr

du
= ±1−

√
2M

r
. (3.6)

La solución con signo positivo corresponde a geodésicas salientes, mientras que la solución con signo

negativo corresponde a geodésicas entrantes, bajo la asunción impĺıcita de que u se incrementa en

el futuro.

En el ĺımite r → ∞,
dr

du
= ±1. c = 1 entonces recuperamos la velocidad de la luz.

En el horizonte de eventos r = 2M , la velocidad de la luz saliente del centro del agujero negro

es
dr

dt
= 0. No puede escapar del horizonte de eventos, en su lugar la luz queda atrapada dentro
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del horizonte de eventos (como ya demostramos anteriormente, un agujero negro śı puede emitir

radiación, si suponemos efectos cuánticos en el horizonte de sucesos). Como la luz se mueve más

rápido que cualquier otra cosa, la materia solo puede caer hacia dentro en el horizonte de eventos.

Cualquier cosa que cruce el horizonte hacia el interior queda irrevocablemente aislada del exterior.

A continuación, consideramos la dinámica de una part́ıcula libre para obtener la acción, denotada

por S, ignorando la parte angular, en un escenario curvado como

S =

∫
pµdx

µ pµ = mgµν
dxν

dτ
,

donde τ es el tiempo propio a lo largo de la ĺınea de mundo de la part́ıcula y pµ es su cuadrimo-

mento f́ısico. La dinámica radial de part́ıculas masivas en el espacio-tiempo de Schwarzschild está

determinado por las ecuaciones:

(
1− 2M

r

)
u̇2 − 2

√
2M

r
u̇ṙ + ṙ2 = 1 (3.7)

Esta es la condición de normalización para el cuadrivector velocidad.

La segunda ecuación proviene de la conservación de la enerǵıa. Se sabe que, para una métrica con una

coordenada temporal u que no depende del tiempo (es decir, es estacionaria), la cantidad conservada

asociada a la enerǵıa de la part́ıcula es el momento conjugado con respecto a esa coordenada u.

El momento conjugado pu es

pu = m(guuu̇+ gurṙ). (3.8)

Dado que la enerǵıa es una cantidad conservada definimos ω como el valor constante del momento

conjugado dividido por la masa:

ω = −
(
1− 2M

r

)
u̇+

√
2M

r
ṙ (3.9)

La ecuación (3.9) es la geodésica correspondiente a la independencia temporal de la métrica; en

términos del momento definido en la ecuación (3.8), puede ser escrito como pu = −ω, y entonces

ω tiene la interpretación de la enerǵıa de la part́ıcula medida desde el infinito. Resolviendo estas
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ecuaciones para u̇ y ṙ da:

ṙ = ±
√
ω2 − 1 +

2M

r
(3.10)

Sustituyendo (3.10) en (3.9) da

(
1− 2M

r

)
u̇ = ω ±

√
2M

r

√
ω2 − 1 +

2M

r
(3.11)

Estas ecuaciones describen la dinámica radial de una part́ıcula masiva en el espacio-tiempo de

Schwarzschild en coordenadas de Gullstrand-Painlevé. La elección de los signos ± está relacionada

con la dirección radial del movimiento de la part́ıcula. + se corresponde con part́ıculas saliendo del

horizonte de sucesos, mientras que − se corresponde con part́ıculas entrantes, y como ya se dijo

anteriormente, ω es un parámetro que se corresponde con la enerǵıa medida por un observador en

reposo ubicado en el infinito.

Como la longitud de onda t́ıpica de la radiación está en el orden del tamaño del agujero negro,

uno podŕıa dudar de una descripción de ésta como una part́ıcula puntual. Sin embargo, cuando la

onda saliente es seguida del revés hacia el horizonte, su longitud de onda, medida por observadores

locales se corre de manera creciente hacia el azul. Cerca del horizonte, el número cuántico asociado

al radio se aproxima hacia el infinito y la aproximación de part́ıcula puntual o semiclásica WKB se

justifica.

La radiación de Hawking se puede comprender como un efecto túnel de una part́ıcula (por ahora

consideremos una part́ıcula sin carga, desprovista de momento angular y de esṕın) de enerǵıa ω

que cruza el horizonte desde una posición inicial r0 hasta la posición final rf mientras la masa del

agujero negro decrece en ω unidades de enerǵıa y como la enerǵıa es masa, y como ya vimos que

la masa está relacionada con el tamaño del agujero negro, entonces la conclusión es que el agujero

negro decrece de M a M − ω, por lo que, el horizonte de eventos decrece de 2M a 2(M − ω). La

barrera de potencial no existe antes de la salida de la part́ıcula del horizonte de eventos, sino que es

la propia part́ıcula la que al provocar la contracción del horizonte, crea la barrera. La acción clásica

S para la trayectoria está dada por

S =

∫ rf

r0

drpr =

∫ rf

r0

dr

∫ pr

0
dp

′
r =

∫ rf

r0

dr

∫ M−ω

M

dH

ṙ
, (3.12)



51

donde pr es el momento radial de una part́ıcula, p′r es una variable muda y se ha usado la ecuación

de Hamilton-Jacobi

(
ṙ =

∂H

∂pr

)
para obtener la última igualdad.

Haciendo el cambio de variable H =M −ω y utilizando la ecuación (3.10) para part́ıculas salientes

se obtiene

S =

∫ ω

0

∫ rf

r0

dr

1−
√
1− 1− 2M

r

=

∫ ω

0

∫ rf

r0

dr

1−
√

2M

r

(3.13)

Tomando en cuenta que r0 > rH > rf y que f(rH) = 0, esta integral será compleja y asumiendo

que la parte imaginaria de la acción puede ser atribuida completamente al residuo del polo, ésta

puede ser calculada fácilmente haciendo r − rH = εeiθ. Para el agujero negro de Schwarzschild con

f(r) = 1− 2(M − ω)

r
la integral (3.13) quedaŕıa, para la parte imaginaria de la acción, que es la que

nos interesa, porque está relacionada con la tasa de emisión mediante efecto túnel, o semiclásica Γ

ImS =

∫ ω

0

∫ ri

rf

dr

1−
√

2(M − ω′)

r
± iϵ

dω′ (3.14)

Aunque esta trayectoria radial hacia adentro pareceŕıa, a simple vista, ser clásicamente permitida,

es una trayectoria que clásicamente está prohibida porque es el mismo horizonte aparente el que se

está contrayendo. De hecho, los ĺımites de la integral (3.14) indican que, a lo largo de la trayectoria

que no está permitida de manera clásica, la part́ıcula saliente empieza en r = 2M − ϵ, justo dentro

de la posición inicial del horizonte, y atraviesa el horizonte que se contrae para materializarse en

r = 2(M − ω) + ϵ, justo afuera de la posición final del horizonte.

De manera alternativa, y siguiendo los mismos pasos que se ha seguido hasta ahora, la radiación de

Hawking también puede ser entendida como una creación de pares justo en el borde del horizonte,

con la part́ıcula de enerǵıa negativa tunelando hacia el agujero negro. Como dicha part́ıcula se

propagaŕıa hacia atrás en el tiempo, tenemos que revertir el tiempo en las ecuaciones de movimiento.

Del elemento de ĺınea de la ecuación (3.5), vemos que el tiempo revertido corresponde a

√
2M

r
→

−
√

2M

r
. Además, como la antipart́ıcula cae hacia dentro del agujero negro, y por lo tanto, añade

enerǵıa al agujero negro, se reemplaza M → M + ω. Entonces la part́ıcula con enerǵıa negativa
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entrante tiene, haciendo la misma integral (3.14):

ImS = Im

∫ −ω

0

∫ r0

rf

dr

−1 +

√
2(M + ω′)

r

dω′ = 4πω(M − ω

2
),

Los dos canales, tunelaje de part́ıculas o antipart́ıculas, contribuyen a la tasa del proceso de Hawking

entonces, en un cálculo más detallado, uno tendŕıa que sumar sus amplitudes para obtener la tasa

semiclásica de tunelaje. Sea como sea, dichas consideraciones únicamente afectaŕıan al prefactor.

En cualquier caso, la parte exponencial de la tasa semiclásica de emisión, de acuerdo con [20], es

Γ ∼ e−2ImS = e
−8πω

(
M−

ω

2

)
= e+∆SBH , (3.15)

donde se ha expresado el resultado de manera más natural en términos del cambio de la entroṕıa

de Bekenstein-Hawking. Cuando el término cuadrático en ω es despreciado, la ecuación (3.15) se

reduce al factor de Boltzmann para una part́ıcula con enerǵıa ω con β =
1

TH
= 8πM . La corrección

de ω2 proviene de la f́ısica de la conservación de la enerǵıa, la cual eleva por śı misma la temperatura

efectiva del agujero mientras radia. Que este resultado exacto deba ser correcto puede ser visto en

términos f́ısicos considerando el ĺımite en el cual la part́ıcula emitida se lleve la masa entera del agu-

jero negro (correspondiente a la transformación del agujero negro en una capa saliente. Solamente

puede existir un único estado aśı. Por otro lado, hay eSBH estados en total. La mecánica estad́ıstica

entonces avala que la probabilidad de encontrar una capa conteniendo toda la masa de un agujero

negro es proporcional a e−SBH .

Siguiendo la matemática de la ecuación (2.28) y suponiendo que el término cuadrático es despre-

ciable, esto implica que hay un flujo espectral propio de una temperatura inversa de 8πM :

ρ(ω) =
dω

2π

|T (ω)|2

e8πMω − 1
, (3.16)

donde |T (ω)|2 es el coeficiente de transmisión dependiente de la frecuencia ω para una part́ıcula

saliente que alcanza la infinidad futura sin dispersión hacia atrás. Surge de un análisis más completo

de los modos, cuyo comportamiento semi-clásico se ha estado discutiendo en [7].

La técnica anterior puede ser aplicada también a la emisión desde un agujero negro cargado. Cuando
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la radiación lleva consigo la carga del agujero negro, los cálculos son complejos por el hecho de que

la trayectoria ahora también está sujeta a fuerzas electromagnéticas. Por ahora nos restringiremos

a radiación no cargada proveniente de un agujero negro de Reissner-Nordström. La derivación de

esta radiación sigue los mismos pasos que el anterior caso.

Partimos de la métrica de Reissner-Nordström (Véase la ecuación (2.3)), como ya se mencionó

anteriormente esta métrica presenta una singularidad en el horizonte rH = M +
√
M2 −Q2, y el

objetivo es transformar las coordenadas de tal manera que ya no exista esa singularidad.

Para eliminar la singularidad en el horizonte, realizamos una transformación de coordenadas a un

nuevo tiempo u que será regular en r = rH . La forma general de la transformación de coordenadas

es:

u = t+ f(r)

donde f(r) es una función de r que se elegirá adecuadamente para eliminar la singularidad.

Para simplificar la métrica y eliminar la singularidad, elegimos f(r) de tal forma que el término dr2

cancele la singularidad en el horizonte. Para ello se escoge

df

dr
=

√
2Mr −Q2

1− 2M

r
+
Q2

r2

Con esta elección, la métrica toma la forma no singular:

ds2 = −
(
1− 2M

r
+
Q2

r2

)
dt2 + 2

√
2M

r
− Q2

r2
dtdr + dr2 + r2dΩ2 (3.17)

Finalmente integramos
df

dr
para calcular la forma de u:

u = t+2
√
2Mr −Q2+M ln

(
r −

√
2Mr −Q2

r +
√
2Mr −Q2

)
+

Q2 −M2√
M2 −Q2

arctanh

(√
M2 −Q2

√
2Mr −Q2

Mr

)
(3.18)

Este término es el que transforma el tiempo de RN t al tiempo regularizado de Painlevé u, eliminando

aśı la singularidad en el horizonte.

La ecuación de movimiento para una part́ıcula saliente (sin masa y sin carga), siguiendo el mismo
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proceso que ya hemos hecho para Schwarzschild, es

ṙ =
dr

dt
= 1−

√
2M

r
− Q2

r2
(3.19)

con M →M −ω cuando la gravitación propia de la part́ıcula es incluida. La parte imaginaria de la

acción (siguiendo lo ya hecho para Schwarzschild) es:

ImS = Im

∫ ω

0

∫ r0

rf

dr

1−
√

2(M − ω′)

r
− Q2

r2

(−dω′),

La integral en r presenta una singularidad en el horizonte del agujero negro, rH =M +
√
M2 −Q2.

Para evaluar la parte imaginaria de la acción, deformamos el contorno en el plano complejo alrededor

de esta singularidad (de manera similar a lo ya hecho para Schwarzschild). La contribución a la

acción proviene de los polos en rH .

La singularidad en rH produce un término de residuo que es responsable de la parte imaginaria de

la acción. Al evaluar la integral de residuo obtenemos

ImS = 4π
(
ω
(
M − ω

2

)
− (M − ω)

√
(M − ω)2 −Q2 +M

√
M2 −Q2

)
.

La tasa de emisión de Hawking está relacionada con la acción imaginaria a través de

Γ ∼ e−2ImS

Sustituyendo el valor de ImS calculado en el paso anterior, se obtiene la tasa de emisión Hawking

para el agujero negro de RN,

Γ ∼ e
−8π

(
ω

(
M−

ω

2

)
−(M−ω)

√
(M−ω)2−Q2+M

√
M2−Q2

)
= e∆SBH , (3.20)

La presencia de carga en el agujero negro de RN introduce un término adicional dependiente de la

carga que no exist́ıa en la expresión que se obtuvo para Schwarzschild.

Expandiendo para ω ≪ M , se puede aproximar la variación de la entroṕıa ∆SBH al primer orden

en ω. Retomando lo que ya se hizo para Schwarzschild, es posible concluir que la ecuación (3.20),
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a primer orden, es consistente con el resultado de la emisión térmica a la temperatura de Hawking,

para un agujero negro cargado.

Nuevamente, la conservación de la enerǵıa implica que el resultado exacto tiene correcciones de más

alto orden en ω, esto es lo que vamos a hacer más adelante, considerando también la contribución

debido a la producción de Schwinger en el campo eléctrico del agujero negro. Además de eso, como

la tasa de emisión tiene que ser real, la presencia de la ráız cuadrada en la ecuación (3.20) asegura

que la radiación más allá de la extremalidad no es posible. Al contrario que en las derivaciones

anteriores, aqúı la tercera ley de la termodinámica actúa obligando al agujero negro a tenerM ≥ Q.

Veremos ahora el tunelaje de part́ıculas cargadas a través del horizonte en RN antes de combinar

los 2 procesos de tunelamiento.

3.2.1. Tunelaje a través del horizonte en RN

Ahora emulemos lo ya hecho para Schwarzschild para una part́ıcula cargada moviéndose en un

fondo de RN. En las coordenadas de Painlevé-Gullstrand, definidas por el elemento de ĺınea (3.17).

Las ecuaciones análogas a (3.7) y (3.9), se derivan de manera análoga, para part́ıculas cargadas en

un fondo de RN son:

gµνpµpν = −m2, (3.21)

esta es la condición de dispersión relativista para una part́ıcula masiva en un espacio-tiempo curvo.

Es decir, el cuadrimomento pµ de una part́ıcula de masa m debe cumplir con (3.21). Esta condición

es la generalización en espacio-tiempo curvo de la relación de dispersión clásica E2 − p2 = m2.

La segunda ecuación es

Pu := pu + qAu = −ω. (3.22)

En (3.22) se introduce la noción de momento canónico en presencia de un campo electromagnético.

En este caso, la part́ıcula está acoplada débilmente a un potencial electromagnético Aµ, por lo que

su momento canónico es la suma del momento f́ısico pµ y el término qAµ. Debido a que el fondo

es estacionario, la componente correspondiente a la dirección temporal (la coordenada u en PG) se

conserva. Esta cantidad conservada se identifica con −ω, donde ω es la enerǵıa medida en el infinito.

En resumen (3.21) y (3.22) son la condición de masa para una part́ıcula en un espacio-tiempo curvo,

y la condición de conservación de la enerǵıa (incluyendo el acople electromagnético) para la part́ıcula



56

en un fondo estático. Estas ecuaciones son el punto de partida para el análisis de la emisión por

tunelaje, ya que permiten expresar la dinámica del proceso en términos de cantidades conservadas

y condiciones de borde en el horizonte del agujero negro.

Estas ecuaciones se pueden resolver simultáneamente para obtener expĺıcitamente el momento radial

pr. Recordemos que tenemos (3.21) y (3.22), partiendo de alĺı, se busca una expresión expĺıcita

para pr (momento radial), asumiendo movimiento netamente radial, en coordenadas de Painlevé-

Gullstrand. La métrica en estas coordenadas tiene la forma presentada en (3.17), la condición (3.21),

haciendo expĺıcitos los términos relevantes, toma la forma general (para movimiento radial):

guup2u + 2gurpupr + grrp2r = −m2.

La condición (3.22) permite sustituir pu = −ω − qAu. Haciendo esta sustitución, obtenemos una

ecuación cuadrática en términos de pr:

guup2u + 2gurpupr + grrp2r = −m2,

resolviendo esta ecuación cuadrática para pr, se obtiene la ecuación (3.23)

pr =
1

f

√
1− f(ω + qAu) +

1

f

√
(ω + qAu)2 − fm2 (3.23)

La expresión obtenida corresponde al momento radial necesario para describir la dinámica radial de

una part́ıcula cargada en el fondo de RN. En śıntesis, la ecuación (3.23) es simplemente la solución

expĺıcita para el momento radial, obtenida al despejar pr a partir de las ecuaciones fundamentales

(3.21) y (3.22).

El potencial electromagnético del agujero negro de RN está escrito en coordenadas estándar (t, r),

debemos llevarlo a una forma regular en coordenadas de Painlevé-Gullstrand. Inicialmente, el po-

tencial electromagnético de un agujero negro de RN en coordenadas estándar es conocido y dado

por

Aµdx
µ = −Q

r
dt
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Sin embargo al pasar a coordenadas de Painlevé-Gullstrand definidas por (3.17), el término dt

resulta singular en el horizonte, porque alĺı f = 0. Por lo tanto, aunque la métrica en coordenadas

de Painlevé-Gullstrand es regular en el horizonte, el potencial electromagnético en la forma original

−Q
r
dt no lo es.

Para resolver esta situación, se realiza una transformación de calibre usando una función escalar

adecuada. La transformación de calibre general es:

Aµ → Aµ + ∂µχ,

donde elegimos precisamente χ para compensar la singularidad en el horizonte, de modo que el

potencial electromagnético quede regular alĺı. Concretamente, se elige

χ = t− u,

al reorganizar términos y escoger adecuadamente esta transformación, se obtiene la forma simplifi-

cada y regular

A = −Q
r
du (3.24)

De este modo, la ecuación (3.24) no es más que el potencial electromagnético original del agujero

negro cargado, expresado ahora en coordenadas de Painlevé-Gullstrand luego de una transformación

de calibre especialmente elegida para eliminar singularidades espurias en el horizonte. Como A

ahora está bien definido y es real en todas partes, no contribuye una parte imaginaria a la acción

de tunelaje. Únicamente tenemos que preocuparnos de la contribución de pr.

La idea general es describir el proceso de emisión de part́ıculas por el agujero negro mediante un

proceso de tunelamiento. Este proceso se describe mediante la acción clásica de la part́ıcula, que en

el formalismo semiclásico se escribe como

S =

∫
Pµdx

µ, (3.25)

donde el momento canónico en presencia de un campo electromagnético viene dado por (3.22). En

este caso particular, como se explicó anteriormente, el potencial electromagnético Aµ es regular
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en el horizonte (3.24), por lo que no introduce contribuciones imaginarias adicionales al integrarse

alrededor del horizonte. Aśı, para evaluar la parte imaginaria de la acción al atravesar el horizonte,

basta con considerar únicamente el término del momento f́ısico pµ

ImS = Im

∫
pµdx

µ

Para movimiento netamente radial, la acción relevante es radial, es decir, dxµ = (du, dr, 0, 0). Dado

que la coordenada relevante para estudiar el cruce del horizonte es la coordenada radial r, la acción

imaginaria radial se reduce a evaluar la integral

ImS = Im

∫
prdr,

utilizando la ecuación previa (3.23), la función que representa una singularidad en el horizonte es

precisamente
1

f(r)
, puesto que en el horizonte del agujero negro de RN, f(r+) = 0. Por lo que,

la única contribución imaginaria viene de evaluar esta integral en la vecindad del horizonte, donde

existe un polo en 1/f(r).

Para calcular esta contribución imaginaria, usamos el método estándar de variable compleja: al en-

contrar un polo en r = r+, integramos alrededor del polo mediante un pequeño contorno en el plano

complejo, tomando la semicircunferencia en el semiplano complejo superior, la parte imaginaria de

la acción queda finalmente como

ImS =
2π(ω − qQ/r+)

f ′(r+)
. (3.26)

Esta ecuación es una forma compacta y elegante que encapsula la f́ısica del tunelaje mediante un

residuo sencillo en la estructura de la métrica del agujero negro.

La temperatura de Hawking está relacionada directamente con esta derivada en el horizonte por la

expresión estándar de termodinámica de agujeros negros

TH =
f ′(r+)

4π
,
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por tanto, se puede expresar el residuo directamente en términos de la temperatura del agujero

negro

Res

(
1

f

)
r=r+

=
1

f ′(r+)
=

1

4πTH
,

sustituyendo esto en la expresión (3.26), tenemos inmediatamente

ImS = 2π(ω − qΦ)
1

f ′(r+)
=
ω − qΦ

2TH
.

Ahora sabemos que la probabilidad de tunelamiento semiclásica P está relacionada con la acción

imaginaria mediante:

P = e−2ImS ,

sustituyendo la expresión anterior llegamos directamente a la ecuación (3.27)

exp [−2ImS] = exp[−(ω − qΦ)/TH ]. (3.27)

Esta expresión muestra claramente que el proceso de emisión de part́ıculas cargadas desde el ho-

rizonte del agujero negro es análogo al factor de Boltzmann estándar que se observa en sistemas

termodinámicos clásicos, con temperatura TH y enerǵıa corregida por el potencial eléctrico qΦ.

La ecuación (3.27) es el resultado inmediato de relacionar la acción de tunelaje 3.26) con la tem-

peratura de Hawking mediante la derivada de la métrica en el horizonte, nótese que aqúı TH es la

temperatura calculada en el caṕıtulo anterior. Es, en definitiva, un factor de Boltzmann generalizado

que incluye la enerǵıa electromagnética asociada a la carga de la part́ıcula emitida por el agujero

negro.

3.3. Ecuación bosónica

En el caso de part́ıculas bosónicas cargadas en este escenario la de Klein-Gordon (6.10) rige,

haciendo lo especificado en la sección 6.2 es posible reducir la ecuación de Klein-Gordon a una

ecuación tipo Schrödinger veáse la ecuación (3.28)

−d
2R

dr2∗
+

(
1− 2M

r
+
Q2

r2

)(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4

)
R+

(
ω − qQ

r

)2

R = 0. (3.28)
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De la misma manera, se puede proceder con la ecuación de Dirac.

3.4. Ecuación fermiónica

La ecuación que gobierna el comportamiento de part́ıculas fermiónicas cargadas en este escenario

es la de Dirac, haciendo los pasos mostrados en (6.3) se llega a una expresión de onda análoga a

6.23:

−
(
∂t +

iqQ

r

)2

Ψi+∂
2
∗Ψi = f

(
m+

(j + 1/2)2

r2

)
Ψi+

(
M2

r2
− Q2

r3

)(
∂∗ − σ

(
∂t +

iqQ

r

))
Ψi−iσf

qQ

r2
Ψi.

(3.29)

La ecuación (3.29) es una ecuación diferencial radial que incluye la dependencia temporal, términos

de derivadas radiales usando la coordenada tortuga r∗ y términos de potencial asociados a la masa,

momento angular de esṕın y cargas del agujero negro y la part́ıcula, respectivamente. Esta ecuación

se puede simplificar aún más con el procedimiento que seguiremos a continuación.

El primer paso es suponer una dependencia armónica en el tiempo para la función de onda, lo cual

permite hacer separación de variables. Se toma un ansatz de la forma

Ψi(r, t) = e−iωtψi(r),

donde ω es la frecuencia angular asociada. Esto es, hemos factorizado la dependencia temporal como

e−iωt. Al hacer esto, cualquier derivada temporal ∂t actuando sobre Ψi se puede reemplazar por un

factor algebraico en términos de ω.

Se sustituye expĺıcitamente la dependencia temporal en la ecuación (3.29). Con esta sustitución, se

pasa del dominio temporal al dominio de las frecuencias, convirtiendo aśı, las derivadas temporales

en potencias de ω.

En (3.29) aparece el operador −
(
∂t +

iqQ

r

)2

actuando sobre Ψi. Luego de una sustitución de la

solución temporal de la ecuación diferencial se llega a:

−
(
∂t +

iqQ

r

)2

Ψi =

(
ω − qQ

r

)2

Ψi,
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Aśı el término temporal de la ecuación (3.29) se transforma en un término algebraico

(
ω − qQ

r

)2

multiplicando a Ψi. Al mismo tiempo, la derivada radial de segundo orden permanece igual (pues

no hemos alterado la parte espacial).

Después de ese paso, la parte izquierda de (3.29) se convierte en

(
ω − qQ

r

)2

Ψi + ∂2∗Ψi.

La parte derecha sigue conteniendo los términos de potencial y acoplamiento, que trataré en el

siguiente paso. El siguiente paso es aplicar la aproximación WKB al orden dominante para simplificar

la ecuación diferencial. Pero antes de aplicar la aproximación WKB al orden dominante, veremos

condiciones de borde de la ecuación diferencial.

3.5. Condiciones de borde

En el caso de los campos (bosónicos o fermiónicos) en el fondo de un agujero negro de RN,las

condiciones de borde más importantes en el análisis de las ecuaciones de segundo orden, tanto la de

Klein-Gordon como la de Dirac reducidas a un problema radial, se suelen imponer en

El horizonte externo (r = r+),

el infinito r∗ → ∞.

En las ecuaciones diferenciales (3.28 y 3.29), al aproximarnos al horizonte (r = r+) el factor de la

métrica f(r) tiende a cero, lo cual simplifica la ecuación cerca de r+. En el análisis habitual, la clave

es:

Causalidad: las ondas f́ısicas cerca del horizonte deben ser únicamente entrantes si pensamos

en un proceso de scattering desde el punto de vista de un observador externo. Sin embargo,

cuando hay un potencial eléctrico, la noción de entrante o saliente requiere más cuidado.

Signo de la enerǵıa: si la enerǵıa efectiva en el horizonte, ω − qΦH es positiva, una onda con

momento entrante (momento radial negativo implica un flujo hacia el agujero); si esa enerǵıa

es negativa, el sentido se invierte.
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En [6] se concluye que la condición f́ısica es que, al horizonte, solo haya un modo con momento

entrante (o dicho de otra manera, un modo que viaja hacia el agujero negro, y no una combinación

de ondas entrantes y salientes). Eso se traduce a que la solución cerca del horizonte tenga la forma

ΨH(r∗) = Ce−i(ω−qQ/r+)r∗ .

descartando el término con exponencial e+i(ω−qQ/r+)r∗ . Tal simplificación fija D = 0 en Ψ =

Ce−iΩr∗ +De+iΩr∗ . Esta es la condición de borde en el horizonte.

Si Ω = ω − qQ/r+ > 0, la onda e−iΩr∗ representa un modo entrante al agujero negro.

Si Ω < 0, esa misma exponencial corresponde a momento radial negativo, pero la velocidad de

grupo sigue siendo entrante por la relación de dispersión (son burbujeos que se mueven hacia

el horizonte).

En cualquiera de los casos, el criterio es no incluir la solución que f́ısicamente representaŕıa onda

saliente desde el horizonte, la cual seŕıa no causal en este planteamiento.

Para r → ∞, o equivalentemente r∗ → ∞, el potencial gravitatorio y eléctrico se debilitan, y la

ecuación diferencial tiende a una forma parecida a

−d
2Ψ

dr2∗
= k2Ψ,

donde k =
√
ω2 −m2. La solución asintótica t́ıpica es una combinación de exponentes

Ψ∞(r∗) = Ae−ikr∗ +Be+ikr∗ .

En un análisis de transmisión, interpretamos

Ae−ikr∗ como la onda saliente (hacia +∞),

Beikr∗ como la onda entrante (desde +∞).

Para hallar la tasa de transmisión, se compara la amplitud de la onda en el horizonte con la amplitud

de la onda saliente a infinito. A menudo se fijan convenios como:
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Solo onda saliente a infinito: se impone B = 0 si estamos pensando en la solución de transmi-

sión pura desde el horizonte.

Más comúnmente, se realiza un análisis inverso de dispersión: se hace incidir una onda Be+ikr∗

desde +∞ y se mira cuánta fracción atraviesa el horizonte y cuánta se refleja.

En la derivación de la radiación, se invoca la imagen con tiempo reverso para relacionar el coeficiente

de reflexión R con la sección eficaz de absorción. Aśı, dependiendo de la convención, a veces se toma

onda pura incidiendo desde infinito y onda saliente hacia el horizonte o al revés.

Interpretación f́ısica

Si se estudia la emisión espontánea desde el agujero negro, Ψ representa el modo que sale a

infinito y no se incluye un modo entrente desde infinito.

Si se hace dispersión inversa (onda incidiendo desde lejos, la condición es B ̸= 0, A ̸= 0, y uno

relaciona los flujos para obtener R y T .

Recapitulando, en el modo entrante se descarta la componente que correspondeŕıa a una onda

saliente cerca del horizonte. Esto se traduce en

Ψ ∼ e−i(ω−qQ/r+)r∗ .

En la condición en el infinito, la solución asintótica es Ψ ∼ Ae−ikr∗ + Beikr∗ . Dependiendo del

problema f́ısico:

Para emisión espontánea, usualmente se considera únicamente la onda saliente a infinito (es

decir, B = 0).

Para dispersión inversa, se incluye una onda entrante (B ̸= 0) y se determina el coeficiente de

reflexión y transmisión comparado con la onda saliente A.

Estas son las condiciones de borde que se aplican a la ecuación diferencial radial en un agujero negro,

tanto para campos bosónicos y fermiónicos. Cada una refleja la causalidad y la interpretación del

flujo de enerǵıa cerca del horizonte, aśı como la naturaleza libre de la onda a grandes distancias. El
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coeficiente de transmisión T está dado simplemente por |C/A|2 para bosones y
∑

i |Ci|2/
∑

i |Ai|2,

donde el ı́ndice representa la componente espinorial.

Ahora que ya hemos visto las condiciones de borde de la ecuación diferencial a resolver, estamos

listos para abordar el método WKB.

3.6. Método WKB

Para comenzar con el método primero supongamos que tenemos una ecuación diferencial del

tipo

d2y

dx2
+ U(x)

dy

dx
+ V (x) = 0, (3.30)

donde V (x) es, en esencia, grande, del orden µ2 =M . Entonces tratamos una solución de la forma

y = exp(iW (x)),

y expandimos W (x) = µW0 +W1 + · · · y V = µ2V0 + µV1 + · · · y U = U0 + · · · en potencias de µ.

Las ecuaciones a orden cero y primer orden vienen dadas por

−µ2(W ′
0)

2 + µ2V0 = 0,

iµW ′′
0 − 2µW ′

0W
′
1 + iµU0W

′
0 + µV1 = 0.

La ecuación de orden cero se resuelve por

W0 = ±
∫ √

V0dx =

∫
kdx, (3.31)

y la ecuación de primer orden queda

ik′ − 2kW ′
1 + iU0k + V1 = 0

2kW ′
1 = ik′ + iU0k + V1

W ′
1 = i

k′

k
+ iU0 +

V1
k

(3.32)
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Si V1 es imaginario y U0 y k son reales, esto significa que W1 es un imaginario puro, y por lo tanto

la ecuación de primer orden dicta cómo la amplitud de la onda vaŕıa con la posición. Por ejemplo,

podemos considerar la ecuación de Dirac anterior con λ = q = 0 para simplificar. Entonces

V0 = ω2 − fm2 (3.33)

V1 = − iωσ
2f

df

dr∗
(3.34)

U0 = − 1

2f

df

dr∗
(3.35)

Con estos componentes, el número de onda local es

k(r∗) =
√
V0(r∗) =

√
ω2 − f(r∗)m2

este k(r∗) es real para las regiones donde ω2 > fm2 (que incluye el horizonte y el exterior del agujero

negro si ω es la enerǵıa es la enerǵıa del modo emitido). Además, si consideramos σ = −1, sabemos

de la ecuación (6.66) que una onda con este esṕın debe ser saliente en el horizonte, lo que corresponde

con tomar k > 0. En este caso se puede resolver la ecuación (3.32) paraW1 reemplazando los valores

de (3.33-3.35):

2W ′
1 = i

k′

k
− i

1

2f

df

dr∗
− iω(−1)

2fk

df

dr∗
,

= i
k′

k
− i

2

1

f

(
1− ω

k

) df

dr∗
,

Integrando queda

2W1 = i ln k − i

2

∫
dr∗

1

f

df

dr∗

(
1− ω

k

)
. (3.36)

Esta ecuación se puede integrar directamente y queda

∫
1

f

1− 1√
1− fm2

ω2

 df = ln

(
1 +

√
1− fm2

ω2

)
+ C.
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Tomando la constante C = 0 (se absorberá en la normalización de la solución), reemplazamos en la

expresión de 2W1

2W1 = i ln k − i

2

[
2 ln

(
1 +

√
1− fm2

ω2

)]
= i ln k − i ln

(
1 +

√
1− fm2

ω2

)

Dividiendo ambos lados por 2, obtenemos W1

W1(r∗) =
i

2
ln k − i

2
ln

(
1 +

√
1− fm2

ω2

)
=
i

2
ln

 k

1 +

√
1− fm2

ω2

. (3.37)

Recordemos que W1 es puramente imaginario, por lo que se puede escribir W1 = iA(r∗) donde

A(r∗) ∈ R. En efecto definimos

A(r∗) =
1

2
ln

 k

1 +

√
1− fm2

ω2

,

que es real. Aśı, W1 = iA(r∗). Entonces la solución WKB hasta primer orden es

Ψ(r∗) =
1√
k(r∗)

(
ω + k(r∗)

k(r∗)

)1/2

exp

(
i

∫ r∗

dr∗
√
ω2 − f(r∗)m2

)
(3.38)

Ahora que ya hemos visto la aproximación WKB de primer orden veremos los resultados obtenidos

y la discusión.



Caṕıtulo 4

Resultados y Discusión

4.1. Tunelamiento a través del campo eléctrico

Hemos ya establecido que el número medio de part́ıculas emitidas por el agujero negro depende

del coeficiente de transmisión con las condiciones de borde entrantes en el horizonte. Generalmente,

determinar este coeficiente de transmisión requiere que se resuelva numéricamente las ecuaciones

(6.20) y (3.29). Sin embargo, usando el método WKB se puede encontrar aproximaciones para T .

Para regiones clásicamente prohibidas (donde Veff > E), el momento clásico se vuelve imaginario y

definimos un parámetro S (acción de túnel)

S =

∫ rout

rin

dr∗
√
Veff(r∗)− E (4.1)

donde los ĺımites rin y rout son los puntos de retorno clásicos (donde la ráız cuadrada se anula).

Entonces, siguiendo los pasos de la actual sección (WKB estándar), la probabilidad de tunelamiento

es

KT̃ ≈ e−2S . (4.2)

En este art́ıculo en particular la barrera Veff surge tanto por efectos gravitacionales como electro-

magnéticos. Al aplicar la aproximación WKB a la ecuación de Klein-Gordon (6.16) o a la de Dirac

(3.29), se obtiene directamente esta relación fundamental del método WKB para la transmisión,

que precisamente es (4.2), donde T̃ es la cantidad relevante que mide la transmisión a través de la

barrera. La diferencia con la forma estándar de T es solo en la definición precisa de las variables

67
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involucradas (como el factor K), pero en esencia es la misma expresión general obtenida por apro-

ximación WKB.

La ecuación (4.2) es la aproximación WKB al orden más básico (primer orden). Sin embargo, es bien

conocido en mecánica cuántica y en QFT que este método puede mejorarse mediante correcciones

sucesivas. En particular, para ciertos tipos de potenciales (como aquellos que se reducen localmente

a osciladores armónicos invertidos cerca de puntos de retorno clásicos), la aproximación WKB puede

ser exacta si se consideran ciertas correcciones adicionales.

De hecho, como el art́ıculo lo menciona expĺıcitamente (y lo hemos estudiado ya), se sabe (por

ejemplo, en problemas clásicos como la producción de pares en un campo eléctrico constante -

efecto Schwinger- o la radiación Hawking) que la forma exacta de la transmisión puede escribirse

en términos de factores estad́ısticos como

KT̃ =
1

e2S ∓ 1
, (4.3)

siendo el + para fermiones y el − para bosones. Este resultado aplica al problema de la transmisión

ingenua. Esto ocurre cuando el problema original se reduce efectivamente a un potencial cuadrático

cerca de los puntos de retorno clásicos, lo cual es exactamente lo que sucede en la cercańıa del

horizonte de un agujero negro y en la presencia de campos eléctricos intensos.

Este resultado tiene una interpretación f́ısica. La expresión WKB simple e−2S se interpreta como

la probabilidad de atravesar una barrera clásica de potencial; sin embargo, en un contexto cuánti-

co completo, considerando efectos cuánticos adicionales (como reflexiones internas en la barrera o

interacción con el campo electromagnético), la transmisión se modifica y adopta una forma más

general tipo distribución estad́ıstica (Bose-Einstein o Fermi-Dirac).

En otras palabras, la ecuación (4.3) introduce expĺıcitamente el carácter estad́ıstico cuántico de las

part́ıculas emitidas; para bosones, la probabilidad aumenta debido al efecto de emisión estimulada

(factor Bose-Einstein -1 en el denominador),mientras que para fermiones, la probabilidad disminuye

debido al principio de exclusión de Pauli (factor Fermi-Dirac +1 en el denominador). El art́ıculo [6]

señala que aunque la aproximación WKB original (4.2) es útil y correcta a primer orden, la forma

exacta conocida en problemas estándar, como emisión de part́ıculas en un campo constante, sugiere

que esta corrección (4.3) es más apropiada.
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De hecho, el art́ıculo [6] menciona expĺıcitamente que esta expresión coincide con la transmisión

exacta para el caso de un potencial tipo oscilador invertido, por lo que representa una mejora sig-

nificativa respecto a la expresión original más sencilla del método WKB.

En resumen, la ecuación (4.3) surge al considerar correcciones exactas del método WKB para cier-

tos potenciales efectivos t́ıpicos de producción cuántica de part́ıculas (como el efecto Schwinger

y radiación Hawking). Tiene una clara interpretación f́ısica en términos de estad́ısticas cuánticas

(Bose-Einstein o Fermi-Dirac), aśı como también representa una mejora con respecto a la fórmula

básica WKB (4.2), siendo una aproximación más precisa (y a veces exacta) del fenómeno estudiado

(radiación de part́ıculas cargadas).

T̃ es el coeficiente de transmisión simple, obtenido directamente de la aproximación WKB para el

problema original de la barrera de potencial. T es el coeficiente de transmisión f́ısico, que incorpora

correctamente las condiciones f́ısicas de borde y flujo, especialmente cruciales cuando se tiene emi-

sión de part́ıculas en presencia de campos gravito-electromagnéticos. K es el factor geométrico o

cinemático que relaciona los flujos de part́ıculas entre diferentes regiones del espacio-tiempo. Recor-

dando las ecuaciones de flujo para bosones (2.62) y fermiones (2.63), si ahora usamos la expresión

exacta (4.3) y sustituimos estas relaciones en la ecuación ya mencionada, resulta un fenómeno muy

especial:

Para bosones, sustituyendo KT̃ =
1

e2S − 1
:

T =
T̃

1−KT̃
=

1

K(e2S − 1)

1− 1

e2S − 1

=
1

K(e2S − 1)− 1 + 1
=

1

K(e2S − 1)

Pero como este cálculo puede complicarse debido a los factores adicionales (K), [6] expone

claramente que después de realizar esta sustitución, el resultado que se obtiene es simplemente

(se anula el −1 y el +1)

KT = e−2S . (4.4)

De manera similar, para fermiones se llega nuevamente a la misma expresión al realizar la

sustitución correcta. La complejidad se simplifica de manera elegante llegando nuevamente a

(4.4).
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Es decir, la estructura del problema es tal que, aunque uno empieza con una distribución de Bose-

Einstein o Fermi-Dirac exacta (4.3) para el coeficiente simple, al introducir las correcciones f́ısicas

de condiciones de borde y factores de flujo correctos (2.62 y 2.63), se recupera finalmente la forma

sencilla del WKB estándar (4.4). Esta aparente simplificación es destacada de manera expĺıcita co-

mo engañosamente sencilla, puesto que encapsula de manera elegante todas las correcciones f́ısicas

anteriores.

La ecuación (4.4) representa un resultado importante y útil del análisis del art́ıculo:

Indica que, después de considerar correctamente todas las correcciones f́ısicas (estad́ısticas cuánti-

cas, efectos del campo electromagnético, factores cinemáticos de flujo, etc.), el resultado neto es

que la probabilidad de transmisión f́ısica a través del potencial efectivo (agujero negro y campo

electromagnético) queda dada, en la aproximación WKB más precisa, por una forma exponencial

simple tipo WKB clásico (4.4). Esto implica que, aunque los efectos estad́ısticos (bosones o fer-

miones) son relevantes inicialmente, se incorporan finalmente en los factores externos del problema

(definición correcta de flujos y condiciones de frontera), simplificando la expresión final a una forma

exponencial estándar, las integrales de tunelaje vienen dadas por

S =

∫ √(
1− 2M

r
+
Q2

r2

)(
m2 +

ℓ(ℓ+ 1)

r2
+

2M

r3
− 2Q2

r4

)
−
(
ω − qQ

r

)2

dr∗ (4.5)

en el caso bosónico, mientras en el caso fermiónico, por

S =

∫ √(
1− 2M

r
+
Q2

r2

)(
m2 +

(j + 1/2)2

r2

)
−
(
ω − Qq

r

)2

dr∗ (4.6)

Las ecuaciones (4.5-4.6) surgen directamente del potencial efectivo que aparece en las ecuaciones

tipo Schrödinger obtenidas anteriormente, véase (6.16) y (6.60). Recordemos que el método WKB

establece que la acción clásica asociada al tunelamiento cuántico a través de una barrera potencial

efectiva se calcula integrando el momento imaginario clásico a través de la región prohibida (donde

el potencial efectivo es positivo

S =

∫ rsal

ren

√
Veff (r∗)dr∗,

al sustituir expĺıcitamente el potencial efectivo Veff (r) encontrado anteriormente, obtenemos exac-

tamente las ecuaciones (4.5) y (4.6).
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Las integrales representan el esfuerzo clásico requerido para que la part́ıcula atraviese la barrera

de potencial formada conjuntamente por el campo gravitacional y el campo eléctrico del agujero

negro cargado. Las ráıces del integrando definen los puntos clásicos de retorno, donde la part́ıcula

cambia de una región permitida a una prohibida, delimitando aśı, la región de tunelamiento. El

término ω − qQ/r muestra expĺıcitamente cómo el campo eléctrico modifica la enerǵıa efectiva de

la part́ıcula al moverse en el fondo cargado.

Por otro lado, el término (j +1/2)2/r2 refleja directamente la presencia del momento angular total

j del fermión, caracteŕıstico de la ecuación de Dirac. Este término diferencia claramente la ecua-

ción fermiónica (4.6) de la ecuación bosónica (4.5), que involucra un término diferente, ℓ(ℓ+1)/r2,

caracteŕıstico de campos escalares o bosónicos. La estructura general de estas acciones muestra cla-

ramente cómo la geometŕıa del agujero negro, la masa m de la part́ıcula, la carga q de la part́ıcula,

y la carga Q del agujero negro modifican conjuntamente el potencial de tunelamiento.

La principal diferencia entre (4.5) y (4.6) radica en los términos de potencial, mientras que los

bosones poseen potencial

m2 +
ℓ(ℓ+ 1)

r2
+

2M

r3
− 2Q2

r4
,

los fermiones poseen potencial

m2 +
(j + 1/2)2

r2
.

Esto refleja expĺıcitamente el origen espinorial frente al origen escalar del campo analizado. Los

términos adicionales gravitacionales aparecen naturalmente para bosones debido a la estructura

espećıfica de la ecuación de Klein-Gordon; para fermiones estos términos no aparecen en la simpli-

ficación WKB a primer orden por razones algebraicas (relacionadas con la forma de la ecuación de

Dirac y los términos subdominantes descartados).

Consideremos la forma general de la acción WKB obtenida anteriormente, por ejemplo para fer-

miones (4.6), si tomamos el ĺımite en que la masa de la part́ıcula es muy grande comparada con la

curvatura local. T́ıpicamente se toma el ĺımite puntual, donde la longitud de Compton 1/m es muy

pequeña respecto a la escala caracteŕıstica del agujero negro, entonces los términos que contienen

factores 1/r2 (como (j + 1/2)2/r2, y términos análogos para bosones) son despreciables frente al

término m2. En este ĺımite simplificado, el término dominante dentro del primer paréntesis es cla-

ramente m2, ya que es mucho más grande que cualquier término con 1/r2, 1/r3, etc. Por tanto, se
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puede realizar la simplificación

m2 +
(j + 1/2)2

r2
≈ m2,

realizando exactamente la misma aproximación en el caso bosónico (4.5), también obtenemos el mis-

mo resultado, pues todos los términos adicionales son subdominantes en el mismo ĺımite. Entonces,

la integral de acción se reduce a:

S =

∫ √(
1− 2M

r
+
Q2

r2

)
m2 −

(
ω − qQ

r

)2

dr∗ (4.7)

la ecuación (4.7) corresponde exactamente a lo que se obtendŕıa analizando el movimiento de una

part́ıcula puntual relativista cargada (con masa m y carga q) en un espacio-tiempo curvo de RN, sin

considerar efectos cuánticos o espinoriales expĺıcitos. En este ĺımite, la part́ıcula puede entenderse

clásicamente como moviéndose con una enerǵıa efectiva ω−qQ/r, influenciada tanto por la gravedad

del agujero negro (término métrico) como por su campo electromagnético (potencial eléctrico qQ/r).

La interpretación f́ısica es clara y directa: esta integral representa la acción clásica asociada al túnel

cuántico en la aproximación semiclásica (WKB), donde el efecto dominante es simplemente la masa

(enerǵıa de reposo grande) de la part́ıcula. Los efectos adicionales (esṕın, efectos gravitacionales

menores de orden superior, etc.) se desprecian en este ĺımite.

Este ĺımite es especialmente útil porque simplifica significativamente los cálculos y permite obtener

fórmulas anaĺıticas expĺıcitas para la tasa de emisión de part́ıculas masivas desde agujeros negros

cargados. Esta simplificación ayuda a extraer conclusiones f́ısicas claras sobre cómo se comporta la

emisión de part́ıculas cargadas, tanto mediante radiación Hawking como mediante la producción de

pares tipo Schwinger.

En el ĺımite que el agujero negro es más grande que la longitud de onda de la part́ıcula, esperaŕıamos

ser capaces de entender la emisión desde la perspectiva de una part́ıcula puntual, sin referencia a

las ecuaciones de campo. De hecho, notamos que una part́ıcula puntual en movimiento relativista

en nuestro fondo de agujero negro tiene relación de dispersión

gµνpµpν = −m2
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La ecuación anterior es la relación general para la dinámica clásica relativista de una part́ıcula de

masa m. La métrica de RN tiene la forma presentada en (2.3), por lo que, la ecuación para una

part́ıcula moviéndose de manera radial se simplifica a:

gtt(p
t)2 + grr(p

r)2 = −m2,

sustituyendo los elementos métricos expĺıcitamente tenemos

−f(r)(pt)2 + 1

f(r)
(pr)2 = −m2.

El momento conjugado generalizado, en presencia del campo electromagnético con potencial Aµ,

viene dado por (3.8). Para la componente temporal, considerando que el potencial electromagnético

tiene la forma

Aµ = −Q
r
dt,

entonces

Pt = pt + qAt = −ω,

donde ω es la enerǵıa total observada en el infinito, despejando, tenemos el momento temporal

original pt

pt = gttpt =
ω − qQ/r

f(r)
,

con esta relación, se puede reescribir la ecuación de la geodésica radial que describimos anteriormente

−f(r)
(
ω − qQ/r

f(r)

)2

+
1

f(r)
(pr)2 = −m2,

simplificando este resultado se obtiene la ecuación expĺıcita

1

f(r)

(
ω − qQ

r

)2

− f(r)pr
2
= m2. (4.8)

Esta ecuación describe la conservación relativista de la enerǵıa para una part́ıcula puntual con

masa m y carga q, que se mueve en el espacio-tiempo curvo generado por el agujero negro cargado

con masa M y carga Q. Esta es la condición que determina las regiones clásicamente permitidas
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(pr
2
> 0) y prohibidas del movimiento radial, fundamentales para analizar procesos cuánticos como

el túnel a través de barreras de potencial asociadas a la métrica y al campo electromagnético.

El momento radial pr entonces es imaginario entre los dos radios r1 y r2 determinados al resolver

la ecuación (4.8) con pr = 0, determinemos esos radios. Hacemos pr = 0 en dicha ecuación y queda

1

f(r)

(
ω − qQ

r

)2

= m2

r1,2 = −
(Mm2 − ωqQ)±

√
(Mm2 − ωqQ)2 − (m2 − ω2)(q2Q2 −Qm2)

2(m2 − ω2)
. (4.9)

La acción para una part́ıcula moviéndose desde el horizonte hasta el infinito entonces adquiere una

parte imaginaria dada por

ImS =

∫ r2

r1

|p(r)|dr =
∫ r2

r1

√(
1− 2M

r
+
Q2

r2

)
m2 −

(
ω − qQ

r

)2

dr∗, (4.10)

donde r1 y r2 son los radios calculados en (4.9) a partir de (4.8).

Hagamos un análisis detallado de la integral de túnel WKB en el ĺımite de part́ıcula puntual masiva,

donde la masa de la part́ıcula es suficientemente grande como para simplificar considerablemente el

análisis. La integral que aparece en (4.10) es

ImS =

∫ r2

r1

|p(r)|,

con el momento radial dado por

pr
2
=

1

f(r)
[(ω − qQ/r)2 −m2f(r)]

este momento radial se obtiene despejando pr de la ecuación (4.8). En el ĺımite considerado (mM ≫

1), esta integral puede ser evaluada anaĺıticamente, dando lugar a una expresión que derivó Kh-

riplovich en su art́ıculo [21]. La fórmula exacta obtenida en [6] proviene directamente del análisis

realizado en [21], especializado en el caso donde la enerǵıa ω es menor que el potencial eléctrico del
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agujero negro en el horizonte, qQ/r+, proporcionando aśı la forma expĺıcita presentada

ImS =
πm2(qQ− (ω − k)M)

k(k + ω)
, k =

√
ω2 −m2 (4.11)

La expresión derivada por Khriplovich muestra claramente cómo la acción imaginaria, y por ende,

la probabilidad de túnel, depende de la masa m, la carga Q del agujero negro, la carga q de la

part́ıcula y la enerǵıa ω. Esta expresión también representa la acción para un proceso espećıfico

de emisión con una barrera de tunelamiento que surge de la combinación del campo gravitacional

y electromagnético del agujero negro, destacando especialmente el efecto de la masa grande en la

dinámica cuántica del proceso.

Determinaremos expĺıcitamente el valor máximo de enerǵıa ωmax para la cual existe una barrera de

tunelamiento adicional en el potencial efectivo para part́ıculas cargadas masivas en el espacio-tiempo

de RN al imponer la condición cŕıtica para la existencia del máximo en la barrera que corresponde

a la transición entre las regiones permitida y prohibida clásicamente, (pr = 0 en la ecuación (4.8))

y realizando la derivada de la ecuación correspondiente con respecto a r, se obtiene una expresión

para la enerǵıa máxima, aśı pues

ωmax = m2

√
M2 −Q2

Q2(q2 −m2)
+
q

Q

q2Q2 −m2M2

M(q2 −m2) + q
√

(q2 −m2)(M2 −Q2)
. (4.12)

Esta enerǵıa máxima ωmax representa el umbral superior de enerǵıas para las cuales una part́ıcula

cargada emitida desde el agujero negro experimenta una barrera adicional, generando una supresión

exponencial adicional en la emisión de radiación de Hawking. La existencia de este ĺımite superior

implica que part́ıculas con enerǵıa por encima de este umbral no tendrán dicha barrera de potencial,

por lo que su emisión no será suprimida adicionalmente por este mecanismo espećıfico.

Se puede obtener una posición radial en la cual el valor de la enerǵıa ω sea (4.12) y esta posición

radial se obtiene a partir del análisis del potencial efectivo para part́ıculas cargadas masivas en el

ĺımite de masa grande mM ≫ 1. Para ciertas enerǵıas (ω < ωmax) existe una barrera adicional que

separa la región clásicamente prohibida de la permitida. La posición de esta barrera está determinada

por la condición de máximo del potencial efectivo, es decir, imponiendo la condición de primer orden

sobre la derivada del potencial efectivo. Al realizar este procedimiento expĺıcitamente, resolviendo



76

la ecuación resultante para la posición radial r, se obtiene justamente la ecuación (4.13)

rmax =M
α2 −Q2

α2 −M2
+ α

√
M2 −Q2

√
α2 −Q2

α2 −M2
, α =

qQ

m
(4.13)

Este radio es el radio espećıfico donde se ubica la barrera de potencial máxima, relevante para

el análisis del túnel cuántico. Esta posición depende espećıficamente de los parámetros f́ısicos del

problema: la masa m y la carga q de la part́ıcula, aśı como de la masa M y carga Q del agujero

negro. La existencia de este radio espećıfico implica que las part́ıculas emitidas desde el agujero

negro deben superar una barrera adicional para escapar al infinito, lo que genera una supresión

exponencial adicional en la tasa de emisión. La ecuación (4.13) refleja aśı la geometŕıa espećıfica

del potencial efectivo, resaltando cómo los parámetros f́ısicos determinan la estructura del potencial

alrededor del agujero negro cargado.

Ahora que ya tenemos la enerǵıa máxima evaluamos expĺıcitamente la integral de túnel WKB en el

régimen espećıfico de part́ıculas con enerǵıas en el rango

qQ

r+
< ω < ωmax,

en el ĺımite de masa grande (mM ≫ 1). Esta integral originalmente se expresa como el lado izquierdo

de (4.10), donde los puntos r1 y r2 vienen dados por (4.9) que son soluciones de la ecuación (4.8).

En el ĺımite de masa grande y usando métodos anaĺıticos y aproximaciones en el régimen indicado,

esta integral se puede resolver exactamente, resultando en la expresión expĺıcita de acá abajo

ℑS/π =
ωqQ− 2ω2M +m2M

k
+
qMQ+ ωQ2 − 2ωM2√

M2 −Q2
(4.14)

La ecuación (4.14) describe la acción imaginaria para el tunelamiento cuántico en presencia de un

agujero negro cargado. Este resultado es clave para entender cómo la probabilidad de emisión (a

través del factor exponencial e2ℑS) está influenciada por los parámetros f́ısicos del sistema (enerǵıa,

carga, masa y parámetros del agujero negro). Esta ecuación muestra claramente la dependencia no

trivial del resultado del tunelamiento respecto a las caracteŕısticas f́ısicas tanto del agujero negro

como de las part́ıculas emitidas.

Enfatizamos el resultado cualitativo de que, al menos en el ĺımite de part́ıcula puntual, habrá una
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supresión adicional exponencial de radiación con enerǵıa menor a ωmax, comparado con el espectro

predicho por las distribuciones de bosones y fermiones.

4.2. Un proceso de tunelaje combinado

Hemos visto cómo los factores de distribución térmicos y los coeficientes de transmisión en

(2.52) y (2.54) pueden ser calculados tratando la emisión como un proceso de tunelamiento. En esta

sección final, aplicaremos el razonamiento probabiĺıstico estudiado en la sección de probabilidades

para proveer una interpretación de tasa total de emisión, que involucra el producto de esos dos

factores, como un proceso combinado de tunelamiento, primero a través del horizonte y luego del

campo eléctrico.

Vemos la emisión como un proceso de dos fases. Primero, la part́ıcula tunela a través del horizonte.

Para part́ıculas con ω > qΦ, la part́ıcula resultante es real (en términos de que esta posee enerǵıa

positiva en el horizonte) y pueden escapar al infinito. Para part́ıculas con enerǵıa negativa en el

horizonte, podemos ver este proceso de tunelamiento como un reajuste del número de part́ıculas en el

mar de Dirac afuera del horizonte. Las part́ıculas en este mar de Dirac después pueden tunelar hasta

el infinito. Haremos este análisis en términos de matrices densidad aunque solo pueden ser pensadas

como descripciones de las distribuciones de probabilidad. En el caso fermiónico este proceso es

claro, mientras que en el caso bosónico este proceso es algo más oscuro debido a la ausencia de una

descripción tipo mar de Dirac del vaćıo bosónico veamos más a detalle primero el caso fermiónico,

debido a que es más sencillo de entender.

En el caso fermiónico la matriz densidad es

ρH = NH |0̄⟩ ⟨0̄|+NHPH |1̄⟩ ⟨1̄| (4.15)

La acción de tunelaje PH = exp [−(ω − qΦ)/TBH ] corresponde a la probabilidad relativa de produc-

ción de un par part́ıcula-antipart́ıcula (interpretada en términos del mar de Dirac) debido al túnel

cuántico a través del horizonte. Esta probabilidad da lugar a un estado mixto representado por la

matriz densidad ρH . La matriz densidad describe las probabilidades relativas de que no se produzca

ninguna part́ıcula (|0̄⟩) y de que se produzca exactamente una part́ıcula en el mar de Dirac (|1̄⟩).

El factor NH es un factor de normalización que garantiza que las probabilidades sumen 1, y se
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determina imponiendo la condición

NH +NHPH = 1 ⇒ NH =
1

1 + PH
.

La ecuación (4.15) muestra expĺıcitamente cómo el proceso cuántico de tunelamiento desde el agujero

negro genera una distribución probabiĺıstica en la producción de part́ıculas, particularmente clara

para fermiones (debido a la interpretación del vaćıo en términos del mar de Dirac). La matriz

densidad ρH refleja el estado del sistema justo después del túnel por el horizonte, pero antes de

considerar el segundo paso del proceso, que es el tunelamiento adicional a través del campo eléctrico

hacia el infinito.

Ahora, considerando el segundo paso del proceso, al principio, la part́ıcula tunela a través del

horizonte, este paso se describe con la matriz densidad (4.15). Luego, únicamente el estado |1̄⟩,

que representa la presencia de una part́ıcula en el mar de Dirac, puede realizar un segundo túnel a

través del campo eléctrico externo para convertirse en una part́ıcula real que llegue hasta el infinito.

Este segundo túnel está descrito por la probabilidad relativa PS = KT̃ . Al considerar este segundo

proceso, el estado |1̄⟩ se convierte parcialmente en el estado |1⟩, que representa una part́ıcula real

en el infinito. Esto produce la matriz densidad total en el infinito:

ρ∞ = NH |0̄⟩ ⟨0̄|+NHPHNS |1̄⟩ ⟨1̄|+NHPHNSPS |1⟩ ⟨1| . (4.16)

Los factores de normalización NH y NS garantizan la correcta normalización de probabilidades en

cada paso. NS se determina imponiendo la misma condición anterior, aśı pues

NS +NSPS = 1 ⇒ NS =
1

1 + PS
.

La ecuación (4.16) indica cómo el estado final detectado en el infinito resulta del proceso combinado

de tunelamiento (a través del horizonte y posteriormente a través del campo eléctrico). Los términos

corresponden expĺıcitamente a un estado de vaćıo (ninguna part́ıcula detectada), un estado con una

part́ıcula en el mar de Dirac que no alcanza el infinito y finalmente, un estado en el que una part́ıcula

escapa exitosamente hacia el infinito. La estructura refleja claramente cómo el proceso de emisión

es una secuencia probabiĺıstica de eventos, enfatizando el carácter mixto del estado final.
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Ahora, a partir de (4.15) y (4.16), podemos evaluar el número de part́ıculas fermiónicas detectadas

en el infinito luego del proceso combinado de tunelamiento cuántico a través del horizonte y el

campo eléctrico externo del agujero negro cargado.

Para ello, primero recordamos que la matriz densidad final viene dada por (4.16), aqúı, el operador

número n únicamente cuenta las part́ıculas reales detectadas en el infinito. Por lo tanto, al tomar

la traza del producto del operador número n con la matriz densidad ρ∞, solo el término con el

estado |1⟩ contribuye, ya que los estados con barra (representando part́ıculas en el mar de Dirac)

no corresponden a part́ıculas reales detectadas, realizando la traza se obtiene

nf = Tr(nρ∞) = NHPHNSPS ,

sustituyendo expĺıcitamente las definiciones anteriores resulta en la forma compacta

nf =
1

1 + e(ω−qΦ)/TBH

KT̃

1 +KT̃
. (4.17)

La expresión muestra claramente que la tasa de emisión fermiónica final es un producto de dos

factores, por un lado, un factor térmico estilo Fermi-Dirac, que describe la emisión térmica debida

al horizonte del agujero negro, mientras que, por otro lado hay un factor adicional, que representa

la probabilidad de transmisión a través del campo eléctrico fuera del agujero negro. Esto indica

claramente que la emisión total no es simplemente térmica, sino que es modificada adicionalmente

por la presencia del campo eléctrico externo al horizonte.

Ahora, haremos el análisis para el caso bosónico, que como ya se mencionó anteriormente, es más

complejo debido a la inexistencia de una descripción sencilla del vaćıo bosónico (no existe un ”mar

de Dirac”bosónico estándar). En el art́ıculo [6], se adopta una interpretación alternativa para los

bosones en la cual se introducen estados con números negativos de part́ıculas (denotados con una

barra, como |n̄⟩), donde el vaćıo bosónico corresponde al estado con −1 part́ıculas por modo, el

proceso de tunelamiento a través del horizonte se interpreta como una repoblación de estos estados

de enerǵıa negativa, generando una serie infinita de estados posibles con números crecientes de

part́ıculas y la estructura espećıfica de esta matriz densidad surge al considerar que cada estado

bosónico con −n part́ıculas tiene una probabilidad relativa dada por potencias inversas de PH .
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Con esta interpretación, la matriz densidad es

ρH = NH

(
|1̄⟩ ⟨1̄|+ 1

PH
|2̄⟩ ⟨2̄|+ 1

P 2
H

|3̄⟩ ⟨3̄|+ · · ·+ etc

)
, (4.18)

con condición de normalización dada por

NH = 1− 1

PH
, PH = e−(ω−qΦ)/TBH .

La ecuación (4.18) describe la matriz densidad ρH que representa un estado mixto en el horizonte

del agujero negro, formado tras el primer paso de tunelamiento. Cada término de la suma corres-

ponde a la probabilidad relativa de encontrar un número espećıfico de part́ıculas (negativas, en

esta interpretación particular del vaćıo bosónico) después del túnel inicial a través del horizonte. La

forma expĺıcita refleja cómo la probabilidad de ocupación de estos estados decrece con factores de

1/PH , mostrando claramente la estructura geométrica de estas probabilidades.

Para hallar la expresión bosónica análoga a (4.16) se tiene que recordar que los bosones no cumplen

con el principio de exclusión de Pauli, por lo que varios bosones pueden estar en el mismo estado

cuántico, entonces tomemos el estado |1̄⟩

|1̄⟩ ⟨1̄| → NS(|0⟩ ⟨0|+ PS |1⟩ ⟨1|+ P 2
S |2⟩ ⟨2|+ · · · ), (4.19)

Esta ecuación describe cómo evoluciona el estado inicial |1̄⟩, que representa una ocupación negativa

del vaćıo bosónico en el contexto del tunelamiento, hacia el estado final. Inicialmente, el estado

bosónico |1̄⟩ (que contiene part́ıculas con enerǵıas negativas como estados vaćıos rellenados”) puede

generar part́ıculas reales en el infinito a través del tunelamiento. La probabilidad de producir n

part́ıculas reales en el infinito sigue una distribución geométrica dada por el factor PS , de modo

que el estado inicial se convierte en una suma probabiĺıstica sobre todos los estados posibles |n⟩. El

factor NS = 1−PS se introduce para garantizar que la distribución probabiĺıstica esté correctamente

normalizada.

La ecuación (4.19) muestra expĺıcitamente que, partiendo del estado |1̄⟩, la probabilidad de generar

ningún estado de part́ıcula real (|0⟩) es NS , la probabilidad de generar exactamente una part́ıcula

real (|1⟩) es NSPS , y aśı sucesivamente, formando una distribución infinita en términos de PS . Esto
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refleja que, en el contexto bosónico, puede producirse un número arbitrario de part́ıculas debido al

carácter ilimitado de la estad́ıstica bosónica.

A continuación nos preguntamos qué pasa con el estado resultante en el infinito para el estado

doblemente ocupado |2̄⟩, después de tunelar a través del campo eléctrico. Si cada part́ıcula en este

estado es independiente de la otra, esperamos que la distribución de probabilidad sea la suma de 2

distribuciones con la misma media. Similarmente, esperamos que el estado |n̄⟩ tunele a un estado

descrito por n distribuciones geométricas independientes. La suma de distribuciones geométricas

independientes e idénticas es descrita por la distribución binomial negativa, aśı pues

|n̄⟩ ⟨n̄| → (1− PS)
n

∞∑
k=0

(
n+ k − 1

k

)
P k
S |k⟩ ⟨k| , (4.20)

Este resultado indica que, partiendo del estado |n̄⟩ (con n part́ıculas negativas, la probabilidad final

de detectar exactamente k part́ıculas reales es dada por la distribución binomial negativa. El fac-

tor binomial
(
n+k−1

k

)
refleja la multiplicidad combinatoria del proceso, mostrando cómo múltiples

part́ıculas bosónicas contribuyen independientemente a la creación final de part́ıculas reales detecta-

das en el infinito. Esta expresión proporciona un entendimiento claro del carácter probabiĺıstico del

proceso de emisión bosónica desde un agujero negro cargado, destacando cómo múltiples part́ıculas

negativas inicialmente presentes pueden contribuir a la generación de múltiples part́ıculas reales

observadas.

Ahora, que ya hemos explorado las implicaciones de que no haya un claro análogo al mar de Dirac

fermiónico en bosones, estamos listos para ver la matriz densidad total en el infinito, y de manera

similar al caso fermiónico, aqúı se combinan los dos procesos de tunelamiento, el tunelamiento a

través del horizonte y el posterior tunelamiento a través del campo eléctrico, para ello combinamos

directamente las dos ecuaciones (4.18) y (4.20), sustituyendo (4.20) en cada término de la matriz

densidad (4.18), y se obtiene

ρ∞ = NH

∞∑
n=1

P 1−n
H (1− PS)

n
∞∑
k=0

(
n+ k − 1

k

)
P k
S |k⟩ ⟨k| . (4.21)

Esta expresión describe de forma exacta cómo la distribución final observada en el infinito resulta de

la combinación probabiĺıstica del proceso de emisión de part́ıculas bosónicas desde un agujero negro
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cargado. Se puede interpretar directamente como una suma doble sobre todas las configuraciones

posibles, indicando cómo la probabilidad es resultado de la combinación de múltiples procesos de

tunelamiento. La complejidad de la expresión refleja el carácter puramente bosónico del proceso,

en el que un número arbitrario de part́ıculas puede producirse con distribuciones probabiĺısticas

claramente identificadas.

De manera similar a lo hecho en el caso fermiónico, evaluamos el número medio de part́ıculas

bosónicas detectadas en el infinito, luego del proceso combinado de tunelamiento cuántico desde

un agujero negro cargado, descrito previamente en las ecuaciones (4.18)-(4.21), para ello tomamos

la traza del operador número n, que solo cuenta estados con k part́ıculas reales sobre la matriz

densidad

nb = tr(nρ∞) = NH

∞∑
n=1

P 1−n
H (1− PS)

n
∞∑
k=0

k

(
n+ k − 1

k

)
P k
S .

Al realizar esta suma expĺıcitamente (que se simplifica usando propiedades de distribuciones bino-

miales negativas y series geométricas), se obtiene

nb =
1

1− exp ((ω − qΦ)/TBH)

KT̃

1−KT̃
. (4.22)

La expresión resultante muestra que la emisión bosónica está descrita por un factor similar a una

distribución tipo Bose-Einstein modificada por la probabilidad de tunelamiento a través del campo

eléctrico externo. El factor
KT̃

1−KT̃
representa la modificación adicional debida al segundo proceso

de tunelamiento a través del potencial eléctrico externo. Esta ecuación contrasta directamente con

el resultado fermiónico (4.17), resaltando la diferencia fundamental entre estad́ısticas bosónicas y

fermiónicas en el proceso de emisión desde agujeros negros cargados.

4.3. Análisis gráfico de los potenciales efectivos

Ahora haremos un análisis gráfico de los potenciales efectivos para diferentes casos con el poten-

cial efectivo siendo lo que se encuentra dentro de la ráız que a su vez es integrando de las ecuaciones

(4.5,4.6,4.7), en el primero variamos m mientras q se mantiene fijo (q = 0,1) para ℓ = j = 0, 1 nos

enfocaremos en agujeros negros subextremales con estos parámetros (M = 1, Q = 0,8), adicional-

mente, la frecuencia de oscilación ω = 0,5
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Figura 4.1: Potencial efectivo para fermiones y bosones al variar m

En la figura (4.1) vemos claramente la distinción entre bosones y fermiones. Para el caso bosónico

(ℓ = 0, 1) vemos que la masa m posee un impacto considerable en la altura y forma del potencial

efectivo. A medida que la masa aumenta, la barrera se incrementa notablemente, dificultando el aún

más el paso de part́ıculas masivas desde el agujero negro. La presencia de momento angular no nulo

amplifica este efecto. Por otra parte, para el caso fermiónico (j = 0, 1) existe un comportamiento

similar con respecto a la masa, aunque nuevamente es más simple en comparación con el bosónico.

El incremento de la masa m provoca un aumento en la barrera, pero la estructura del potencial es

más simple debido a que únicamente depende del término cuadrático en (j + 1/2)2.

En el segundo análisis variamos q mientras m se mantiene fijo y se muestra en 4.2
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Figura 4.2: Potenciales efectivos para fermiones y bosones m = 0,1 cuando variamos q

La barrera potencial aumenta significativamente con q. Para ℓ = 1, la barrera potencial es no-

tablemente más alta debido al término del momento angular, mostrando cómo part́ıculas cargadas

con momento angular enfrentan una mayor resistencia al túnel cuántico. Por otro lado, para el

caso fermiónico similarmente, al aumentar la carga q, la barrera del potencial crece claramente. Sin

embargo, en comparación con el caso bosónico, la barrera para fermiones es menos compleja, debido

a la inexistencia de los términos adicionales gravitacionales. El potencial fermiónico es más sencillo

estructuralmente, y el efecto de la carga es más directo.

Estos gráficos destacan claramente las diferencias entre part́ıculas bosónicas y fermiónicas al in-

teractuar con el campo gravito-electromagnético de un agujero negro de RN, proporcionando una

visión clara del papel que juegan la carga, la masa y el momento angular.

Ahora haremos el análisis para m≫ 1(el caso de la ecuación (4.7)), nótese que acá los fermiones y

los bosones son indistinguibles debido al dominio del término f(r)m2:
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Figura 4.3: Barrera de potencial cuando m≫ 1

Notamos que, al incrementar la masa m, la barrera potencial se vuelve extremadamente pronun-

ciada. Esto significa que part́ıculas masivas encuentran mayores dificultades para escapar mediante

túnel cuántico desde el horizonte del agujero negro. La carga q en este caso (fijada a 0.1) juega

un papel menor siendo la masa m el factor determinante del comportamiento del potencial. En

resumen, este ĺımite representa claramente un escenario clásico o cuasi-clásico, donde la dinámica

cuántica se reduce a un comportamiento muy cercano al de una part́ıcula clásica masiva en un campo

gravito-electromagnético intenso, haciendo que la distinción entre bosones y fermiones desaparezca.

Ahora analizamos un caso donde m = q = 0 como el caso de fotones (bosones) o neutrinos sin

masa (fermiones). En este caso simplificado extremo, el potencial efectivo se reduce principalmente

a efectos puramente gravitacionales y dependientes del momento angular ℓ y j, además del término

constante relacionado con la frecuencia ω.

Figura 4.4: Potencial efectivo para part́ıculas sin masa ni carga (m = q = 0)
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Para ℓ = j = 0, tanto el potencial bosónico como el fermiónico, son casi idénticos y presentan

una estructura bastante sencilla. La barrera de potencial es originada exclusivamente por la geo-

metŕıa del agujero negro (efectos gravitacionales) y a la enerǵıa de la onda incidente ω. Por otro

lado, para ℓ = j = 1, se observa una barrera potencial gravitacional más pronunciada debido al

momento angular. Los potenciales bosónico y fermiónico son muy similares, destacando la relevancia

primordial del momento angular sobre los otros efectos que hemos considerado anteriormente.

El análisis mostrado en (4.4) corresponde a part́ıculas sin masa ni carga, por ejemplo fotones, gravi-

tones o neutrinos sin masa, mostrando cómo estas part́ıculas se propagan únicamente en presencia

del campo gravitacional del agujero negro cargado. La barrera de potencial depende exclusivamente

del momento angular y de la frecuencia, determinando cómo estas ondas puramente gravitacionales

o electromagnéticas son dispersadas por el agujero negro.

En resumen, al eliminar la masa y la carga, los potenciales efectivos se simplifican enormemente,

resaltando que la dinámica del campo en este caso depende únicamente de la geometŕıa del espacio-

tiempo y del momento angular.

Ahora haremos un análisis en el caso m = 3 bajo distintos valores de frecuencia comenzando con

ω = 0,2 hasta ω = 1,2, el análisis se muestra en

Figura 4.5: Distintos valores de ω

A frecuencias bajas (ω = 0,2), la barrera de potencial es pequeña y existe una amplia región

clásicamente prohibida (positiva). Conforme aumenta la frecuencia ω, la barrera de potencial evo-

luciona claramente, desplazándose y modificando su estructura de manera notable. Las regiones

clásicamente permitidas (donde Veff < 0) se hacen más amplias conforme aumenta ω, indicando que
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part́ıculas con enerǵıas más altas tienen mayor probabilidad de superar esta barrera de potencial.

La figura (4.5) proporciona una clara visualización del efecto de la frecuencia sobre la estructura

del potencial efectivo y permite una mayor comprensión de cómo la emisión de part́ıculas depende

directamente de su enerǵıa ω.

Hay un régimen qQ/r+ < ω < ωmax donde ωmax está dado por (4.12), donde el tunelamiento

cuántico es menos probable debido a la existencia de una barrera adicional que debe atravesar la

part́ıcula fuera del horizonte. El art́ıculo original [6] demostró anaĺıticamente que si la frecuencia de

la part́ıcula ω se sitúa por encima de qQ/r+ (es decir, la enerǵıa electrostática en el horizonte) pero

por debajo de cierta enerǵıa máxima ωmax, entonces la part́ıcula enfrenta un obstáculo potencial

en el exterior.

Figura 4.6: Régimen qQ/r+ < ω < ωmax con m = 0,6 y q = 0,5

La figura (4.6) confirma este resultado: para ω apenas mayor que qQ/r+, Veff (r) exhibe un

máximo local positivo. En este rango, aunque la part́ıcula tiene enerǵıa suficiente para ser real

en el horizonte (ω > qΦH) por lo que no necesita tunelizar el horizonte mismo, aún encuentra una

barrera más afuera, debida a la competencia entre la atracción gravitatoria y la repulsión o atracción

eléctrica.
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4.4. Discusión

En esta sección discutimos la estructura del potencial efectivo en varios reǵımenes f́ısicos, incor-

porando un análisis gráfico complementario. En particular, examinamos el ĺımite de masa grande,

los casos de masa y carga nula, aśı como también analizamos el caso en que ω vaŕıa. Esta discusión

subraya cómo vaŕıa la barrera de potencial efectiva con los parámetros ω, m y q, clarificando y

enriqueciendo las conclusiones del art́ıculo original[6].

En el ĺımite clásico (m≫ 1), en este régimen (4.3) (mucho mayores que la escala de enerǵıa consi-

derada), se recupera el comportamiento clásico del potencial. La figura (4.3) muestra que al tomar

m → ∞, las expresiones para la acción de túnel y la forma del potencial efectivo de bosones y

fermiones coinciden, eliminándose las diferencias debidas al esṕın. Esto concuerda con la expecta-

tiva de que una part́ıcula con longitud de onda de Compton muy pequeña (masa elevada) puede

tratarse como un punto clásico atravesando la región de campo, independiente de su estad́ıstica

cuántica. Aśı, la barrera de potencial experimentada por part́ıculas bosónicas o fermiónicas resulta

esencialmente la misma. F́ısicamente, esto implica que en el ĺımite m ≫ 1 el proceso de emisión

ya no distingue entre bosones y fermiones - ambos tipos de part́ıculas siguen la misma trayecto-

ria clásica fuera del agujero negro, con tasas de transmisión prácticamente idénticas. De hecho, la

distribución de ocupación se acerca al régimen de Maxwell-Boltzmann (clásico), donde los factores

de est́ımulo bosónico o la exclusión fermiónica son irrelevantes, coherente con la desaparición de

diferencias estad́ıstico-cuánticos en este ĺımite.

En el caso m = q = 0, el potencial efectivo es negativo en todo el exterior, como se puede apreciar

en la figura (4.4) y no presenta un punto de retorno - el campo no ejerce fuerza eléctrica ni hay masa

en reposo que genere una barrera, por lo que la part́ıcula se propaga libremente desde el horizonte

hasta el infinito una vez creada. En suma, la presencia de una barrera de potencial exterior está

ligada a m, q > 0; si ambos desaparecen, el potencial efectivo se torna trivial y no impide la emisión

de part́ıculas (consistente con la radiación de Hawking usual para fotones neutros).

Se identifica además un régimen de enerǵıas en el cual aparece una barrera de potencial adicio-

nal fuera del horizonte (4.6). De hecho, inmediatamente fuera del horizonte (r ≳ r+) el término

(ω − qQ/r) puede superar a m en la condición de movimiento, permitiendo una región inicialmen-

te permitida; sin embargo, a distancias mayores el potencial electrostático qQ/r disminuye y el
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término de masa m2 domina localmente, generando un pico en Veff que actúa como una segunda

barrera de potencial. La posición de esta segunda barrera rmax dado por la ecuación (4.13) y su

altura disminuyen al incrementar ω: a medida que ω se aproxima a ωmax, el pico de Veff se reduce

y se desplaza hacia el horizonte, hasta finalmente desaparecer cuando ω ≥ ωmax. En ω = ωmax la

barrera se vuelve tangencial al eje de la enerǵıa (altura cero) y para ω superiores el potencial efec-

tivo es completamente negativo fuera del horizonte (ninguna región prohibida clásicamente). Este

comportamiento concuerda con la figura 4 del art́ıculo original ([6]), donde se ilustró la región en

el plano (ω, r) en que existe momento radial imaginario: por debajo de ω = qΦH (ĺınea punteada)

hay siempre una región de túnel, y notablemente también aparece una región estrecha de túnel

levemente por encima de qΦh, la cual termina en ωmax. Los resultados gráficos hacen v́ıvida esta

caracteŕıstica: mostrando cómo, en dicho intervalo, el perfil de Veff posee un doble punto de retorno

(r1, r2) que delimita una barrera finita. La part́ıcula debe tunelar a través de esta barrera exterior

para alcanzar el infinito, incluso cuando su enerǵıa supera la carga del agujero negro por part́ıcula

en el horizonte. Ahora vamos a discutir la dependencia con ω, m, q, las gráficas del potencial efecti-

vo permiten observar de forma clara cómo vaŕıa la barrera con los parámetros f́ısicos de la part́ıcula.

Frecuencia ω: Como se aprecia en la figura (4.6), una mayor enerǵıa ω del modo tiende a

disminuir la altura y anchura de la barrera. Para ω ≪ qQ/r+ (o por debajo de m si q = 0),

la barrera es pronunciada y amplia, pudiendo incluso extenderse desde el horizonte hasta el

infinito (caso extremo en que la part́ıcula no tiene enerǵıa para escapar clásicamente. Al cruzar

ω = qQ/r+,, la barrera ya no toca el horizonte pero sigue presente más afuera; conforme ω se

incrementa dentro del rango permitido, la amplitud de la barrera decrece hasta anularse en

ωmax. Para ω > ωmax no queda rastro de barrera: el potencial efectivo es negativo en todo el

exterior, indicando que la part́ıcula con enerǵıa sobre-umbral puede escapar libremente (aparte

del decaimiento exponencial t́ıpico de la distribución de Hawking a alta enerǵıa).

Masa m: Una mayor masa en reposo favorece la aparición de barreras. Incluso en ausencia

de carga eléctrica (q = 0), un valor grande de m implica que se requerirá ω ≥ m para que

la part́ıcula sea libre a infinito; si ω < m, la diferencia m2 − ω2 actúa como una barrera

gravitacional (asociada a la enerǵıa de ligadura necesaria para extraer una part́ıcula masiva
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del pozo gravitatorio del agujero negro. Cuando además q ̸= 0, un m grande extiende el

régimen de existencia de la barrera adicional: se encuentra que ωmax aumenta con m (para q

fijo), lo que significa que para part́ıculas más masivas requieren enerǵıas mayores para que la

barrera exterior desaparezca. En nuestros gráficos (4.3) se observa que, manteniendo ω fijo por

debajo de qQ/r+, al incrementar m el pico de Vmax crece (V eff
max ≈ m2) y la región prohibida

se ensancha. Por el contrario, en el ĺımite m → 0 la barrera tiende a desaparecer como ya se

discutió y se muestra en (4.4).

Carga q: La carga de la part́ıcula influye en la forma del potencial a través del término qQ/r.

Un q mayor (en valor absoluto) implica una interacción electrostática más fuerte con el campo

eléctrico del agujero negro. Si q tiene el mismo signo que Q (repulsión eléctrica), un valor gran-

de de q eleva la enerǵıa electrostática qQ/r+ en el horizonte, aumentando el umbral qQ/r+

que ω debe superar para no comenzar con enerǵıa negativa. Esto, como se aprecia en la figura

(4.2), tiende a desplazar la barrera hacia regiones más externas: efectivamente una part́ıcula

muy cargada siente una fuerza eléctrica intensa, de modo que cerca del horizonte es fuerte-

mente impulsada hacia afuera (reduciendo temporalmente la barrera alĺı), pero puede quedar

frenada más lejos donde la repulsión decrece. El resultado es que para q grandes, la barrera

adicional aparece a distancias mayores y suele ser más estrecha en r (con un intervalo [r1, r2]

más cercano entre śı), aunque persiste en un rango más amplio de enerǵıas (pues ωmax también

crece con q en términos absolutos cuando q > m). Por otro lado, si q tiene signo opuesto al de

Q (atracción eléctrica), una |q| grande profundiza la barrera efectiva: la part́ıcula es atráıda

hacia el horizonte, aumentando la altura de Veff y dificultando su escape. En cualquier caso

q = 0 elimina por completo esta barrera electrostática adicional volviendo al escenario pura-

mente gravitacional ya descrito.

Este análisis gráfico complementa las afirmaciones de [6], proporcionando una visión clara de los

procesos de emisión. En particular confirma que existe una supresión adicional exponencial en las

tasas de emisión para enerǵıas ω < ωmax atribuible precisamente a la presencia de la barrera de

potencial exterior identificada en Veff (r). Las gráficas presentadas aqúı hacen tangible cómo dicha

barrera bloquea parcialmente las part́ıculas salientes obligando a un proceso de túnel (análogo al
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efecto Schwinger) incluso después del tunelaje a través del horizonte. Esto aclara la interpretación

f́ısica: la radiación de part́ıculas desde agujeros negros cargados puede verse como un proceso de

doble túnel - primero a través del horizonte (radiación de Hawking) y luego a través de la barrera

electrostática exterior - consistente con la descripción combinada que propone el art́ıculo. Asimismo,

la confluencia entre los casos fermiónico y bosónico en el ĺımitem→ ∞ corroborada en (4.3) refuerza

la idea de que las diferencias de esṕın (como la amplificación bosónica o la exclusión fermiónica) se

manifiestan únicamente cuando los efectos cuánticos son importantes; en el régimen clásico ambas

estad́ısticas producen el mismo potencial efectivo y por tanto, la misma f́ısica de emisión. En resu-

men, el análisis gráfico presentado no sólo ilustra cuantitativammente las dependencias de Veff con

ω, m, q; sino que también ofrece un respaldo visual de los mecanismos discutidos en el trabajo ori-

ginal[6] - desde la desaparición de la distinción bosón/fermión en altas masas, hasta la aparición de

una barrera de potencial suplementaria que explica la reducción en la emisión para ciertas enerǵıas.

Estas observaciones fortalecen la interpretación del proceso de emisión de part́ıculas cargadas como

un fenómeno túnel en 2 etapas y aportan una comprensión más intuitiva de los distintos reǵımenes

f́ısicos involucrados.
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Caṕıtulo 5

Conclusiones

En este trabajo se ha llevado a cabo un análisis detallado del potencial efectivo asociado a

part́ıculas cargadas, tanto bosónicas como fermiónicas, propagándose en el entorno de un agujero

negro de Reissner-Nordström. El estudio se centró en las diferencias entre los perfiles del potencial

efectivo para distintas configuraciones angulares, aśı como el impacto que tienen la masa m, la carga

q y la frecuencia ω de la part́ıcula sobre la forma del potencial.

En primer lugar, se confirmó que los términos angulares introducen diferencias sustanciales entre

bosones y fermiones. En el caso ℓ = j = 0, la ausencia de una barrera centŕıfuga da lugar a un

potencial dominado por la competencia entre la atracción gravitacional y la repulsión (o atracción)

electrostática. Por otro lado, para ℓ = j = 1, el potencial presenta una barrera pronunciada cuyo

perfil depende sensiblemente de los parámetrosm, q, ω. Se observó que el término angular (j+1/2)2

en el caso fermiónico genera una barrera sistemáticamente más baja que su contraparte bosónica

ℓ(ℓ + 1), con lo cual los fermiones encuentran una región de túnel más angosta, implicando una

menor supresión exponencial en el escape.

El análisis gráfico realizado para diferentes valores de masa y carga mostró que, al aumentar la

masa de la part́ıcula, el potencial efectivo se eleva globalmente, aumentando la altura y anchura

de la barrera. Esto sugiere que la emisión espontánea de part́ıculas masivas está más suprimida,

coherente con lo esperado en el contexto del mecanismo de Schwinger y de la distribución térmica

de Hawking. Aśı mismo, se verificó que el aumento de la carga q incrementa el término electrostático

en el potencial efectivo, debilitando o eliminando la barrera para part́ıculas de la misma carga que el

agujero negro, y reforzándola para part́ıculas de carga opuesta. Especial atención se prestó al régimen
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qQ

r+
< ω < ωmax, donde se generaron gráficos comparativos entre bosones y fermiones para distintos

valores de ω dentro de ese intervalo. En dicho régimen, se encontró que es posible distinguir entre

estad́ıstica bosónica y fermiónica mediante la forma del potencial efectivo: los fermiones enfrentan

barreras más bajas y más permeables, lo que potencialmente puede reflejarse en una mayor tasa

de emisión. Se introdujo además una visualización expĺıcita de las regiones de efecto túnel (donde

Veff(r) > 0) mediante sombreado gráfico, ilustrando claramente cómo vaŕıa la probabilidad de escape

de acuerdo a la naturaleza de la part́ıcula.

Finalmente, se exploró el ĺımite clásico m ≫ 1, en el cual se verificó que el término dominante

en el potencial efectivo es f(r)m2, tanto para bosones como para fermiones. En este régimen, las

diferencias debidas al esṕın o al momento angular se tornan despreciables, y los potenciales efectivos

se unifican en una forma universal, determinada casi exclusivamente por la métrica de fondo y el

valor de m. Esto justifica que, para part́ıculas muy masivas, la emisión espontánea esté fuertemente

suprimida y que las diferencias entre bosones y fermiones sean irrelevantes.

Queda como trabajo pendiente un análisis del potencial efectivo en los tres reǵımenes geométricos

del agujero negro: subextremal (Q < M), extremal (Q = M) y superextremal (Q > M). Este

análisis permitirá una identificación con mayor precisión del papel del horizonte de sucesos y su

degeneración en la formación de barreras de potencial, aśı como el efecto de la ausencia de horizonte

en la dinámica de propagación de part́ıculas cargadas.

Por último seŕıa relevante investigar si el marco metodológico aqúı empleado -basado en el análisis

gráfico, la clasificación de acuerdo al esṕın de las part́ıculas, y la expansión WKB- es aplicable a

otras soluciones de agujeros negros, tales como las geometŕıas de Kerr-Neumann, RN-AdS o incluso

modelos de agujeros negros regulares. Explorar dichas extensiones permitiŕıa evaluar la robustez del

trabajo y contrastar cómo la rotación, la constante cosmológica o la regularización cuántica afectan

la emisión de part́ıculas cargadas y el perfil de los potenciales efectivos asociados.



Caṕıtulo 6

Anexos

6.1. Anexo A: Derivación de la métrica de RN

Se resolverá las ecuaciones de campo de Einstein y se derivará la solución de RN. Hay simetŕıa

esférica, por lo tanto el sistema de coordenadas elegido será el esférico. Cuando Q → 0 la solución

deberá aproximarse a la de Schwarzschild, misma que se muestra en (6.1)

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (6.1)

Otra propiedad que debeŕıa tener la métrica es que el espacio-tiempo debe ser asintóticamente

plano. En otras palabras, la métrica debeŕıa aproximarse al espacio-tiempo de Minkowski cuando

r → ∞, esto quiere decir que la métrica, usando coordenadas esféricas debeŕıa aproximarse a

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2.

Un espacio-tiempo curvo (pero que todav́ıa presenta simetŕıa esférica) en general tiene la forma

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2(dθ2 + sin2 θdϕ2),

se puede asumir que A y B no son dependientes del tiempo, sin embargo, el caso general puede

depender del tiempo aśı que en este caso lo tendremos en cuenta hasta que posteriormente se haya

demostrado que no depende expĺıcitamente del tiempo. Como se está trabajando en el vaćıo con un
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campo electromagnético se debeŕıa usar el tensor enerǵıa-momentum electromagnético dado por

Tµν =
1

4
gµνFαβFαβ − FµαFµ

β . (6.2)

Este tensor describe el flujo de enerǵıa electromagnética y momento en el espacio-tiempo. Las

propiedades de este tensor incluyen simetŕıa (Tµν = T νµ) y no tener traza:

T = Tµ
µ = gµνT

µν =
1

4
gµνg

µνFαβFαβ − gαβF
µαFµ

β

=
1

4
(4FµνFµν)− FαµFαµ

= FµνFµν − FαµFαµ = 0.

Las ecuaciones de Einstein, entonces, se ven reducidas a:

Rµν = 8πTµν

Donde

Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα (6.3)

Calcular los śımbolos de Christoffel de la métrica es tedioso y ocupa tiempo aśı que los śımbo-

los de Christoffel y el tensor de Ricci fueron generados con la ayuda de un software de algebra

computacional. Los śımbolos de Christoffel diferentes a cero son:

Γ0
00 =

Ȧ

2A

Γ1
01 = Γ1

10 =
Ḃ

2B
, Γ0

11 =
Ḃ

2A

Γ0
01 = Γ0

10 =
A′

2A
, Γ1

00 =
A′

2B

Γ2
12 = Γ2

21 =
1

r
, Γ1

11 =
B′

2B

Γ3
13 = Γ3

31 =
1

r
, Γ1

11 = − r

B

Γ3
32 = Γ3

23 = cotθ, Γ1
33 = −rsin

2θ

B

Γ2
33 = −sinθcosθ
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donde el punto representa derivada con respecto a t y la prima con respecto a r. Para el tensor de

Ricci las componentes no nulas son:

R00 = − A′

4B

(
A′

A
+
B′

B

)
+
A′′

2B
+
A′

Br
− B̈

2B
+

Ḃ

4B

(
Ȧ

A
− Ḃ

B

)
(6.4)

R11 = − A′

4A

(
A′

A
+
B′

B

)
− A′′

2A
+
B′

Br
− B̈

2B
− Ḃ

4A

(
Ȧ

A
− Ḃ

B

)
(6.5)

R22 = − r

2B

(
A′

A
− B′

B

)
− 1

B
+ 1 (6.6)

R33 = R22sin
2θ (6.7)

R01 = R10 =
Ḃ

Br
(6.8)

Esto es lo más lejos que podemos llegar generalizando a un campo gravitacional esféricamente

simétrico. Para determinar A y B necesitamos resolver las ecuaciones de campo de Einstein, esto

quiere decir que es necesario especificar el tensor enerǵıa-momentum. En este caso en particular el

tensor enerǵıa-momentum viene dado en términos de la métrica y el tensor electromagnético Fµν .

Dada la simetŕıa esférica del objeto de estudio, el campo eléctrico sólo presenta componente radial.

Además esta componente radial no debe depender de θ o ϕ, entonces se tiene que:

Er = E1 = E1(t, r) = F01 = −F10

Todas las demás componentes son cero puesto que no hay corrientes ni monopolos magnéticos. En

forma matricial esto es

Fµν =



0 Er 0 0

−Er 0 0 0

0 0 0 0

0 0 0 0


(6.9)
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Las componentes del tensor enerǵıa-momentum pueden ser calculadas mediante la ecuación 6.2.

Considere el primer término en los paréntesis. Llevando a cabo la suma da:

1

4
gµνFαβF

αβ

=
1

4
gµν(Fα0F

α0 + Fα1F
α1

=
1

4
gµν(F10F

10 + F01F
01)

=
1

4
gµν(2F01F

01) =
1

2
gµνF01F

01.

Para el segundo término queda:

gνβFµαF
µν = gνβFµ0F

β0 + gνβFµ1F
β1 = gν1Fµ0F

10 + gν0Fµ1F
01,

entonces se puede escribir la ecuación 6.2 como

Tµν =
1

2
gµνF01F

01 − gν1Fµ0F
10 − gν0Fµ1F

01.

Las componentes del tensor enerǵıa-momentum son fáciles de obtener. Se tiene:

T00 =
1

2
g00F01F

01 − g00F01F
01

= −1

2
g00F01F

01 = −A
2
F01F

01

T11 =
1

2
g11F01F

01 − g11F01F
01

= −1

2
g11F01F

01 =
B

2
F01F

01

T22 =
1

2
g22F01F

01 = −r
2

2
F01F

01

T33 =
1

2
g33F01F

01 = T22sin
2θ

Las demás componentes del tensor enerǵıa momento son cero. Como T01 = 0, entonces R01 = 0

y con la ecuación 6.8 concluimos que Ḃ = 0, mismo que implica que B no puede depender de t.

Notamos que

T00
A

+
T11
B

= 0
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Por lo tanto esto implica que

0 =
R00

A
+
R11

B
=

1

rB

(
A′

A
+
B′

B

)

De lo anterior se obtiene:

0 =
A′

A
+
B′

B
=

∂

∂r
ln(AB)

Lo cual implica que el producto AB es constante con respecto a r. Se puede escribir esto como

AB = f(t),

donde f(t) es alguna función que no depende de r. Como ahora tenemos la relación g00 = −f/g11

(como A = −g00 y B = g11, se puede demostrar fácilmente que

F01 = g00g11F
01 = −fF 01.

Ahora resolveremos las ecuaciones de Maxwell. La ecuación 6.2 no provee de información adicional

debido a la inexistencia de monopolos magnéticos, y note que es directamente satisfecha conside-

rando el caso µ = 0, ν = 1 y ρ = 0:

∂0F01 + ∂0F10 + ∂1F00 = ∂0F01 − ∂0F01 = 0.

Similarmente para otros casos puede ser demostrado que ∂ρFµν + ∂µFνρ + ∂νFµρ es cero. Usando la

definición de derivada covariante de un tensor contravariante, nos quedaŕıa

0 = ∂νF
µν + Γµ

ανF
αν + Γν

ανF
αµ

Para µ = 1 lo anterior se convierte en

0 = ∂0F
10 + Γ1

ανF
αν + Γν

ανF
1α.
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El segundo término de la ecuación anterior se va

Γ1
ανF

αν = Γ1
α0F

α0 + Γ1
α1F

µ1 = Γ1
10F

10 + Γ1
01F

01 = 0,

porque Γ1
01 = Γ1

10 = 0. El tercer término también se anula

Γν
ανF

1α = F 10(Γ0
00 + Γ1

01 + Γ2
02 + Γ3

03) = 0

porque todos los śımbolos de Christoffel dentro del paréntesis son nulos. Entonces terminamos con

0 = ∂0F
10.

Esto es, F 10 o Er no debe depender del tiempo, entonces tenemos Er = Er(r). Usando µ = 0 la

ecuación se convierte en

0 = ∂1F
01 + Γ0

ανF
αν + Γν

ανF
0α.

Similarmente el segundo término se anula aunque el tercero no. Tenemos

Γν
ανF

0α = Γν
1νF

01 = F 01(Γ0
10 + Γ1

11 + Γ2
12 + Γ3

13)

= F 01

(
A′

2A
+
B′

2B
+

2

r

)
=

2

r
F 01

como

A′

2A
+
B′

2B
=

1

2
∂rln(AB) =

1

2
∂rln(f) = 0

La ecuación ahora luce como

0 = ∂rF
01 +

2

r
F 01

La cual es una ecuación diferencial de primer orden con solución

F 01 =
cte

r2
,

lo que permite escribir

Er =
cte

r2
.
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Si se usa el teorema de Gauss se llega a la conclusión de que la constante de integración es Q, y

tenemos

Er =
Q

r2

Esto es, se obtuvo la ley de Coulomb.

Se está muy cerca de obtener la forma final de la métrica de RN. Solo necesitamos hallar una forma

más expĺıcita de A y B en términos de r. Esto puede ser hecho considerando una de las ecuaciones

de campo,

R22 = 8πT22.

Para el lado izquierdo se tiene:

R22 = − r

2B

(
A′

A
− B′

B

)
− 1

B
+ 1 = − 1

f

∂

∂r
(rA) + 1

las cuales se obtienen sustituyendo B = −f/A y B′ = fA′/A2 y usando la regla del producto. Para

el lado derecho usamos la ecuación 6.9 y se obtiene

− 1

f

∂

∂r
(rA) + 1 =

8π

f
r2E2

r

Con E2
r = Q2/r4 esto puede ser escrito como

∂r(rA) = f − 8π
Q2

r2

Si ahora integramos esto se convierte en

A = f +
C(t)

r
+
Q2

r2

donde C(t) es una función que puede depender del tiempo. Cuando Q = 0 la métrica debe reducirse

a la métrica de Schwarzschild. Cuando la gravedad es débil (cuando r es grande) la componente

g00 del tensor métrico debe aproximarse a 1 − 2M/r. Entonces en este ĺımite, si la geodésica debe

ser como el movimiento de la gravedad Newtoniana, debemos tener que f = 1 (lo que implica que
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AB = 1) y que C(t) = −2M . A y B pueden ser escritos como

A = −
(
1− 2M

r
+
Q2

r2

)
B = − 1

A
=

(
1− 2M

r
+
Q2

r2

)−1

y el tensor métrico en forma matricial como

gµν =



−
(
1− 2M

r
+
Q2

r2

)
0 0 0

0

(
1− 2M

r
+
Q2

r2

)−1

0 0

0 0 r2 0

0 0 0 r2sin2θ


y en forma de ecuación es

ds2 = −
(
1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Ahora se tiene la métrica completa de RN obtenida desde las ecuaciones de campo de Einstein junto

a las ecuaciones de Maxwell.

6.2. Anexo B: Generalización de la ecuación de Klein-Gordon a

espacios tipo agujero negro

6.2.1. Ecuación de Klein-Gordon en espacio de Schwarzschild

La ecuación de Klein-Gordon describe el comportamiento de un campo escalar ϕ en el espacio-

tiempo y es fundamental en la teoŕıa cuántica de campos. En presencia de un campo gravitacional,

como el de un agujero negro, el espacio-tiempo es curvo y la ecuación de Klein-Gordon en un espacio-

tiempo curvo debe ser formulada usando la relatividad general. La forma general de la ecuación de

Klein-Gordon en un espacio-tiempo es:

(∇µ∇µ +m2)ϕ = 0 (6.10)
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Donde ∇µ es la derivada covariante asociada a la métrica del espacio-tiempo gµν , m es la masa de

la part́ıcula escalar y los ı́ndices µ, ν corren sobre las coordenadas espaciotemporales.

Para un espacio-tiempo tipo agujero negro, la métrica gµν describe la geometŕıa alrededor de un

agujero negro. Consideremos, por ahora, la métrica de Schwarzschild, que representa un agujero

negro no rotante y no cargado de la forma que se muestra en (2.2). En este escenario la ecuación

de Klein-Gordon se transforma en

1√
−g

∂µ(
√
−ggµν∂νϕ) +m2ϕ = 0, (6.11)

donde g = det(gµν) = −r4 sin2 θ, y gµν son las componentes del tensor métrico contravariante.

Expandiendo la ecuación (6.11) en coordenadas de Schwarzschild tenemos

− 1

f(r)
∂2t ϕ+

1

r2
∂r(r

2f(r)∂rϕ) +
1

r2 sin θ
∂θ(sin θ∂θϕ) +

1

r2 sin2 θ
∂2φϕ+m2ϕ = 0, (6.12)

La ecuación (6.12) toma en cuenta la curvatura del espacio-tiempo debido al campo gravitatorio del

agujero negro y se reduce a la forma estándar de la ecuación de Klein-Gordon en el espacio-tiempo

plano cuando f(r) → 1, en términos de M cuando M → 0.

Para el caso de agujeros negros rotantes o cargados, la métrica gµν difiere, y la ecuación (6.11)

deberá ser ajustada según el caso. El procedimiento general sigue el mismo patrón:

1. Escribir la métrica espećıfica para el agujero negro en cuestión.

2. Calcular las derivadas covariantes usando dicha métrica.

3. Sustituimos en la ecuación de Klein-Gordon.

La ecuación de Klein-Gordon en un espacio-tiempo tipo agujero negro incorpora los efectos de la

curvatura del espacio-tiempo y es esencial para estudiar campos escalares en campos gravitacionales

intensos, tales como los que se encuentran cerca de agujeros negros. Sus soluciones pueden proveer

visión sobre fenómenos como la radiación de Hawking y el comportamiento del campo cuántico en

espacio-tiempo curvo.
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6.2.2. Ecuación de Klein-Gordon en el caso de RN (campo no cargado)

De manera similar a lo ya hecho para Schwarzschild se puede obtener la ecuación de Klein-

Gordon en el espacio de RN, que no sólo incluye efectos de curvatura debido a la masa, sino que

también incluye los efectos debido a la carga del agujero negro. Partimos de la ecuación (6.11)

adaptando la ecuación a la situación actual.

Al expandir la ecuación en coordenadas esféricas, obtenemos

− 1

f(r)
∂2t ϕ+

1

r2
∂r(r

2f(r)∂rϕ) +
1

r2 sin θ
∂θ(sin θ∂θϕ) +

1

r2 sin2 θ
∂2φϕ+m2ϕ = 0, (6.13)

donde

f(r) = 1− 2M

r
+
Q2

r2
.

Se calcula expĺıcitamente cada término, para el término temporal queda

1√
−g

∂t(
√
−ggtt∂tϕ) =

1√
−g

∂t

(
r2 sin θ

(
− 1

f(r)

)
∂tϕ

)
,

dado que r2 sin θ no depende de t, se tiene

1√
−g

∂t

(
−r

2 sin θ

f(r)
∂tϕ

)
= − 1

f(r)
∂2t ϕ.

Para el término radial tenemos

1√
−g

∂r(
√
−ggrr∂rϕ) =

1√
−g

∂r(r
2 sin θ · f(r)∂rϕ),

se simplifica a

1

r2 sin θ
∂r(r

2 sin θ · f(r)∂rϕ) =
1

r2
∂r(r

2f(r)∂rϕ).

Para el término angular en θ queda

1√
−g

∂θ(
√
−ggθθ∂θϕ) =

1√
−g

∂θ

(
r2 sin θ · 1

r2
∂θϕ

)
,
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simplificando:

1

r2 sin θ
∂θ(sin θ∂θϕ).

Para el término angular en φ:

1√
−g

∂φ(
√
−ggφφ∂φϕ) =

1√
−g

∂ϕ

(
r2 sin θ · 1

r2 sin2 θ
∂φϕ

)
,

simplificando queda

1

r2 sin θ
∂φ

(
1

sin θ
∂φϕ

)
=

1

r2 sin2 θ
∂2φϕ.

Uniendo todos los términos se obtiene la ecuación de Klein-Gordon completa y es

− 1

f(r)
∂2t ϕ+

1

r2
∂r(r

2f(r)∂rϕ) +
1

r2 sin θ
∂θ(sin θ∂θϕ) +

1

r2 sin2 θ
∂2φϕ+m2ϕ = 0 (6.14)

La ecuación (6.14) muestra expĺıcitamente cómo la presencia de la masa M y la carga eléctrica del

agujero negro afectan al comportamiento del campo escalar ϕ.

Podemos notar que en el término temporal, el factor
1

f(r)
modula la evolución temporal del campo

debido al potencial gravitacional y electrostático, mientras que, la derivada radial está influenciada

por f(r), misma que incluye los efectos gravitacionales debidos a la masa y carga del agujero negro,

aśı mismo, los términos angulares reflejan la simetŕıa esférica del espacio-tiempo y f(r) no influye

sobre ellos, finalmente, el término m2ϕ representa la contribución de la masa del campo escalar.

El siguiente paso es incorporar el operador de momento angular en la ecuación (6.14). Esto permite

separar variables y simplificar las derivadas angulares. Partimos de (6.14) y sustituimos el operador

de momento angular al cuadrado L2 que en coordenadas esféricas es

L2 = −
[

1

sin θ
∂θ(sin θ ∂θ) +

1

sin2 θ
∂2φ

]
,

por lo tanto, las derivadas angulares en la ecuación de Klein-Gordon pueden escribirse como

1

r2

[
1

sin θ
∂θ(sin θ ∂θ) +

1

sin2 θ
∂2φ

]
= −L

2

r2
ϕ,
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la ecuación finalmente se transforma en

− 1

f(r)
∂2t +

1

r2
∂r(r

2f(r)∂rϕ)−
L2

r2
ϕ+m2ϕ = 0. (6.15)

Proponemos una solución a la ecuación (6.15) mediante separación de variables

ϕ(t, r, θ, φ) = e−iωtR(r)Ylm(θ, φ),

donde:

e−iωt es la dependencia temporal con frecuencia ω,

R(r) es la función radial a determinar,

Ylm(θ, φ) son los armónicos esféricos, que satisfacen

L2Ylm = l(l + 1)Ylm.

Al sustituir ϕ en la ecuación:

− 1

f(r)
(−ω2)R(r)Ylm +

1

r2
d

dr

(
r2f(r)

dR(r)

dr

)
Ylm − l(l + 1)

r2
R(r)Ylm +m2R(r)Ylm = 0,

dividimos ambos lados por Ylm

− 1

f(r)
(−ω2)R(r) +

1

r2
d

dr

(
r2f(r)

dR(r)

dr

)
− l(l + 1)

r2
R(r) +m2R(r) = 0,

Reescribimos la ecuación (6.15) de forma que la ecuación diferencial solo conserva la parte radial y

queda

d

dr

(
r2f(r)

dR(r)

dr

)
+

[
ω2r2

f(r)
− l(l + 1)−m2r2

]
R(r) = 0. (6.16)

La ecuación (6.16) es una ecuación diferencial ordinaria para R(r) que incluye tanto los efectos del

momento angular como los del potencial gravito-electrostático. Esta ecuación puede interpretarse

como la de una part́ıcula bajo un potencial efectivo, que incluye términos debido a la curvatura

espacio-temporal y al momento angular. Los valores de l representan los diferentes modos angulares
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del campo escalar, análogos a los orbitales en mecánica cuántica. La ecuación (6.16) puede resolverse

utilizando técnicas estándar, como métodos numéricos o anaĺıticos aproximados, dependiendo de

los valores de M, Q, ω, m y l.

Al considerar que el momento angular se relaciona con las derivadas angulares, hemos simplificado

la ecuación de Klein-Gordon en el fondo de RN a una forma que separa la variable radial de las

angulares. Esto nos permite analizar el comportamiento del campo escalar ϕ en términos de modos

radiales y angulares, facilitando el estudio de la radiación de Hawking de bosones cargados.

Ahora introducimos la coordenada tortuga r∗ en la ecuación (6.15). La coordenada tortuga es una

herramienta esencial para estudiar la propagación de ondas cerca del horizonte de eventos de un

agujero negro.

Partimos de la ecuación (6.15), sustituyendo L2 por l(l+1), a continuación proponemos una solución

de la forma

ϕ(t, r, θ, φ) = e−iωtR(r)

r
Ylm(θ, φ).

Sustituimos la solución propuesta en la ecuación de Klein-Gordon:

− ω2

f(r)

R(r)

r
Ylm +

1

r2
d

dr

(
r2f(r)

d

dr

(
R(r)

r

))
Ylm − l(l + 1)

r2
R(r)

r
Ylm +m2R(r)

r
Ylm

Simplificamos utilizando las propiedades de los armónicos esféricos y reorganizamos la ecuación,

después de simplificar, obtenemos la ecuación radial

d2R(r)

dr2
+

[
ω2

f(r)2
− l(l + 1)

r2f(r)
− f ′(r)

f(r)

dR(r)

dr
−m2 1

f(r)

]
R(r) = 0,

ahora śı introducimos la coordenada tortuga al cálculo y queda

f(r)
d

dr

(
f(r)

dR(r)

dr

)
+

[
ω2 − f(r)

(
l(l + 1)

r2
+m2

)]
R(r) = 0.

Sustituimos
d

dr
= f(r)

d

dr∗
, y obtenemos

d2R(r)

dr2∗
+ [ω2 − Veff (r)]R(r) = 0,
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donde el potencial efectivo Veff (r) es

Veff (r) = f(r)

(
l(l + 1)

r2
+m2 +

f ′(r)

r

)
. (6.17)

Calculamos la derivada de f(r):

f ′(r) =
d

dr

(
1− 2M

r
+
Q2

r2

)
=

2M

r2
− 2Q2

r3
.

Sustituimos f(r) y f ′(r) en Veff (6.17) y queda

Veff (r) = f(r)

(
l(l + 1)

r2
+m2 +

1

r

(
2M

r2
− 2Q2

r3

))
. (6.18)

Recordando la derivación de la coordenada tortuga, queda que la ecuación radial se reduce a:

d2R(r∗)

dr∗
+ [ω2 − Veff (r(r∗))]R(r∗) = 0, (6.19)

la ecuación (6.19) es una ecuación de onda 1D, lo que facilita el análisis de soluciones y la aplicación

de condiciones de contorno.

Al introducir la coordenada tortuga, se ha transformado la ecuación de Klein-Gordon en una ecua-

ción de onda 1D que es más adecuada para el análisis de fenómenos f́ısicos en el entorno de un

agujero negro de RN. Este enfoque es esencial para profundizar en la comprensión de los procesos

cuánticos en espacio-tiempos curvos. También vemos que si hacemos M = Q = 0 recuperamos la

forma minkowskiana de la ecuación de Klein-Gordon. En la siguiente sección veremos la ecuación

de Klein-Gordon para el campo escalar cargado teniendo en cuenta el acoplamiento mı́nimo del

agujero negro.

6.2.3. Ecuación de Klein-Gordon en espacio-tiempo curvo con acoplamiento

electromagnético

La ecuación de Klein-Gordon para un campo escalar cargado en un espacio tiempo curvo es:

(gµν(∇µ − iqAµ)(∇ν − iqAν)−m2)ϕ = 0, (6.20)
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donde Aµ son las componentes del cuadrivector potencial y en el caso de RN se reducen a (debido a

la ausencia de rotación, el campo eléctrico del agujero negro no genera un campo magnético y por

lo tanto las componentes asociadas al campo magnético son cero)

Aµ =

(
Q

r
, 0⃗

)
, (6.21)

sustituimos los componentes de la métrica inversa y el potencial electromagnético en la ecuación

(6.20), expresamos la ecuación en términos de las coordenadas

− 1

f(r)
(∂t − iqAt)

2ϕ+ f(r)(∂r − iqAr)
2ϕ+

1

r2

(
∂2θ + cot θ∂θ +

1

sin2 θ
∂2φ

)
−m2ϕ = 0,

notamos en la ecuación (6.21) que Ar = Aθ = Aφ = 0, por lo que estos términos desaparecen.

El término temporal es

− 1

f(r)
(∂t − iqAt)

2ϕ = − 1

f(r)

(
∂t − iq

Q

r

)2

= − 1

f(r)

(
∂t − i

qQ

r

)2

ϕ.

El término radial es

f(r)(∂r)
2ϕ,

pero se debe considerar la forma correcta para preservar la hermiticidad y la conservación de la

corriente. En coordenadas esféricas y espacio-tiempo curvo, el operador radial adecuado es

1√
−g

∂r(
√
−ggrr∂rϕ),

como grr = f(r), el término radial se convierte en

1

r2
∂r(r

2f(r)∂rϕ).

El término angular se estableció que es igual al operador momento angular al cuadrado, entonces

reunimos todos los términos de la expresión y queda

− 1

f(r)

(
∂t − i

qQ

r

)2

ϕ+
1

r2
∂r(r

2f(r)∂rϕ)−
L2

r2
ϕ−m2ϕ = 0,
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todos los términos se están multiplicando por ϕ por lo que podemos reescribir esta ecuación

[
− 1

f(r)

(
∂t − i

qQ

r

)2

+
1

r2
∂r(r

2f(r)∂r)−
L2

r2
−m2

]
ϕ = 0. (6.22)

La ecuación de Klein-Gordon obtenida se muestra en (6.22), esto es, para un campo escalar cargado

en el fondo de un agujero negro de RN, y resulta crucial para el estudio de la interacción del campo

escalar cargado con el entorno gravitacional y electromagnético de un agujero negro cargado, aśı

como también para hacer análisis de cómo las ondas escalares cargadas son dispersadas o absorbidas

por el agujero negro.

Ahora, demostraremos que al expandir el campo escalar cargado en armónicos esféricos y al intro-

ducir la coordenada tortuga r∗, la parte radial de la ecuación de Klein-Gordon en el fondo de un

agujero negro de RN se puede escribir de la siguiente manera

[
− d2

dr2∗
+ Veff (r)

]
R(r) = ϵR(r) (6.23)

con

Veff = f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4

)
−
(
ω − qQ

r

)2

+ (ω2 −m2),

ϵ = ω2 −m2.

Partimos de la ecuación (6.22) y proponemos una separación de variables del tipo

ϕ = e−iωtR(r)

r
Ylm(θ, φ)

usando el valor propio del operador angular y usando el hecho de que ∂tϕ = −iωϕ se reemplaza en

la ecuación (6.22), entonces obtenemos

[
− 1

f(r)

(
−iω − i

qQ

r2

)2

+
1

r2
∂r(r

2f(r)∂r)−
l(l + 1)

r2
−m2

]
R(r)

r
Ylm(θ, φ) = 0,
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la dependencia angular se factoriza y simplifica con los armónicos esféricos. Enfocándonos en la

ecuación radial para R(r):

− 1

f(r)

(
ω − qQ

r

)2

R(r) +
1

r2
d

dr

(
r2f(r)

dR

dr

)
− l(l + 1)

r2
R−m2R = 0.

Definimos la coordenada tortuga r∗ mediante

dr∗
dr

=
1

f(r)
⇒ dr = f(r)dr∗

La segunda derivada con respecto a r se convierte en

d

dr
= f(r)

d

dr∗
⇒ d2

dr2
= f(r)2

d2

dr2∗
+ f ′(r)f(r)

d

dr∗
,

al reorganizar el operador radial es común introducir un factor de R(r) sobre r para simplificar la

forma, pero aqúı ya hemos factorado R(r)/r desde el principio.

Después de sustituir y reorganizar los términos, la ecuación radial se puede escribir en la forma

d2R(r)

dr2∗
+

[
ω2 −m2 −

(
f(r)

l(l + 1)

r2
+ f(r)m2 + f(r)

2M

r3
− f(r)

2Q2

r4
− f(r)

(
ω − qQ

r2

)2
)]

R(r) = 0,

movemos todos los términos excepto el primero al otro lado

d2R(r)

dr2∗
= (ω2 −m2)R(r)− f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4
+

(
ω − qQ

r

)2
)
R(r),

reescribimos esta ecuación como:

−d
2R(r)

dr2∗
+ f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4
−
(
ω − qQ

r

)2
)
R(r) = −(ω2 −m2)R(r),

multiplicando por −1 queda

d2R(r)

dr2∗
− f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4
−
(
ω − qQ

r

)2
)
R(r) = (ω2 −m2)R(r),
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definimos ϵ = ω2 −m2, aśı, la ecuación queda

−d
2R(r)

dr2∗
+ f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4
−
(
ω − qQ

r

)2

+ (ω2 −m2)

)
R(r) = ϵR(r),

observamos que (ω2 −m2) = ϵ, por lo que podemos agruparlos

−d
2R(r)

dr2∗
+ f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4
−
(
ω − qQ

r

)2

+ (ω2 −m2)

)
R(r) = ϵR(r),

definimos el potencial efectivo Veff (r)

Veff (r) = f(r)

(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4
−
(
ω − qQ

r

)2

+ (ω2 −m2)

)
, (6.24)

con esta definición, la ecuación toma la forma presentada en (6.23). Al expandir el campo escalar

cargado en armónicos esféricos y cambiar a la coordenada tortuga, la ecuación radial de Klein-

Gordon en el fondo de un agujero negro de RN se reduce a una ecuación tipo Schrödinger con un

potencial efectivo Veff (r) y un término ϵ = ω2 −m2. La cual es equivalente a (3.28)

−d
2R

dr2∗
+

(
1− 2M

r
+
Q2

r2

)(
m2 +

l(l + 1)

r2
+

2M

r3
− 2Q2

r4

)
R+

(
ω − qQ

r

)2

R = 0,

La ecuación (3.28) es útil para analizar la dispersión, modos cuasinormales, estados ligados y otros

fenómenos f́ısicos asociados con la propagación de campos escalares en campos gravitacionales y

electromagnéticos intensos. Ahora que hemos obtenido la ecuación tipo Schrödinger para el caso

bosónico, haremos lo mismo para el caso fermiónico, asociando los fermiones a su ecuación carac-

teŕıstica, la ecuación de Dirac, de igual manera que lo hicimos a lo largo de estas tres subsecciones.

6.3. Anexo C: Ecuación de Dirac

La ecuación de Dirac, en relatividad especial, es

(iγµ∂µ −m)ψ = 0, (6.25)
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donde γµ son las matrices de Dirac que satisfacen el álgebra de Clifford {γµ, γν} = 2ηµν . Sin embar-

go, cuando pasamos a un espacio-tiempo curvo con métrica gµν , ya no se puede usar directamente

γµ como en el caso plano, ni la derivada parcial ∂µ como si nada. Para generalizar la ecuación de

Dirac a un espacio-tiempo curvo, se introducen 2 conceptos clave

Campo de la tétrada (o vierbein) eaµ, que relaciona el ı́ndice µ del espacio-tiempo curvo con

el ı́ndice plano a.

Conexión de esṕın Γµ adecuada para campos de esṕın 1/2.

Lo presentado aqúı sigue el razonamiento de [22] hasta el procedimiento para sacar la ecuación de

onda, de ah́ı en más es razonamiento del anexo de [6].

6.3.1. Formalismo de la tétrada y espinores

Hasta ahora, hemos usado bases asociadas a coordenadas espećıficas para describir vectores y

covectores. Sin embargo, podemos elegir bases más generales que no estén ligadas a un sistema

coordenado particular. Estas bases generales se denominan tétradas (o vielbein), formadas por

vectores ea que cumplen la condición de ortonormalidad respecto a la métrica gµν :

g(ea, eb) = ηab (6.26)

donde ηab es la métrica de Minkowski en espacio-tiempo Lorentziano. Las tétradas permiten relacio-

nar ı́ndices curvos (coordenados) con ı́ndices planos (locales). En particular, relacionan las matrices

de Dirac curvas (γ̄µ) con las matrices planas γa mediante (6.27)

γ̄µ = eµaγ
a. (6.27)

Si cambiamos una tétrada inicial por otra, las bases están relacionadas por una matriz Λ:

eµA = ΛB
Ah

µ
B, (6.28)

y se demuestra que Λ es necesariamente una matriz de Lorentz. Por ello, estas transformaciones se

llaman transformaciones locales de Lorentz.
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Al introducir espinores en relatividad general, estos transforman como objetos escalares bajo trans-

formaciones de coordenadas, pero requieren una transformación especial bajo rotaciones de tétradas.

La derivada parcial no preserva esta propiedad, por lo cual es necesario reemplazarla por una deri-

vada covariante, lo cual será abordado en la sección siguiente.

6.3.2. Derivada covariante de un espinor y la conexión de esṕın

Al generalizar la derivada parcial ∂µ a la derivada covariante Dµ para campos espinoriales en

relatividad general, introducimos correcciones debidas a la curvatura mediante la conexión espinorial

Γµ, escribiendo:

∇µψ = ∂µψ + Γµψ,

Esta derivada covariante debe transformar adecuadamente bajo transformaciones locales de Lorentz,

cumpliendo con la ecuación (6.29)

D̃µψ̃ = LDµψ, (6.29)

Lo que determina cómo Γµ cambia bajo dichas transformaciones.

Para que la derivada covariante sea consistente (preserve la métrica y la estructura del álgebra

de Clifford generada por las matrices de Dirac curvadas γ̄µ = eµaγa, se impone la condición de

compatibilidad métrica:

Dµγ̄
ν = 0. (6.30)

Esto implica que la conexión espinorial Γµ debe tener la forma espećıfica:

Γµ =
1

4
ωABµγ

AγB (6.31)

donde ωABµ es la conexión de esṕın (coeficientes de Fock-Ivanenko) dada por las tétradas eaµ y los

śımbolos de Christoffel Γλ
µν

ωµab = eνa∇µeν b = eνa(∂µeν b − Γλ
µνeλ b). (6.32)
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. Estos coeficientes son antisimétricos en los ı́ndices planos (a, b). Finalmente, la ecuación de Dirac

en espacios curvos para part́ıcula libre con masa m es:

(iγCDC −m)ψ = 0. (6.33)

que puede escribirse expĺıcitamente en términos de coordenadas generales como

(iγ̄µDµ −m)ψ = 0 (6.34)

donde Dµ = ∂µ + Γµ. Esta ecuación incorpora naturalmente la estructura geométrica del espacio-

tiempo mediante las tétradas y la conexión espinorial

6.3.3. La Interacción Electromagnética

Generalmente uno deberá añadir un vector múltiplo de la matriz unidad a la solución (6.31). De

esta manera se puede generalizar los Γµ para el caso donde un potencial electromagnético arbitrario

Aµ está presente. Simplemente hacemos los reemplazos:

Γµ → Γµ + iqAµI, (6.35)

Dµ → Dµ + iqAµI, (6.36)

donde q es la carga de la part́ıcula descrita por ψ. Por lo que, la ecuación (6.34) ahora se generaliza

a

iγ̄µDµψ −mψ = 0,

iγ̄µ(∂µ + iqAµ + Γµ)ψ −mψ = 0,

iγC
(
eC +

1

4
ωABCγ

AγB + iqAC

)
−mψ = 0, (6.37)

donde

γ̄µAµ = eµCγ
CAµ = γCeµCAµ = γCAC .



116

Esto es consistente con el procedimiento de acople mı́nimo que se estudió en la sección anterior

cuando lo estudiamos para el caso de Klein-Gordon. Como ya vimos en el caso de la ecuación de

Klein-Gordon, para RN el potencial electromagnético las componentes AC del potencial electro-

magnético debido al campo eléctrico del agujero negro son

A = (A0, A1, A2, A3) =

(
Q

r
, 0⃗

)
,

de tal manera que iqA0 = i
qQ

r
. Habiendo visto las herramientas necesarias para el estudio de

la ecuación de Dirac en espacios curvos, antes de estudiar la ecuación de Dirac en Schwarzschild

haremos un breve repaso de las matrices Gamma, pues esto es crucial para entender cómo cambia

la ecuación de Dirac en las diferentes métricas.

6.3.4. Las matrices Gamma

Las matrices de Pauli 2× 2 vienen dadas por

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (6.38)

Para una part́ıcula libre de esṕın 1/2 de masam escribimos la ecuación de Dirac en el espacio-tiempo

de Minkowski como se muestra en la ecuación (6.25), donde ψ es un espinor de 4 componentes y

las matrices γ 4 × 4 satisfacen la relación de anticonmutación de las matrices γ, pero recordando

que estamos en el espacio-tiempo de Minkowski y por lo tanto {γα, γβ} → {γA, γB}, gαβ → ηAB,

donde ϵ = ±1 y las condiciones de hermiticidad

(γA)† = γ0γAγ0,

elevamos y bajamos los ı́ndices usando la métrica η, γA = ηABγB.
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Representación estándar de Dirac-Pauli

En la representación estándar, tenemos

γ0 =

I2 0

0 −I2

 , γK =

 0 σK

−σK 0

 , K = (1, 2, 3). (6.39)

Es fácil verificar, y lo vamos a hacer aqúı, que

(γ0)2 = I, (γK)2 = −I (6.40)

Demostración:

(γ0)2 =

I2 0

0 −I2


I2 0

0 −I2

 =

 I2I2 + 0× 0 I2 × 0 + 0×−I2

0× I2 +−I2 × 0 0× 0 + (−I2)(−I2)



(γ0)2 =

I2 0

0 I2


Para probar la segunda parte de (6.40), usamos la ecuación (6.38) y la segunda parte de (6.39),

concretamente con K = 1.

γ1 =

 0 σ1

−σ1 0

 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


,

elevamos al cuadrado la matriz

(γ1)2 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0





0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


=



−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


= −I
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Ahora que ya vimos la representación matricial de las matrices γ estamos listos para emprender un

viaje al horizonte de eventos del agujero negro de Schwarzschild y de RN.

6.3.5. Ecuación de Dirac en la métrica de Schwarzschild

En esta sección se estudiará y calcularán los coeficientes de Fock-Ivanenko y las ecuaciones

de Dirac resultantes para la métrica de Schwarzschild dada en (2.2). Las matrices γ están en la

representación estándar, sin embargo, debido a la signatura elegida, debemos multiplicar cada una

de las matrices por +i. La métrica de Schwarzschild viene dada por (2.2) y elegimos las 1-formas y

vectores correspondientes que satisfacen la ecuación (6.26),

e0 =

(
1− 2M

r

)1

2 dt, e0 =

(
1− 2M

r

)−
1

2 ∂t,

e1 =

(
1− 2M

r

)−
1

2 dr, e1 =

(
1− 2M

r

)1

2 ∂r,

e2 = rdθ, e2 =
1

r
∂θ,

e3 = r sin θ dϕ e3 =
1

r sin θ
∂ϕ.

Las expresiones anteriores son los campos de la tétrada de un observador estacionario. El ı́ndice

a = 0, 1, 2, 3 denota la çomponente local de Lorentz”(o del espacio de Minkowski) con ηab =

diag(−1,+1,+1,+1). Las inversas cumplen

eµae
a
ν = δµν , (6.41)

Calculamos los coeficientes de esṕın no nulos y recordamos la antisimetŕıa de la conexión espinorial.

A continuación calcularemos las derivadas covariantes de eβB y para no alargar excesivamente, se

indica la idea:

1. Calcular ∂µ(e
β
B). Casi todas son cero excepto cuando la componente eβB depende de la coor-

denada µ.

2. Sumar Γβ
µνeνB.

3. Determinar las combinaciones para cada par (A,B) y cada µ.
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En la métrica de Schwarzschild, los śımbolos de Christoffel Γβ
µν no nulos se concentran en expresiones

con (t, r) y (θ, ϕ). Por ejemplo,

Γr
tt, Γ

t
tr,

Γr
θθ, Γ

θ
rθ,

Γr
ϕϕ, Γ

ϕ
rϕ,

Γθ
ϕϕ, Γ

ϕ
θϕ, etc.

De la forma de eβB, se ve que:

et0 =
1√
f(r)

depende sólo de r.

er1 =
√
f(r) depende de r.

eθ2 =
1

r
depende de r.

eϕ3 =
1

r sin θ
depende de r y θ.

Por tanto al examinar ∇µe
β
B para µ = t, r, θ, ϕ, se ve que no todas las combinaciones son distintas

de cero. Solo surgen un puñado de componentes no triviales.

Del cálculo, se obtiene que las únicas combinaciones (A,B, µ) no nulas son (salvo antisimetŕıa) las

siguientes:

1. ω10 con µ = t.

2. ω21 con µ = θ.

3. ω31 con µ = ϕ.

4. ω32 con µ = ϕ.

Todas las demás se anulan (veremos abajo el por qué).

1. Par (1, 0) con µ = t

Se encuentra que ω10,t ̸= 0 porque et0 =
1√
f(r)

depende de r, y Γt
tt = 0 pero Γr

tt ̸= 0

puede intervenir cuando se combina con er1.
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El resultado da

ω10t =
M

r2
, (6.42)

2. Par (2, 1) con µ = θ

Al tomar ∇θe
β
1 , la única parte que no se anula proviene de ∂θ si eβ1 dependiese de θ o si

Γβ
θνe

ν
1 fuera no cero.

Se halla esquemáticamente

ω21θ =
√
f(r) (6.43)

3. Pares (3, 1) y (3, 2) con µ = ϕ

Análogamente, los términos ω31ϕ y ω32ϕ surgen de la dependencia de eβ3 en θ y de los

Christoffel Γϕ
ϕr, Γ

ϕ
ϕθ.

Se obtiene

ω31ϕ =
√
f(r) sin θ, (6.44)

ω32ϕ = cos θ (6.45)

Conceptualmente, los demás coeficientes se anulan por dos razones principales:

1. La tétrada no depende de ciertas coordenadas:

et0 y er1 no dependen de θ o ϕ.

eθ2 y eϕ3 no dependen de t.

Por lo tanto, ∂µe
β
B = 0 en muchos casos. También, muchos śımbolos de Christoffel se anulan

para combinaciones que mezclaŕıan, por ejemplo, t con θ en Schwarzschild.

2. Simetŕıa esférica y diagonalidad:

Al no haber términos cruzados dtdθ, dtdϕ, drdθ en la métrica, los Γβ
µν que conectaŕıan direc-

ciones disjuntas desaparecen (o no aportan a ∇µe
β
B).

Aśı, por ejemplo ω20 y ω30 no tienen forma de encenderse pues no hay manera de producir

esos emparejamientos a través de la derivada covariante.
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En pocas palabras:

Los coeficientes nulos son aquellos para los cuales la derivada covariante se anula.

Ahora vamos a calcular los coeficientes de Fock-Ivanenko de la métrica usando (6.31) y proyectando

sobre el espacio plano de Minkowski, para ello utilizamos la proyección ΓC = eµCΓµ, usando eso en

la ecuación (6.31) queda

ΓC = eµCΓµ =
1

4
eµCωABµγ

AγB (6.46)

Ahora, hacemos el cálculo con µ = t, r, θ, ϕ y los pares AB no nulos que nos quedaron, para ello

usamos las relaciones derivadas anteriormente (ecuaciones (6.42-6.45)).

Para C = µ = t, A = 1, B = 0 quedaŕıa

Γt =
1

4
ettω10tγ

1γ0 =
1

4

1√
f(r)

M

r2
γ1γ0,

notamos que γAγB =
1

2
[γA, γB] +

1

2
{γA, γB} y nos queda

Γt =
1

4

1√
f(r)

M

r2
2γ1γ0.

entonces simplificando queda

Γt =
M

2r2

(
1− 2M

r

)−
1

2 γ1γ0. (6.47)

Para C = µ = r, A = 2, B = 0 quedaŕıa

Γr =
1

4
errω20rγ

2γ0 = 0

entonces

Γr = 0. (6.48)

Para C = µ = θ, A = 2, B = 1 queda

Γθ =
1

4
eθθω21θγ

2γ1
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quedaŕıa entonces

Γθ =
1

4

1

r

(
1− 2M

r

)1

2 2γ2γ1 =
1

2r

(
1− 2M

r

)1

2 γ2γ1 (6.49)

Finalmente para C = µ = ϕ hay una suma debido a que 2 parejas de coeficientes sobreviven

A = 3, B = 1 y A = 3, B = 2:

Γϕ =
1

4
eϕϕω31ϕγ

3γ1 +
1

4
eϕϕω32ϕγ

3γ2

Γϕ =
1

4

 1

r sin θ
sin θ

(
1− 2M

r

)1

2 γ3γ1 +
1

r sin θ
cos θγ3γ2


Haciendo uso de la identidad previamente mencionada y simplificando términos queda:

Γϕ =
1

2r

(
1− 2M

r

)1

2 γ3γ1 +
cot θ

2r
γ3γ2 (6.50)

Finalmente, combinando las ecuaciones (6.47-6.49) llegamos a

[γ0(et0∂t + Γ0) + γ1er1∂r + γ2(eθ2∂θ + Γ2) + γ3(eϕ3∂ϕ + Γ3)]ψ −mψ = 0. (6.51)

6.3.6. Ecuación de Dirac en RN

Para RN es análogo, únicamente se añade el término de la carga del agujero negro, aśı pues

et0 =
1√

1− 2M

r
+
Q2

r2

er1 =

√
1− 2M

r
+
Q2

r2

eθ2 = r

eϕ3 = r sin θ
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De nuevo calculamos los coeficientes de la conexión de esṕın ωABµ de acuerdo con la ecuación de la

conexión de esṕın y análogamente sale, para A = 1, B = 0, µ = t

ω10t =
M

r2
− Q2

r3
, (6.52)

mientras que, para A = 2, B = 1, µ = θ

ω21θ =

√
1− 2M

r
+
Q2

r2
=
√
f(r), (6.53)

para A = 3, B = 1, 2, µ = ϕ queda

ω31ϕ =
√
f(r) sin θ (6.54)

ω32ϕ = cos θ (6.55)

con f(r) = 1 − 2M

r
+
Q2

r2
. De la misma manera que en el caso anterior, usando la ecuación (6.31)

y las ecuaciones (6.52-6.55), encontramos los coeficientes de Fock-Ivanenko de la métrica de RN:

Γt =
1

2

(
M

r2
− Q2

r3

)(
1− 2M

r
+
Q2

r2

)−
1

2
γ1γ0, (6.56)

análogamente al caso de Schwarzschild, en la métrica de RN,

Γr = 0, (6.57)

Γθ =
1

2r

(
1− 2M

r
+
Q2

r2

)1

2
γ2γ1, (6.58)

Γϕ =
1

2r

(
1− 2M

r
+
Q2

r2

)1

2
γ3γ1 +

cot θ

2r
γ3γ2. (6.59)

Finalmente combinando las ecuaciones (6.56-6.59), llegamos a una expresión análoga para RN (sin

acoplamiento electromagnético) de la ecuación de Dirac, para tener una expresión para el caso

con acoplamiento electromagnético se usa la ecuación (6.37) en la que se promueve la derivada

covariante a otra derivada covariante que incluye el término con acoplamiento electromagnético

(véase la ecuación (6.37) pero el procedimiento para obtener los coeficientes de conexión de esṕın es



124

análogo, aśı que no se volverá a repetir el procedimiento. Ahora que hemos obtenido la ecuación de

Dirac expĺıcitamente para la métrica de Schwarzschild y de RN (con o sin acople electromagnético),

se puede elevar al cuadrado para obtener una ecuación tipo Klein-Gordon, eso es lo que se hará en

la siguiente subsección.

6.3.7. Ecuación de Onda

Para obtener una ecuación de onda tipo Klein-Gordon (parecida a (6.12)) se tiene que elevar al

cuadrado la ecuación de Dirac. Este procedimiento es el mismo para las 2 métricas en particular,

pero en general resulta aplicable a cualquier métrica.

En una métrica curva, la ecuación de Dirac puede escribirse, usando la notación de tétradas y la

derivada covariante de un espinor Ψ como se muestra en (6.34). Para elevar al cuadrado la ecuación

de Dirac, se multiplica por el operador conjugado

(iγνDν +m).

Aśı partiendo de la ecuación (6.34), se obtiene

(iγµDµ +m)(iγµDµ −m) = 0,

el producto de operadores se desarrolla como

(iγνDν +m)(iγµDµ −m) = −(γνDνγ
µDµ −m2).

El signo − adicional proviene de la multiplicación i× i. Por consiguiente, la ecuación resultante es

(γνDνγ
µDµ −m2) = 0. (6.60)

El término clave es

γνDνγ
µDµ,
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en espacio-tiempo se cumple la identidad

γνDνγ
µDµ = DµDµ +

1

4
R, (6.61)

donde Dµ es la derivada covariante de esṕın y R es el escalar de Ricci, mismo que ya se demostró

que es cero en el caso de las métricas de Schwarzschild y RN, por lo que (6.61) se reduce a

γνDνγ
µDµ = DµDµ. (6.62)

La derivada covariante Dµ que actúa sobre un espinor es Dµ = ∂µ +Γµ donde Γµ son matrices que

codifican la conexión de esṕın. Cuando en la expresión compacta se escribe DµDµ, se está aplicando

dos veces esta derivada de esṕın:

DµDµΨ = gµνDµDνΨ.

Si desglosamos DµDν en derivadas ordinarias y en Γµ, surgen exactamente los términos:

la parte que corresponde al laplaciano escalar ∇2
S sobre Ψ,

términos lineales en Γµ que se combinan como 2Γ · ∂,

términos cuadráticos ΓµΓ
µ,

términos con ∇µΓ
µ (derivada de la conexión de esṕın, que puede incluir conmutadores y

también la parte debida a la conexión de Levi-Civita).

Por eso en la literatura, a veces se ve la identidad (en notación bastante esquemática):

DµDµΨ = ∇2
SΨ+ 2(Γµ∂µ)Ψ + Γ2Ψ+ (∇µΓ

µ)Ψ

Ambas formas son representaciones del mismo operador: la primera es la forma compacta y la otra

es la forma expandida expĺıcitamente en términos de la conexión de Fock-Ivanenko.

En el caso de las métricas de Schwarzschild o de RN en el vaćıo, ocurre que:

1. La curvatura escalar R = 0.

2. La forma espećıfica de Γµ se simplifica bastante debido a la simetŕıa esférica y a la ausencia

de otras fuentes de curvatura (salvo la masa central).
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En muchas referencias, al elevar al cuadrado la ecuación de Dirac se llega a:

(DµDµ +m2)Ψ ⇔ (∇2
S + 2Γ · ∂ + Γ2 +∇µΓ

µ +m2)Ψ

El desglose en ∇2
S , Γ · ∂, Γ2 y ∇µΓ

µ es la misma operación, solo que escrita paso a paso.

Ahora haremos expĺıcitamente la sustitución usando la coordenada tortuga, la forma de la derivada

covariante y los 4 coeficientes de Fock-Ivanenko Γ que obtuvimos (6.47-6.50) queda

1

f
(−∂2t+∂2∗)+

2

r
∂∗+

L2
S

r2
− 1

4f

M2

r4
− f

2r2
−cot2 θ

4r2
− 2

f

M

r2
iσ01∂t+

√
f

r2
iσ12(cot θ+2∂θ)+2

cot θ

r2 sin θ
iσ23∂ϕ+

2
√
f

r2 sin θ
σ13∂ϕ,

(6.63)

donde LS es el operador momento angular usual de la mecánica cuántica. Esta ecuación tan dif́ıcil

de manejar, no solo no es diagonal en el espacio espinorial, al contrario de la contraparte plana,

sino que no se reduce a la ecuación de onda en el horizonte o el infinito espacial. Para obtener una

ecuación manejable y reducible a la ecuación de onda se hace la sustitución en la ecuación diferencial

de primer orden

Ψ̃ = rf1/4
√
sin θΨ (6.64)

donde rf1/4
√
sin θ = S(r, θ), definimos un nuevo campo espinorial dado por

Ψ = S−1(r, θ)Ψ̃,

i.e.

Ψ =
1

rf(r)1/4
√
sin θ

Ψ̃. (6.65)

Nuestro objetivo es sustituir (6.65) en la ecuación de Dirac que obtuvimos y ver como la parte

relacionada con la conexión de esṕın se cancela.

Debido a que Ψ = S−1Ψ̃, cualquier derivada ∂µψ tiene 2 términos:

∂µΨ = ∂µ[S
−1Ψ̃] = −S−2(∂µS)Ψ̃ + S−1∂µΨ̃

Consideramos cada coordenada

1. Derivada temporal (dirección t):
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Como S(r, θ) no depende de t,

γt∂tΨ = γtS−1∂tΨ̃.

2. Derivada azimutal (dirección ϕ):

De manera similar, S(r, θ) no depende de ϕ,

γϕ∂ϕΨ = γϕS−1∂ϕΨ̃.

3. Derivada radial: para la derivada radial, obtenemos 2 partes:

γr∂rΨ = γr[−S−2(∂rS)Ψ̃ + S−1∂rΨ̃]

El término −γrS−2(∂rS)Ψ̃ se combinará con la parte de Γ(r, θ) que depende de f(r) y su

derivada f ′(r). Debido a que la conexión de esṕın para Schwarzschild posee un término pro-

porcional a f ′(r) =
d

dr

(
1− 2M

r

)
, uno encuentra que todas esas contribuciones se cancelan

si se sigue el factor S−2(∂rS).

4. Derivada polar: similar a la anterior se obtienen dos partes

γθ∂θΨ = γθ[−S−2∂θSΨ̃ + S−1∂θΨ̃].

Mientras tanto, Γ(r, θ) tiene una pieza proporcional a γθ cot θ, el término −1

2
cot θ proveniente

de la derivada de S se combina con +
1

2
cot θ presente en la conexión de esṕın y se cancelan.

Cuando todas las piezas se combinan, vemos que los términos extra de la derivada de S(r, θ)

precisamente cancelan lo términos de conexión de esṕın de Γ(r, θ). Concretamente,

γµ∂µ[S
−1Ψ̃] + Γ(r, θ)[S−1Ψ̃] = S−1γµ∂µΨ̃,

una vez que las cancelaciones se efectúan.

Por lo tanto, la ecuación de Dirac se convierte en

S−1γµ∂µΨ̃ = mS−1Ψ̃
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o después de multiplicar ambos lados por S se obtiene una ecuación análoga a (6.25)

Por lo tanto, después de aplicar la transformación del campo a Ψ la ecuación de Dirac en Schwarzs-

child colapsa a

γµ∂µΨ̃ = mΨ̃ (6.66)

comportándose aśı, de manera muy similar al operador de Dirac en el espacio plano. Esto simplifica

enormemente el análisis subsecuente.

Uno siempre puede elegir los espinores de tal forma que sean funciones propias del operador momento

angular

LΨ :=

(
∂θ +

∂ϕ
sin θ

)
Ψ = −iλγ0γ1Ψ, (6.67)

donde el autovalor λ satisface λ2 =

(
j +

1

2

)2

como la part́ıcula posee esṕın medio, el momento

angular total j puede ser cualquier medio entero, de forma que λ2 puede ser cualquier entero positivo.

Para obtener una ecuación de onda diagonalizable se multiplica por
√
f . Definimos el operador

d =
√
fγµ∂µ.

Al multiplicar (6.66) por
√
f , queda

dΨ =
√
fγµ∂µΨ = m

√
fΨ,

llamaremos a este último lado m̄Ψ con m̄ = m
√
f para abreviar en el siguiente paso.

Para aislar algo que luzca como −∂2t + ∂2∗ (es decir, un operador tipo onda), se toma la ecuación

anterior y se aplica de nuevo un operador tipo γν∂ν o, de forma análoga, se contempla d2Ψ.

De manera esquemática:

1. Partimos de

dΨ = m̄Ψ.

2. Aplicamos nuevamente d u otra combinación equivalente (teniendo cuidado con los conmuta-

dores, pues
√
f y ∂µ no conmutan). El objetivo es que al expandir surjan

un término −∂2t + ∂2∗ (el término de .onda”de la izquierda,
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un término que recoja f(m2 + · · · ) (t́ıpico de los potenciales efectivos en la ecuación

resultante),

correcciones adicionales que, tras agruparse y usar las propiedades de γµγν , dan la pieza

γ1∂∗(· · · )Ψ.

3. De este modo se obtiene una ecuación con la estructura

(−∂2t + ∂2∗)Ψ = (términos con f(· · · )Ψ) + (términos que involucran ∂∗ y γ1.

Tras realizar estas expansiones el resultado es

(−∂2t + ∂2∗)Ψ = f

(
m2 +

λ2

r2

)
Ψ+ γ1∂∗

(
m
√
f +

iλ
√
f

r
γ0γ1

)
Ψ. (6.68)

Podemos simplificar aún más esta ecuación sustituyendo en la forma de primer orden. El objetivo

es desplegar el término γ1∂∗

(
m
√
f +

iλ
√
f

r
γ0γ1

)
Ψ y reorganizarlo para que aparezcan derivadas

de Ψ (del tipo ∂∗Ψ y ∂tΨ y factores que, en última instancia, adoptan la forma proporcional a
M

r2
.

Se verá el procedimiento de manera esquemática:

1. Separar y expandir la derivadda ∂∗:

El término cŕıtico en (6.68) es

γ1∂∗

(
m
√
f +

iλ
√
f

r
γ0γ1

)
Ψ,

podemos expandir la derivada de un producto de función por Ψ aśı:

a) Derivada de la parte escalar m
√
f +

iλ
√
f

r
γ0γ1.

b) Derivada de Ψ, ya que en general ∂∗[ϕ(r)Ψ(r)] = ϕ′(r)Ψ + ϕ(r)∂∗Ψ.

Es decir

γ1∂∗

(
m
√
f +

iλ
√
f

r
γ0γ1

)
Ψ = γ1

[(
m
√
f +

iλ
√
f

r
γ0γ1

)′
Ψ+

(
m
√
f +

iλ
√
f

r
γ0γ1

)
∂∗Ψ

]

La notación

(
m
√
f +

iλ
√
f

r
γ0γ1

)′
denota la derivada de esta función escalar respecto de r∗.
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Recordemos que
d

dr∗
= f(r)

d

dr
.

2. Agrupar los términos con ∂∗Ψ

Al expandir aparece un término γ1
(
m
√
f +

iλ
√
f

r
γ0γ1

)
∂∗Ψ. Buena parte de la forma final de

la ecuación consiste en reconocer que

(
m
√
f +

iλ
√
f

r
γ0γ1

)
está construida para combinarse

con ∂∗Ψ o, en ciertos textos, con la combinación ∂∗ − σ∂t.

En la versión final a la que queremos llegar, a menudo se define σ = ±1 (el signo del esṕın

radial) y se aprovecha que iγ0γ1 puede intercambiarse por σ∂t o σω cuando se sustituye la

dependencia temporal e−iωt. Aunque los detalles exactos vaŕıan de acuerdo a la convención

de las matrices γµ, la clave es que

γ0γ1 actúa como una matriz, que al proyectarse en los componentes espinoriales, puede

convertirse en una derivada temporal efectiva ∂tΨ (o un factor ωΨ) cuando el modo tiene

la forma e−iωt.

Aparecen factores proporcionales a
M

r2
porque ∂∗

√
f y

√
f∂∗

(
1

r

)
generan combinaciones

como
M

r2
· · · .

3. En Schwarzschild, como no hay más términos adicionales, queda únicamente el factor
M

r2
que

multiplica la combinación de derivadas ∂∗Ψ (y, en ciertos textos, ∂tΨ).

El resultado final, tras reordenar, se puede escribir como

(−∂2t + ∂2∗)Ψ = f

(
m2 +

λ2

r2

)
Ψ+

M

r2
DΨ,

donde D es un operador de primer orden (por ejemplo ∂∗ − σ∂t dependiente de cómo se

absorban los γµ. El término con γ1∂∗

((
m
√
f +

iλ
√
f

r
γ0γ1

)
Ψ

)
se rompe en una parte(

m
√
f +

iλ
√
f

r
γ0γ1

)′
Ψ que pasa al ”potencial efectivo”) y otra parte

(
m
√
f +

iλ
√
f

r
γ0γ1

)
γ1∂∗Ψ

(que, junto con proyecciones espinoriales, se reescribe como
M

r2

(
m
√
f +

iλ
√
f

r
γ0γ1

)
∂∗Ψ o

similar).

La razón de que se obtenga esta forma de la ecuación es que, tras esas expansiones y el uso de la

condición de esṕın σ = ±1 se diagonaliza la acción de γ0γ1 en los componentes de Ψ. Para cada
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componente espinorial se obtiene, en esencia,

(−∂2t + ∂2∗)Ψi = f

(
m2 +

λ2

r2

)
Ψi +

M

r2
(∂∗ − σ∂t) +

iλf3/2

r2
(γ0Ψ)i (6.69)

El último término de esta última ecuación es el único que no es diagonal en el espacio espinorial.

Como analizaremos esta ecuación usando el método WKB, este último término no contribuye al

orden dominante de la solución en la aproximación WKB y adicionalmmente este término única-

mente introduce correcciones subdominantes que, en última instancia, para el cálculo de la tasa de

emisión o el factor exponencial de tunelaje, son irrelevantes.

Para RN (sin acople electromagnético) el proceso es análogo, únicamente se añade el término de la

carga a la conexión de esṕın, aśı pues llegamos a

(−∂2t + ∂2∗)Ψi = f

(
m2 +

λ2

r2

)
Ψi +

(
M

r2
− Q2

r3

)
(∂∗ − σ∂t)Ψi +

λf3/2

r2
(γ0Ψ)i (6.70)

Reintroduciendo el potencial electromagnético da una ecuación muy similar a esta. Hay un término

de acople esṕın-campo, es decir, el término σE de la ecuación (2.50) que actúa de manera análoga

y redefinimos la derivada covariante para incluir el potencial electromagnético de la forma que se

muestra en (6.36)

−
(
∂t +

iqQ

r

)2

Ψi+∂
2
∗Ψi = f

(
m+

(j + 1/2)2

r2

)
Ψi+

(
M2

r2
− Q2

r3

)(
∂∗ − σ

(
∂t +

iqQ

r

))
Ψi−iσf

qQ

r2
Ψi
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