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ABSTRACT 

This study analyzes the relationship between territorial exposure to water pollution in the 

Esmeraldas River Basin and public health vulnerability in Ecuador. Using a binary logistic 

regression model combined with the Synthetic Minority Over-sampling Technique (SMOTE), a 

predictive model was developed to classify cantons based on their risk of waterborne diseases. 

The analysis incorporated socioeconomic variables such as poverty rates, healthcare personnel 

availability per capita, and the incidence of primary and secondary water-related diseases. 

The results show that territorial exposure, together with socioeconomic factors and 

healthcare infrastructure, constitutes a significant predictor of health vulnerability. The model 

achieved an overall accuracy of 77% and an area under the curve (AUC) of 0.74, demonstrating 

a satisfactory ability to distinguish between high- and low-risk cantons. However, the findings 

also highlight the multifactorial nature of vulnerability, indicating that geographic exposure, 

although relevant, is not sufficient by itself to fully explain the observed risk patterns. 

This study provides empirical evidence that can inform integrated public policies 

combining environmental interventions, improvements in healthcare infrastructure, and 

reductions in socioeconomic disparities to mitigate the health impacts of water pollution. 

 

Keywords: water pollution, waterborne diseases, logistic regression, health vulnerability, 

SMOTE, Esmeraldas River Basin, Ecuador. 
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RESUMEN  

Este estudio analiza la relación entre la exposición territorial a la contaminación del agua 

en la Cuenca del Río Esmeraldas y la vulnerabilidad en salud pública en Ecuador. Utilizando un 

modelo de regresión logística binaria combinado con la técnica de sobremuestreo sintético 

SMOTE, se construyó un modelo predictivo para clasificar cantones según su riesgo de 

enfermedades relacionadas con el agua. El análisis incorporó variables socioeconómicas como la 

tasa de pobreza, la disponibilidad de personal de salud per cápita y la incidencia de enfermedades 

hídricas primarias y secundarias. 

Los resultados muestran que la exposición territorial, junto con factores socioeconómicos 

y de infraestructura sanitaria, constituye un predictor significativo de la vulnerabilidad sanitaria. 

El modelo alcanzó una precisión general del 77% y un área bajo la curva (AUC) de 0.74, 

demostrando una capacidad satisfactoria para discriminar entre cantones de alto y bajo riesgo. 

Sin embargo, los hallazgos también resaltan la naturaleza multifactorial de la vulnerabilidad, 

indicando que la exposición geográfica, aunque relevante, no es suficiente por sí sola para 

explicar los patrones de riesgo observados. 

Este trabajo proporciona evidencia empírica que puede guiar políticas públicas integradas 

que combinen intervenciones ambientales, mejoras en infraestructura sanitaria y reducción de 

brechas socioeconómicas para mitigar los impactos de la contaminación del agua sobre la salud 

pública. 

 

Palabras clave: contaminación del agua, enfermedades hídricas, regresión logística, 

vulnerabilidad sanitaria, SMOTE, Cuenca del Río Esmeraldas, Ecuador. 
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INTRODUCTION 

The deterioration of water quality in river systems is one of the most pressing 

environmental and public health challenges in Latin America. In Ecuador, this issue is 

particularly acute in the Esmeraldas River basin, an extensive hydrological network that 

originates in the Andes and traverses densely populated urban and peri-urban areas before 

reaching the Pacific coast. Despite its ecological and socioeconomic importance, this basin has 

become the recipient of a cumulative load of untreated domestic, industrial, and agricultural 

wastewater, posing severe risks to both ecosystems and human health. 

This work emerges from a diagnostic concern that combines environmental degradation 

and its underestimated fiscal consequences. Recent studies have confirmed that several rivers 

within this basin, (including the Machángara River), consistently exceed international and 

national thresholds for microbiological and chemical contamination. According to Vinueza et al. 

(2021), the presence of Escherichia coli and total coliforms surpasses legal limits in virtually all 

major Ecuadorian rivers, with the Esmeraldas and Machángara among the most critically 

polluted. Moreover, according to the Ministry of Public Health (MSP, 2019), nearly 88% of 

diarrheal diseases in the country are attributable to poor water quality, inadequate sanitation, and 

deficient hygiene services. 

The problem is not limited to natural degradation, it reflects institutional and 

infrastructural deficiencies that have persisted over time. In Quito, for example, only 3% of 

wastewater is treated before being discharged into natural watercourses, while the remaining 

97% is released untreated (UDLA, 2024). These figures exemplify a broader governance failure 

in water management systems. Additionally, this context places Ecuador at a disadvantage in its 
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efforts to meet the Sustainable Development Goals (SDGs), particularly Goal 6, which 

emphasizes universal access to safe water and sanitation. 

Although the environmental and health dimensions of water pollution have received 

increasing attention, the economic dimension remains insufficiently explored in the Ecuadorian 

context. There is a critical gap in understanding how pollution-driven health burdens translate 

into increased public expenditure and fiscal pressure. Addressing this gap is essential not only for 

improving water management policies, but also for generating evidence that supports efficient 

allocation of public resources. A rigorous economic assessment of the costs associated with 

waterborne diseases and the potential savings derived from effective water treatment 

infrastructure is a necessary step toward more rational and sustainable policymaking. 

Water security, in this context, must be understood beyond its physical dimension. As 

defined by the Water Security and Sustainable Development Hub, it involves the integration of 

social, ecological, institutional, and technological dimensions to ensure the sustainable use of 

water resources and the protection of human and environmental health (Water Security and 

Sustainable Development Hub, 2024). This concept underpins the present research, which adopts 

an interdisciplinary and systemic approach to the economic consequences of water 

contamination. 

This project seeks to quantify the economic impact of water pollution in the Esmeraldas 

River basin by evaluating its effect on public health expenditure. Through a spatial econometric 

model and a cost-benefit analysis, this work aims to provide empirical evidence on how 

environmental degradation generates measurable fiscal burdens and how investment in 

wastewater treatment infrastructure could reduce such costs. 
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The following sections are structured as follows: first, a review of the relevant literature; 

second, a detailed explanation of the methodological framework; third, the presentation and 

analysis of results; and finally, a discussion of findings and policy implications. This structure is 

intended to guide the reader through the analytical process while providing a comprehensive 

understanding of the multidimensional impact of water pollution in Ecuador.  
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DEVELOPMENT 

1. Contextual Framework: The Esmeraldas River Basin and Water Pollution in 

Ecuador 

1.1 Geographical and hydrological structure of the basin 

The Esmeraldas River basin, located in northwestern Ecuador, is one of the country's 

largest and most complex hydrological systems. The basin extends from the high-altitude Andean 

regions down to the Pacific coast, encompassing diverse climatic zones, ecological areas, and 

socio-economic contexts. Structurally, the basin is primarily formed by three major tributaries: 

the Guayllabamba, Blanco, and Quinindé rivers. These rivers, together with around seventy 

smaller streams, create a vast hydrological network that serves ecological functions and sustains 

significant agricultural, industrial, and urban activities within its territory (Reyes Vera et al., 

2022). 

The Guayllabamba River is particularly critical, as it originates in the Andes near the 

Quito metropolitan area, subsequently flowing northwest and joining with the Blanco River. 

Further downstream, the Quinindé River merges into this system, completing the major 

hydrological confluence that ultimately forms the Esmeraldas River, which continues its 

navigable route to the Pacific Ocean (Reyes Vera et al., 2022). Historically, these waterways 

have supported a rich biodiversity, but intensive anthropogenic pressures, including urban 

expansion, deforestation, and agricultural development, have significantly altered their natural 

ecological balance (Reyes Vera et al., 2022). 

Hydrologically, the Esmeraldas basin is characterized by substantial seasonal variability 

in water flows. Between 1965 and 2013, the river exhibited an average monthly discharge of 

approximately 904.44 m³/s, with extreme peak flows reaching up to 1906.69 m³/s during rainy 
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seasons, contrasted by minimum flows as low as 434.27 m³/s in dry periods (Reyes Vera et al., 

2022). This variability has profound implications for water management, flood risks, and water 

quality throughout the basin. 

In terms of land use, the Esmeraldas basin displays a mosaic of agricultural, pastoral, 

forested, and urban landscapes. Agricultural activities predominate, involving permanent, semi-

permanent, and annual crops, accompanied by extensive livestock production systems (Reyes 

Vera et al., 2022). Unfortunately, these land-use practices have accelerated landscape 

fragmentation and ecosystem degradation, significantly reducing the ecological integrity of the 

basin. From 1990 to 2015, extensive deforestation and land conversion resulted in a 55% 

reduction in forest cover, intensifying landscape fragmentation and limiting ecological 

connectivity (Reyes Vera et al., 2022). 

Understanding this geographical and hydrological structure is fundamental to 

comprehending the broader environmental and public health challenges faced by communities in 

the Esmeraldas basin. The subsequent sections will further explore the implications of these 

structural characteristics on water quality, public health, economic costs, and institutional 

governance. 

1.2 Sources and types of water pollution in the basin (Machángara, Guayllabamba, 

Esmeraldas) 

Water pollution within the Esmeraldas River basin arises from multiple sources, 

predominantly untreated domestic sewage, industrial discharges, agricultural runoff, and urban 

wastewater. One of the most impacted tributaries, the Machángara River, illustrates the severe 

contamination prevalent throughout the basin. According to recent studies, approximately 97% 
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of wastewater from Quito is discharged untreated into this river, significantly contributing to 

elevated concentrations of contaminants such as heavy metals, oils, detergents, and microbial 

pathogens (UDLA, 2024). 

Similarly, the Guayllabamba River, originating in the densely populated Andean 

highlands near Quito, faces severe pollution from untreated urban and industrial effluents. This 

pollution is characterized by elevated biochemical oxygen demand (BOD), chemical oxygen 

demand (COD), and high levels of pathogens including coliforms and Escherichia coli (Vinueza 

et al., 2021). Agricultural practices in the basin add to this burden, introducing pesticides, 

herbicides, and fertilizers, which cause eutrophication, further degrading water quality and 

affecting aquatic ecosystems (Reyes Vera et al., 2022). 

Industrial pollution, notably from textile, chemical, and food processing industries 

located along the tributaries, introduces additional hazardous substances such as heavy metals 

and organic compounds. The Esmeraldas River itself, receiving inputs from both Machángara 

and Guayllabamba rivers, becomes heavily loaded with these pollutants, severely impacting 

ecosystems downstream and posing substantial health risks for local communities dependent on 

these water resources for domestic use and agriculture (Reyes Vera et al., 2022). 

Addressing the diverse sources and complex nature of this pollution requires integrated 

management strategies that encompass improved infrastructure, rigorous regulatory enforcement, 

and community-based participation to mitigate further ecological and human health impacts. 

1.3 Wastewater infrastructure and treatment coverage 

Wastewater management infrastructure within the Esmeraldas River basin is notably 

insufficient, exacerbating the environmental and public health challenges posed by 
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contamination. Currently, the city of Quito treats only about 3% of its wastewater, discharging 

the remaining 97% directly into river systems without adequate treatment (UDLA, 2024). This 

scenario reflects significant infrastructural deficits and highlights substantial gaps in sanitation 

coverage across urban and rural areas. 

The Vindobona Project, a major wastewater treatment initiative for Quito and its 

surrounding parishes, aims to address these deficits. With an anticipated capacity to treat an 

average flow of 7,550 liters per second, the project is designed to benefit over three million 

residents by the year 2045 (EPMAPS, 2016). Utilizing technologies such as activated sludge 

with staged feeding, anaerobic digestion for sludge treatment, and ultraviolet disinfection, 

Vindobona represents a significant advancement toward environmental sustainability and public 

health improvement. 

Despite these ambitious plans, current infrastructure remains fragmented, particularly in 

rural and peri-urban communities within the basin. Many areas lack even basic sanitation 

facilities, depending on rudimentary septic systems or direct discharge into waterways. This 

fragmented infrastructure results in continuous pollutant loads entering the river system, 

deteriorating water quality and increasing public health risks (Ministerio de Salud Pública, 

2019). 

To effectively mitigate pollution and protect community health, it is essential to enhance 

wastewater infrastructure coverage, particularly through decentralized and context-specific 

treatment solutions. Strengthening infrastructure will require sustained financial investment, 

robust regulatory frameworks, and collaborative governance involving public entities, private 

sectors, and affected communities. 
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1.4 Institutional and regulatory context of water management in the basin 

Water resource management in the Esmeraldas River basin involves a complex 

institutional framework characterized by multiple overlapping jurisdictions and regulatory 

challenges. At the national level, the Secretaría Nacional del Agua (SENAGUA) is primarily 

responsible for water resource governance, overseeing allocation, management, and conservation 

policies. However, decentralized autonomous governments (GADs), municipalities, and 

provincial authorities also share significant responsibilities related to water sanitation and 

environmental protection, often resulting in fragmented and inconsistent enforcement of 

regulations (Water Security and Sustainable Development Hub, 2024). 

This fragmented institutional landscape has created substantial governance challenges, 

notably weak regulatory enforcement, insufficient monitoring capacities, and limited inter-

institutional coordination. These deficiencies directly contribute to ongoing pollution issues, as 

demonstrated by the limited effectiveness of existing wastewater management systems (UDLA, 

2024). 

Legal frameworks, such as Ecuador's Organic Law on Water Resources and 

Environmental Code, outline clear standards and obligations for pollution control and water 

quality management. However, their implementation and compliance are frequently hindered by 

resource constraints, technical deficiencies, and lack of accountability mechanisms. 

Strengthening institutional capacity, improving regulatory coherence, and promoting integrated 

governance approaches are critical steps toward addressing these institutional gaps and achieving 

effective water management in the basin. 
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1.5 Public health expenditure linked to waterborne diseases 

The contamination of water resources in the Esmeraldas River basin has significant 

implications for public health expenditures in Ecuador. Waterborne diseases, predominantly 

gastrointestinal infections and parasitic illnesses, constitute a substantial financial burden for the 

national health system. According to the Ecuadorian Ministry of Public Health (MSP, 2019), 

approximately 88% of diarrheal illnesses are directly associated with unsafe water and 

inadequate sanitation services. 

These illnesses frequently lead to hospitalizations, emergency room visits, and ongoing 

medical treatments, creating considerable economic strain on public health budgets. 

Furthermore, chronic exposure to contaminated water can lead to persistent health conditions, 

increasing long-term healthcare costs and reducing overall economic productivity. 

Investments in water infrastructure, such as wastewater treatment facilities, have been 

demonstrated to significantly reduce public health expenditures by decreasing the incidence and 

prevalence of waterborne diseases. Comprehensive improvements in water quality management, 

combined with targeted healthcare interventions, are crucial for mitigating the economic impacts 

of water contamination. Addressing this issue not only enhances public health outcomes but also 

ensures more efficient allocation and utilization of healthcare resources in the region. 

Given the complexity of environmental, institutional, and health dynamics within the 

Esmeraldas River basin, this study adopted a machine learning approach to explore predictive 

patterns of health vulnerability. Specifically, a binary logistic regression model was 

implemented, combined with the Synthetic Minority Over-sampling Technique (SMOTE) to 

address data imbalance. This methodology allowed for a structured analysis of how territorial 
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exposure, healthcare availability, and socio-economic conditions jointly influence public health 

outcomes linked to water contamination. 

2. Theoretical framework and literature review 

The relationship between water pollution and public health represents a critical global 

issue, particularly pronounced in developing regions such as Ecuador. Traditionally, 

environmental economics and epidemiology have been the primary fields addressing these 

challenges, relying heavily on econometric and statistical models to identify causal links and 

evaluate policy interventions. However, limitations often arise when these traditional methods 

confront complex datasets characterized by class imbalances or incomplete data. 

Recent advances in computational power and data science have enabled the use of 

machine learning (ML) methods, offering promising alternatives for public health predictions 

and informed policy-making. In particular, supervised classification techniques, such as logistic 

regression enhanced by the Synthetic Minority Over-sampling Technique (SMOTE), have 

emerged as effective tools for predicting risk factors and disease prevalence. This research 

employs logistic regression and SMOTE to determine whether being located in a canton affected 

by river pollution significantly correlates with higher disease incidence beyond random chance. 

By leveraging ML techniques, the research aims to deliver accurate and actionable insights for 

targeting public health interventions and infrastructure investments more efficiently. 

2.1. Public health impacts of water pollution: a review 

The economic and social consequences of water pollution are widely documented in both 

global and Ecuadorian contexts. Hutton and Varughese (2016) demonstrate that inadequate water 

and sanitation services substantially increase health costs, particularly in developing regions. 
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Similarly, the WHO/UNICEF Joint Monitoring Programme (2024) emphasizes that safe water 

access remains one of the most cost-effective interventions to mitigate disease burdens globally. 

Ecuador’s Ministry of Public Health highlights that approximately 88% of diarrheal diseases are 

linked to unsafe water, with greater impacts in areas lacking adequate sanitation infrastructure 

(MSP, 2019). 

2.2. Machine learning and public health: classification models 

Classification models constitute a supervised machine learning methodology used to 

predict categories or classes based on various input features. In public health contexts, logistic 

regression and similar classification algorithms have successfully forecasted disease incidence, 

predicted patient outcomes, and identified key risk factors. These methods efficiently handle 

multiple predictors simultaneously, capturing complex, non-linear relationships. Furthermore, 

they are particularly powerful when combined with resampling techniques designed to correct 

class imbalances, thus enhancing predictive accuracy (Brouwer, 2023). 

Within this thesis, logistic regression is specifically used to classify cantons into high-risk 

or low-risk groups regarding waterborne disease prevalence. This granular analysis facilitates the 

identification of local patterns otherwise obscured by aggregated statistics. As noted by the Water 

Security and Sustainable Development Hub (2024), accounting for spatial variability in health-

environment interactions is essential for designing effective, targeted interventions. 

2.3. The problem of imbalanced health data and SMOTE 

A significant challenge in applying ML to health datasets is the class imbalance problem, 

where the occurrence of disease (positive class) is significantly less frequent than its absence 

(negative class). Such imbalance can bias models towards high overall accuracy but low 
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sensitivity to true positives (Genius et al., 2006). To tackle this, SMOTE generates synthetic 

examples for the minority class through nearest-neighbor interpolation, thus balancing the 

dataset without losing valuable information (Lemaître, Nogueira, & Aridas, 2023). 

As documented by imbalanced-learn (2024), SMOTE effectively enhances model 

sensitivity to policy-relevant outcomes, crucial when predicting the presence of high-risk health 

conditions associated with environmental factors like water contamination. 

2.4. Comparison with traditional econometric approaches 

While traditional spatial econometric models such as the Spatial Durbin Model (SDM) 

provide robust insights into spatial dependencies, they typically rely on stringent assumptions 

regarding data linearity, normality, and exogeneity. These assumptions often fail to hold in real-

world health and environmental datasets. Additionally, traditional models might face 

interpretability challenges with complex or imbalanced data. In contrast, ML classification 

methods are specifically optimized for predictive accuracy and scalability, making them ideal for 

targeted policy actions, especially in contexts where causal inference is less feasible due to data 

limitations (Hutton, 2012; Water Security Hub, 2024). 

The application of ML in this thesis thus complements traditional econometric analyses 

by providing actionable predictions under practical data constraints. 

This section established the theoretical justification for employing logistic regression and 

SMOTE as an analytical framework for assessing public health risks linked to water pollution. 

Drawing from global evidence and methodological advancements, the chosen ML techniques 

align closely with Ecuador’s specific health data characteristics and infrastructure needs. The 
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subsequent chapter will detail the operationalization of this theoretical approach, including data 

processing, classification modeling, and result interpretation. 

3. Methodology 

This section presents the methodology used to analyze how territorial conditions related 

to pollution from the Esmeraldas River affect the prevalence of waterborne diseases in the 

studied cantons.  

Methodology 

3.1 Problem Definition and Research Design 

This study addresses a binary classification problem aimed at determining how territorial 

exposure to pollution from the Esmeraldas River basin affects the prevalence of waterborne 

diseases in the cantons analyzed. The primary goal is to assess whether being located directly 

within or adjacent to the river basin significantly increases the likelihood of higher incidences of 

water-related diseases. Cantons directly intersected by the major rivers (Machángara, 

Guayllabamba, Blanco, and Esmeraldas) are classified as treatment cantons (coded 1), while 

geographically adjacent cantons constitute the control group (coded 0). Cantons neither directly 

affected nor adjacent were excluded to enhance spatial precision. 

3.2 Data Sources and Sample Construction 

Data for this analysis was collected primarily from two Ecuadorian government sources 

covering the period 2015–2023: 

• Ministry of Public Health (MSP) provided detailed information on disease incidence 

and healthcare personnel at the cantonal level. 
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• National Institute of Statistics and Censuses (INEC) provided monthly cantonal 

population projections based on the 2022 Ecuadorian Census and poverty rates defined 

by the Unmet Basic Needs (NBI) metric. 

Variables were standardized to a per capita basis, to allow meaningful comparisons across 

cantons with differing population sizes. 

3.3 Variable Construction 

The analytical model included the following variables: 

• Poverty Rate per Capita (pobres_percapita): Derived from INEC's poverty metrics. 

• Healthcare Personnel per Capita (funcionarios_medicos_relacionados_percapita): 

Aggregate measure including auxiliaries, doctors, nurses, rural doctors, rotating interns, 

laboratory technicians, and specialized medical personnel. 

• Primary Waterborne Diseases (enfermedades_asociadas_pc): Incidence per capita 

directly linked to unsafe water (e.g., Infectious Gastroenteritis, Intestinal Helminthiasis, 

Chronic Gastritis). 

• Secondary Water-Related Diseases (enfermedades_asociadas_2do_grado_pc): 

Incidence per capita indirectly associated with unsafe water and poor hygiene practices 

(e.g., Urinary Tract Infections, Cystitis). 

• Treatment Indicator (dummy_tratamiento): Binary variable distinguishing between 

directly affected (1) and adjacent (0) cantons. 

Disease classifications: 

• Primary water-associated diseases: 
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o a09x – Infectious Gastroenteritis and Colitis, Unspecified 

o b829 – Intestinal Helminthiasis, Unspecified 

o k297 – Chronic Gastritis, Unspecified 

o k30x – Dyspepsia 

o z108 – Screening for Infectious and Parasitic Diseases 

• Secondary water-related diseases: 

o n390 – Urinary Tract Infection, Site Not Specified 

o n300 – Cystitis, Unspecified 

o n760 – Female Pelvic Inflammatory Disease 

These disease groups were selected based on their direct or indirect association with 

unsafe water consumption and hygiene practices. 

3.4 Addressing Class Imbalance with SMOTE 

Initial analysis revealed significant class imbalance, with treatment cantons representing 

approximately one-third of observations compared to two-thirds for adjacent cantons. To correct 

this bias, the Synthetic Minority Over-sampling Technique (SMOTE) was employed exclusively 

on the training dataset. SMOTE generates synthetic samples by interpolating existing minority 

class examples, balancing the dataset without data loss and ensuring robust model training 

(Lemaître, Nogueira, & Aridas, 2017). 

Post-SMOTE, the training data achieved a balanced distribution (50% treatment, 50% 

control), improving the model’s sensitivity to genuine spatial and epidemiological patterns. 
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3.5 Modeling Strategy: Logistic Regression 

Given the binary nature of the dependent variable, logistic regression was selected for its 

interpretability and robustness in epidemiological and public health contexts (Water Security and 

Sustainable Development Hub, 2024). The model predicts the probability of cantons belonging 

to the treatment group based on socioeconomic and epidemiological predictors. 

The logistic regression model was trained using the balanced SMOTE-enhanced training 

dataset and evaluated against an independent, untouched test dataset to provide an unbiased 

assessment of predictive accuracy. 

3.6 Model Evaluation Metrics 

The predictive capability of the logistic regression model was comprehensively evaluated 

using: 

• Confusion Matrix: Precision, Recall, Specificity, Accuracy 

• F1-Score: Assessment of the balance between precision and recall for each class 

• ROC Curve and Area Under the Curve (AUC): Evaluation of the model’s 

discriminatory power 

These metrics enabled a clear assessment of the model’s ability to correctly identify 

cantons at elevated health risk due to territorial exposure to contaminated water sources. 

3.7 Software and Tools 

Data processing and analysis were conducted using Python, leveraging libraries such as 

pandas, scikit-learn, imbalanced-learn, matplotlib, and seaborn to ensure robust statistical 

analysis and clear visual representation of results. 
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This integrated methodological framework ensured that the study effectively identified 

and analyzed spatial health vulnerabilities, providing reliable insights into public health risks 

associated with water contamination in the Esmeraldas River basin. 

4. Results 

4.1 Descriptive statistics and historical context of healthcare personnel 

Before presenting the results of the predictive classification model, it is important to 

understand the historical and structural context of healthcare personnel distribution in the cantons 

affected by the Esmeraldas River. Human resource availability is a critical factor influencing the 

capacity to prevent and respond to waterborne diseases. 

Table 1 summarizes the average number of healthcare personnel per 10,000 inhabitants 

across cantons directly affected by the river and those classified as adjacent. The data reveal a 

modest advantage in staffing levels for affected cantons, although the differences are not 

uniformly consistent. 

canton_type mean_rate min_rate max_rate std_rate 

Adjacent 50.64730064 11.4818 203.583196 48.04387 

Affected 34.67102191 1.53692 85.2987986 32.14527 

Other 92.32565735 1.41106 1651.19096 160.7643 

 

Table 1. Average number of healthcare personnel per 10,000 inhabitants, affected vs. adjacent 

cantons. 

Figure 1 provides a visual distribution through boxplots of total healthcare personnel 

across cantons. While affected cantons generally exhibit slightly higher median values, a 

significant overlap exists between the two groups. This suggests that being geographically 
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affected by river pollution does not necessarily guarantee better or worse access to healthcare 

services, highlighting the importance of controlling for additional factors in the predictive 

modeling. 

 

Figure 1. Boxplot of healthcare personnel per 10,000 inhabitants by canton type. 

Understanding these baseline disparities is crucial because staffing levels directly 

influence the detection, reporting, and treatment of diseases linked to water contamination. 

However, healthcare resources in Ecuador have not remained static over time. Figure 2 depicts 

the temporal evolution of healthcare personnel density between 2015 and 2023. 
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Figure 2. Evolution of healthcare personnel density (per 10,000 inhabitants), 2015–2023. 

The figure highlights several key turning points. A marked contraction in healthcare 

staffing occurred between 2018 and 2019, aligning with fiscal austerity measures implemented 

under the Ecuador-IMF agreement (International Monetary Fund, 2019) and subsequent public 

sector layoffs (Ministry of Labor, 2019). The trend reversed slightly in 2021–2022, 

corresponding to emergency hiring initiatives during the COVID-19 health crisis (Ministry of 

Public Health, 2020). 

These historical events contextualize the structural weaknesses and temporary 

reinforcements within the Ecuadorian healthcare system. As such, they frame the interpretation 

of both the descriptive patterns and the results of the predictive model that follows. 

4.2 Results of the predictive classification model 

The predictive model was trained using logistic regression on a dataset balanced with the 

Synthetic Minority Over-sampling Technique (SMOTE). The classification aimed to predict 
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whether a canton, based on its geographical relation to the Esmeraldas River and its healthcare 

personnel resources, would exhibit high incidence of waterborne diseases. 

Table 2 presents the classification report metrics. 

Class Precision Recall F1-Score Support 

0 (non-

affected) 
0.83 0.83 0.83 1748 

1 (affected) 0.66 0.65 0.66 877 

 

Table 2. Logistic regression model evaluation metrics. 

• Accuracy: 77% 

• Macro average F1-Score: 0.74 

• Weighted average F1-Score: 0.77 

The confusion matrix (Figure 3) provides a detailed summary of the model’s absolute 

performance, illustrating how correct and incorrect predictions are distributed across the two 

classes (affected vs. non-affected cantons). Despite some misclassification, the model 

demonstrates acceptable balance across classes, especially considering the original data 

imbalance (Lemaître, Nogueira, & Aridas, 2017). 
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Figure 3. Confusion Matrix of the Logistic Regression Model. 

• True Negatives (1457): Cantons correctly classified as non-affected. 

• False Positives (291): Cantons incorrectly classified as affected. 

• False Negatives (307): Cantons affected by river pollution but incorrectly 

classified as non-affected. 

• True Positives (570): Cantons correctly classified as affected. 

The confusion matrix highlights the model’s strong ability to correctly classify non-

affected cantons (high specificity), while also revealing moderate limitations in detecting all 

affected cantons (sensitivity). This result underscores the importance of continuing to refine the 
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model by incorporating additional variables and collecting higher-quality data, with the ultimate 

goal of moving toward causal analysis and informing effective public policy. 

To further assess model performance, the Receiver Operating Characteristic (ROC) curve 

was analyzed (Figure 4). 

 

Figure 4. Receiver Operating Characteristic (ROC) curve. 

The area under the ROC curve (AUC) reached 0.74, suggesting a satisfactory ability of 

the model to distinguish between high- and low-risk cantons. The area under the ROC curve 

(AUC) reached 0.74, suggesting a satisfactory ability of the model to distinguish between high- 

and low-risk cantons. Although not perfect, this level of discrimination substantially exceeds 

random prediction and validates the relevance of territorial exposure and healthcare capacity as 

predictive factors. And according to Hosmer, Lemeshow, and Sturdivant (2013), an AUC 
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between 0.7 and 0.8 indicates an acceptable level of discrimination, particularly in studies 

addressing complex health and social phenomena, where perfect prediction is rarely achievable. 

Overall, these results indicate that territorial variables and healthcare staffing 

meaningfully predict the health vulnerability landscape within the Esmeraldas River basin. 

4.3 Interpretation of findings 

The findings from the descriptive statistics and predictive modeling reveal a complex but 

discernible relationship between territorial exposure to river pollution, healthcare resource 

availability, and the incidence of waterborne diseases. 

Firstly, the slight advantage in healthcare personnel density among affected cantons 

suggests that proximity to environmental risks may be correlated with targeted resource 

allocation. However, the significant variability and overlap between affected and adjacent 

cantons highlight systemic disparities that cannot be fully explained by territorial factors alone. 

Secondly, the predictive model's performance, achieving a 77% overall accuracy and an 

AUC of 0.74, underscores that spatial exposure and healthcare infrastructure are significant 

predictors, although not exhaustive. The imperfect recall for affected cantons indicates that other 

latent factors, such as environmental management, water treatment infrastructure, and social 

determinants of health, likely play substantial roles. 

Thirdly, the historical disruptions in healthcare staffing, notably the austerity-driven 

contractions and pandemic-induced expansions, frame the healthcare system's vulnerability and 

resilience. These contextual factors likely influenced the observed patterns and model 

predictions. 
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In summary, while territorial exposure to river pollution is a meaningful predictor of 

public health risks, the results highlight the multifactorial nature of vulnerability. Effective 

interventions should therefore integrate environmental management, equitable healthcare 

resource distribution, and broader socio-economic policies to mitigate the health impacts of 

water contamination. 
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CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This study aimed to assess the predictive capacity of territorial exposure to water 

pollution in the Esmeraldas River basin on the incidence of waterborne diseases, incorporating 

socio-economic and healthcare variables. The logistic regression model, combined with the 

Synthetic Minority Over-sampling Technique (SMOTE), provided robust evidence indicating 

that cantonal exposure to river contamination, healthcare infrastructure, poverty levels, and 

disease burden significantly contribute to predicting public health vulnerability. 

The results highlighted that while territorial exposure alone does not determine disease 

outcomes, it is an important predictive factor when considered in conjunction with healthcare 

resources, poverty indicators, and specific water-related diseases. The model achieved an 

accuracy of 77% and an Area Under the Curve (AUC) of 0.74, underscoring the meaningful 

predictive power of these combined indicators. 

Furthermore, historical contextual factors, including austerity measures under the 

Ecuador-IMF agreement and emergency hiring during the COVID-19 pandemic, significantly 

impacted healthcare resource availability and disease vulnerability patterns. These factors 

emphasized the dynamic nature of health resources and their crucial role in shaping public health 

outcomes. 

Despite these valuable insights, this study did not establish causality, highlighting the 

need for additional research employing causal inference methods. Thus, while the findings 

strongly suggest non-random associations, definitive conclusions on causal relationships remain 

beyond this study's scope. 
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Recommendations for Future Research 

Future research should pursue causal methodologies such as Difference-in-Differences 

(DiD), instrumental variable approaches, or quasi-experimental designs to confirm and refine the 

relationships identified here. Additionally, incorporating more detailed environmental 

management indicators, infrastructure quality metrics, and comprehensive socio-economic 

variables could further enhance the robustness and explanatory power of future studies. 

Recommendations for Public Policy 

Given the significant predictive associations found, public health policy in the 

Esmeraldas River basin should adopt an integrated, multifactorial approach. Policies should not 

only address water pollution but also systematically enhance healthcare access, sanitation 

infrastructure, and socio-economic conditions in affected and adjacent cantons. Prioritizing 

investments based solely on geographical exposure is insufficient; thus, policies must 

simultaneously tackle poverty alleviation, infrastructure development, and public health 

education. 

Ultimately, this study provides foundational insights indicating the complexity and 

interconnectivity of environmental, socio-economic, and healthcare determinants of public 

health. Future policy interventions informed by these multifaceted relationships have the 

potential to substantially mitigate the health impacts of water pollution in Ecuador. 
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