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ABSTRACT

This study analyzes the relationship between territorial exposure to water pollution in the
Esmeraldas River Basin and public health vulnerability in Ecuador. Using a binary logistic
regression model combined with the Synthetic Minority Over-sampling Technique (SMOTE), a
predictive model was developed to classify cantons based on their risk of waterborne diseases.
The analysis incorporated socioeconomic variables such as poverty rates, healthcare personnel

availability per capita, and the incidence of primary and secondary water-related diseases.

The results show that territorial exposure, together with socioeconomic factors and
healthcare infrastructure, constitutes a significant predictor of health vulnerability. The model
achieved an overall accuracy of 77% and an area under the curve (AUC) of 0.74, demonstrating
a satisfactory ability to distinguish between high- and low-risk cantons. However, the findings
also highlight the multifactorial nature of vulnerability, indicating that geographic exposure,

although relevant, is not sufficient by itself to fully explain the observed risk patterns.

This study provides empirical evidence that can inform integrated public policies
combining environmental interventions, improvements in healthcare infrastructure, and

reductions in socioeconomic disparities to mitigate the health impacts of water pollution.

Keywords: water pollution, waterborne diseases, logistic regression, health vulnerability,

SMOTE, Esmeraldas River Basin, Ecuador.



RESUMEN

Este estudio analiza la relacion entre la exposicion territorial a la contaminacién del agua
en la Cuenca del Rio Esmeraldas y la vulnerabilidad en salud publica en Ecuador. Utilizando un
modelo de regresion logistica binaria combinado con la técnica de sobremuestreo sintético
SMOTE, se construy6 un modelo predictivo para clasificar cantones seglin su riesgo de
enfermedades relacionadas con el agua. El andlisis incorpor¢ variables socioeconémicas como la
tasa de pobreza, la disponibilidad de personal de salud per cépita y la incidencia de enfermedades

hidricas primarias y secundarias.

Los resultados muestran que la exposicion territorial, junto con factores socioecondmicos
y de infraestructura sanitaria, constituye un predictor significativo de la vulnerabilidad sanitaria.
El modelo alcanzo una precision general del 77% y un area bajo la curva (AUC) de 0.74,
demostrando una capacidad satisfactoria para discriminar entre cantones de alto y bajo riesgo.
Sin embargo, los hallazgos también resaltan la naturaleza multifactorial de la vulnerabilidad,
indicando que la exposicion geografica, aunque relevante, no es suficiente por si sola para

explicar los patrones de riesgo observados.

Este trabajo proporciona evidencia empirica que puede guiar politicas publicas integradas
que combinen intervenciones ambientales, mejoras en infraestructura sanitaria y reduccion de
brechas socioecondémicas para mitigar los impactos de la contaminacion del agua sobre la salud

publica.

Palabras clave: contaminacion del agua, enfermedades hidricas, regresion logistica,

vulnerabilidad sanitaria, SMOTE, Cuenca del Rio Esmeraldas, Ecuador.
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INTRODUCTION
The deterioration of water quality in river systems is one of the most pressing
environmental and public health challenges in Latin America. In Ecuador, this issue is
particularly acute in the Esmeraldas River basin, an extensive hydrological network that
originates in the Andes and traverses densely populated urban and peri-urban areas before
reaching the Pacific coast. Despite its ecological and socioeconomic importance, this basin has
become the recipient of a cumulative load of untreated domestic, industrial, and agricultural

wastewater, posing severe risks to both ecosystems and human health.

This work emerges from a diagnostic concern that combines environmental degradation
and its underestimated fiscal consequences. Recent studies have confirmed that several rivers
within this basin, (including the Machdngara River), consistently exceed international and
national thresholds for microbiological and chemical contamination. According to Vinueza et al.
(2021), the presence of Escherichia coli and total coliforms surpasses legal limits in virtually all
major Ecuadorian rivers, with the Esmeraldas and Machéngara among the most critically
polluted. Moreover, according to the Ministry of Public Health (MSP, 2019), nearly 88% of
diarrheal diseases in the country are attributable to poor water quality, inadequate sanitation, and

deficient hygiene services.

The problem is not limited to natural degradation, it reflects institutional and
infrastructural deficiencies that have persisted over time. In Quito, for example, only 3% of
wastewater is treated before being discharged into natural watercourses, while the remaining
97% is released untreated (UDLA, 2024). These figures exemplify a broader governance failure

in water management systems. Additionally, this context places Ecuador at a disadvantage in its
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efforts to meet the Sustainable Development Goals (SDGs), particularly Goal 6, which

emphasizes universal access to safe water and sanitation.

Although the environmental and health dimensions of water pollution have received
increasing attention, the economic dimension remains insufficiently explored in the Ecuadorian
context. There is a critical gap in understanding how pollution-driven health burdens translate
into increased public expenditure and fiscal pressure. Addressing this gap is essential not only for
improving water management policies, but also for generating evidence that supports efficient
allocation of public resources. A rigorous economic assessment of the costs associated with
waterborne diseases and the potential savings derived from effective water treatment

infrastructure is a necessary step toward more rational and sustainable policymaking.

Water security, in this context, must be understood beyond its physical dimension. As
defined by the Water Security and Sustainable Development Hub, it involves the integration of
social, ecological, institutional, and technological dimensions to ensure the sustainable use of
water resources and the protection of human and environmental health (Water Security and
Sustainable Development Hub, 2024). This concept underpins the present research, which adopts
an interdisciplinary and systemic approach to the economic consequences of water

contamination.

This project seeks to quantify the economic impact of water pollution in the Esmeraldas
River basin by evaluating its effect on public health expenditure. Through a spatial econometric
model and a cost-benefit analysis, this work aims to provide empirical evidence on how
environmental degradation generates measurable fiscal burdens and how investment in

wastewater treatment infrastructure could reduce such costs.
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The following sections are structured as follows: first, a review of the relevant literature;
second, a detailed explanation of the methodological framework; third, the presentation and
analysis of results; and finally, a discussion of findings and policy implications. This structure is
intended to guide the reader through the analytical process while providing a comprehensive

understanding of the multidimensional impact of water pollution in Ecuador.
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DEVELOPMENT

1. Contextual Framework: The Esmeraldas River Basin and Water Pollution in
Ecuador

1.1 Geographical and hydrological structure of the basin

The Esmeraldas River basin, located in northwestern Ecuador, is one of the country's
largest and most complex hydrological systems. The basin extends from the high-altitude Andean
regions down to the Pacific coast, encompassing diverse climatic zones, ecological areas, and
socio-economic contexts. Structurally, the basin is primarily formed by three major tributaries:
the Guayllabamba, Blanco, and Quinindé rivers. These rivers, together with around seventy
smaller streams, create a vast hydrological network that serves ecological functions and sustains
significant agricultural, industrial, and urban activities within its territory (Reyes Vera et al.,

2022).

The Guayllabamba River is particularly critical, as it originates in the Andes near the
Quito metropolitan area, subsequently flowing northwest and joining with the Blanco River.
Further downstream, the Quinindé River merges into this system, completing the major
hydrological confluence that ultimately forms the Esmeraldas River, which continues its
navigable route to the Pacific Ocean (Reyes Vera et al., 2022). Historically, these waterways
have supported a rich biodiversity, but intensive anthropogenic pressures, including urban
expansion, deforestation, and agricultural development, have significantly altered their natural

ecological balance (Reyes Vera et al., 2022).

Hydrologically, the Esmeraldas basin is characterized by substantial seasonal variability
in water flows. Between 1965 and 2013, the river exhibited an average monthly discharge of

approximately 904.44 m3/s, with extreme peak flows reaching up to 1906.69 m?/s during rainy
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seasons, contrasted by minimum flows as low as 434.27 m?®/s in dry periods (Reyes Vera et al.,
2022). This variability has profound implications for water management, flood risks, and water

quality throughout the basin.

In terms of land use, the Esmeraldas basin displays a mosaic of agricultural, pastoral,
forested, and urban landscapes. Agricultural activities predominate, involving permanent, semi-
permanent, and annual crops, accompanied by extensive livestock production systems (Reyes
Vera et al., 2022). Unfortunately, these land-use practices have accelerated landscape
fragmentation and ecosystem degradation, significantly reducing the ecological integrity of the
basin. From 1990 to 2015, extensive deforestation and land conversion resulted in a 55%
reduction in forest cover, intensifying landscape fragmentation and limiting ecological

connectivity (Reyes Vera et al., 2022).

Understanding this geographical and hydrological structure is fundamental to
comprehending the broader environmental and public health challenges faced by communities in
the Esmeraldas basin. The subsequent sections will further explore the implications of these
structural characteristics on water quality, public health, economic costs, and institutional

governance.

1.2 Sources and types of water pollution in the basin (Machangara, Guayllabamba,

Esmeraldas)

Water pollution within the Esmeraldas River basin arises from multiple sources,
predominantly untreated domestic sewage, industrial discharges, agricultural runoff, and urban
wastewater. One of the most impacted tributaries, the Machangara River, illustrates the severe

contamination prevalent throughout the basin. According to recent studies, approximately 97%
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of wastewater from Quito is discharged untreated into this river, significantly contributing to
elevated concentrations of contaminants such as heavy metals, oils, detergents, and microbial

pathogens (UDLA, 2024).

Similarly, the Guayllabamba River, originating in the densely populated Andean
highlands near Quito, faces severe pollution from untreated urban and industrial effluents. This
pollution is characterized by elevated biochemical oxygen demand (BOD), chemical oxygen
demand (COD), and high levels of pathogens including coliforms and Escherichia coli (Vinueza
et al., 2021). Agricultural practices in the basin add to this burden, introducing pesticides,
herbicides, and fertilizers, which cause eutrophication, further degrading water quality and

affecting aquatic ecosystems (Reyes Vera et al., 2022).

Industrial pollution, notably from textile, chemical, and food processing industries
located along the tributaries, introduces additional hazardous substances such as heavy metals
and organic compounds. The Esmeraldas River itself, receiving inputs from both Machangara
and Guayllabamba rivers, becomes heavily loaded with these pollutants, severely impacting
ecosystems downstream and posing substantial health risks for local communities dependent on

these water resources for domestic use and agriculture (Reyes Vera et al., 2022).

Addressing the diverse sources and complex nature of this pollution requires integrated
management strategies that encompass improved infrastructure, rigorous regulatory enforcement,

and community-based participation to mitigate further ecological and human health impacts.

1.3 Wastewater infrastructure and treatment coverage

Wastewater management infrastructure within the Esmeraldas River basin is notably

insufficient, exacerbating the environmental and public health challenges posed by
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contamination. Currently, the city of Quito treats only about 3% of its wastewater, discharging
the remaining 97% directly into river systems without adequate treatment (UDLA, 2024). This
scenario reflects significant infrastructural deficits and highlights substantial gaps in sanitation

coverage across urban and rural areas.

The Vindobona Project, a major wastewater treatment initiative for Quito and its
surrounding parishes, aims to address these deficits. With an anticipated capacity to treat an
average flow of 7,550 liters per second, the project is designed to benefit over three million
residents by the year 2045 (EPMAPS, 2016). Utilizing technologies such as activated sludge
with staged feeding, anaerobic digestion for sludge treatment, and ultraviolet disinfection,
Vindobona represents a significant advancement toward environmental sustainability and public

health improvement.

Despite these ambitious plans, current infrastructure remains fragmented, particularly in
rural and peri-urban communities within the basin. Many areas lack even basic sanitation
facilities, depending on rudimentary septic systems or direct discharge into waterways. This
fragmented infrastructure results in continuous pollutant loads entering the river system,
deteriorating water quality and increasing public health risks (Ministerio de Salud Publica,

2019).

To effectively mitigate pollution and protect community health, it is essential to enhance
wastewater infrastructure coverage, particularly through decentralized and context-specific
treatment solutions. Strengthening infrastructure will require sustained financial investment,
robust regulatory frameworks, and collaborative governance involving public entities, private

sectors, and affected communities.
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1.4 Institutional and regulatory context of water management in the basin

Water resource management in the Esmeraldas River basin involves a complex
institutional framework characterized by multiple overlapping jurisdictions and regulatory
challenges. At the national level, the Secretaria Nacional del Agua (SENAGUA) is primarily
responsible for water resource governance, overseeing allocation, management, and conservation
policies. However, decentralized autonomous governments (GADs), municipalities, and
provincial authorities also share significant responsibilities related to water sanitation and
environmental protection, often resulting in fragmented and inconsistent enforcement of

regulations (Water Security and Sustainable Development Hub, 2024).

This fragmented institutional landscape has created substantial governance challenges,
notably weak regulatory enforcement, insufficient monitoring capacities, and limited inter-
institutional coordination. These deficiencies directly contribute to ongoing pollution issues, as
demonstrated by the limited effectiveness of existing wastewater management systems (UDLA,

2024).

Legal frameworks, such as Ecuador's Organic Law on Water Resources and
Environmental Code, outline clear standards and obligations for pollution control and water
quality management. However, their implementation and compliance are frequently hindered by
resource constraints, technical deficiencies, and lack of accountability mechanisms.
Strengthening institutional capacity, improving regulatory coherence, and promoting integrated
governance approaches are critical steps toward addressing these institutional gaps and achieving

effective water management in the basin.
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1.5 Public health expenditure linked to waterborne diseases

The contamination of water resources in the Esmeraldas River basin has significant
implications for public health expenditures in Ecuador. Waterborne diseases, predominantly
gastrointestinal infections and parasitic illnesses, constitute a substantial financial burden for the
national health system. According to the Ecuadorian Ministry of Public Health (MSP, 2019),
approximately 88% of diarrheal illnesses are directly associated with unsafe water and

inadequate sanitation services.

These illnesses frequently lead to hospitalizations, emergency room visits, and ongoing
medical treatments, creating considerable economic strain on public health budgets.
Furthermore, chronic exposure to contaminated water can lead to persistent health conditions,

increasing long-term healthcare costs and reducing overall economic productivity.

Investments in water infrastructure, such as wastewater treatment facilities, have been
demonstrated to significantly reduce public health expenditures by decreasing the incidence and
prevalence of waterborne diseases. Comprehensive improvements in water quality management,
combined with targeted healthcare interventions, are crucial for mitigating the economic impacts
of water contamination. Addressing this issue not only enhances public health outcomes but also

ensures more efficient allocation and utilization of healthcare resources in the region.

Given the complexity of environmental, institutional, and health dynamics within the
Esmeraldas River basin, this study adopted a machine learning approach to explore predictive
patterns of health vulnerability. Specifically, a binary logistic regression model was
implemented, combined with the Synthetic Minority Over-sampling Technique (SMOTE) to

address data imbalance. This methodology allowed for a structured analysis of how territorial
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exposure, healthcare availability, and socio-economic conditions jointly influence public health

outcomes linked to water contamination.

2. Theoretical framework and literature review

The relationship between water pollution and public health represents a critical global
issue, particularly pronounced in developing regions such as Ecuador. Traditionally,
environmental economics and epidemiology have been the primary fields addressing these
challenges, relying heavily on econometric and statistical models to identify causal links and
evaluate policy interventions. However, limitations often arise when these traditional methods

confront complex datasets characterized by class imbalances or incomplete data.

Recent advances in computational power and data science have enabled the use of
machine learning (ML) methods, offering promising alternatives for public health predictions
and informed policy-making. In particular, supervised classification techniques, such as logistic
regression enhanced by the Synthetic Minority Over-sampling Technique (SMOTE), have
emerged as effective tools for predicting risk factors and disease prevalence. This research
employs logistic regression and SMOTE to determine whether being located in a canton affected
by river pollution significantly correlates with higher disease incidence beyond random chance.
By leveraging ML techniques, the research aims to deliver accurate and actionable insights for

targeting public health interventions and infrastructure investments more efficiently.

2.1. Public health impacts of water pollution: a review

The economic and social consequences of water pollution are widely documented in both
global and Ecuadorian contexts. Hutton and Varughese (2016) demonstrate that inadequate water

and sanitation services substantially increase health costs, particularly in developing regions.
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Similarly, the WHO/UNICEF Joint Monitoring Programme (2024) emphasizes that safe water
access remains one of the most cost-effective interventions to mitigate disease burdens globally.
Ecuador’s Ministry of Public Health highlights that approximately 88% of diarrheal diseases are
linked to unsafe water, with greater impacts in areas lacking adequate sanitation infrastructure

(MSP, 2019).

2.2. Machine learning and public health: classification models

Classification models constitute a supervised machine learning methodology used to
predict categories or classes based on various input features. In public health contexts, logistic
regression and similar classification algorithms have successfully forecasted disease incidence,
predicted patient outcomes, and identified key risk factors. These methods efficiently handle
multiple predictors simultaneously, capturing complex, non-linear relationships. Furthermore,
they are particularly powerful when combined with resampling techniques designed to correct

class imbalances, thus enhancing predictive accuracy (Brouwer, 2023).

Within this thesis, logistic regression is specifically used to classify cantons into high-risk
or low-risk groups regarding waterborne disease prevalence. This granular analysis facilitates the
identification of local patterns otherwise obscured by aggregated statistics. As noted by the Water
Security and Sustainable Development Hub (2024), accounting for spatial variability in health-

environment interactions is essential for designing effective, targeted interventions.

2.3. The problem of imbalanced health data and SMOTE

A significant challenge in applying ML to health datasets is the class imbalance problem,
where the occurrence of disease (positive class) is significantly less frequent than its absence

(negative class). Such imbalance can bias models towards high overall accuracy but low
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sensitivity to true positives (Genius et al., 2006). To tackle this, SMOTE generates synthetic
examples for the minority class through nearest-neighbor interpolation, thus balancing the

dataset without losing valuable information (Lemaitre, Nogueira, & Aridas, 2023).

As documented by imbalanced-learn (2024), SMOTE effectively enhances model
sensitivity to policy-relevant outcomes, crucial when predicting the presence of high-risk health

conditions associated with environmental factors like water contamination.

2.4. Comparison with traditional econometric approaches

While traditional spatial econometric models such as the Spatial Durbin Model (SDM)
provide robust insights into spatial dependencies, they typically rely on stringent assumptions
regarding data linearity, normality, and exogeneity. These assumptions often fail to hold in real-
world health and environmental datasets. Additionally, traditional models might face
interpretability challenges with complex or imbalanced data. In contrast, ML classification
methods are specifically optimized for predictive accuracy and scalability, making them ideal for
targeted policy actions, especially in contexts where causal inference is less feasible due to data

limitations (Hutton, 2012; Water Security Hub, 2024).

The application of ML in this thesis thus complements traditional econometric analyses

by providing actionable predictions under practical data constraints.

This section established the theoretical justification for employing logistic regression and
SMOTE as an analytical framework for assessing public health risks linked to water pollution.
Drawing from global evidence and methodological advancements, the chosen ML techniques

align closely with Ecuador’s specific health data characteristics and infrastructure needs. The
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subsequent chapter will detail the operationalization of this theoretical approach, including data

processing, classification modeling, and result interpretation.

3. Methodology

This section presents the methodology used to analyze how territorial conditions related
to pollution from the Esmeraldas River affect the prevalence of waterborne diseases in the

studied cantons.

Methodology

3.1 Problem Definition and Research Design

This study addresses a binary classification problem aimed at determining how territorial
exposure to pollution from the Esmeraldas River basin affects the prevalence of waterborne
diseases in the cantons analyzed. The primary goal is to assess whether being located directly
within or adjacent to the river basin significantly increases the likelihood of higher incidences of
water-related diseases. Cantons directly intersected by the major rivers (Machangara,
Guayllabamba, Blanco, and Esmeraldas) are classified as treatment cantons (coded 1), while
geographically adjacent cantons constitute the control group (coded 0). Cantons neither directly

affected nor adjacent were excluded to enhance spatial precision.

3.2 Data Sources and Sample Construction

Data for this analysis was collected primarily from two Ecuadorian government sources

covering the period 2015-2023:

e Ministry of Public Health (MSP) provided detailed information on disease incidence

and healthcare personnel at the cantonal level.



National Institute of Statistics and Censuses (INEC) provided monthly cantonal
population projections based on the 2022 Ecuadorian Census and poverty rates defined

by the Unmet Basic Needs (NBI) metric.
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Variables were standardized to a per capita basis, to allow meaningful comparisons across

cantons with differing population sizes.

3.3 Variable Construction

The analytical model included the following variables:

Poverty Rate per Capita (pobres_percapita): Derived from INEC's poverty metrics.

Healthcare Personnel per Capita (funcionarios_medicos_relacionados percapita):
Aggregate measure including auxiliaries, doctors, nurses, rural doctors, rotating interns,

laboratory technicians, and specialized medical personnel.

Primary Waterborne Diseases (enfermedades_asociadas_pc): Incidence per capita
directly linked to unsafe water (e.g., Infectious Gastroenteritis, Intestinal Helminthiasis,

Chronic Gastritis).

Secondary Water-Related Diseases (enfermedades_asociadas_2do_grado_pc):
Incidence per capita indirectly associated with unsafe water and poor hygiene practices

(e.g., Urinary Tract Infections, Cystitis).

Treatment Indicator (dummy _tratamiento): Binary variable distinguishing between

directly affected (1) and adjacent (0) cantons.

Disease classifications:

Primary water-associated diseases:
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o a09x — Infectious Gastroenteritis and Colitis, Unspecified

o b829 — Intestinal Helminthiasis, Unspecified

o k297 — Chronic Gastritis, Unspecified

o k30x — Dyspepsia

o z108 — Screening for Infectious and Parasitic Diseases

e Secondary water-related diseases:

o 1390 — Urinary Tract Infection, Site Not Specified

o n300 — Cystitis, Unspecified

o n760 — Female Pelvic Inflammatory Disease

These disease groups were selected based on their direct or indirect association with

unsafe water consumption and hygiene practices.

3.4 Addressing Class Imbalance with SMOTE

Initial analysis revealed significant class imbalance, with treatment cantons representing
approximately one-third of observations compared to two-thirds for adjacent cantons. To correct
this bias, the Synthetic Minority Over-sampling Technique (SMOTE) was employed exclusively
on the training dataset. SMOTE generates synthetic samples by interpolating existing minority
class examples, balancing the dataset without data loss and ensuring robust model training

(Lemaitre, Nogueira, & Aridas, 2017).

Post-SMOTE, the training data achieved a balanced distribution (50% treatment, 50%

control), improving the model’s sensitivity to genuine spatial and epidemiological patterns.
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3.5 Modeling Strategy: Logistic Regression

Given the binary nature of the dependent variable, logistic regression was selected for its
interpretability and robustness in epidemiological and public health contexts (Water Security and
Sustainable Development Hub, 2024). The model predicts the probability of cantons belonging

to the treatment group based on socioeconomic and epidemiological predictors.

The logistic regression model was trained using the balanced SMOTE-enhanced training
dataset and evaluated against an independent, untouched test dataset to provide an unbiased

assessment of predictive accuracy.

3.6 Model Evaluation Metrics

The predictive capability of the logistic regression model was comprehensively evaluated

using:

o Confusion Matrix: Precision, Recall, Specificity, Accuracy

e F1-Score: Assessment of the balance between precision and recall for each class

e ROC Curve and Area Under the Curve (AUC): Evaluation of the model’s

discriminatory power

These metrics enabled a clear assessment of the model’s ability to correctly identify

cantons at elevated health risk due to territorial exposure to contaminated water sources.

3.7 Software and Tools

Data processing and analysis were conducted using Python, leveraging libraries such as
pandas, scikit-learn, imbalanced-learn, matplotlib, and seaborn to ensure robust statistical

analysis and clear visual representation of results.
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This integrated methodological framework ensured that the study effectively identified
and analyzed spatial health vulnerabilities, providing reliable insights into public health risks

associated with water contamination in the Esmeraldas River basin.
4. Results
4.1 Descriptive statistics and historical context of healthcare personnel

Before presenting the results of the predictive classification model, it is important to
understand the historical and structural context of healthcare personnel distribution in the cantons
affected by the Esmeraldas River. Human resource availability is a critical factor influencing the

capacity to prevent and respond to waterborne diseases.

Table 1 summarizes the average number of healthcare personnel per 10,000 inhabitants
across cantons directly affected by the river and those classified as adjacent. The data reveal a
modest advantage in staffing levels for affected cantons, although the differences are not

uniformly consistent.

canton_type mean_rate | min_rate | max_rate | std_rate
Adjacent 50.64730064 | 11.4818 | 203.583196 | 48.04387
Affected 34.67102191 | 1.53692 | 85.2987986 | 32.14527
Other 92.32565735 | 1.41106 | 1651.19096 | 160.7643

Table 1. Average number of healthcare personnel per 10,000 inhabitants, affected vs. adjacent

cantons.

Figure 1 provides a visual distribution through boxplots of total healthcare personnel
across cantons. While affected cantons generally exhibit slightly higher median values, a

significant overlap exists between the two groups. This suggests that being geographically



affected by river pollution does not necessarily guarantee better or worse access to healthcare
services, highlighting the importance of controlling for additional factors in the predictive

modeling.

Distribution of Health Personnel Rate by Canton Type
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Figure 1. Boxplot of healthcare personnel per 10,000 inhabitants by canton type.

Understanding these baseline disparities is crucial because staffing levels directly
influence the detection, reporting, and treatment of diseases linked to water contamination.
However, healthcare resources in Ecuador have not remained static over time. Figure 2 depicts

the temporal evolution of healthcare personnel density between 2015 and 2023.
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Share of Health Personnel Types (per Year)
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Figure 2. Evolution of healthcare personnel density (per 10,000 inhabitants), 2015-2023.

The figure highlights several key turning points. A marked contraction in healthcare
staffing occurred between 2018 and 2019, aligning with fiscal austerity measures implemented
under the Ecuador-IMF agreement (International Monetary Fund, 2019) and subsequent public
sector layoffs (Ministry of Labor, 2019). The trend reversed slightly in 2021-2022,
corresponding to emergency hiring initiatives during the COVID-19 health crisis (Ministry of

Public Health, 2020).

These historical events contextualize the structural weaknesses and temporary
reinforcements within the Ecuadorian healthcare system. As such, they frame the interpretation

of both the descriptive patterns and the results of the predictive model that follows.

4.2 Results of the predictive classification model

The predictive model was trained using logistic regression on a dataset balanced with the

Synthetic Minority Over-sampling Technique (SMOTE). The classification aimed to predict
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whether a canton, based on its geographical relation to the Esmeraldas River and its healthcare

personnel resources, would exhibit high incidence of waterborne diseases.

Table 2 presents the classification report metrics.

Class Precision Recall | F1-Score | Support
0 (non-
affected) 0.83 0.83 0.83 1748
1 (affected) 0.66 0.65 0.66 877

Table 2. Logistic regression model evaluation metrics.

e Accuracy: 77%
e Macro average F1-Score: 0.74
o Weighted average F1-Score: 0.77

The confusion matrix (Figure 3) provides a detailed summary of the model’s absolute
performance, illustrating how correct and incorrect predictions are distributed across the two
classes (affected vs. non-affected cantons). Despite some misclassification, the model
demonstrates acceptable balance across classes, especially considering the original data

imbalance (Lemaitre, Nogueira, & Aridas, 2017).
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Figure 3. Confusion Matrix of the Logistic Regression Model.

e True Negatives (1457): Cantons correctly classified as non-affected.

e False Positives (291): Cantons incorrectly classified as affected.

e False Negatives (307): Cantons affected by river pollution but incorrectly
classified as non-affected.

e True Positives (570): Cantons correctly classified as affected.

The confusion matrix highlights the model’s strong ability to correctly classify non-
affected cantons (high specificity), while also revealing moderate limitations in detecting all

affected cantons (sensitivity). This result underscores the importance of continuing to refine the
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model by incorporating additional variables and collecting higher-quality data, with the ultimate

goal of moving toward causal analysis and informing effective public policy.

To further assess model performance, the Receiver Operating Characteristic (ROC) curve

was analyzed (Figure 4).

True Positive Rate

Receiver operating characteristic

1.0

0.8

0.6
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4. Receiver Operating Characteristic (ROC) curve.

The area under the ROC curve (AUC) reached 0.74, suggesting a satisfactory ability of

the model to distinguish between high- and low-risk cantons. The area under the ROC curve

(AUC) reached 0.74, suggesting a satisfactory ability of the model to distinguish between high-

and low-risk cantons. Although not perfect, this level of discrimination substantially exceeds

random prediction and validates the relevance of territorial exposure and healthcare capacity as

predictive factors. And according to Hosmer, Lemeshow, and Sturdivant (2013), an AUC
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between 0.7 and 0.8 indicates an acceptable level of discrimination, particularly in studies

addressing complex health and social phenomena, where perfect prediction is rarely achievable.

Overall, these results indicate that territorial variables and healthcare staffing

meaningfully predict the health vulnerability landscape within the Esmeraldas River basin.

4.3 Interpretation of findings

The findings from the descriptive statistics and predictive modeling reveal a complex but
discernible relationship between territorial exposure to river pollution, healthcare resource

availability, and the incidence of waterborne diseases.

Firstly, the slight advantage in healthcare personnel density among affected cantons
suggests that proximity to environmental risks may be correlated with targeted resource
allocation. However, the significant variability and overlap between affected and adjacent

cantons highlight systemic disparities that cannot be fully explained by territorial factors alone.

Secondly, the predictive model's performance, achieving a 77% overall accuracy and an
AUC of 0.74, underscores that spatial exposure and healthcare infrastructure are significant
predictors, although not exhaustive. The imperfect recall for affected cantons indicates that other
latent factors, such as environmental management, water treatment infrastructure, and social

determinants of health, likely play substantial roles.

Thirdly, the historical disruptions in healthcare staffing, notably the austerity-driven
contractions and pandemic-induced expansions, frame the healthcare system's vulnerability and
resilience. These contextual factors likely influenced the observed patterns and model

predictions.
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In summary, while territorial exposure to river pollution is a meaningful predictor of
public health risks, the results highlight the multifactorial nature of vulnerability. Effective
interventions should therefore integrate environmental management, equitable healthcare
resource distribution, and broader socio-economic policies to mitigate the health impacts of

water contamination.



CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This study aimed to assess the predictive capacity of territorial exposure to water
pollution in the Esmeraldas River basin on the incidence of waterborne diseases, incorporating
socio-economic and healthcare variables. The logistic regression model, combined with the
Synthetic Minority Over-sampling Technique (SMOTE), provided robust evidence indicating
that cantonal exposure to river contamination, healthcare infrastructure, poverty levels, and

disease burden significantly contribute to predicting public health vulnerability.

The results highlighted that while territorial exposure alone does not determine disease
outcomes, it is an important predictive factor when considered in conjunction with healthcare
resources, poverty indicators, and specific water-related diseases. The model achieved an
accuracy of 77% and an Area Under the Curve (AUC) of 0.74, underscoring the meaningful

predictive power of these combined indicators.

Furthermore, historical contextual factors, including austerity measures under the
Ecuador-IMF agreement and emergency hiring during the COVID-19 pandemic, significantly

impacted healthcare resource availability and disease vulnerability patterns. These factors

34

emphasized the dynamic nature of health resources and their crucial role in shaping public health

outcomes.

Despite these valuable insights, this study did not establish causality, highlighting the

need for additional research employing causal inference methods. Thus, while the findings

strongly suggest non-random associations, definitive conclusions on causal relationships remain

beyond this study's scope.
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Recommendations for Future Research

Future research should pursue causal methodologies such as Difference-in-Differences
(DiD), instrumental variable approaches, or quasi-experimental designs to confirm and refine the
relationships identified here. Additionally, incorporating more detailed environmental
management indicators, infrastructure quality metrics, and comprehensive socio-economic

variables could further enhance the robustness and explanatory power of future studies.

Recommendations for Public Policy

Given the significant predictive associations found, public health policy in the
Esmeraldas River basin should adopt an integrated, multifactorial approach. Policies should not
only address water pollution but also systematically enhance healthcare access, sanitation
infrastructure, and socio-economic conditions in affected and adjacent cantons. Prioritizing
investments based solely on geographical exposure is insufficient; thus, policies must
simultaneously tackle poverty alleviation, infrastructure development, and public health

education.

Ultimately, this study provides foundational insights indicating the complexity and
interconnectivity of environmental, socio-economic, and healthcare determinants of public
health. Future policy interventions informed by these multifaceted relationships have the

potential to substantially mitigate the health impacts of water pollution in Ecuador.
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