SAN FRANCISCO DE QUITO UNIVERSITY

Effects Of The Presence Of *Myrmelachista Schumanni* Ants On The Abundance And Diversity Of Edaphic Macro Invertebrates Within 'Devil's Gardens'.

Denisse Dalgo Andrade

Degree Thesis Requirement For Obtaining The Degree In Applied Ecology

College of Biological and Environmental Sciences

Quito, Ecuador

Agosto 2012

Email: dendal17@gmail.com

SAN FRANCISCO DE QUITO UNIVERSITY

College of Biological and Environmental Sciences

APPROVAL OF THESIS

Effects Of The Presence Of *Myrmelachista Schumanni* Ants On The Abundance And Diversity Of Edaphic Macro Invertebrates Within 'Devil's Gardens'.

Denisse Dalgo Andrade

David Romo, Ph.D. Thesis Director	
Stella de la Torre, Ph. D. Dean of College of Biological and Envir	onmental
Sciences	

AUTHOR COPYRIGHTS

© Author Copyrights

Denisse Dalgo Andrade

2012

ACKNOWLEDGMENTS

I thank the Tiputini Biodiversity Station staff both in Quito and Tiputini; David Romo, my
Thesis Director; Stella de la Torre, Dean of College of Biological and Environmental Sciences;
Carlos Valle and Diego Cisneros for their guidance and constructive reviews that improved the thesis and the staff of the Aquatic Ecology Laboratory for facilitating the use of their equipment and laboratory. I would like to thank also to the Scholarship Committee of the USFQ, to my partners and my mother.

ABSTRACT

'Devil's gardens' are created by *Myrmelachista schumanni* ants, which nest in the hollow, swollen stems of *Duroia hirsuta*, and create these areas devoid of vegetation by poisoning all plants, with the exception their host plants, with formic acid. In this study I investigated if in addition to killing encroaching vegetation around their host plants, *M. schumanni* workers also compete or interfere with the abundance and diversity of edaphic macro invertebrates within 'devil's gardens'. The study was carried out at Tiputini Biodiversity Station in the province of Orellana, Ecuador, where twelve 'devil's gardens' were located and soil samples were collected. The abundance and diversity of macro invertebrates of each sample was measured and compared between controls, soil within 'devil's gardens', and soil outside 'devil's gardens'. The results of this study suggested that the presence of *M. schumanni* has no effects on the abundance nor on the diversity of edaphic macro invertebrates within 'devil's gardens'.

RESUMEN

Las "Chacras del diablo" son creadas por las hormigas *Myrmelachista schumanni*, que anidan en los troncos huecos y abultados de los árboles *Duroia hirsuta*, y crean estas áreas desprovistas de vegetación al inhibir el crecimiento de todas las plantas excepto sus plantas hospederas con ácido fórmico. En este estudio se investigó si, además de matar a la vegetación alrededor de sus plantas hospederas, las obreras *M. schumanni* también compiten o interfieren en la abundancia y diversidad de macroinvertebrados edáficos en las "Chacras del diablo". El estudio se llevó a cabo en la Estación Biológica Tiputini en la provincia del Napo, Ecuador, donde doce "chacras del diablo" fueron localizadas y se recogió muestras del suelo de cada una de ellas. La abundancia y diversidad de macroinvertebrados de cada muestra se midió y se comparó con los controles dentro y fuera de las chacras. De acuerdo con los resultados de este estudio, la presencia de *M. schumanni* no tiene efectos en la abundancia o en la diversidad de macroinvertebrados edáficos en las "chacras del diablo".

TABLE OF CONTENTS

1.	Introduction	1
	General Goal	3
	Specific Objectives	3
2.	Methods	4
3.	Results	6
4.	Discussion	8
5.	Conclusions	10
6.	Recommendations	11
7.	Literature cited	12
8.	Figures and Tables	14

FIGURES AND TABLES INDEX

\mathbf{L}^{\prime}	$\Gamma \cap \Gamma$	ID	ES:
ГΙ	ונדנ	JΚ	

Figure 1. Comparison of abundance, diversity and species composition between the three groups
(controls, within 'devil's gardens' and outside 'devil's gardens')
TABLES:
Table 1. Values of global abundance of macro-invertebrates (N), abundance of taxonomic orders
(S), diversity (Simpson index) and species composition (Margalef and Menhinik indexes) found
within "devil gardens", outside "devil gardens" and in controls
Table 2. Identified taxonomic orders found in controls, within 'devil's gardens' and outside
'devil's gardens'
Table 3. ANOVA test results for the global abundance of macro-invertebrates (N), for the
abundance of taxonomic orders (S), for the diversity (Simpson index) and for the species
composition (Margalef and Menhinik indexes) in the three groups (controls, within 'devil's
gardens' and outside 'devil's gardens')
Table 4. ANOVA test results for the abundance of each taxonomic order in the three groups
(controls, within 'devil's gardens' and outside 'devil's gardens')
Table 5. Paired t-test results for the global abundance of macro-invertebrates (N), for the
abundance of taxonomic orders (S), for the diversity (Simpson index) and for the species
composition (Margalef and Menhinik indexes) between samples within 'devil's gardens' (group
1) and outside 'devil's gardens'(group 2)
Table 6. Paired t-test results for the abundance of each taxonomic order between the two groups
(within 'devil's gardens' (1) and outside 'devil's gardens' (2))21

Table 7. Independent samples t-test results for the global abundance of macro-invertebrates (N),
for the abundance of taxonomic orders (S), for the diversity (Simpson index) and for the species
composition (Margalef and Menhinik indexes) between samples within 'devil's gardens' and
controls22
Table 8. Independent samples t-test results for the abundance of each taxonomic order between
the two groups controls and samples within 'devil's gardens'

1. INTRODUCTION

'Devil's gardens' are areas in the Amazon rainforest that consist almost entirely of a single species of trees, *Duroia hirsuta* (Rubiaceae), and according to a local legend, are cultivated by an evil forest spirit (Frederickson et al. 2005; Edwards et al. 2009). It has been determined that devil's gardens are created by *Myrmelachista schumanni* ants, and not by allelopathy of *D. hirsuta* (Frederickson et al. 2005). The ant *M. schumanni*, which nests in the hollow, swollen stems of *D. hirsuta*, creates devil's gardens by poisoning all plants, with the exception of its host plants, with formic acid (Frederickson et al. 2005). When attacking non-host plants, a worker *M. schumanni* ant bites a small hole in the leaf tissue, inserts the tip of its abdomen into the hole and releases formic acid. As a result, affected leaves develop necrosis along primary veins within hours of the attack (Frederickson 2005). By killing plants of other species, the ant promotes the growth and establishment of *D. hirsuta*, thereby gaining more nest sites (Frederickson 2005).

For this reason, *M. schumanni* ants are known to interfere with the establishment and development of vegetation, except that of *D.hirsuta* (and a few other species) (Frederickson et al 2005; Edwards et al 2009). However, it is also possible that *M. schumanni* ants compete with other invertebrate species in two ways: by an exploitative competition, where interactions between species arise from the use of a common resource (Case et al. 1974) and each consumer affects others by reducing resource abundance (Vance 1984); or by interference competition, where interactions arise from territoriality, overgrowth, undercutting, predation or chemical competition (Schoener 1983) and each consumer alters the others' ability to exploit the resource at any level of abundance (Vance 1984).

In addition to killing encroaching vegetation around their host plants, *M. schumanni* workers also protect their host plants against insects and vertebrate herbivores, significantly reducing leaf herbivory (Frederickson 2005, Rosumek 2009). However, *D. hirsuta* located within devil's gardens with *M. schumanni* ants suffers higher herbivory than *D. hirsuta* outside of devil's gardens, even though the ants defend their host plants against herbivores (Frederickson and Gordon 2007). The changing environment in devil's gardens attracts more herbivores and increased herbivory in turn increases as the number of *D. hirsuta* trees in a devil's garden (Frederickson and Gordon 2007). Furthermore, there are other effects of ants in the ecosystems they inhabit; it is known that the presence of nests of other Formicidae ants in the soil affects many soil properties (Jilkova et al. 2010) and that ants are considered ecosystem engineers because they either directly or indirectly modulate the availability of resources to other species (Jouquet et al. 2006). That being said, it is still unknown if the presence of ants has an effect on the invertebrates colonies of "devil gardens".

GENERAL GOAL

The aim of this study is to investigate if, besides the effects on surrounding vegetation and in the herbivory in 'devil's gardens', the presence of *M. schumanni* ants has an effect on the abundance and diversity of the communities of edaphic macro-invertebrates in the soil of 'devil's gardens'. Evaluating the occurrence of soil fauna in 'devil's gardens', as in every terrestrial ecosystem, is important because it exerts an important effect on mineralization rates of detritus (Reichle 1977), it increases nutrient release by fragmentation of litter, grazing of microflora and improvement of soil structure (Reichle 1977) and therefore implies a direct effect on *D. hirsuta* fitness.

SPECIFIC OBJECTIVES

- Determine the abundance, diversity and species composition of edaphic macro-invertebrates inside "devil gardens".
- Identify these macro-invertebrates up to their taxonomic order.
- Compare the parameters of diversity and abundance of edaphic macro-invertebrates inside and outside "devil gardens" and with several control groups by means of statistical analysis.

2. METHODS

Study Area:

This study was carried out over seven days in May of 2010 at the Universidad San Francisco de Quito's Tiputini Biodiversity Station (76°04'W, 00°38'S), altitude approximately 200 m.a.s.l., Province of Orellana, Ecuador, on the north bank of the Tiputini River (a tributary of the Napo River) in Eastern Ecuador. Twelve 'devil's gardens' located near the well-marked trails around the camp were sampled. For purposes of this publication, I define a 'devil's garden' as one or more trees of *D. hirsuta* occupied by *M. schumanni* and clustered together in an area that is largely devoid of other plants. While at the study area there is an abundance of primary *terra firme* (upland) forest and varzea (seasonally-flooded) forest, all 'devil's gardens' I selected were located in terra firma forests.

For each 'devil's garden' encountered, a number was assigned and the following variables were recorded: location (name of the trail and distance from the station), total number of *D. hirsuta* trees, distance between the two most distant trees and shape of the 'devil's garden' (an outline of the arrangement of the trees in the area was drawn to estimate a central point of the 'devil's garden'). A hole fifteen centimeters deep and fifteen centimeters in diameter, was dug in the ground at the center point (area devoid of vegetation) of each 'devil's garden'. Another hole was dug at a point located at a distance of four meters from the edge of each 'devil's garden' (area with vegetation). Soil samples were placed in plastic containers appropriately labeled and carried to the station lab for further analyses.

Also, eight control locations were established to discern any potential effect of the 'devil's gardens' from those that may have resulted from lack of vegetation in the abundance of edaphic macro-invertebrates. Controls were located on *terra firme* forests, in areas devoid of vegetation, close to the 'devil's gardens' to maintain similar environmental conditions but free from the effects of the communities of *M. schumanni* ants. A soil sample from the middle of each control zone was collected and analyzed.

The abundance (number) of macro-invertebrates in each sample was assessed through a 20-minutes visual search per sample while the soil was manually mixed to locate the visible macro-invertebrates. Macro-invertebrates collected were placed in 70-degree alcohol for preservation and subsequent identification. Collected macro-invertebrates were counted and identified down to their taxonomic order using a stereo microscope. Abundance, diversity (Simpson index) and species composition (Margalef index and Menhinik index) of macro invertebrates at the level of taxonomic orders were calculated and compared between the samples. Differences in abundance and diversity of macro invertebrates among the three groups (inside 'devil's gardens', outside 'devil's gardens' and controls) were analyzed using One Way ANOVA. Independent samples t-test were used to test for differences between 'devil's gardens' and controls and paired samples t-test for those between within 'devil's gardens' and outside 'devil's gardens'.

3. RESULTS

A total of 490 macro invertebrates were collected: 123 in soil samples of the control areas, 152 in soil samples inside 'devil's gardens' and 215 outside 'devil's gardens' (Table 1). Twenty different orders were identified; Collembola, Orthoptera, Dyctioptera, Isoptera, Hemiptera, Coleoptera, Diptera, Hymenoptera, Pulmonata, Oligochaeta, Diplopoda, Quilopoda, Isopoda and Araneae (14 orders) were present in the control areas. Thysanura, Diplura, Collembola, Dermaptera, Isoptera, Embioptera, Hemiptera, Coleoptera, Hymenoptera, Pulmonata, Oligochaeta, Diplopoda, Quilopoda, Isopoda and Acarina (15 orders) were present inside 'devil's gardens'. Thysanura, Diplura, Collembola, Orthoptera, Dyctioptera, Dermaptera, Isoptera, Hemiptera, Coleóptera, Diptera, Hymenoptera, Oligochaeta, Diplopoda, Quilopoda, Acarina, Pseudoescorpionida and Araneae (17 orders) were found outside 'devil's gardens' (Table 2).

When comparing the three groups: controls, within 'devil's gardens' and outside 'devil's gardens'; significant differences were not found in global abundance nor in diversity or species composition indexes of macro-invertebrates between the three groups (Figure 1, Table 3). No significant differences were found in the abundance of any taxonomic order between the three groups (Table 4).

When comparing the global abundance within 'devil's gardens' with the global abundance outside 'devil's gardens', no significant differences were found (Table 5). No significant differences were found in the diversity index or in species composition indexes of macroinvertebrates between the two groups (Table 5). No differences were found between the

abundance of macro-invertebrates within 'devil's gardens' and the abundance of macro-invertebrates outside 'devil's gardens' to no taxonomic order except Araneae (paired samples t test, p=0.027, t=-2.548, df=11) (Table 6).

Significant differences were found when comparing the number of taxonomic orders within 'devil's gardens' with the number of taxonomic orders in controls (independent samples t-test, p=0.035, t= -2.28, df=18) (Table 7). Significant differences were also found between Simpson indexes within 'devil's gardens' and controls (independent samples t-test, p=0.035, t=-2.28, df=18) (Table 7). No differences were found between the abundance of macro invertebrates within 'devil's gardens' and the abundance of macro invertebrates in controls to no taxonomic order except with Diptera (independent samples t test, p=0.020, t=-2.546, df=18) (Table 8).

4. DISCUSSION

The results of this study indicated that the presence of *M. schumanni* has no effects in the abundance or in the diversity of edaphic macro invertebrates within 'devil's gardens'. Many plant species provide food or nest sites for ants in exchange for protection from herbivores and competition or for nutrient advantages (Beattie 1985 cit. in Davidson 1989). A lower diversity of invertebrates might not be beneficial for the community of trees of *D. hirsuta*, because the occurrence of soil fauna populations increases nutrient release by fragmentation of litter, grazing of microflora and improvement of soil structure (Reichle 1977). As plants utilize mineral nutrients in the inorganic form, and are dependent upon the rate at which mineralization occurs in the soil (Reichle 1977), the presence of soil fauna is not prejudicial for the population of *D. hirsuta*. In addition of a nesting place, *M. schumanni* could be receiving nutrition from their host plants, either directly in the form of food bodies and extrafloral nectar, or indirectly via homopteran coccoids (Frederickson 2005), therefore *M. shumanni* ants do not need to deter or prey upon insects and invertebrates except for those that decrease *D. hirsuta* fitness by means of herbivory.

A lower abundance and diversity was expected within 'devil's gardens' than outside 'devil's gardens' because species like *M. schumanni* ants, that use costly interference mechanisms (e.g. territoriality, over-growth or undercutting, allelopathy and other forms of chemical competition) should not be able to coexist unless they also engage in beneficial interference mechanisms (e.g. predation or parasitism) (Amarasekare 1974). However, the presence of *M. schumanni* within 'devil's gardens' produces almost pure stands of *D. hirsuta*, generating different environmental conditions from those outside of 'devil's gardens'. These new conditions could have effects on

herbivory (Rosumek 2009) and probably in the abundance and diversity of macro invertebrates in soil. For example, abundances of herbivores are often higher in pure stands than in mixed stands of plants (Davidson 1989). Compared with other ant species, Myrmelachista provides the least protection against leaf herbivory to Cordia and Duroia, which could suggest that *M. schumanni* do not interfere in the most effective way with other invertebrate species. Indeed, ants can increase herbivore loads on their host plants (Frederickson and Gordon 2007; Frederickson et al. 2012; Palmer et al. 2008). On the other hand, Myrmelachista ants provide better protection against encroaching vegetation, increasing canopy openness over their host plants (Frederickson 2005). *M. schumanni* ants provide the most light environment; plants occupied by *M. schumanni* have more open canopies above them than plants occupied by ants species like Allomerus or Azteca (Frederickson 2005). The differences in canopy openness and light availability could have an effect on the number and diversity of macro invertebrates living within 'devil's gardens'.

The results found when comparing the samples within 'devil's gardens' with the control samples suggest that when the other conditions are similar (areas devoid of vegetation, light availability, canopy openness), there are significant differences in the number of taxonomic orders and in the diversity of edaphic macro invertebrates. Nevertheless, it cannot be determined if the presence of *M. schumanni* ants or the presence of *D. hirsuta* trees cause of the differences. The cause for why the diversity and abundance of taxonomic orders in controls was higher than the diversity and abundance of taxonomic orders within 'devil's gardens' could be that species with costly interference mechanisms (like encroaching vegetation with chemical) are common in communities of low diversity and can coexist only with species that are immune to their interference (Amarasekare 1974).

5. CONCLUSIONS

M. schumanni ants do not compete or interfere with the communities of edaphic macro invertebrates. The colonies of *M. schumanni* have no effects on the abundance or on the diversity of edaphic macro invertebrates within 'devil's gardens'.

As ecosystem engineers, ants alter the ecosystem dynamics within devil gardens and cause a modification of the habitat and the environmental conditions, hence, the richness of edaphic fauna would be influenced by these new conditions and not directly by the presence of *M. schumanni* ants nor by the population of *D. hirsuta*.

M. schumanni ants provide defense against herbivores which is directly beneficial to D. hirsuta but according to this study they do not attack or prey on other arthropods that coexist near "devil gardens" areas at considerable levels because there is not a significant reduction of abundance of macro invertebrates in these areas. Soil fauna is not significantly reduced; if it were, it could represent an ecological cost for M. schumanni host plants as their fitness depends in part on the composition of the soil.

6. RECOMMENDATIONS

In this study, it should be pointed out that the macro invertebrates that were collected were identified down to the taxonomic order. Therefore, differences within and outside "devil gardens" at a species level could not be evaluated. That being said, a more detailed study which would take into account differences at the species level would have been necessary. I also recommend increasing the number of samples and the study area to confirm the results obtained in this investigation.

As soil fauna depends greatly on the properties of the soil, I consider it would be really informative to evaluate the effect, if it exists, of the presence of *M. schumanni* ants or *D. hirsuta* trees on the values of pH, water content, organic matter content and other chemical and microbiological properties of the soils of "devil gardens".

7. LITERATURE CITED

- Amarasekare, P. (2002). Interference competition and species coexistence. *Biological Sciences* 269, 2541-2550.
- Beattie, A. J. (1985). The evolutionary ecology of ant-plant mutualisms. Cambridge University Press, Cambridge, USA.
- Case, T. J. and Gilpin, M. E. (1974). Interference competition and niche theory. *Proceedings Natural Academy Sciences*, 71, 3073-3077.
- Davidson, D. W., Snelling, R. R. and Longino, J. T. (1989). Competition Among Ants for Myrmecophytes and the Significance of Plant Trichomes. *Biotropica*, 21, 64-73.
- Deyn de, G. B., Raaijmakers, C. E. and van der Putten, W. H. (2004). Plant community development is affected by nutrients and soil biota. *Journal of Ecology*, 92, 824-834.
- Edwards, D. P., Frederickson, M. E., Shepard, G. H. and Yu, D. W. (2009). A plant needs ants like a dog needs fleas: *Myrmelachista schumanni* ants gall many tree species to create housing. *American Naturalist*, 174, 734-740.
- Frederickson, M., Greene, M. J. and Gordon, D. M. (2005). 'Devil's gardens' bedevilled by ants. *Nature*, 437, 495-496.
- Frederickson, M. E. (2005). Ant Species Confer Different Partner Benefits on Two Neotropical Myrmecophytes. *Oecologia*, 143, 387-395.
- Frederickson, M. and Gordon, D. (2007). The devil to pay: a cost of mutualism with *Myrmelachista schumanni* ants in 'devil's gardens' is increased herbivory on *Duroia hirsuta* trees. *Proceedings of the Real Society Biological Sciences*, 274, 1117-1123.
- Frederickson, M. E. (2009). Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. *Am Nat.*, 173(5), 675-81.
- Frederickson, M. E., Booth, G., Arcila, L. M., Miller, G. A., Pierce, N. E. and Ravenscraft, A. (2012). The Direct and Ecological Costs of an Ant-Plant Symbiosis. *The American Naturalist*, 179(6), 768-778.
- Hölldobler, B. and Lumsden, C. J. (1980). Territorial Strategies in Ants. *Science, New Series*, 210, 732-739.
- Houseman J. (2006). Entomology in the media: Amazonian "gardening ants".
- Jilkova, V., Frouz, J., Domisch, T. and Finer, L. (2010). The effect of wood ants (*Formica s. str.*) on soil chemical and microbiological properties. Published on DVD.

- Jouquet P., Dauber, J., Lagerlöf, J., Lavelle, P., and Lepage, M. (2006). Soil invertebrates as ecosystem ngineers: Intended and accidental effects on soil and feedback loops. *Applied Soil Ecology* 32, 153-164.
- Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M. and Karban, R. (2008). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. *Science*, 319, 192–195.
- Reichle, D. E. (1977). The Role of Soil Invertebrates in Nutrient Cycling. *Ecological Bulletins*, 25, 145-156.
- Rosumek, F. B., Silveira, F. A. O., Neves, F., Barbosa, N., Diniz, L., Oki, Y., Pezzini, F., Fernandes G. W and Cornelissen, T. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. *Oecologia*, 160, 537–549.
- Schoener, T. W. (1983). Field experiments on interspecific competition. *American Naturalist*, 122, 240-285.
- Vance, R. R. (1984). Interference competition and the coexistence of two competitors on a single limiting resource. *Ecology*, 65, 1349-1357.

8. TABLES AND FIGURES

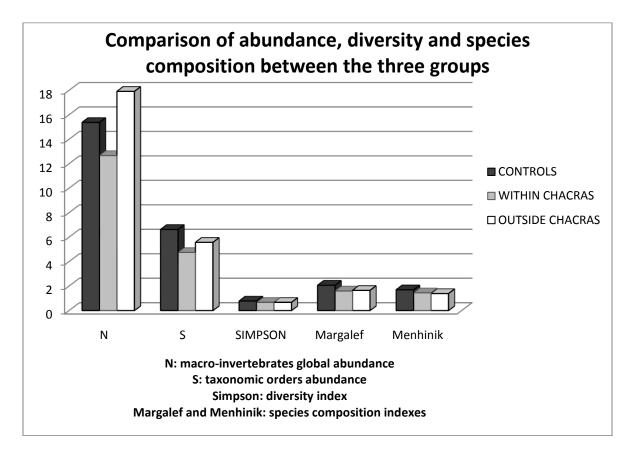


Figure 1. Comparison of abundance, diversity and species composition between the three groups (controls, within 'devil's gardens' and outside 'devil's gardens').

TABLE 1. Values of global abundance of macro-invertebrates (N), abundance of taxonomic orders (S) and diversity (Simpson index) and species composition (Margalef and Menhinik indexes) found within "devil gardens", outside "devil gardens" and in controls.

UBICACION1	N1	S1	MARGALEF1	MENHINIK1	D Si	Simpson1
CHACRA 1	16	3	0,72	0,75	0,43	0,57
CHACRA 2	8	6	2,40	2,12	0,22	0,78
CHACRA 3	34	5	1,13	0,86	0,49	0,51
CHACRA 4	15	6	1,85	1,55	0,23	0,77
CHACRA 5	4	2	0,72	1,00	0,63	0,38
CHACRA 6	10	4	1,30	1,26	0,28	0,72
CHACRA 7	7	3	1,03	1,13	0,39	0,61
CHACRA 8	24	8	2,20	1,63	0,34	0,66
CHACRA 9	3	3	1,82	1,73	0,33	0,67
CHACRA 10	10	5	1,74	1,58	0,24	0,76
CHACRA 11	10	7	2,61	2,21	0,16	0,84
CHACRA 12	11	5	1,67	1,51	0,26	0,74
	12,67	4,75	1,60	1,45	0,33	0,67
UBICACION2	N2	S2	MARGALEF2	MENHINIK2	D Si	Simpson2
NO CHACRA 1	24	5	1,26	1,02	0,36	0,64
NO CHACRA 2	9	5	1,82	1,67	0,23	0,77
NO CHACRA 3	18	8	2,42	1,89	0,23	0,77
NO CHACRA 4	8	5	1,92	1,77	0,25	0,75
NO CHACRA 5	16	6	1,80	1,50	0,27	0,73
NO CHACRA 6	30	6	1,47	1,10	0,60	0,40
NO CHACRA 7	23	3	0,64	0,63	0,43	0,57
NO CHACRA 8	17	7	2,12	1,70	0,32	0,68
NO CHACRA 9	14	5	1,52	1,34	0,35	0,65
NO CHACRA 10	19	9	2,72	2,06	0,18	0,82
NO CHACRA 11	14	5	1,52	1,34	0,35	0,65
NO CHACRA 12	23	3	0,64	0,63	0,43	0,57
	17,92	5,58	1,65	1,39	0,33	0,67
UBICACION3	N2	S2	MARGALEF2	MENHINIK2	D Si	Simpson2
CONTROL 1	10	7	2,61	2,21	0,16	0,84
CONTROL 2	22	10	2,91	2,13	0,14	0,86
CONTROL 3	14	5	1,52	1,34	0,33	0,67
CONTROL 4	15	5	1,48	1,29	0,23	0,77
CONTROL 5	19	8	2,38	1,84	0,17	0,83
CONTROL 6	16	7	2,16	1,75	0,16	0,84
CONTROL 7	11	5	1,67	1,51	0,26	0,74
CONTROL 8	16	6	1,8	1,5	0,28	0,72
	15,38	6,63	2,07	1,70	0,22	0,78

TABLE 2. Identified taxonomic orders found in controls, within 'devil's gardens' and outside 'devil's gardens'.

	Controles	Dentro	Fuera
Acarina		X	X
Araneae	X		X
Coleoptera	X	X	X
Collembola	X	X	Х
Dermaptera		X	X
Diplopoda	X	X	Х
Diplura		X	X
Diptera	X		Х
Dyctioptera	X		X
Embioptera		X	
Hemiptera	X	X	Х
Hymenoptera	X	X	X
Isopoda	X	X	
Isoptera	X	X	Х
Oligochaeta	X	X	Х
Orthoptera	X		X
Pseudoescorpionida			Х
Pulmonata	X	X	
Quilopoda	X	X	X
Thysanura		X	X
	14	15	17

TABLE 3. ANOVA test results for the global abundance of macro-invertebrates (N), for the abundance of taxonomic orders (S), for the diversity (Simpson index) and for the species composition (Margalef and Menhinik indexes) in the three groups (controls, within 'devil's gardens' and outside 'devil's gardens').

	ANOVA										
		Sum of Squares	df	Mean Square	F	Sig.					
N	Between Groups	165.417	2	82.708	1.709	.199					
	Within Groups	1403.458	29	48.395							
	Total	1568.875	31								
S	Between Groups	16.927	2	8.464	2.638	.089					
	Within Groups	93.042	29	3.208							
-	Total	109.969	31								
MARGALEF	Between Groups	1.174	2	.587	1.595	.220					
	Within Groups	10.672	29	.368							
	Total	11.846	31								
MENHINIK	Between Groups	.494	2	.247	1.272	.295					
	Within Groups	5.627	29	.194							
	Total	6.120	31								
SIMPSON	Between Groups	.083	2	.041	3.214	.055					
	Within Groups	.373	29	.013							
	Total	.456	31								

TABLE 4. ANOVA test results for the abundance of each taxonomic order in the three groups (controls, within 'devil's gardens' and outside 'devil's gardens').

ANOVA Suma de Media cuadrados gl cuadrática F Sig. Thysanura Inter-grupos .333 2 .167 1.526 .234 .109 Intra-grupos 3.167 29 Total 3.500 31 2 Diplura Inter-grupos .167 .083 .453 .640 Intra-grupos 29 .184 5.333 Total 5.500 31 2 Collembola Inter-grupos .677 .339 .576 .568 Intra-grupos 17.042 29 .588 Total 17.719 31 .188 Orthoptera Inter-grupos .375 2 1.740 .193 3.125 Intra-grupos 29 .108 Total 3.500 31 Dictyoptera Inter-grupos .708 2 .354 2.143 .135 Intra-grupos 4.792 29 .165 Total 5.500 31 2 Dermaptera Inter-grupos .167 .083 .725 .493 3.333 Intra-grupos 29 .115 Total 3.500 31 Inter-grupos 2 24.943 .525 Isoptera 49.885 .658 Intra-grupos 1098.583 29 37.882 Total 1148.469 31 Embioptera Inter-grupos .052 2 .026 .824 .449 Intra-grupos .917 29 .032 Total .969 31 .135 Hemiptera Inter-grupos 2 .068 .481 .623 Intra-grupos 4.083 29 .141 Total 31 4.219 2 Coleoptera Inter-grupos 9.294 4.647 .557 .579 Intra-grupos 233.803 28 8.350 Total 243.097 30 Diptera Inter-grupos .782 2 .391 2.698 .085 Intra-grupos 4.057 28 .145 Total 4.839 30 Hymenoptera 2 .788 Inter-grupos 4.417 2.208 .240

	Intra-grupos	266.458	29	9.188		
	Total	270.875	31			
Pulmonata	Inter-grupos	.083	2	.042	.674	.51
	Intra-grupos	1.792	29	.062		
	Total	1.875	31			
Oligochaeta	Inter-grupos	2.833	2	1.417	.279	.75
	Intra-grupos	147.167	29	5.075		
	Total	150.000	31			
Diplopoda	Inter-grupos	3.542	2	1.771	.682	.51
	Intra-grupos	75.333	29	2.598		
	Total	78.875	31			
Quilopoda	Inter-grupos	.927	2	.464	.894	.420
	Intra-grupos	15.042	29	.519		
	Total	15.969	31			
Isopoda	Inter-grupos	.083	2	.042	.674	.517
	Intra-grupos	1.792	29	.062		
	Total	1.875	31			
Acarina	Inter-grupos	.333	2	.167	1.526	.234
	Intra-grupos	3.167	29	.109		
	Total	3.500	31			
Pseudoscorpionida	Inter-grupos	.052	2	.026	.824	.44
	Intra-grupos	.917	29	.032		
	Total	.969	31			
Araneae	Inter-grupos	2.708	2	1.354	2.339	.11
	Intra-grupos	16.792	29	.579		
	Total	19.500	31			

TABLE 5. Paired t-test results for the global abundance of macro-invertebrates (N), for the abundance of taxonomic orders (S), for the diversity (Simpson index) and for the species composition (Margalef and Menhinik indexes) between samples within 'devil's gardens' (group 1) and outside 'devil's gardens' (group 2).

Paired Samples Test Paired Differences 95% Confidence Interval of the Std. Std. Error Difference Sig. (2-Deviation Mean Lower Upper df tailed) Mean N1 - N2 -5.250 3.078 -12.024 1.524 -1.706 11 Pair 10.661 .116 1 Pair S1 - S2 -.833 2.250 -2.263 -1.283 11 .226 .649 .596 2 Pair MARGALEF1 -.7931032 .2289492 -.5578400 .4499875 -.236 11 .818 3 MARGALEF2 .053926 2 Pair MENHINIK1 -.060153 .5893556 .1701323 -.3143056 .4346118 .730 .354 11 MENHINIK2 1 Pair Simpson1 -.001304 .1851439 .0534464 -.1163300 .1189396 .024 11 .981

5

Simpson2

8

TABLE 6. Paired t-test results for the abundance of each taxonomic order between the two groups (within 'devil's gardens' (1) and outside 'devil's gardens' (2)).

			P	aired Samples	s Test				
			I	Paired Differen	ices				
					95% Confider	nce Interval			
			Std.	Std. Error	of the Diff	ference			Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	t	Df	tailed)
Pair 1	Thysanura1 -	167	.389	.112	414	.081	-1.483	11	.166
	Thysanura2								
Pair 2	Diplura1 - Diplura2	.000	.739	.213	469	.469	.000	11	1.000
Pair 3	Collembola1 -	.167	1.115	.322	542	.875	.518	11	.615
	Collembola2								
Pair 4	Orthoptera1 -	250	.452	.131	537	.037	-1.915	11	.082
	Orthoptera2								
Pair 5	Dictyoptera1 -	083	.289	.083	267	.100	-1.000	11	.339
	Dictyoptera2								
Pair 6	Dermaptera1 -	.000	.603	.174	383	.383	.000	11	1.000
	Dermaptera2								
Pair 7	Isoptera1 - Isoptera2	-1.750	10.593	3.058	-8.480	4.980	572	11	.579
Pair 8	Embioptera1 -	.083	.289	.083	100	.267	1.000	11	.339
	Embioptera2								
Pair 9	Hemiptera1 -	.083	.515	.149	244	.411	.561	11	.586
	Hemiptera2								
Pair	Coleoptera1 -	818	2.401	.724	-2.431	.795	-1.130	10	.285
10	Coleoptera2								
Pair	Diptera1 - Diptera2	273	.467	.141	587	.041	-1.936	10	.082
11									
Pair	Hymenoptera1 -	750	3.980	1.149	-3.279	1.779	653	11	.527
12	Hymenoptera2								
Pair	Pulmonata1 -	.083	.289	.083	100	.267	1.000	11	.339
13	Pulmonata2								
Pair	Oligochaeta1 -	167	2.691	.777	-1.877	1.543	215	11	.834
14	Oligochaeta2								
Pair	Diplopoda1 -	.167	1.899	.548	-1.040	1.373	.304	11	.767
15	Diplopoda2								
Pair	Quilopoda1 -	333	1.073	.310	-1.015	.348	-1.076	11	.305
16	Quilopoda2								
Pair	Isopoda1 - Isopoda2	.083	.289	.083	100	.267	1.000	11	.339

Pair	Acarina1 - Acarina2	167	.577	.167	533	.200	-1.000	11	.339
18									
Pair	Pseudoscorpionida1	083	.289	.083	267	.100	-1.000	11	.339
19	-								
	Pseudoscorpionida2								
Pair	Araneae1 -	583	.793	.229	-1.087	080	-2.548	11	.027
20	Araneae2								

TABLE 7. Independent samples t-test for the global abundance of macro-invertebrates (N), for the abundance of taxonomic orders (S), for the diversity (Simpson index) and for the species composition (Margalef and Menhinik indexes) between samples within 'devil's gardens' and controls.

	Independent Samples Test										
		Levene's T	est for								
		Equality of Va	quality of Variances t-test for Equality of Means								
						Sig.			95% Confide	nce Interval	
						(2-	Mean	Std. Error	of the Dif	ference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper	
N	Equal variances	2.676	.119	815	18	.426	-2.708	3.324	-9.691	4.275	
	assumed										
	Equal variances not			938	16.290	.362	-2.708	2.888	-8.822	3.405	
	assumed										
S	Equal variances	.034	.855	-2.286	18	.035	-1.875	.820	-3.598	152	
	assumed										
	Equal variances not			-2.299	15.445	.036	-1.875	.816	-3.609	141	
	assumed										
MARGALEF	Equal variances	.244	.628	-1.723	18	.102	4659945	.2704855	-1.0342635	.1022745	
	assumed										
	Equal variances not			-1.782	16.787	.093	4659945	.2614338	-1.0181043	.0861153	
	assumed										
MENHINIK	Equal variances	.662	.426	-1.301	18	.210	2503777	.1925190	6548450	.1540897	
	assumed										
	Equal variances not			-1.379	17.635	.185	2503777	.1815902	6324516	.1316963	
	assumed										
Simpson	Equal variances	2.224	.153	-2.286	18	.035	1167781	.0510825	2240984	0094579	
	assumed										
	Equal variances not			-2.586	17.175	.019	1167781	.0451567	2119765	0215797	
	assumed										

TABLE 8. Independent samples t-test results for the abundance of each taxonomic order between the two groups controls and samples within 'devil's gardens'.

Independent Samples Test Levene's Test for **Equality of Variances** t-test for Equality of Means Sig. 95% Confidence Interval (2-Mean Std. Error of the Difference Difference F Sig. df t tailed) Difference Lower Upper Thysanura Equal variances 3.168 .092 .809 18 .429 .083 -.133 .300 .103 assumed .083 Equal variances 1.000 11.000 .339 .083 -.100 .267 not assumed Diplura Equal variances 9.000 .008 .167 1.200 18 .246 .139 -.125 .458 assumed Equal variances 1.483 11.000 .166 .167 .112 -.081 .414 not assumed Collembola .655 Equal variances .429 -.541 18 .595 -.208 .385 -1.017 .600 assumed Equal variances -.525 13.583 .608 -.208 .397 -1.061 .645 not assumed Orthoptera Equal variances 8.400 .010 .086 -1.242 18 .230 -.125 .101 -.336 assumed Equal variances -1.000 7.000 .351 -.125 .125 -.421 .171 not assumed Equal variances 20.344 .000 .212 .070 Dictyoptera -1.771 18 .094 -.375 -.820 assumed Equal variances -1.4267.000 .197 -.375 .263 -.997 .247 not assumed 9.000 .008 .167 Dermaptera Equal variances 1.200 18 .246 .139 -.125 .458 assumed Equal variances 1.483 11.000 .166 .167 .112 -.081 .414 not assumed Isoptera Equal variances 1.520 .233 .598 18 .557 1.417 2.369 -3.561 6.394 assumed Equal variances .725 12.499 .482 1.417 1.954 -2.8225.655 not assumed Embioptera Equal variances 3.168 .092 .809 18 .429 .083 .103 -.133 .300 assumed

	Equal variances			1.000	11.000	.339	.083	.083	100	.267
Hemiptera	not assumed Equal variances	.732	.403	435	18	.669	083	.191	486	.319
	assumed			400	10.077	004	200	400	544	0.45
	Equal variances not assumed			420	13.277	.681	083	.199	511	.345
Coleoptera	Equal variances	2.043	.171	075	17	.941	068	.910	-1.987	1.851
	assumed Equal variances			086	12.139	.933	068	.789	-1.786	1.649
	not assumed									
Diptera	Equal variances assumed	162.000	.000	-2.546	18	.020	375	.147	684	066
	Equal variances			-2.049	7.000	.080	375	.183	808	.058
Hymenoptera	not assumed Equal variances	.640	.434	575	18	.572	792	1.376	-3.682	2.099
	assumed									
	Equal variances			650	17.250	.524	792	1.218	-3.359	1.776
	not assumed									
Pulmonata	Equal variances	.333	.571	289	18	.776	042	.144	344	.261
	assumed			077	40.074	700	0.40	450	000	202
	Equal variances			277	12.974	.786	042	.150	366	.283
Oli see als a see	not assumed	000	000	4.070	40	000	750	000	0.040	740
Oligochaeta	Equal variances	.009	.923	-1.073	18	.298	750	.699	-2.219	.719
	assumed			4.055	44.040	000	750	744	0.074	774
Diplopoda	Equal variances			-1.055	14.313	.309	750	.711	-2.271	.771
	not assumed	520	470	004	40	205	007	740	0.000	000
	Equal variances	.539	.472	891	18	.385	667	.749	-2.239	.906
	assumed			007	44 405	405	007	000	0.404	4.000
Quilopoda	Equal variances			827	11.485	.425	667	.806	-2.431	1.098
	not assumed Equal variances	4.114	.058	-1.408	18	.176	375	.266	934	.184
	assumed									
	Equal variances			-1.277	10.469	.229	375	.294	-1.025	.275
Isopoda	not assumed									
	Equal variances	.333	.571	289	18	.776	042	.144	344	.261
	assumed									
	Equal variances			277	12.974	.786	042	.150	366	.283
Acarina	not assumed									
	Equal variances	3.168	.092	.809	18	.429	.083	.103	133	.300
	assumed									

	Equal variances			1.000	11.000	.339	.083	.083	100	.267
	not assumed									
Araneae	Equal variances	26.703	.000	-1.849	18	.081	625	.338	-1.335	.085
	assumed									
	Equal variances			-1.488	7.000	.180	625	.420	-1.618	.368
	not assumed									