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Resumen 

Se hace un estudio sobre los distintos modos de vibración debido a campos de 

sonido en un contenedor cilíndrico lleno de agua. Se proponen distintos métodos 

para medir experimentalmente estos campos de sonido con el objetivo de que los 

errores experimentales sean mínimos. Los resultados obtenidos se comparan con los 

resultados teóricos y se observa la exactitud de los métodos propuestos 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

 

 

Abstract 

A study of different mode shapes inside a cylindrical vessel filled with water caused 

by a sound field is done. Some experimental methods to measure these sound fields 

are proposed in order to avoid experimental mistakes. The results obtained are 

compared with theoretical simulations and the effectiveness of each method is 

observed. 
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1 Introduction  

1.1 Doopler shift due to moving reflector 

The aim of the project is to measure the sound field inside a cylindrical vessel 

filled with water using a Polytec Scanning Vibrometer (PSV). PSV uses classic 

refracto vibrometry which is a novel non-contact method used for measuring sound 

fields in transparent media as shown in figure 1. As a first approach we will calculate 

the Doppler shift due to the geometrical Doppler shift and the Doppler shift due to 

ultrasound. 

 

Figure 1 Principle of Classic Vibrometry (Zipser, 2007) 

In this method a scanning laser-Doppler vibrometer based on Mach-Zehnder-

Doppler interferometer is used as shown in figure 2. 
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Figure 2. Scheme of Mach-Zehnder-Doppler Interferometer (Zipser, 2007) 

 

The operation of the interferometer is briefly described as follows. The beam 

from the laser is divided into a reference beam and a measuring beam. The 

measuring beam hits the moving object (reflector) at the end of measuring area, gets 

reflected there and is guided from BS2 to BS3. Behind BS3 two beams interfere and 

the result is a light signal with fluctuating intensities I1 and I2. In case the object is 

moving along a geometrical distance        with a velocity      , because of the 

Doppler effect, the frequency    of the reflected measuring beam changes about the 

(geometrical) Doppler-shift. (Zipser, 2007) 

                                                    
            

  
                                        (1) 

In order to identify the actual direction of the velocity      , the reference beam 

is shifted by a frequency   .  

Which depends on      and therefore on the velocity      . Also, ultrasound 

influences the optical path length    along the measuring beam.  
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                                        (2) 

Where n is the optical refractive index of the medium. Sound pressure cause 

variations of the optical refractive index. 

                                
      

   
             

  

  
 
 
                             (3) 

The relationship is given by a constant, which is called piezo-optic coefficient 

 
  

  
 
 
, the index S indicates adiabatic phase changes. 

Consequently, the total Doppler shift results from the superposition of the 

geometrical and the refractive shares 

                                    
 

   
            

  

  
 
 
 

 

  

 

 
                              (4) 

.                  

Finally, the intensity signal is 

                                                                                                (5) 

The fast Fourier transform of equation (5) is done, and by doing this the 

frequency shift due to ultrasound is obtained 

 

1.2  Description of the set up studied by Zipser (Zipser, 2007) 

First the set up shown in figure 3 is analyzed.  
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Figure 3. Principle of refracto-vibrometry (Zipser, 2007) 

 

The source of ultrasound is a transducer that runs on its resonance frequency. 

In order to eliminate the geometrical Doppler shift, a rigid reflector is applied (    ) 

and a transducer is located in front of the reflector inside the water in order to 

generate the ultrasound waves (section of length L in figure 3).  Laser beam crosses 

the distance to the reflector and gets reflected. Variations of the optical path length  

            is caused by the variations of pressure due to ultrasound.  

                                               
  

  
 
 
        

 

 

 

 
                   (6) 

with          , which is the ambient optical path through the medium, and X 

is distance from the emitting laser to the static reflector.  

Even though the reflector is rigid, it seems to move, from the point of view of 

the PSV (Polytec Scanning vibrometer), with the velocity 
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                              (7) 

This indeed recovers the second term in equation (4). The measured virtual velocity is 

the integral value of the velocities along the measuring beam, because the laser 

beam goes through all sound field with high and low velocities values.  

 

1.3 Set up using a cylindrical vessel 

The set up studied by Zipser (Zipser, 2007) is the base of our study, but it is 

not useful for our purposes. The set up that will be studied is similar as in figure 3, but 

instead of locating the sound field in front of the reflector, a cylindrical vessel filled 

with water is located in front of the reflector. The cylindrical vessel is shown below. 

 

Figure 4. Cylindrical vessel with transducer and water (Bornmann P. , 2011) 

 

In order recreate the images of the sound field a reconstruction algorithm has 

to be applied; the most used is the tomography algorithm. The simplest form of 
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tomography, sometimes referred to as ‘step and shoot’ tomography, is based on the 

creation of parallel projections (Harvey, 2004).  

In this algorithm, the problem is that in a cylindrical vessel, the parallel 

projections are damaged and therefore, the algorithm applied fail. The work done in 

this report is about the research on the correction of this problem and the 

experimental analysis of the sound field inside a cylindrical vessel with glass and 

metal bottoms. 

 

 

2 Theoretical research 

The first task was to develop a method to make the laser beams parallel inside 

a cylindrical vessel, in order to minimize errors of the measurements of ultrasound 

waves inside the vessel.  

A simulation was made in order to see the path taken by a laser beam that 

goes through a cylindrical Plexiglas filled with water.  

The result of the beam path was simulated in Matlab using the program written 

by Martin Klubal (Klubal, Laser beam Path, 2011). A view from above the Bessel is 

shown in figure five. The blue bar is the reflector and the laser is located in the 

opposite side of the reflector. Figure 5 describes the path of the laser beam when 

going through different mediums, in this case, air-glass-water-glass-air. 
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Figure 5. Beam path 

The parameters for the simulation were 

 Refractive index of water: 1.33 

 Refractive index of Plexiglas: 1.49 

 Refractive index of air: 1 

 Distance from the transducer to source of laser beam:  1.28 m 

 Radius of inner glass: 34.5 mm 

 Length of  Plexiglas: 5 mm 
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In order for the scanning algorithm to work, it is needed that the laser beams 

are parallel, but as seen in figure 5, incident lines inside the vessel are not parallel. If 

considered only the middle of the beams, the laser beams are approximately parallel, 

so if we measure only in a small part in the center the results may be reliable. 

Some calculations were done to see how the angles inside the vessel change 

when the firing angle is changed (see figure 5). The obtained result was the following 

 

Figure 6. Plot of firing angle versus angle inside the vessel 
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It can be seen that when one approaches the border of the glass (or when the 

firing angle increases), the angles become less parallel. It can be seen that the worst 

angle obtained could be almost 17 degrees. 

Another graphic was plotted, this time the firing angle versus the height (see 

figure 5) of the vessel that is scanned. This was plotted in order to know the area that 

can be scanned. The graphic is shown below: 

 

Figure 7. Plot of firing angle versus height 
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The relation is linear. Now we are interested in which is the area that we can 

scan, so that we can consider that the lines are almost parallel. The problem here is 

to determine the limit in which we can say the lines are almost parallel. 

The following graphic was plotted to analyze the dependence of the firing 

angle with the angles inside the vessel and the height. 

 

Figure 8. Plot of firing angle versus height and angle inside the vessel 

 

From figure 8 it is concluded that we can scan 2 centimeters of the vessel with 

a maximum variation of the angle of 4 degrees. But again, the problem is that we 
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can’t say whether if four degrees contribute to a big or a small error. Maybe if we 

knew which maximum angle we can tolerate, we could know for sure which area is 

the one we can scan.  

  

Other ideas were proposed to fix the problem of “not parallel lines”. The ideas 

are briefly described as follows: 

 The first option was to have the same medium both inside and outside the 

cylindrical vessel. That means having the vessel inside a rectangular container 

filled with water. By this way the refractive index would be the same, outside 

and inside, and the results obtained would be that the lines are “pseudo” 

parallel. 

 The second option was to modify the method described before by changing 

the firing angle at which the laser beam is fired. By doing so, exact parallel 

lines may be obtained, though this may take a lot of time and changing the 

firing angle every time is really a problem and it couldn’t be done with exact 

precision.  

 The third method was to put a lens in front of the laser beam. The lens will 

cause the light to deviate in a way that when it arrives to the vessel’s interior 

part, the beams are parallel. By doing this, there is no need to modify the firing 

angle of the laser beam because the lens will be able to do it. With this 

method, the only thing that has to be found is the distance at which the lens is 
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located. It has to be located in the exact position so that the main objective is 

obtained. 

The last method described was chosen because it was the most achievable of 

all. In order to make this method work, the specifications of the lens would have to be 

found. To find the specifications of the lens, the program used to simulate the laser 

beam path written by Martin Klubal (Klubal, Laser beam Path, 2011) had to be 

modified, and that’s what I did. 

Once the program was modified I put a lens in the middle of the beam path in 

order to change the direction. At the end it wasn’t exactly a lens that was chosen for 

the experiment, instead it was another Plexiglas cylindrical vessel that was used for 

the simulation in order to simplify the code that had to be written. The parameters that 

were used for the simulation were: 

 Refractive index of water:  1.33 

 Refractive index of Plexiglas: 1.49 

 Refractive index of air: 1 

 Distance from the source of the laser beams to center of the first Plexiglas 

(lens):  0.63 m 

 Distance from the first Plexiglas (lens), to the Plexiglas were the measurement 

is supposed to be done: 0.32 m 

 Radius of both inner glasses: 34.5 mm 

 Length of  both Plexiglas: 5 mm 
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With these parameters the obtained result is the following: 

 

Figure 9. Corrected Beam Path 

 

It can be clearly seen in figure 2 that by doing this modification the laser beams 

are parallel. 

 

3 Measurements, experimental work 

 

3.1 First Measurements 

Some experimental results are shown with different set up arrangements. Below each 

figure the fast Fourier transform (FFT) of the pressure wave is shown. In the FFT it is 
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seen that a clear peak near 23 kHz is formed. This is consistent since the pressure 

waves are being excited by the transducer near this frequency, which is clearly 

ultrasound. Also it should be noted that the pressure waves are traveling vertically. 

3.1.1 Vessel filled with water with glass bottom inside a rectangular 

glass: 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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Figure 10. Vessel filled with water with glass bottom inside a rectangular glass 

 

FFT 

 

Figure 11. FFT 
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Comments: 

With this arrangement a standing wave is formed inside the vessel. The 

maximum speed of the wave is 100 mm/s.  

This maximum speed is comparably high if compared with the measurements 

done with a metallic vessel or Teflon; therefore I may conclude that the 

measurements done in this arrangement are from the vibrations inside the vessel. In 

measurements 3.1.10. and 3.1.11. (see below) it is seen that the maximum speed is 5 

or 10 mm/s, which is almost 10 to 20  times lower than the velocity in this 

measurements. 

This measurement is consistent with the simulations done by (Bornmann P. , 

2011) 

 

3.1.2 Vessel filled with water with glass bottom: 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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Figure 12. Vessel filled with water with glass bottom, inside a rectangular glass filled with water 

 

FFT 

 

Figure 13. FFT 
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Comments:  

With this set up it can be concluded that the vibrations of the transducer are 

going through out the cylindrical vessel and therefore the water outside the vessel is 

affected. It looks like if the measurements are from the vibrations of the water outside 

the cylindrical vessel because the results obtained are similar to the results obtained 

by Elena’s measurements (Figure 2.1 in Hemsel’s report) (Hemsel, E. 2011) 

3.1.3 Vessel filled with water with metallic bottom, inside a rectangular 
glass 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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Figure 14. Vessel filled with water with metallic bottom, inside a rectangular glass 

 

FFT graphic 
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Figure 15. FFT 

Comments: 

Almost the same result as from the vessel with glass bottom is obtained. 

The maximum velocity is 100 mm/s. A standing wave is formed. An interesting 

thing was observed with the metallic bottom. If the video is observed in detail it 

can be seen that a little portion of the wave is reflected, but with very low speed, 

around 10 mm/s 

 

3.1.4 Vessel filled with water with metallic bottom inside a cylindrical 

vessel filled with water 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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Figure 16. Vessel filled with water with metallic bottom 

 

FFT graphic 
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Figure 17. FFT 

Comments: 

As in the case of the vessel with glass bottom, the water outside the vessel 

is also affected by the vibrations by the same reasons as in the measurement 

3.1.2. 

 

3.1.5 Vessel filled with water with glass bottom, inside a rectangular glass 

filled with water (measurements are done outside the vessel) 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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The vessel is now put higher than the measurements done before, in order 

to see if the wave is transmitted through the glass in the bottom of the vessel. The 

distance from the bottom of the vessel to the transducer is 65 mm 

F 

 

 

F 

 

FFT graphic 

Figure 18. Vessel filled with water with glass bottom, inside a rectangular glass filled with 
water  
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Figure 19. FFT 

Comments: 

There are two possibilities for this measurement. The first option is that the 

wave goes through the glass. I would say this is the most logical option. 

But the other option is that we are not measuring the wave inside the 

vessel, and instead we are measuring the vibrations outside the vessel. In that 

case we wouldn’t be able to assure that the wave is going through the glass, 

because all the measured vibrations are outside the glass. 

 

3.1.6 Vessel filled with water with metallic bottom, inside a rectangular glass 

filled with water (measurements are done outside the vessel) 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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The vessel is now put higher than the measurements done before, in order 

to see if the wave is transmitted through the metal located at the bottom of the 

vessel. 

 

Figure 20. Vessel filled with water with metallic bottom, inside a rectangular glass filled with 
water 

 

FFT graphic 
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Figure 21. FFT 

Comments: 

The same conclusion as the measurement in 3.1.5. 

 

3.1.7 Complete metallic vessel filled with water, inside a rectangular glass 

filled with water 

 Distance from bottom to transducer is 65 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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The vessel is put higher than the measurements done before, in order to 

see if he wave is transmitted through the metal located at the bottom of the vessel. 

 

Figure 22. Complete metallic vessel filled with water, inside a rectangular glass filled with water 

 

FFT graphic 
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Figure 23. FFT 

Comments: 

Something unexpected seems to happen in this experiment. Under the 

bottom of the vessel the wave is travelling horizontally. I would have expected 

that, if the wave is going through the bottom of the cylindrical vessel, the wave 

measured under this vessel would have to travel vertically, but this is not seen in 

the experiment. Because of this reason, it can be concluded that the wave doesn’t 

go through the bottom of the metallic vessel, but it does go through the sides of 

the vessel.  

A reasonable conclusion of why the wave is travelling horizontally under the 

metallic vessel is because the water that has been excited in the right and left side 

of the vessel affects all the water in the rectangular container, and therefore the 

area under the metallic vessel also vibrates. 

The maximum velocity is 20 mm/s 
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3.1.8 Teflon inside a rectangular glass filled with water 

 

 Distance from bottom to transducer is 60 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 

 

Figure 24. Teflon inside a rectangular glass filled with water 

FFT graphic 
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Figure 25. FFT 

Comments: 

It can be seen that the wave goes through the bottom and the sides of the 

cylindrical vessel.  

The maximum velocity is 40 mm/s. If we compare the velocity of 

measurement 3.1.7. with the velocity of this measurement, it can be noticed that 

the maximum speed outside the vessel with Teflon is half the maximum speed of 

the measurement done with the metallic vessel, which is something coherent 

since the wave is reflected when the boundary is metallic, and the wave is 

absorbed when the boundary is made of Teflon. 

3.1.9 Complete metallic vessel with Teflon inside a rectangular glass filled with 

water 

 Distance from bottom to transducer is 60 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is 16 mm 
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The vessel is put higher, in order to see if the wave is transmitted through 

the metal located at the bottom of the vessel.  

 

Figure 26. Complete metallic vessel with Teflon inside a rectangular glass filled with water 

 

FFT graphic 
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Figure 27. FFT 

Comments: 

It is very strange to see that below the cylindrical vessel it looks like the 

wave is going from the bottom to the top outside the vessel. Again, this 

experiment demonstrates that the wave is not transmitted through the bottom of 

the cylindrical vessel, like the measurement 3.1.7. and the reason why the wave is 

going from the bottom to the top under the metallic vessel is because that wave is 

only a consequence of the vibrations of the water that has been excited on  the left 

and right of the cylindrical vessel. 

3.1.10 Metallic cylindrical vessel filled with water 

 Distance from bottom to transducer is 60 mm 

 Distance from the source of laser beam to transducer is 1.28 m 

 The water filled above the end of the transducer is near 16 mm. The 16 mm 

distance is not very precise since the measurement of that distance was 

difficult to achieve.  

 A reflective tape was used in order to improve the laser signal.  

 The maximum velocity is 4mm/s 
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Figure 28. Metallic cylindrical vessel filled with water 

 

FFT graphic: 

 

Figure 29. FFT 
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Comments: 

It is seen that a standing wave is formed in the vessel, the speed of the 

wave is is just 4 mm/s, but this proves that the vibrations of the vessel also may 

affect in the measurements. The water filled above the end of the transducer is 16 

mm. A perfect standing wave is formed. This measurement demonstrates that the 

vibrations of the vessel may interfere in the measurements of water.  

 

3.1.11 Teflon vessel filled with water 

 Distance from bottom to transducer is 60 mm 

 Distance from the source of laser beam to transducer is 1.28 m.  

 The water filled above the end of the transducer is near 16 mm. The 16 mm 

distance is not very precise since the measurement of that distance was 

difficult to achieve, but this shouldn’t affect considerably the measurements 
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Figure 30. Teflon vessel filled with water 

 

FFT graphic: 
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Figure 31. FFT 

Comments: 

The amplitude of the wave is bigger in the lower part of the vessel than in 

the top. The maximum velocity is 20 mm/s, which is 5 times higher than the 

velocity of measurement 3.1.10. A refractive tape was used to improve the signal. 

The shape of the wave is not uniform everywhere as in the case of the 

measurement 3.1.10.  

This also proves that the vibration of the vessel also may affect the results 

obtained when measuring the sound field in the water. 

 

3.2  Very precise measurements 

After the first experiments were done and some experience was gained, the 

measurements with water inside a cylindrical vessel with glass and metal bottoms 

were repeated. This time the height where the laser vibrometer was located was 

taken into consideration and it was fixed in order to be at the same height as the 

bottom of the vessels.  
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Also, the distance from the laser vibrometer to the transducer was larger than 

the first measurements, this time the distance was 2.26 m. The reason why we 

increased the distance was to have less variation of the angle than the 

measurements done with 1.28 m. 

3.2.1 Metal bottom 

 Distance from the transducer to the laser vibrometer is 2.26 m 

 Distance from bottom to transducer is 65 mm 

 The water filled above the end of the transducer is 16 mm 

 

Figure 32. Metal bottom 
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FFT graphic: 

 

Figure 33. FFT 

 

Comments: 

The maximum velocity is at the end of the vessel. This result agrees with 

theory so it can be concluded that the measurement was done successfully. 

 

3.2.2 Glass bottom 

 Distance from the transducer to the laser vibrometer is 2.26 m 

 Distance from bottom to transducer is 65 mm 

 The water filled above the end of the transducer is 16 mm 
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Figure 34. Glass Bottom 

FFT graphic: 
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Figure 35. FFT 

Comments: 

This measurement looks really similar to the measurement in figure 6. It can be 

concluded that the distance from the transducer to the laser vibrometer didn’t affect 

this measurement.  

 

4 Conclusions and Recommendations  

The conclusions that can be done are: 

 In the theoretical analysis the main goal of having parallel lines was 

achieved by putting a cylindrical vessel, but because of the experimental 

limitations that idea was not carried out. If the divergence of the laser beam 

is corrected, then the problem would be solved, but that is not an easy task 

to do. 

 In the figures 6, 7 and 8, it could be seen the dependence of the firing angle 

and the variation of the angles inside the vessel filled with water. If we knew 

what the maximum angle we can tolerate is, then this data could be used. 
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Further calculations will have to be done to determine what the value of this 

tolerance is.   

 In all the experimental work that had been done, one clear parameter 

appears. It is observed that under the transducer there is always higher 

amplitude than in the top. This pattern is observed even in the 

measurements 3.1.7 and 3.1.8, which are the measurements done in the 

water outside the cylindrical vessel. 

 It can be seen that when using the metallic vessel, the sound wave doesn’t 

go through the bottom of the vessel 

 In the FFT graphic there is always a clear peak in the resonance 

frequency. 

 It is seen that there is a reflected wave in the bottom of the vessel, 

especially in the measurement with the glass with the metal bottom. 

 The vibrations of the vessels can affect the measurements of the sound 

fields in water. 

The recommendations I can give are: 

 Align the positions on the live video image with the position of the laser in the 

cylindrical vessel, otherwise the laser won’t move the way you expect. Always 

be aware of checking this in order to obtain good results! 

 Use a refractive tape if the signal of the laser is not good enough for the 

measurements. 
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 Always try to get the best resolution by adding more scanning points in order 

to get the best results. It might take a little bit more time but the results may 

change if the scanning points are not enough 

 To get other mode shapes, the distance from the bottom to the transducer 

should be changed. Further experiments must be done to prove this. 
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