UNIVERSIDAD SAN FRANCISCO DE QUITO

Colegio de Ciencias e Ingenierías

Reducción de peso, estudio de rendimiento y aumento de eficiencia en vuelo del avión no tripulado "PIQUERO" del Proyecto "Galápagos UAV"

Ciro Agustín Rivadeneira Frisch

Pedro Meneses, Msc., Director de Tesis

Tesis de grado presentada como requisito

para la obtención del título de Ingeniero en Mecánica

Universidad San Francisco de Quito.

Colegio de Ciencias e Ingeniería

HOJA DE APROBACIÓN DE TESIS

Reducción de peso, estudio de rendimiento y aumento de eficiencia en vuelo del avión no tripulado "PIQUERO" del Proyecto "Galápagos UAV"

Ciro Agustín Rivadeneira Frisch

Pedro Meneses, Msc.	
Director de tesis y	
Miembro de comité de tesis	
Edison Bonifaz, Ph.D. Miembro del comité de tesis	
Jorge Pantoja, BS. Miembro de comité de tesis	
Alfredo Valarezo, Ph.D. Coordinador de Ing. en Mecánica	
Ximena Cordova, Ph.D.	
Decana de la Escuela de ingenierías	
Colegio Politécnico	

Quito, Mayo de 2013

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído la Política de Propiedad Intelectual de la Universidad San Francisco de Quito y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo de investigación quedan sujetos a lo dispuesto en la Política.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo de investigación en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Firma:			

Nombre: Ciro Agustín Rivadeneira Frisch

C. I.: 1715314785

Fecha: Quito, mayo de 2013

Resumen.

El proyecto "Galápagos UAV" tiene como objetivo principal diseñar y construir un avión no tripulado autónomo con el fin de vigilar y proteger las islas contra la pesca ilegal y el cuidado de especies en peligro de extinción. El trabajo a continuación parte de un trabajo inicial que trata del diseño y construcción del primer prototipo de un avión no tripulado llamado "PIQUERO" realizado en el proyecto Galápagos UAV. Se procede a realizar un estudio aerodinámico y estructural con el fin de lograr que el avión cumpla los requerimientos de su misión. El objetivo principal de esta tesis es reducir el peso del primer prototipo para poder lograr la mayor distancia de vigilia en dieciséis horas de autonomía de vuelo que es uno de los requerimientos más importantes. Además, se optimizará el diseño del avión para que aumente su rendimiento en vuelo, poniendo énfasis en el fuselaje y el ducto de entrada de aire. El presente trabajo se lo desarrolla tanto en el idioma del inglés como en el castellano dado que las teorías y nomenclaturas empleadas han sido desarrolladas principalmente en el idioma inglés y pueden generar confusión al momento de ser traducidas. Además, se hace uso de unidades tanto en sistema internacional para el mejor entendimiento del lector, así como también de las unidades del sistema inglés dado que las fórmulas y constantes han sido desarrolladas en base a éste sistema

Palabras clave: Galápagos, pesca ilegal, construcción, peso, rendimiento, fuselaje.

Abstract

The "Galapagos UAV" project has as main objective to design and build an autonomous unmanned aircraft in order to monitor and protect the islands against illegal fishing and caring for endangered species. In the following work, we move forward by starting from an initial thesis which is the design and construction of the first prototype drone "PIQUERO" held at the Universidad San Francisco de Quito. We next proceed to perform an aerodynamic and structural study in order to achieve the airplane flight requirements and fulfill its main objective which is to reduce the first prototype weight in order to achieve the maximum range in sixteen hour flight autonomy, which is one of its flight requirements. In this work, we also optimize the design of the aircraft to increase its flight performance, with emphasis on the fuselage and the air inlet duct. The following work is performed in a combination of English and Spanish languages due to the development of theories and symbols employed which may cause confusion if translation is made. Units are used in both International System for a better understanding of the reader and English because most formulas and constants employed are developed in such system.

Keywords: Galapagos, illegal fishing, construction, weight, performance, fuselage.

Contenido SIMBOLOGÍA	16
NOMENCLATURA	18
CAPITULO I	23
INTRODUCCIÓN Y FUNDAMENTACIÓN	23
1.1 Prototipo inicial y estado del mismo	22
CAPITULO II	26
TEORÍAS DE FALLA. FALLA ESTRUCTURAL Y DISEÑO ESTRU	UCTURAL 26
2.2 Dirección de capas de fibra de carbono	30
2.2.2 Fibras en dos direcciones	
2.3 Agrietamiento, corrosión y desgaste en fibra de carbono	31
CAPITULO III	32
DISEÑO PRELIMINAR	32
3.1 Definición de requerimientos técnicos	32
3.2 Requerimientos técnicos	32
3.3 Perfil de misión	33
3.4 Configuración geométrica	34
3.5 Motor usado y características.	36
3.5.1 Escape	36
3.6 Materiales usados en industria de aviones no tripulados	36
3.7 Ensayo de consumo de combustible del motor Enya 180X-GS	40
CAPITULO IV	35
DISEÑO AERODINÁMICO	35
4.1 Especificaciones iniciales del avión y sus características	35
4.2 Análisis de coeficiente de arrastre en el avión dada su geometría y 47	sus materiales.
4.3 Análisis de rendimiento en despegue, ascenso y crucero. Análisis d	0 ,
tiempo de vuelo.	
4.3.1 Rendimiento en despegue	
4.3.2 Rendimiento en crucero	60
4.4 Condición de vuelo ideal	
4.5 Volumen de combustible necesitado en las etapas de vuelo	
4.5.1 Volumen Crucero	
4.5.2 Volumen Total	66

CAPITULO V	78
DISEÑO ESTRUCTURAL	78
5.1 Diseño de tanque de combustible.	78
5.2 Diseño de ducto de entrada y salida de aire para refrigeración del motor	86
5.2.1 Cálculos	88
5.2.2 Producto final	91
5.3 Transmisión de carga aerodinámica a la estructura del avión. Método de di de fluidos computarizada. (CFD por sus siglas en inglés.)	
5.4 Diseño de tubo con sección transversal variable	99
5.5 Análisis con método de elementos finitos (FEM por sus siglas en inglés) en críticas de la estructura.	_
5.5.1 Simulación Comparando con simulación realizada en Catia V5	112
5.6 Diseño de tubos para ala	115
5.7 Diseño de espesor mínimo de piel	117
5.8Análisis de fuselaje de Piquero I y II	121
5.8.1Manufactura de fuselaje de cola	122
5.9 Centro de gravedad del avión	129
5.10 Rediseño de Piquero I a Piquero II. Cambios realizados de Piquero I al II	135
5.10.1 Cola horizontal	135
5. 10.2 Cola vertical	135
5. 10.3 Tubo principal (tail boom)	136
5. 10.4 Anillos estructurales	136
5. 10.5 Tanque de combustible	136
5. 10.6 Fuselaje	137
5. 10.7 Fuselaje de cola	137
CAPÍTULO VI	138
PRESENTACIÓN DE RESULTADOS	138
6.1 Estructura de refrigeración.	138
6.2 Materiales actuales	140
6.3 Materiales renovados	141
6.4 Inventario de piezas estructurales	142
6.5 Presupuesto	143
6.5.1 Presupuesto de resina PR2032+PH3660	143
6.5.2 Presupuesto de fibra de vidrio	143

6.5.3	Presupuesto estructural del avión.	144
6.5.4	Presupuesto de componentes electrónicos del avión	145
6.5.5	Presupuesto total del avión.	145
CAPITULO) VII	146
CONCLUS	IONES Y RECOMENDACIONES	146
CAPITULO) VIII	149
REFERENC	CIAS	149
ANEXOS		153

Lista de figuras

Figura 1. Comparación entre criterio de Tresca y Von Mises. (Budynas, 2008)	28
Figura 2. Circulo de Mohr (Budynas, 2008)	29
Figura 3. Perfil de la misión.	33
Figura 4. Configuración de tipo "pusher" (Gudmundson, 2009)	34
Figura 5. Mesa de pruebas.	40
Figura 6. Consumo de combustible del motor en ml frente a las revoluciones por	minuto
del avión.	43
Figura 7. Potencia del motor Vs. Velocidad en crucero.	58
Figura 8. Potencia del motor Vs. Velocidad de vuelo en loiter	59
Figura 9. Velocidad que maximiza la distancia de vuelo en loiter	63
Figura 10. Velocidad óptima de vuelo en crucero	64
Figura 11. Producto final del tanque de combustible.	79
Figura 12. Trazado 2D del perfil posterior del tanque de combustible.	80
Figura 13. Estructura interna del fuselaje actual.	81
Figura 14. Dimensión de distancia de anillo para la ubicación del tanque de comb	ustible
	82
Figura 15. Cambio de la estructura del anillo estructural.	82
Figura 16. Disposición estructural nueva.	83
Figura 17. Tanque de combustible	84
Figura 18. Piquero con cambios realizados en fuselaje.	85
Figura 19. Diagrama de entrada y salida de aire a través del radiador. (Gudmunds	on
2009)	87
Figura 20. Análisis de presión y velocidad a través del radiador. (Gudmundson 20	009).87
Figura 21. Modo de obtener el flujo másico y presión en las estaciones. (Gudmun	dson
2009)	87
Figura 22. Ducto de entrada de aire de refrigeración, parte superior.	91
Figura 23. PIQUERO 02 con ducto de entrada de aire.	92
Figura 24. Aplicación de condiciones iniciales para la obtención de fuerzas	95
Figura 25. Presiones mostradas en la cola vertical.	96
Figura 26. Velocidad de aire en cola vertical	96
Figura 27. Líneas de flujo en cola horizontal	97
Figura 28. Velocidad de viento en la cola horizontal.	98

Figura 29. Contornos de presión sobre cola horizontal.	99
Figura 30. Deflexión de timón de cola horizontal. (Theory of wing sections, 1958)	. 100
Figura 31. Aumento de coeficiente de sustentación dada la deflexión del elevador.	
(Theory of wing sections, 1958)	. 101
Figura 32. Aumentos de coeficiente de sustentación en el timón de cola vertical (The	eory
of wing sections, 1958)	. 102
Figura 33. Diagrama de carga aplicada a la cola horizontal	. 105
Figura 34. Diagrama de cortante sobre el empotramiento del tubo principal dada la	
aplicación de carga sobre la cola horizontal.	. 105
Figura 35. Diagrama de momento flector afectado en el empotramiento dado la	
aplicación de carga sobre la cola horizontal.	. 105
Figura 36. Diagrama de carga aplicada a la cola vertical.	. 106
Figura 37. Diagrama de cortante sobre el empotramiento del tubo principal dada la	
carga aplicada sobre la cola vertical.	. 106
Figura 38. Diagrama de momento flector afectado en el empotramiento dado la	
aplicación de carga sobre la cola vertical.	. 106
Figura 39. Fuerzas aplicadas al tubo principal.	. 112
Figura 40. Cargas aplicadas en la cola vertical y horizontal	. 112
Figura 41. Análisis de tubo mediante el método de elementos finitos.	. 113
Figura 42. Resultados obtenidos de esfuerzos en la cara frontal del tubo principal	. 114
Figura 43. Figura de diagrama de fuerza cortante obtenida en colaboración con Emb	ory-
Riddle Aeronautical University en software SURFACES.	. 115
Figura 44. Figura de diagrama de momento obtenida en colaboración con Embry-Ri	ddle
Aeronautical University en software SURFACES	. 116
Figura 45. Tubos de torsión de ½" de espesor 0,060" o 1,5 mm en la industria	. 117
Figura 46. Forma rectangular del ala con las medidas de la longitud de la raíz y la	
longitud del ala de un solo lado.	. 119
Figura 47. Momento aplicado	. 119
Figura 48. Simulación de resina curada sometida a cargas. Obtención de esfuerzos d	le
Von Mises y desplazamientos.	. 120
Figura 49. Esfuerzos de Von Mises obtenidos de la simulación.	. 120
Figura 50. Simulación CFD del flujo de aire en zona crítica.	. 121
Figura 51. Producto final del fuselaje de cola.	. 122

Figura 52. Contornos de dibujo del fuselaje de cola. Vista isométrica (a). Vista la	teral
(b)	123
Figura 53. Extrusión y adición de aleta al fuselaje de cola.	123
Figura 54. Forma de manufactura de los perfiles de cola. Uso para maquinado en	CNC.
Figura (a): Perfil circular de acuerdo a la pieza central (PCP). Figura (b): Distanc	ia entre
perfiles. Figura (c): Perfil posterior, perfil de salida.	124
Figura 55. Corte circular para tubo principal.	125
Figura 56. Vista posterior de cortes realizados conforme a la forma del tubo princ	ipal de
sujeción y el motor.	126
Figura 57. Vista superior de los cortes y adición de superficie para su ingreso al F	CP.
	126
Figura 58. Producto final ensamblado.	127
Figura 59. Mallado en CFD.	127
Figura 60. Aplicación de condiciones de vuelo	128
Figura 61. Flujo de aire con adición de fuselaje de cola.	128
Figura 62. Ejes usados para el cálculo de centro de gravedad.	129
Figura 63. Cuadro de centro de gravedad del PIQUERO tomando en cuenta su	
estructura y combustible solamente	131
Figura 64. Centro de Gravedad obtenido en CATIA	131
Figura 65. Centro de gravedad desde el punto P.	132
Figura 66. Límites del centro de gravedad del avión tomando en cuenta todos sus	
componentes.	134
Figura 67. Plano del motor ENYA 180GX del fabricante.	153
Figura 68. Uso de tacómetro para calibrar las RPM	154
Figura 69. Vista del motor andando con su probeta de consumo de combustible.	155
Figura 70. Calibración a 4020 revoluciones por minuto.	155
Figura 71. Vista general del motor y su mesa de pruebas.	156
Figura 72. Encendido del motor.	156

Lista de tablas

Tabla 1. Especificaciones del fabricante.	36
Tabla 2. Especificaciones del fabricante del escape usado.	36
Tabla 3. Propiedades mecánicas de la fibra de carbono utilizada. (Avia Sport,	
CarbonFiberTubeShop, CSTSALES, Performance composites, 2012)	37
Tabla 4. Propiedades de la fibra de vidrio tipo S	38
Tabla 5. Comparación de materiales en la industria aeronáutica.	
(CarbonFiberTubeShop, 2012)	39
Tabla 6. Datos iniciales del experimento	41
Tabla 7. Datos obtenidos del experimento.	42
Tabla 8. Consumo específico del motor a varias revoluciones por minuto	42
Tabla 9. Consumo específico del motor y velocidad máxima que alcanza dadas las	rpm.
	43
Tabla 10. Condiciones de peso.	35
Tabla 11. Geometría del ala	45
Tabla 12. Geometría de la cola horizontal	46
Tabla 13. Geometría de la cola vertical	46
Tabla 14. Geometría del fuselaje.	46
Tabla 15. Rugosidad de varios materiales.	48
Tabla 16. Propiedades geométricas de las superficies del avión	51
Tabla 17. Obtención de coeficiente de fricción de cada una de las superficies en la	raíz.
	52
Tabla 18. Obtención de coeficiente de fricción de cada una de las superficies en la	
punta	53
Tabla 19. Combinación de tabla 17 y tabla 18 para la obtención del coeficiente de	
fricción global	53
Tabla 20. Interference factor para las superficies.	55
Tabla 21. Obtención del coeficiente de fricción mínimo en el fuselaje, ala y superfi	cies
de la cola	55
Tabla 22. Obtención del coeficiente de fricción total	55
Tabla 23. Propiedades aerodinámicas del avión	56
Tabla 24. Coeficientes del perfil de ala.	57
Tabla 25. Prueba de rendimiento para establecer la velocidad ideal de vuelo	62

Tabla 26. Velocidad óptima de PIQUERO en caso de volar en loiter
Tabla 27. Condiciones iniciales de rendimiento de vuelo hasta llega a destino 67
Tabla 28. Condiciones iniciales de vuelo hasta llega a destino
Tabla 29. Condiciones atmosféricas de vuelo hasta llega a destino
Tabla 30. Condiciones de potencia hasta llega a destino
Tabla 31. Coeficientes de sustentación, fricción, ángulo de ataque y $C_{\rm L}/C_{\rm D}$ a
velocidades aceptadas en crucero. Coeficientes para mayor rango y horas de vuelo a
velocidades aceptadas en crucero. 70
Tabla 32. Fricción producida, potencia requerida, coeficiente de avance y eficiencia de
hélice a velocidades aceptadas en crucero. Rendimiento en subida a velocidades
aceptadas en crucero
Tabla 33. Condiciones de descenso a velocidades aceptadas en crucero. Horas de vuelo,
y distancia que cubriría el vuelo a ciertas velocidades en crucero
Tabla 34. Configuración para vuelo que maximice la distancia de vuelo
Tabla 35. Fuerzas actuando en cola del avión de acuerdo a la simulación en CFD 99
Tabla 36. Comparación de resultados obtenidos
Tabla 37. Resultados obtenidos para la obtención de diámetro bajo un espesor dado. 109
Tabla 38. Resultados obtenidos para diámetro menor del tubo principal 111
Tabla 39. Resultados obtenidos para diámetro de tubos de ala
Tabla 40. Coordenadas de perfil 1 para su manufactura y configuración de torre 1 en
CNC. 125
Tabla 41. Coordenadas de perfil 2 para su manufactura y configuración de torre 2 en
CNC. 125
Tabla 42. Centro de gravedad de la estructura interna del avión
Tabla 43. Centro de gravedad del avión sin los componentes electrónicos
Tabla 44. Pesos de combustible y alternador
Tabla 45. Centro de gravedad del avión sin alternador y un volumen máximo de
combustible
Tabla 46. Valores tabulados del centro de gravedad en referencia al borde de ataque. 132
Tabla 47. Centro de gravedad del avión tomando en cuenta los componentes
electrónicos. 133
Tabla 48. Centro de gravedad del avión con alternador y un volumen máximo de
combustible, con alternador y sin combustible, sin alternador y máximo combustible y
sin alternador ni combustible

Tabla 49. Valores obtenidos del cálculo de área de salida para ducto de aire	139
Tabla 50. Materiales actuales que han sido reemplazados bajo los análisis presenta	dos.
	140
Tabla 51. Materiales renovados.	141
Tabla 52. Masa ganada con optimización de materiales.	141
Tabla 53. Tabla de contenido estructural y combustible del avión.	142
Tabla 54. Desglose de resina necesitada en las partes estructurales del avión y sus	
costos.	143
Tabla 55. Precio de fibra de virio para fabricación de piezas del avión	143
Tabla 56. Presupuesto estructural incluyendo el motor ENYA 180X-GS	144
Tabla 57. Presupuesto de componentes electrónicos.	145

SIMBOLOGÍA

AR_w	Wing aspect ratio		
AR_{HT}	Horizontal tail aspect ratio		
AR_{VT}	Vertical tail aspect ratio		
b_w	Wing span	[ft]	
b_{HT}	Horizontal tail span	[ft]	
b_{VT}	Vertical tail span	[ft]	
C_{AVG}	Average chord	[ft]	
C_{RW}	Wing chord root	[ft]	
C_{TW}	Wing chord tip	[ft]	
C_{MGC}	Mean geometric chord	[ft]	
C_{RHT}	Horizontal tail chord root	[ft]	
C_{THT}	Horizontal tail chord tip	[ft]	
C_{RVT}	Vertical tail chord root	[ft]	
C_{TVT}	Vertical tail chord tip	[ft]	
C_{flam}	Laminar friction coefficient		
C_{fturb}	Turbulent friction coefficient		
C	Referential length	[ft]	
C_L	Lift coefficient		

C_{LminD}	Minimun drag lift coefficient	
C_{Dmisc}	Micelaneous drag coefficient	
$C_{DL\&P}$	Protuberance and leak drag coefficie	ent
$C_{L\alpha}$	Lift curve slope	
C_{L0}	Zero-alpha lift coefficient	
C_t	Thrust specific fuel consumption	
D_{fus}	Fuselage structural wing	[ft]
D_{I}	Average fuselaje cabin width	[ft]
D_2	Fuselaje tail cone width	[ft]
D	Drag	[lbf] / [N]
e	Span efficiency	
E	Endurance	[h]
FF	Form Factor	
h	Height	[ft]
H_{fus}	Maximun height	[ft]
I	Inertia	$[ft]^4$
IF	Interference factor	
J	Advance Ratio	
K	Lift induced friction	
k	Material Roughness	
L_{fus}	Fuselaje structural length	[ft]
L	Length	[ft]
l	Lift	[lbf] / [N]
M	Match Number	
P_R	Pressure recovery	[ft.lbs/s]
P_{AV}	Power available	[ft.lbs/s]
P_{REQ}	Power required	[ft.lbs/s]

P	Pressure	[psi]		
q	Dynamic viscosity	[psi] / [psf]		
R	Range	[nm]		
Recutoff Cutoff Reynold's number				
R_e	Reynold's number			
S_{HT}	Horizontal tail area	$[ft]^2$		
S_{WET}	Wetted area	$[ft]^2$		
S_{VT}	Vertical tail area	$[ft]^2$		
S_W	Wing area	$[ft]^2$		
T	Temperature	[°C] / [°F] / [K] / [°R]		
t/c	Airfoil thickness ratio			
V	Velocity	[ft/s]		
V_E	Best endurance velocity	[ft/s]		
V_S	Stalling speed	[ft/s]		
W_{fus}	Maximun width	[ft]		
$W_{\it fuel}$	Fuel weight	[lbf] / [gall] / [l]		
W_O	Selected design gross weight	[lbf]		
W_E	Projected empty weight	[lbf]		
W_{ini}	Initial weight	[lbf]		
W_{fin}	Final weight	[lbf]		
W_f	Design fuel weight	[lbf]		
W_u	Projected useful load	[lbf]		
X_{tr}	Transition length	[ft]		
X_o	Referential position	[ft]		
T	Thrust	[lbf]		
t	Thick	[ft]		
η_p	Propeller efficiency			

σ Density ratio μ Viscosity [lbf.s/ft²]

 λ_w Wing taper ratio

 Λ_{VT} Wing sweep at 25% MAC

 λ_{HT} Horizontal tail taper ratio

 Λ_{HT} Horizontal tail sweep at 25% MAC

 λ_{VT} Vertical tail taper ratio

 Λ_{VT} Vertical tail sweep at 25% MAC

 ρ Density $[slug/ft^3] / [kg/m^3]$

 \forall Volume [gall]

 \dot{m} Mass flux [lbs/s] / [Kg/s]

 τ Shearing stress [Psi] / [Pa]

 σ Normal stress [Psi] / [Pa]

γ Adiabatic coefficient

 η Load factor

NOMENCLATURA

AOA Angle of attack

ACC Airworthiness Certification Criteria

BHP Break horse power

CFD Computer fluid dynamics

DE Distortion Energy

FAA Federal Aviation Administration

FARs Federal Aviation Regulations

MGC Mean Geometric Chord

MSS Maximum Shearing Stress

KCAS Knot calibrated airspeed

KTAS Knot true airspeed

ROC Rate of climb

RPM Revolution per minute

SFC Specific fuel consumption

CHT Cylinder head temperature

OAT Outside air temperature

UTS Ultimate Tensile Stress

CAPITULO I

INTRODUCCIÓN Y FUNDAMENTACIÓN

En el Ecuador el diseño aeronáutico no ha sido tema de desarrollo en los últimos años, pero actualmente se está dando gran apertura a la investigación y construcción de prototipos para distintas aplicaciones en varias instituciones así como también en aficionados. Una de estas instituciones es la Universidad San Francisco de Quito.

El proyecto "GALAPAGOS UAV" inició como una idea para proteger la reserva marina de las islas Galápagos, con el fin de luchar contra la pesca ilegal y además, el cuidado de especies endémicas. El objetivo principal del proyecto es lograr un patrullaje de protección y además sobrevuelos con fines de investigación en un tiempo estimado de dieciséis horas, en el cual se espera completar un patrullaje de cerca de 133000 km² con toda la flota.

El proyecto se lo da en colaboración con Embry-Riddle Aeronautical University ubicada en Daytona Beach, Estados Unidos. La colaboración de la universidad ha sido de gran beneficio para el proyecto en la parte de diseño del prototipo inicial. Una vez que se finalizó el diseño del "PIQUERO" se ha tomado posta en el Ecuador precisamente en la Universidad San Francisco de Quito, con la construcción del prototipo no tripulado y con la programación y ejecución de pruebas del mismo.

En el trabajo a continuación se realizará un estudio tanto aerodinámico como estructural con el fin de evitar sobredimensionamientos en la construcción del mismo y poder determinar bajo criterio ingenieril los materiales y tamaños de las piezas a construir. Una vez determinado los parámetros a usarse en los cálculos, se procede a redimensionar el prototipo y se compararán el peso final con el peso que se tenía inicialmente y con ello se podrá conocer la reducción de peso estructural y se podrá estimar la cantidad de combustible extra que podría llevar a bordo en futuros vuelos.

1.1 Prototipo inicial y estado del mismo

El primer prototipo ya está construido. (Tesis de Jaime López). Se han hecho modificaciones para que su vuelo se realice a la altura de la ciudad de Cumbaya (2355 m.s.n.m). Tales modificaciones fueron:

- Diseño e incorporación de tren de aterrizaje.
- Cambio de motor dado su reducción de potencia por el cambio de densidad de aire en la ciudad, de ENYA 180X-GS (3.2HP) a Evolution 58GX2 (8.5HP)
- Sobredimensionamiento de materiales para su construcción inicial

En el presente trabajo se realizarán los cálculos en referencia al diseño original, es decir se hará uso del motor ENYA 180X-GS y se tomarán en cuenta las condiciones del PIQUERO a una altura de 2000 pies, ya que esta altura es a la que operará el PIQUERO durante la mayor parte de su misión.

El primer prototipo ha sido de gran avance puesto que contribuyó a poder determinar cuáles son sus falencias. Se encontraron problemas en la construcción del avión que luego dieron como resultado fallas estructurales.

Se pudo determinar problemas de mala sujeción del tubo principal del avión a la pieza central del prototipo, cuya unión se la realizó con resina epóxica y sin ningún tipo de sujeción pernada. Además, se pudo comprobar en vuelo que el avión tenía problemas de control dado el fallo en la construcción de la cola vertical del prototipo inicial cuyas dimensiones no fueron las correctas. Otro problema se genera con el flujo turbulento que genera la parte posterior del fuselaje cuyo resultado es un aumento de fricción, disminución de eficiencia en la hélice y además desestabilización de la cola horizontal del avión.

1.2 Agencias de regulación

La agencia que regula todo tráfico aéreo en los Estados Unidos es la Administración Federal de Aviación (FAA por sus siglas en inglés). Aviones de uso comercial deben ser diseñados de acuerdo a las Regulaciones Federales de Aviación (FARs por sus siglas en ingles). (Radosta, 2010)

En el documento AFS-400 UAS POLICY 05-01 se pueden encontrar regulaciones de la FAA para determinar si los sistemas no tripulados pueden volar en territorio americano, ésta regulación se la adopta para el caso de análisis puesto que refiere a los aviones no tripulados.

Las regulaciones se dividen en este análisis para aviones que vuelen sobre los 18000 pies y debajo de esa altura, principalmente se refiere a la seguridad de las personas que están en la zona de vuelo y al pilotaje del avión, el cual debe ser volado y dirigido por una persona con alto entrenamiento y tenga apertura visual para dirigir el avión o por sistemas de asistencia como es un centro de control haciendo uso de GPS. (FAA, 2005)

El avión además debe ser regulado por los criterios de certificación de aeronavegabilidad (ACC por sus siglas en inglés.) En este artículo nos referiremos al capítulo 5 donde se analiza la estructura del avión.

La estructura del vehículo de aire incluye el fuselaje, estabilizador, ala (fija o giratoria), elementos estructurales del tren de aterrizaje, el sistema de control, las superficies de control, sistema de accionamiento, sistemas de rotor, antenas, soportes del motor, barquillas, pilones, inversores de empuje (si no forma parte del motor), las entradas de aire, mecanismos de recarga de combustible aéreos, mecanismos estructurales de operación, disposiciones estructurales para / equipo / carga útil / carga personal, etc. (Airworthiness Certification Criteria, 2005)

En el diseño, como será un enfoque estructural y aerodinámico se debe tener en cuenta las cargas aplicadas y con ello realizar el análisis estructural. El documento nos refiere a las cargas aplicadas, tema que será analizado en el capítulo 5.

Objetivo de la tesis

Después de realizar una introducción al proyecto se ha determinado la necesidad de realizar un estudio a profundidad del avión con el fin de establecer parámetros de rendimiento del avión, para ello se debe lograr lo siguiente:

- Realizar un análisis aerodinámico del avión con el fin de poder estimar la fricción generada por el avión para determinar cuál será su rendimiento en vuelo.
- 2. Establecer la velocidad óptima (en caso de ser distinta a la velocidad establecida en diseño) y determinar cuánto tiempo y que distancia cubrirá el patrullaje.
- Realizar una estimación de cargas aerodinámicas mediante el uso de técnicas usadas en la industria aeronáutica así como también haciendo uso de dinámica de fluidos computacional (CFD).
- 4. Realizar un análisis estructural con el fin de determinar dimensiones de piezas críticas y poder reducir el peso del avión actual.

CAPITULO II

TEORÍAS DE FALLA. FALLA ESTRUCTURAL Y DISEÑO ESTRUCTURAL

Cuando una estructura es diseñada para una aeronave, el material usado debe ser escogido correctamente así como sus dimensiones para que el componente no falle en un futuro.

La falla ocurre cuando el miembro ya no está en capacidad de desarrollar su función designada. No necesariamente significa falla la ruptura, la cual se puede presentar de varias maneras. La falla puede producirse dado un exceso de deflexión o pandeo así como también puede ocurrir que el elemento falle dado una deformación permanente o que supere el límite a fluencia. Además puede que el elemento falle ya que superó el esfuerzo límite a la tracción (siglas U.T.S. en inglés) o por fatiga. (Radosta, 2010).

Para realizar el análisis de los miembros que se van a diseñar se lo hará bajo los criterios de fractura dado el sobrepaso del UTS, y deformación por la aplicación de carga hasta el esfuerzo a la cedencia.

Usualmente se maneja un factor de seguridad de 1.5 en el esfuerzo último (Radosta, 2010), es decir, haciendo uso de $\sigma_{perm} = \frac{\sigma_{ult}}{1,5}$. Para prevenir la fractura o que

el material sobrepase el límite de fluencia, en la industria aeronáutica se tiene bajo el criterio de Tresca las siguientes condiciones:

$$\tau_{\text{max}} < \left(\frac{1}{2} \left(\frac{\sigma_{ult}}{1,5}\right)\right)$$
(ec.1)

$$\tau_{\text{max}} < \frac{1}{2} \sigma_{\text{yield}}$$
 (ec. 1.1)

$$\tau_{\text{max}} < \frac{\tau_{ult}}{1.5} \tag{ec. 1.2}$$

 τ_{max} = Esfuerzo cortante máximo

 τ_{max} = Esfuerzo cortante último

 σ_{ult} = Esfuerzo normal último

σ_{vield}=Esfuerzo de fluencia.

La teoría del esfuerzo cortante máximo estipula que la fluencia comienza cuando el esfuerzo cortante máximo de cualquier elemento iguala al esfuerzo cortante máximo en una pieza de ensayo a tensión del mismo material cuando esa pieza comienza a fluir (Budinas, 2008).

$$\tau_{perm} = \tau_{yield}$$
 (ec.2)

 τ_{perm} = Esfuerzo cortante permisible

 $\tau_{cedencia}$ = Esfuerzo cortante de cedencia

La teoría que se usó para realizar el diseño de las partes estructurales del avión fue la de método del mayor esfuerzo cortante o teoría de "Tresca" y se comprobó mediante la energía de máxima distorsión o teoría de "Von Mises". Ésta diferencia se puede apreciar a continuación:

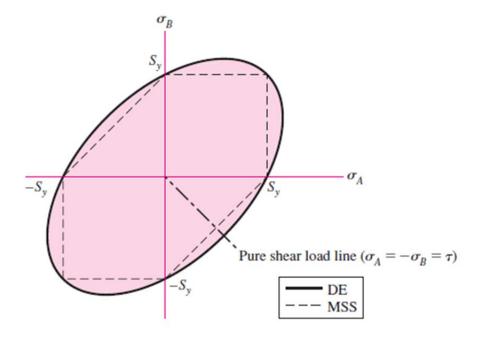


Figura 1. Comparación entre criterio de Tresca y Von Mises. (Budynas, 2008)

En la Figura 1 se puede ver la diferencia claramente, la línea entre cortada muestra los límites de valores de esfuerzo bajo el criterio de Tresca, mientras que los límites de línea continua son los límites de esfuerzo de Von Mises. Son métodos semejantes pero ya que se da esta pequeña diferencia hay regiones en las que se genera falla bajo Tresca y no bajo Von Mises.

En la industria aeronáutica se debe tener mucho cuidado con este tipo de márgenes ya que se debe evitar cualquier tipo de condición que pueda generar una falla.

La forma de análisis empleada es la siguiente:

Se calculan los esfuerzos haciendo diagramas de cuerpo libre en 3D. Posteriormente se obtienen los esfuerzos que están siendo aplicados en el miembro tanto a flexión, tracción, cortante o cargas combinadas. A flexión podemos encontrar los esfuerzos mediante la forma generalizada del esfuerzo, es decir:

$$\sigma_{x} = \frac{-y(I_{y}M_{z} + I_{yz}M_{y}) + z(I_{yz}M_{z} + I_{z}M_{y})}{I_{y}I_{z} - I_{yz}^{2}}$$
(ec.3)

Teniendo en cuenta que si se diseña un elemento con sección transversal circular hueca, el momento en el eje Y es cero y la inercia YZ igual tendrá un valor de cero dada la simetría.

Luego, se obtienen los esfuerzos principales y esfuerzos cortantes mediante el círculo de Mohr:

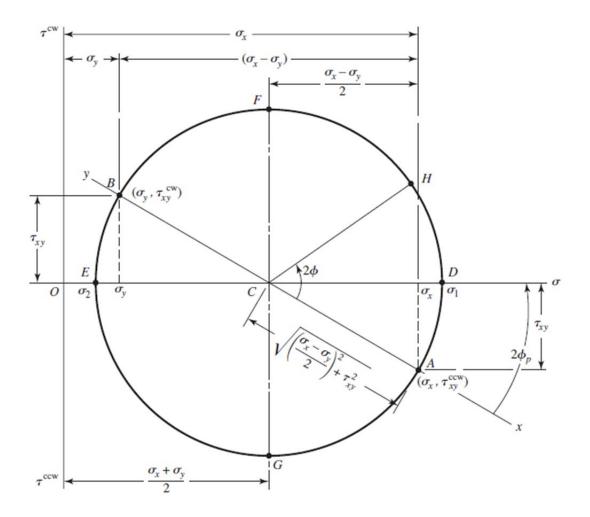


Figura 2. Circulo de Mohr (Budynas, 2008)

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{x,y}^2}$$
 (ec.4)

$$\tau_{1,2} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{x,y}^2}$$
(ec.4.1)

Una vez obtenido los esfuerzos principales tanto a tensión como a cortante se toma el valor que menor magnitud de esfuerzo dé, esto comparando tanto una falla por fractura, por exceso de esfuerzo a cedencia y a esfuerzo cortante. Se obtiene el menor valor ya que de ello se sabe que no se puede exceder o se generará falla. Se compara con un listado de propiedades mecánicas disponibles de materiales. Posteriormente se procede a elegir un material que cumpla con las características y con ello se diseña el espesor del material que se usará.

Para el cálculo de fatiga no se puede estimar en materiales compuestos, no se encuentra una teoría que explique puesto que en materiales compuestos las grietas se propagan de manera que no se puede predecir, las direcciones son inciertas dada la cantidad de capas que hay. Por esta misma razón es un complemento a la justificación de usar Tresca, se toman medidas conservadoras para evitar falla por fatiga.

2.2 Dirección de capas de fibra de carbono

2.2.1 Fibras unidireccionales

La fibra de carbono unidireccional (UD) tiene la característica principal que la mayoría de fibras van en una sola dirección. Una pequeña cantidad de fibras corren en una dirección transversal con el fin de mantener juntas y en una posición a las fibras que corren en una sola dirección, mas no un fin estructural.

Las telas unidireccionales tienen la habilidad de poner la fibra en la zona donde se aplica la carga, donde es requerida y donde se sabe que es óptimo su desempeño. Sus usos pueden ser varios como por ejemplo en los tubos principales de ala o "spars" que están sujetos a cargas que se necesita desempeño máximo de la fibra en una dirección.

2.2.2 Fibras en dos direcciones

Para aplicaciones donde más de una orientación de fibra es necesitada, una combinación de fibras en dirección 0° y 90° es óptima. Éste tipo de fibras se consiguen entrelazando direcciones de 0° y 90° en una forma regular. La integridad de la tela se mantiene mediante el bloqueo mecánico entre las fibras. Este estilo de fibra tiene la habilidad de proveer una superficie sin rugosidad, se amolda a superficies complejas y además es un estilo estable, sin que la tela se descomponga y pierda el hilado. (Net Composites, 2012).

El tipo de fibra usado será con orientación de 0° y 90° dado que pueden aparecer cargas en direcciones que no se pueden predecir y además para ser un poco conservador en el diseño y construcción estructural.

2.3 Agrietamiento, corrosión y desgaste en fibra de carbono

El beneficio de hacer uso de fibra de carbono es básicamente su resistencia, rigidez y peso. En cuanto a desgaste, la exposición de las fibras al sol produce delaminación entre capas por degeneración de la resina, se debe realizar un mantenimiento preventivo a la misma previo al vuelo, se deberá realizar inspección visual en busca de desgaste de la fibra y en caso de verificar una delaminación de capas de deberá reemplazar el material.

CAPITULO III

DISEÑO PRELIMINAR

3.1 Definición de requerimientos técnicos

Los requerimientos técnicos del PIQUERO-02 nos ayudarán a entender la geometría del avión y la razón de su configuración de acuerdo a los requerimientos de la misión y a los conceptos aerodinámicos.

3.2 Requerimientos técnicos

De acuerdo a la información recolectada del Parque Nacional Galápagos y de acuerdo a los requerimientos de diseño iniciales podemos ver que los objetivos del PIQUERO-02 son los siguientes:

- Volar a una máxima altitud de 2000ft (600m) sobre el nivel del mar.
- Velocidad de crucero de 65 KCAS (120 km/h).
- Velocidad loiter 43 KCAS (80 km/h).
- Fácil de ensamblar, debe ser modular.
- Despegue mediante catapulta y aterrizaje con sistema asistido.
- Cámara frontal.

- Debe soportar vientos cruzados de 14 nudos (25 km/h).
- Volar entre 12 y 16 horas.
- Tener un factor de carga de 5,23.

3.3 Perfil de misión

Para entender el propósito del vuelo se analizará el perfil que el Piquero UAV necesita completar, el cual consiste en las siguientes etapas: Subida, crucero, loiter, crucero de regreso, descenso.

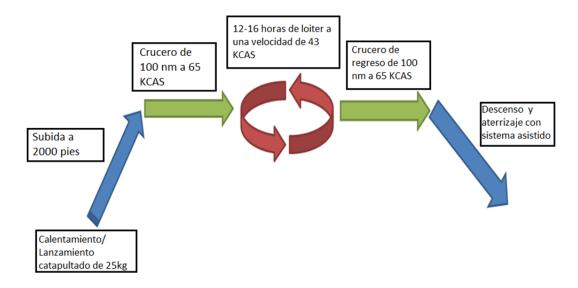


Figura 3. Perfil de la misión.

En la primera etapa de la misión del piquero, el avión será asistido por un sistema de catapulta y ascenderá hasta 2000 pies. Luego necesita completar un crucero de 100 millas náuticas a una velocidad de 65 KCAS (113ft/s). Cuando el avión llegue a la zona de interés, empezará a vigilar por un tiempo estimado de 12 a 16 horas y cubrirá la mayor cantidad de área posible en esta etapa. Cuando el segmento de vigilancia en loiter termine, el Piquero regresará a la base en donde será asistido por un sistema de retracción para su aterrizaje.

3.4 Configuración geométrica

El Piquero UAV es diseñado para que sea de tipo "pusher", con ala alta y cola en T. Esta configuración es la más adecuada para completar los segmentos de la misión. Como el Piquero UAV será controlado por un sistema de autopiloto, el avión deberá tener estabilidad natural para no sobrecargar al autopiloto. Estas necesidades deberán ser consideradas al momento de escoger la configuración geométrica.

El avión es de tipo "pusher" principalmente porque tiene un requerimiento de tener una cámara en la parte frontal, en la gráfica a continuación se demuestra un esquema de la configuración, el fuselaje y el domo vienen a ser representados por la parte izquierda verde de la figura y el motor es el rectángulo gris con su hélice en la parte derecha. (Gudmundson, 2009).

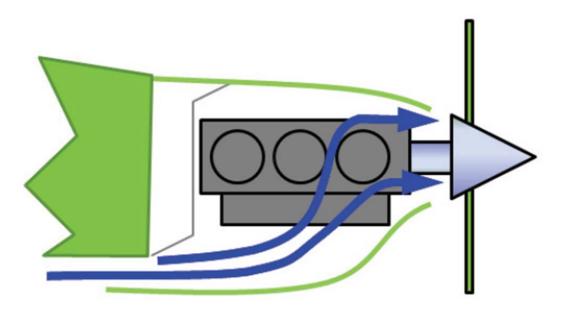


Figura 4. Configuración de tipo "pusher" (Gudmundson, 2009)

La misión principal del Piquero UAV es localizar a los pesqueros ilegales mientras realiza el vuelo sobre las islas haciendo uso de una cámara de alta definición por ello se ha visto conveniente ubicar la cámara en la parte frontal. Además, la

configuración tipo "pusher" nos va a proveer de una mejor estabilidad longitudinal dada la ubicación de la línea de empuje del motor sobre el centro de gravedad.

Se escoge un ala alta ya que elimina la necesidad de tener una estructura interna dentro del fuselaje, por ende, da espacio libre y provee un arreglo más confortable para los componentes internos y el combustible. La configuración "pusher" y ala alta nos ayuda a poder ubicar el soporte del motor en la parte superior del fuselaje, esto nos da la ventaja de que podemos usar la estructura del ala para montar el motor y a la vez nos da la suficiente distancia vertical para acomodar la hélice.

Finalmente, una cola tipo T fue escogida, junto con un tubo que une a la pieza central (tail boom), puesto que si se tiene que realizar un aterrizaje forzoso en tierra la hélice no cause daño a algún animal presente en ese momento y además se protege a la misma hélice. La cola tipo T además ofrece buenas características aerodinámicas, es decir, permite que la cola horizontal sea más eficiente dado que recibe aire sin turbulencia del ala principal y debido a la hélice. Debe ser suficientemente rígida y estable para poder soportar los vientos de ráfaga de 25 km/h.

3.5 Motor usado y características.

El motor usado es un ENYA 180 GX con las siguientes especificaciones técnicas:

Desplazamiento	29,05 cc	
Bore	34,0 mm	
Stroke	32,0 mm	
Peso	1478 g (incluyendo bujía y sin escape)	
Potencia	3,2 HP/8000 rpm	
Rango de revoluciones	1800 - 11000 rpm	
Carburador	Walbro	
Cilindro	Cilindro de latón con camisa de cromo duro	

Tabla 1. Especificaciones del fabricante.

La vista del motor ENYA 180X-GS se encuentra en el anexo A.

3.5.1 Escape

Número de modelo	M180X
Material	Aluminio
Peso	160 g

Tabla 2. Especificaciones del fabricante del escape usado.

3.6 Materiales usados en industria de aviones no tripulados

Los materiales usados en la industria de aviones no tripulados son generalmente materiales compuestos, entre ellos fibra de vidrio y fibra de carbono dada su densidad, alta resistencia y rigidez. Se investigaron tres proveedores los cuales nos indican las propiedades de los materiales con los que trabajan.

Para el diseño del tubo que une el fuselaje con la cola, tubos principales de ala y de fuselaje se usaron los siguientes datos de proveedores en cuanto a la fibra de carbono:

Micro eje de carbono de grafito. Propiedades mínimas					
Punto de fluencia	580 ksi / 3,99 Gpa				
Módulo de Young	33 msi / 227 Gpa				
Esfuerzo a compresión	270 ksi / 1.90 Gpa				
Módulo a compresión	19.0 msi / 131 Gpa				
Módulo cortante	725,19 ksi / 5 Gpa				
Densidad	0,065 lbs/in ³ / 1800 Kg/m ³				
Volumen de fibra	67%				
Deformación por tracción final	1.30%				
Tolerancia de diámetro	+/- 5%				

Tabla 3. Propiedades mecánicas de la fibra de carbono utilizada. (Avia Sport, CarbonFiberTubeShop, CSTSALES, Performance composites, 2012)

Se trabajará con los materiales de la empresa CARBONFIBERTUBESHOP ya que después de una intensiva búsqueda de tubos de fibra de carbono fueron los que mejores propiedades mecánicas proveen.

Para el diseño de la piel del ala, de la cola y fuselaje se usaron los siguientes datos:

Propiedades físicas de fibra de vidrio tipo S					
PROPIEDADES FÍSICAS					
Densidad	2,44-2,48 g/cc				
PROPIEDADES MECÁNICAS					
UTS	4,8-4,9Gpa				
Resistencia a la ruptura	5,5-6,0%				
Módulo de Young	85-90 Gpa				
Módulo Cortante	33-37 Gpa				
Coeficiente de Poisson	0,23				
PROPIEDADES TÉRMICAS					
Capacidad calórica específica	0,72-0,75 J/g-°C				
Conductividad térmica	1,44-1,46 W/m-K				
Obtenido de: JPS composite materials					

Tabla 4. Propiedades de la fibra de vidrio tipo S.

Las propiedades de la tabla 4 facilitan la obtención del espesor de fibra que se debe usar, el espesor ayuda a poder saber cuántas capas de tela de fibra se van a aplicar a la estructura del ala.

Material	Módulo Young		Punto de fluencia		Densidad	
	MSI	Gpa	KSI	Gpa	(lbs./in3)	(Kg/m3)
Fibra de carbono	33	226,7	580	3,99	0,065	1799,2
6063-T6	10	68,7	36	0,25	0,095	2629,60
Titanio	15	103,1	170	1,17	0,162	4484,16
Acero de alto carbono	30	206,1	122	0,84	0,274	7584,32
Fibra de vidrio tipo E	10,5	72,1	500	3,44	0,092	2546,56
Fibra de vidrio tipo E/Epóxica	6,5	44,7	257	1,77	0,072	1992,96
Fibra de vidrio tipo S	12,5	85,9	665	4,57	0,09	2491,20
Fibra de vidrio tipo S/Epóxica	7,7	52,9	342	2,35	0,071	1965,28

Tabla 5. Comparación de materiales en la industria aeronáutica. (CarbonFiberTubeShop, 2012)

La tabla 5 proporciona una comparación de los distintos materiales en la industria aeronáutica, como se puede ver la densidad de la fibra de carbono es la menor y su punto de fluencia es alto con un valor de 580 KSI.

3.7 Ensayo de consumo de combustible del motor Enya 180X-GS.

Se realizó un ensayo en búsqueda de curvas que nos indiquen el funcionamiento del motor, su consumo y su empuje estimado en un estudio con revoluciones de 2000-3000-4000 y 5000 que son las revoluciones máximas del motor en la altura de Quito. Se procedió de la siguiente manera:

- 1. Preparar la mezcla de combustible. Se realiza una mezcla 1:30 (1 parte de aceite especial del fabricante y 30 partes de combustible "Súper" del mercado nacional). Se obtiene el peso de la probeta usada sin ningún volumen aplicado. Posteriormente se preparará un volumen de 200 ml de mezcla de combustible y aceite en la probeta, se obtiene el peso en masa, se restará la masa de la probeta y se obtiene la densidad del combustible en mezcla.
- 2. Preparar un volumen equivalente a una probeta de 1000 ml para todo el ensayo.
- 3. Se preparó la mesa de pruebas, teniendo en cuenta la seguridad como objetivo primordial. Se ajustó el motor con una hélice tipo "puller" para poder medir el empuje. La mesa de pruebas quedará de la siguiente manera:

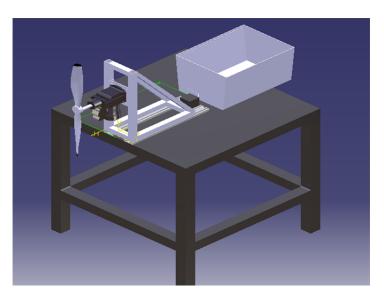


Figura 5. Mesa de pruebas.

- 4. Posteriormente se procedió a realizar las conexiones de las mangueras al motor. Se debe asegurar las mangueras con abrazaderas para evitar su desconexión y consecuente pérdida de presión.
- 5. Se inició la prueba, se mantuvo el motor sin medir nada por dos minutos para realizar un calentamiento previo. Una vez concluido se calibra las revoluciones a 2000, se mide el volumen inicial de la probeta y se mantiene así por un tiempo de diez minutos, tiempo que es confiable para realizar una medición final del volumen.
- 6. Posteriormente se repitió el proceso con 3000-4000 y 5000 revoluciones y se obtuvieron los siguientes datos.

Datos	iniciales		
Probeta	248,2	gr	
Volumen	200	ml	
Masa total	392,6	gr	(Probeta + combustible en mezcla @ 200 ml)
Masa combustible	144,4	gr	
Densidad	0,722	gr/ml	
	722	Kg/m ³	

Tabla 6. Datos iniciales del experimento.

Vo = volumen inicial de la probeta en mililitros

Vf = volumen final de la probeta en mililitros

Tiempo = tiempo de consumo del motor en minutos

m = masa consumida en tiempo T

m = flujo másico en kilogramos por segundo

		Vo	Vf	ΔV	T	Empuje		
Prueba	RPM	(ml)	(ml)	(ml)	(min)	(N)	m (Kg)	ṁ (Kg/h)
1	2000	930	880	50	10	68,74	0,0361	0,2166
2	3000	835	750	85	10	98,20	0,06137	0,3682
3	4000	740	610	130	10	127,66	0,09386	0,5631
4	5000	595	418	177	10	137,48	0,127794	0,7667

Tabla 7. Datos obtenidos del experimento.

En una estimación inicial, el PIQUERO volará entre las 3000 RPM y 4000 RPM, es decir se tendrá un consumo de combustible inicial de 0,3682 Kg/h, durante las 16 horas será un valor de 5,89 Kg, lo que representa un volumen de 8,16 litros, equivalentes a 2,15 galones de combustible, haciendo uso de una densidad de 722 Kg/m³.

Consumo	Consumo	Consumo	SFC	Acelerador	Potencia
(cc/min)	(gal/h)	(lbf/h)	(lbf/h/bhp)	(%)	(BHP)
5	0,079	0,475509692	0,48031282	40	0,99
8,5	0,1347	0,808366476	0,546193565	60	1,48
13	0,2061	1,236325199	0,624406666	80	1,98
17,7	0,2806	1,683304309	0,68149972	100	2,47

Tabla 8. Consumo específico del motor a varias revoluciones por minuto.

La siguiente tabla es obtenida mediante el uso de la tabla de rendimiento del avión Piquero

%	RPM	Vmáx KCAS	Vmáx ft/s	SFC	Power ft.lbf/s	Power W
40	2000	48	83,44	0,48	269	364,71
60	3000	66	114,72	0,55	558	756,55
80	4000	79	137,32	0,62	922	1250,06
100	5000	88	152,47	0,68	1302	1765,27

Tabla 9. Consumo específico del motor y velocidad máxima que alcanza dadas las rpm.

Con esta tabla se puede obtener una gráfica que represente el consumo de combustible a ciertas revoluciones.

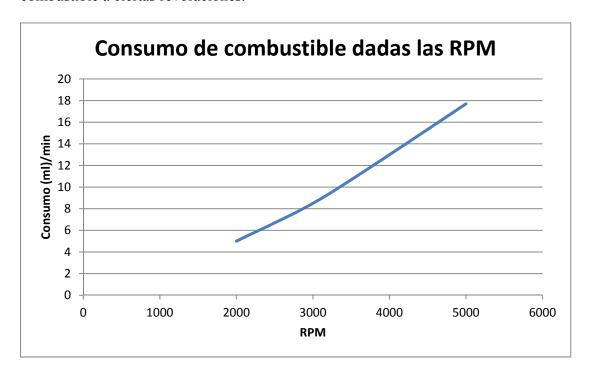


Figura 6. Consumo de combustible del motor en ml frente a las revoluciones por minuto del avión. Imágenes del ensayo se pueden encontrar en el anexo B.

CAPITULO IV

DISEÑO AERODINÁMICO

4.1 Especificaciones iniciales del avión y sus características

GENERAL							
WEIGHT							
Description	Symbol	Value	Units	Comments			
Selected design gross weight	$W_0 =$	55	$lb_{\rm f}$				
Projected empty weight	$W_E =$	31	$lb_{\rm f}$				
Design fuel weight	$W_F =$	13	$lb_{\rm f}$	Max. Allow. Fuel: 2,15 gal.			
Projected useful load	$W_U =$	24	$lb_{\rm f}$				

Tabla 10. Condiciones de peso.

En la tabla 10 podemos apreciar las especificaciones iniciales del PIQUERO, el peso diseñado con el que se va a trabajar es de 55 lbs, un peso proyectado vacío, es decir el peso del avión sin la carga útil de 31 lbs (se considera carga útil al tanque de combustible y carga interna del avión), peso de combustible de 13 lbs como fue obtenido previamente.

WING GEOMETRY							
Description	Symbol	Value	Units	Comments			
Wing area	$S_w =$	12	ft²				
Wing Aspect Ratio	$AR_w =$	12					
Wing Taper Ratio	$\lambda_{ m w}$ $=$	0,478256125					
Airfoil thickness ratio	t/c =	0,15					
Average chord	$C_{AVG} =$	0,48	ft				
Wing chord, root	$C_{RW} =$	1,15	ft				
Wing chord, tip	$C_{TW} =$	0,55	ft				
Mean Geometric Chord	$C_{MGC} =$	0,89	ft				
Wing span	$b_w =$	12,0	ft				

Tabla 11. Geometría del ala.

Para el ala, se determinan parámetros específicos para poder realizar el cálculo de fricción del mismo, se determina el área (S_w) , su relación de largo y ancho (AR_w) , la relación de escala entre la longitud de raíz y la punta del ala (λ_w) , su espesor máximo que viene dado por la nomenclatura del ala es decir 65-415. Además considera medidas para poder obtener fricción en la punta y en la raíz así como es la medida de la envergadura (b_w) , la cuerda tanto de raíz como de punta de ala con su promedio y la cuerda media geométrica (C_{MGC}) la cual es una medida que ayuda a estimar la cuerda aerodinámica basando solamente en componentes geométricos.

De igual forma que lo obtenido previamente para el ala se obtiene para la cola horizontal, vertical y fuselaje como veremos a continuación.

HORIZONTAL TAIL GEOMETRY							
Description	Symbol	Value	Units	Comments			
HT Area	$S_{HT} =$	4,22	ft²				
HT Aspect Ratio	$AR_{HT} =$	2,132986494					
HT Taper Ratio	$\lambda_{ m HT}\!=\!$	0,588235294					
Airfoil Thickness Ratio	t/c =	0,1					
Average Chord	$C_{AVG} =$	0,68	ft				
HT chord, root	$C_{RHT} =$	0,85	ft				
HT chord, tip	$C_{THT} =$	0,50	ft				
HT span	$b_{HT} =$	3,00	ft				

Tabla 12. Geometría de la cola horizontal.

VERTICAL TAIL GEOMETRY								
Description	Symbol	Value	Units	Comments				
VT Area	$S_{VT} =$	2,51	ft²					
VT Aspect Ratio	$AR_{VT} =$	0,673845695						
VT Taper Ratio	$\lambda_{ m VT}$ =	0,636363636						
Airfoil thickness ratio	t/c =	0,12						
Average Chord	$C_{AVG} =$	0,90	ft					
VT chord, root	$C_{RVT} =$	1,10	ft					
VT chord, tip	$C_{TVT} =$	0,70	ft					
VT span	$b_{VT} =$	1,30	ft					

Tabla 13. Geometría de la cola vertical

FUSELAGE GEOMETRY							
Description	Symbol	Value	Units	Comments			
Wetted área	$S_F =$	8,8	ft²				
Fuselage structural width	$D_{FUS} =$	0,866665	ft				
Fuselage structural							
length	$L_{FUS} =$	2	ft				
Average Fuselage cabin							
width	$D_1 =$	0,549999	ft				
Fuselage tail cone width	$D_2 =$	0,849998	ft				
Maximum Width	$W_{FUS} =$	0,866665	ft				
Maximum Height	$H_{FUS} =$	0,849998	ft				

Tabla 14. Geometría del fuselaje.

4.2 Análisis de coeficiente de arrastre en el avión dada su geometría y sus materiales.

Las fórmulas a continuación son usadas para todas las superficies de la misma forma, es decir la aplicación es la misma, mas no los valores. A continuación se detalla el uso de cada una de ellas y se la aplica al cálculo de arrastre del ala en la raíz (root).

$$D = \frac{1}{2} S_{ref} \rho V_{\infty}^2 C_D \tag{ec. 5}$$

Se determina la fuerza de arrastre que genera el avión para poder tener una idea de cuánto influye el coeficiente de arrastre a la velocidad de vuelo.

El coeficiente de arrastre C_{DF} permite al diseñador estimar el rendimiento de la aeronave. Ayuda además, a determinar el tipo de motor que se va a usar en el vuelo e incluye la cantidad de combustible que se va a usar durante la misión de vuelo.

$$C_{DF} = \frac{2D_F}{S_{ref} \rho V_{\infty}^2} = C_F \left(\frac{S_{wet}}{S_{ref}}\right)$$
(ec. 6)

En éste caso D_F es la fuerza de arrastre causada por la carcasa del componente que se está analizando. S_{wet} es el área total y S_{ref} es el área referencial que viene a ser el área de la forma geométrica de ala, en nuestro caso un trapecio. La fricción causada por la piel del componente es causada por la viscosidad del fluido que fluye a través de la superfície. Su magnitud depende de la viscosidad del fluido y el área total en contacto con él, así como también la rugosidad de la superfície.

El coeficiente de arrastre causada por la piel se genera en un proceso transitorio cuando el flujo laminar se convierte en turbulento. Es un análisis más real del fenómeno.

$$\mu = 3.17e - 11T^{1.5} \left(\frac{734.7}{T + 216} \right) \left[\frac{lbf.s}{ft^2} \right]$$
 (ec. 7)

μ es la viscosidad del fluido, en nuestro caso aire a una temperatura T en grados kelvin.

$$R_e = \frac{\rho VL}{\mu}$$
 (ec. 8)

El número de Reynolds es el número que nos indica si estamos en un régimen turbulento o laminar en donde ρ es la densidad del fluido, V es la velocidad a la que se mueve y L es una longitud referencial que se usa como la media de la cuerda aerodinámica (MAC).

Si la superficie es rugosa, el coeficiente de fricción va a ser mayor, entonces, un número de Reynolds especial debe ser calculado, y viene dado por:

$$R_{ecutoff} = 38.21 \left(\frac{C}{K}\right)^{1.053}$$
(ec. 9)

Donde C es nuestra longitud referencial y K viene dada por la rugosidad del material

Material	K
Pintura en aluminio	3.33e-5
Pintura sin rugosidad	2.08e-5
Lamina de metal	1.33e-5
Lamina de metal pulida	0.50e-5
Material compuesto sin rugosidad	0.17e-5

Tabla 15. Rugosidad de varios materiales.

Para un flujo 100% laminar, la fricción dada la piel viene dada por:

$$C_{f_{lam}} = \left(\frac{1{,}328}{\sqrt{R_e}}\right) \tag{ec. 10}$$

Para un flujo 100% turbulento, la fricción dada la piel viene dada por:

$$C_{f_{turb}} = \frac{0.455}{\left(\log_{10} R_e\right)^{2.58}}$$
 (ec. 11)

Para un flujo 100% turbulento y considerando la compresibilidad del aire, la fricción dada la carcasa viene dada por:

$$C_{f_{turb}} = \frac{0,455}{\left(\log_{10} R_e\right)^{2,58} \left(1 + 0,144M^2\right)^{0,65}}$$
 (ec. 12)

Si Re > Re_{cutoff} entonces usaremos nuestro nuevo número de Reynolds para los cálculos, es decir:

$$C_{f_{lam}} = \left(\frac{1{,}328}{\sqrt{R_{e_{cutoff}}}}\right)$$
 (ec. 13)

Para un flujo laminar-turbulento, la fricción dada la piel viene dada por:

$$C_f = \frac{0.074}{R_e^{0.2}} \left(1 - \left(\frac{X_{tr} - X_o}{C} \right) \right)^{0.8}$$
 (ec. 14)

Donde X_o es la capa turbulenta que genera fricción y X_{tr} es el punto de transición donde el flujo laminar se convierte en turbulento.

Para obtener este coeficiente necesitamos calcular tanto en la superficie superior de la raíz como de la inferior, así como también el coeficiente de arrastre en la punta tanto superior como inferior.

$$C_{f_{lower\,root}} = \frac{0.074}{R_e^{0.2}} \left(1 - \left(\frac{X_{tr} - X_o}{C} \right) \right)^{0.8}$$
 (ec. 15)

$$\left(\frac{X_o}{C}\right) = 36.9 \left(\frac{X_{tr}}{C}\right)^{0.625} \left(\frac{1}{R_e}\right)^{0.375}$$
 (ec. 16)

Una vez obtenido este valor hacemos uso de la ecuación 15 para obtener tanto el coeficiente de arrastre de la superficie superior e inferior y se saca un promedio para

obtener el valor final del coeficiente de arrastre en la raíz, consecuentemente se realiza un mismo cálculo para la raíz del ala.

El área la encontramos como el área de un trapecio dada por:

$$S_{wet} = 2\left(\frac{C_r + C_t}{2} * b\right)$$
 (ec. 17)

El siguiente coeficiente es el coeficiente de fricción inducida, es decir el coeficiente de fricción causada por la punta del ala dada la sustentación (vórtices). Primero se presenta el método simplificado.

$$C_{Di} = \frac{{C_L}^2}{\pi A \,\text{Re}} = K {C_L}^2$$
 (ec. 18)

$$AR = \frac{S^2}{A}$$
 (ec. 19)

A continuación, K demuestra la fricción inducida por sustentación, donde "e" es la eficiencia de la envergadura o la eficiencia de sustentación

$$K = \frac{1}{\pi A \operatorname{Re}}$$
 (ec. 20)

El método ajustado incluye el coeficiente de sustentación cuando la fricción es mínima

$$C_{Di} = \frac{(C_L - C_{L_{\min}D})^2}{\pi . AR.e}$$
 (ec. 21)

La fricción total se genera a partir de la fricción generada por la presión, por el roce entre el aire y la piel del avión y además por los vórtices de las puntas de ala.

$$C_D = C_{DO} + C_{DF} + C_{Di}$$
 (ec. 22)

$$C_{Do} = \frac{2D_o}{S_{ref} \rho V_{\infty}^2}$$
 (ec. 23)

$$C_{D} = \frac{2D_{o}}{S_{ref} \rho V_{\infty}^{2}} + \frac{2D_{f}}{S_{ref} \rho V_{\infty}^{2}} + \frac{2D_{i}}{S_{ref} \rho V_{\infty}^{2}}$$
(ec. 24)

$$C_{D} = \frac{2D_{o}}{S_{ref} \rho V_{\infty}^{2}} + \frac{2D_{f}}{S_{wet} \rho V_{\infty}^{2}} \left(\frac{S_{ref}}{S_{ref}}\right) + \frac{2D_{i}}{S_{ref} \rho V_{\infty}^{2}}$$
(ec. 25)

$$C_D = \frac{2}{S_{ref} \rho V_{\infty}^2} \left[D_o + D_f \left(\frac{S_{ref}}{S_{ref}} \right) + D_i \right]$$
(ec. 26)

Para encontrar la fricción causada por la piel en múltiples superficies tenemos la

siguiente sumatoria:
$$C_{DF} = C_F \left(\frac{S_{wet}}{S_{ref}} \right) = \left(\frac{S_{wet}}{S_{ref}} \right) \frac{\sum_{i=1}^{n} C_{fi} S_{wet_i}}{S_{ref}}$$
 (ec. 27)

Con éstos datos podemos determinar los coeficientes de fricción haciendo uso de las

siguientes tablas:

GEOMETRY		WING 1	HT	VT	FUSELAGE
Area	$S_W =$	12	4,22	2,51	
Aspect Ratio	AR _W =	12	2,1329865	0,67	
Taper Ratio	$\lambda_{ m W}$ $=$	0,47825613	0,5882353	0,636363636	
Surface Type		Composite	Composite	Composite	Composite
Skin Roughness value	k =	1,70E-06	1,70E-06	1,70E-06	1,70E-06
Span (Max. width for fuselage)	$b_i =$	12,00	3,00	1,30	0,87
Average Chord	$C_{AVG i} =$	0,85	0,68	0,90	1,67
Root chord	$C_{Ri} =$	1,15	0,85	1,10	1,67
Tip Chord	$C_{Ti} =$	0,55	0,50	0,70	1,67
Wetted Area booster coefficient	k _{wet i} =	1,05	1,05	1,05	1
Wetted Area	$S_{WETI} =$	21,3985039	4,2525	2,45699433	2,8946611
REFERENCE AREA	$S_{REF} =$	12			
TOTAL WETTED AREA	S _{WET} =	31,0			

Tabla 16. Propiedades geométricas de las superficies del avión.

ANALYSIS FOR ROOT CHORD		WING	НТ	VT	FUSELAGE
Reynold's Number based of Cref	Re _{true 1} =	809591	599282	775541	1177413
Cutoff Reynold's Number	Re _{cutoff 1} =	52571482	38299442	50245922	77989254
Analysis Reynold's Number	$Re_1 =$	809591	599282	775541	1177413
Lower surface transition	$X_{tr}/C_R =$	0,5681472	1	0,98	0,15
Upper surface transition	$X_{tr}/C_R =$	0,56762	0,18	0,2	0,15
Lower surface fictitious transition	$X_0/C_R =$	0,15775	0,25143	0,22539	0,05963
Upper surface fictitious transition	$X_0/C_R =$	0,15766	0,08609	0,08348	0,05963
Skin friction coefficient - Lower	C _{f lower1} =	0,003192	0,001714	0,001597	0,004189
Skin friction coefficient - Upper	C _{f upper1} =	0,003194	0,004780	0,004449	0,004189
Skin friction coefficient – Average	$C_{fl} =$	0,003193	0,003247	0,003023	0,004189

Tabla 17. Obtención de coeficiente de fricción de cada una de las superficies en la raíz.

En la tabla 17 se realiza un cálculo individual del coeficiente de fricción de cada una de las superficies. Como se analizó previamente se inicia con el cálculo del número de Reynolds, se continúa determinando la posición de transición tanto superior como inferior y con la combinación del coeficiente de rugosidad estimada para el material se puede estimar el coeficiente de fricción. Esta tabla obtiene el coeficiente de fricción para la raíz del ala, de la cola horizontal, vertical y fuselaje.

ANALYSIS FOR TIP CHORD		WING	НТ	VT	FUSELAGE
Reynold's Number based of Cref	Re _{true 2} =	387771	352519	493526	1177413
Cutoff Reynold's Number	Re _{cutoff 2} =	24216771	21904318	31217819	77989254
Analysis Reynold's Number	$Re_2 =$	387771	352519	493526	1177413
Lower surface transition	$X_{tr}/C_R =$	1,268	1	0,99	0,15
Upper surface transition	$X_{tr}/C_R =$	1,26690909	0,24	0,26	0,15
Lower surface fictitious transition	$X_0/C_R =$	0,34337	0,3068	0,26872	0,05963
Upper surface fictitious transition	$X_0/C_R =$	0,3432	0,1257	0,11652	0,05963
Skin friction coefficient - Lower	C _{f lower2} =	0,000713	0,002235	0,001935	0,004189
Skin friction coefficient - Upper	C _{f upper2} =	0,000720	0,005220	0,004751	0,004189
Skin friction coefficient - Average	$C_{f2} =$	0,000717	0,003727	0,003343	0,004189

Tabla 18. Obtención de coeficiente de fricción de cada una de las superficies en la punta.

De igual forma que en la tabla 18 podemos obtener el coeficiente de fricción para la punta del ala y para las superficies como la cola vertical, horizontal y fuselaje.

MIXED BL ANALYSIS		WING	НТ	VT	FUSELAGE
Component wetted area	$S_{\text{wet i}} =$	21	4	2	3
Skin friction coefficient	C _{fi} =	0,001955	0,003487	0,003183	0,004189
Skin friction drag coefficient	$C_{Dfi} =$	0,003486	0,003515	0,003118	0,004189
Skin friction drag force	$D_{fi} =$	0,64	0,226	0,119	0,18
TOTAL SKIN FRICTION DRAG COEFFICIENT	$C_{\mathrm{Df}} =$	0,01431			
TOTAL SKIN FRICTION DRAG	$D_f =$	1,16	lbf		

Tabla 19. Combinación de tabla 17 y tabla 18 para la obtención del coeficiente de fricción global.

Finalmente, en la tabla 19 obtenemos el coeficiente de arrastre y la fuerza de fricción que generan las superficies.

El coeficiente de fricción mínimo se obtiene mediante la construcción de un modelo de fricción el cual incluye tanto el coeficiente de fricción de piel como también la fricción causada por la presión. El "form factor" que es un factor que mide la presión de fricción dada la separación de viscosidad y el "interference factor" que es un factor generado entre las partes del avión, en las uniones en especial.

El coeficiente de misceláneos se refiere a fricciones producidas como por ejemplo de tren de aterrizaje no retraído o híper sustentadores, mientras que el coeficiente de fuga y protuberancias es un coeficiente que suma la fricción de entrada de aire en huecos dado una presión alta y las protuberancias como son antenas, luces o paneles desalineados dada la manufactura (Raymer 1992).

$$C_{D_{\min}} = \frac{1}{S_{ref}} \sum_{i=1}^{n} C_{f_i} * FF_i * IF_i * S_{wet_i} + C_{D_{misc}} + C_{DL\&P}$$
(ec. 28)

Para el ala, ala vertical en cola, ala horizontal en cola tenemos:

$$FF = \left[1 + \frac{0.6}{(X/C)_{\text{max}}} \left(\frac{t}{c}\right) + 100 \left(\frac{t}{c}\right)^{4}\right] \left[1,34M^{0.18} \left(\cos \Lambda_{t \text{ max}}\right)^{0.28}\right]$$
(ec. 29)

Para el fuselaje tenemos:

$$FF = \left[1 + \frac{60}{f^3} + \frac{f}{400}\right]$$
 (ec. 30)

Componente	IF
Ala alta	1
Cola vertical	1.03
Cola horizontal	1.08
Cola en T	1.04-1.05

Tabla 20. Interference factor para las superficies.

$$f = \frac{1}{\sqrt{\frac{4A_{\text{max}}}{\pi}}}$$

(ec. 31)

MINIMUM DRAG COEFFICIENT		WING	НТ	VT	FUSELAGE
Location of maximum thickness	$(x/c)_{max}$	0,4	0,3	0,3	0,15
Thickness ratio	t/c =	0,15	0,1	0,12	0,2
Max. thickness sweep angle	$\Lambda_{ m tmax} =$	0	-5,6163	0	0
Representative length (fuselage)	1=				2
Representative diam. (fuselage)	d =				0,866665
Fineness ratio	f =				2,31
Form factor	FF =	1,138	1,078	1,125	5,888
Interference factor	IF =	1	1,05	1,05	1
Wetted área	$S_{\text{wet i}} =$	21	4	2	3
Minimum drag coefficient	C _{Dmin I} =	0,003967	0,001399	0,0007696	0,005950

Tabla 21. Obtención del coeficiente de fricción mínimo en el fuselaje, ala y superficies de la cola.

Sum of C _{Dmin}	$\Sigma C_{Dmin i} =$	0,01209	
Miscellaneous drag	$C_{Dmisc} =$	0,006	
Leakage and protuberance	$C_{D L\&P} =$	0,003	
CRUD percentage	CRUD =	25	%
	$C_{Dmin} =$	0,02676	

Tabla 22. Obtención del coeficiente de fricción total.

En la tabla 22 determinamos un porcentaje (CRUD) que es un porcentaje de adición de coeficiente de fricción extra estimado históricamente para compensar

cualquier tipo de valor que no se haya dimensionado correctamente. Con esto, podemos obtener las propiedades aerodinámicas y de rendimiento del avión.

AERODYNAMIC PROPERTIES								
Description	Symbol	Value	Units	Comments				
DRAG CHARACTERISTICS								
Basic drag coefficient	$C_{D0} =$	0,044152485						
Skin friction drag coefficient	$C_{\mathrm{Df}} =$	0,01660						
Minimum drag coefficient	$C_{Dmin} =$	0,06075						
Span efficiency	e =	0,7060						
Induced drag constant	k =	0,03757						
LIFT CHARACTERICTICS								
C _L at cruise	C _{Lcruise} =	0,0997						
C _L of minimum drag	$C_{LminD} =$	0,2694		From Surfaces				
Maximum lift coefficient	C _{Lmax} =	0,9334		From Airfoils Tab				
Lift curve slope	$C_{L\alpha}$ =	0,09943	per °	From Surfaces				
	$C_{L\alpha}$ =	5,697	per radian					
Zero-alpha lift coefficient	$C_{L0} =$	0,2494		From Surfaces				

Tabla 23. Propiedades aerodinámicas del avión.

En la universidad Embry-Riddle se hizo uso de software especializado en diseño aeronáutico y se igual forma se generó una simulación de vuelo y nos proporcionaron constantes como el coeficiente de sustentación mínimo del avión, el máximo, el ángulo para lograr el coeficiente de sustentación máximo y el coeficiente de sustentación a un ángulo de 0°. Estas constantes nos ayudan en próximos cálculos para obtener el rendimiento en vuelo del avión.

AIRFOILS								
	Symbol	Value	Units	Comments				
Staling speed (max weight)	$V_S =$	65,98	ft/s					
Staling speed (max weight)	$V_S =$	39,09	KTAS					
CL max 2D Root		1,07						
CL max 2D Tip		1,02						
CL max 2D		1,04						
CL max 3D		0,94						
Sweep at C/4		0,033						

Tabla 24. Coeficientes del perfil de ala.

4.3 Análisis de rendimiento en despegue, ascenso y crucero. Análisis de rango y tiempo de vuelo.

Una vez determinado el coeficiente de arrastre mínimo en el avión, generamos una tabla de valores para poder seleccionar las velocidades que son convenientes en cada una de las etapas de la misión.

4.3.1 Rendimiento en despegue

Para obtener el mejor ángulo de subida para un avión con motor a hélice obtenemos primero el empuje, eso podemos obtener mediante el modelo de Gagg y Ferrar (Gudmundson, 2009) el cual relaciona la potencial del motor a nivel del mar frente a la altura en la cual se está dando el vuelo. Además, se obtiene la tasa de densidad que relaciona la densidad en una altura dada frente a la del nivel del mar dada la presión en las dos alturas

$$\sigma = \frac{P}{P_o} = \frac{\rho}{\rho_o}$$
 (ec. 34)

$$BHP = BHP_o \left(\sigma - \frac{1 - \sigma}{7.55} \right) = BHP_o \left(1,132\sigma - 0,132 \right)$$
 (ec. 35)

Para obtener la potencia necesaria tenemos que relacionar el peso que se carga y la tasa de coeficiente de fricción frente al de sustentación el cual al ser menor va a requerir que la potencia requerida sea menor:

$$P_{REQ} = \sqrt{\frac{2W^3 C_D^2}{\rho S C_L^3}}$$
 (ec. 36)

$$P_{REQ} = DV = qC_D S_{ref} * V$$
 (ec. 37)

La potencia disponible viene dada por la potencia proporcionada por el motor:

$$P_{AV} = T_{AV}V = n_P 550BHP$$
 (ec. 38)

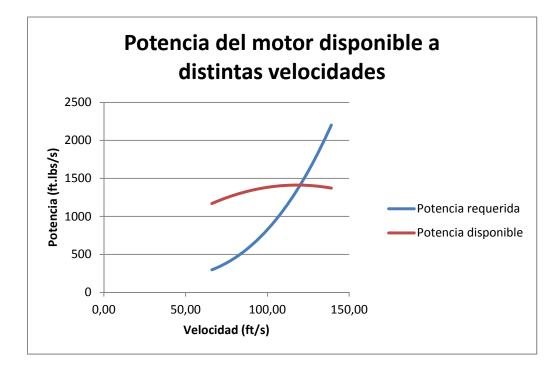


Figura 7. Potencia del motor Vs. Velocidad en crucero.

Los límites vienen dados ya que el avión no podrá sustentar a esa velocidad mínima y el segundo es que el motor no puede entregar mayor potencia.

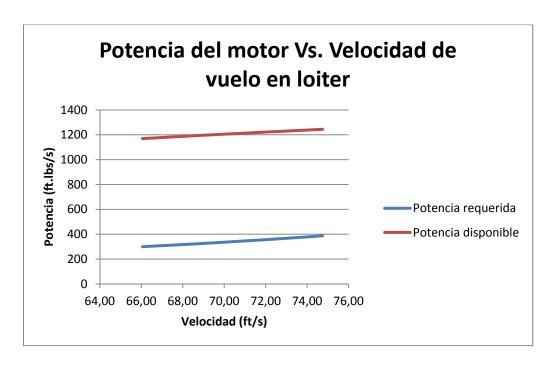


Figura 8. Potencia del motor Vs. Velocidad de vuelo en loiter.

En la figura 8 se puede ver que el motor no tiene ningún problema ya que tiene potencie en exceso, sin embargo como condición de diseño el avión debe volar al 40% del motor, haciendo que la sean más rigurosos los límites de velocidad.

A mayor altitud de vuelo menor potencia del motor se obtendrá. La presión y densidad, en sistema internacional, dada una altura viene dado por:

$$P = P_0 (1 - 0.0000068756h)^{5,2561}$$
 (ec. 39)

$$\rho = \rho_0 (1 - 0.0000068756h)^{4,2561}$$
 (ec. 40)

$$T = \frac{n_P.550.BHP}{V} \tag{ec. 41}$$

A continuación podemos obtener el mejor ángulo de subida, influenciado por la presión dinámica:

$$V^{4} + \frac{n_{P}.550.BHP}{S\rho C_{D_{\text{min}}}}V - \left(\frac{W}{S}\right)^{2} \frac{4k\cos^{2}\theta}{q} = 0$$
 (ec. 42)

La velocidad para la mejor tasa de subida (Rate of climb, ROC) se obtiene de:

$$V_{ROC_{\text{max}}} = V_{E_{\text{max}}} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{K}{3.C_{D_{\text{min}}}}}}$$
 (ec. 43)

$$ROC_{\text{max}} = \frac{MaxExcessPower}{w}$$
 (ec. 44)

$$ROC_{\text{max}} = 60 \left(\frac{np}{w} - V_{ROC \text{ max}} \frac{1,1547}{LD_{\text{max}}} \right)$$
 (ec. 45)

4.3.2 Rendimiento en crucero

En crucero tenemos la condición que la tasa de sustentación/fricción debe ser máxima (L/D_{max})

$$V_{LD \max} \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right)} \sqrt{\frac{K}{C_{D \min}}}$$
 (ec. 46)

$$LD_{\text{max}} = \left(\frac{C_L}{C_D}\right)_{\text{max}} = \frac{1}{\sqrt{4C_{D \text{min}}K}}$$
 (ec. 47)

Requerimientos para mayor tiempo de vuelo y la velocidad a la cual debe suceder es:

$$\left(\frac{C_L^{1.5}}{C_D}\right)_{\text{max}} = \frac{1}{4} \left(\frac{3}{KC_{D \, \text{min}}}\right)^{3/4}$$
(ec. 48)

$$V_{E \max} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{K}{3C_{D \min}}}}$$
 (ec. 49)

La velocidad para la mayor cantidad de horas de vuelo suele ser alrededor del 76% de la velocidad para la mejor tasa L/D.

La velocidad de pérdida (stall speed) es la mínima velocidad a la cual es avión puede mantener altitud. Aumentando el ángulo de ataque viene asociado con el aumento del coeficiente de sustentación hasta el máximo donde consecuentemente disminuye.

$$V_s = \sqrt{\frac{2W}{\rho SC_{L_{\text{max}}}}}$$
 (ec. 50)

A continuación, se obtiene el rango o la distancia de vuelo a una velocidad constante y una altitud constante, parámetro que es fundamental tras haber realizado los cálculos previos:

$$R = \frac{V}{C_t \sqrt{KC_{D \min}}} \left[\tan^{-1} \left(\frac{2\sqrt{K}}{\rho SV^2 \sqrt{C_{D \min}}} W_{ini} \right) - \tan^{-1} \left(\frac{2\sqrt{K}}{\rho SV^2 \sqrt{C_{D \min}}} W_{fin} \right) \right] \quad \text{(ec. 51)}$$

Donde C_t es el consumo específico relacionado con el empuje del motor

$$C_{bhp} = \frac{W_{fuel}}{P}$$
 (ec. 52)

$$C_t = \frac{C_{bhp}P}{T} = \frac{C_{bhp}V}{1980000n_P} [1/\sec]$$
 (ec. 53)

Por último, obtenemos el tiempo de vuelo, parámetro de igual forma esencial puesto que será condicionante para determinar la velocidad de vuelo.

$$E = \frac{1}{C_t \sqrt{KC_{D\min}}} \left[\tan^{-1} \left(\frac{2\sqrt{K}}{\rho SV^2 \sqrt{C_{D\min}}} W_{ini} \right) - \tan^{-1} \left(\frac{2\sqrt{K}}{\rho SV^2 \sqrt{C_{D\min}}} W_{fin} \right) \right]$$
 (ec. 54)

 S_{ref} = Típicamente área de ala

4.4 Condición de vuelo ideal

Inicialmente se propuso como requerimiento de misión una velocidad de loiter de 43 KCAS y una velocidad de crucero de 65 KCAS, para asegurar esto se realiza una tabla de rendimiento de valor donde se van a ir variando las configuraciones del motor para establecer la configuración ideal de vuelo y verificar si las condiciones establecidas son correctas. Se usan dos configuraciones, la primera para un peso del piquero de 54 lbf cuando empieza cruise con un peso de 5,6 lbf de combustible para todos los casos, se varían las velocidades para estimar la mayor distancia y se usa el mismo peso del avión y el mismo peso de combustible para saber cuál velocidad es más conveniente volar. El objetivo de éste ensayo es establecer la mayor distancia de vuelo.

Peso de combustible (lbf)	Peso de PIQUERO (lbf)
5,6	54

% Aceleración	RPM	SFC	Velocidad máxima (KCAS)	C_{Dmin}	Distancia de vuelo (nm)	Tiempo de vuelo (h)
35	1750	0,461	43	0,02805	386,5	8,7
40	2000	0,48	48	0,02762	455,5	9,2
44	2200	0,494	52	0,02730	492,8	9,2
48	2400	0,508	56	0,02702	508,1	8,8
52	2600	0,522	60	0,02676	510,4	8,3
56	2800	0,536	63	0,02658	532,2	8,2
60	3000	0,55	66	0,02641	543,1	8
62	3100	0,5592	67	0,02636	553,7	8
64	3200	0,576	69	0,02625	529,4	7,4
68	3400	0,5808	72	0,02610	528,2	7,1
70	3500	0,592	73	0,02605	528,1	7
72	3600	0,602	74	0,02600	526,9	6,9
76	3800	0,6096	77	0,02586	512,5	6,5
80	4000	0,624	79	0,02577	507	6,2
100	5000	0,68	80	0,02543	467,8	5,2

Tabla 25. Prueba de rendimiento para establecer la velocidad ideal de vuelo

En la tabla 25 se puede ver claramente que el PIQUERO tiene un mejor rendimiento en vuelo a una velocidad de 67 KCAS o 116,46 ft/s, dando una distancia de vuelo de 553,7 millas náuticas. A continuación se puede ver el pico más alto de rendimiento del PIQUERO, demostrando que al aumentar la velocidad el PIQUERO tiene un mejor comportamiento pese a que consume más que a una velocidad menor.

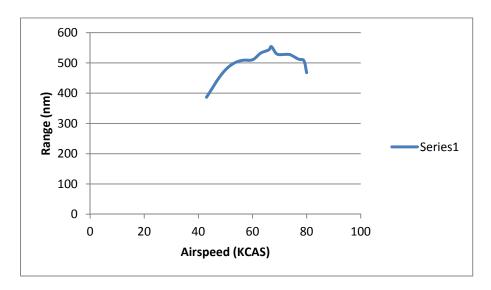


Figura 9. Velocidad que maximiza la distancia de vuelo en loiter.

La segunda configuración sería en loiter cuando los 5,6 lbf se han consumido y el nuevo peso del avión son 48 lbf, de igual manera se varían las velocidades para obtener la mayor distancia de vuelo.

Peso de combustible (lbf)	Peso de PIQUERO (lbf)
5,6	48

% Aceleración	RPM	SFC	Velocidad máxima (KCAS)	C_{Dmin}	Distancia de vuelo (nm)	Tiempo de vuelo (h)
35	1750	0,4610	43	0,02805	450,7	10,2
40	2000	0,4800	48	0,02762	525,4	10,6
44	2200	0,4940	52	0,02730	553,1	10,3
48	2400	0,5080	56	0,02702	570,5	9,9
52	2600	0,5150	60	0,02676	571,6	9,3
56	2800	0,5360	63	0,02658	578,6	8,9
60	3000	0,5500	66	0,02641	584,7	8,6
62	3100	0,5592	67	0,02636	594,4	8,5
64	3200	0,5760	69	0,02625	565,1	8
68	3400	0,5780	72	0,02610	562,3	7,6
70	3500	0,5880	73	0,02605	561,9	7,5
72	3600	0,5952	74	0,02600	557,7	7,3
76	3800	0,6096	77	0,02586	532,6	6,7
80	4000	0,6240	79	0,02577	524,6	6,4
100	5000	0,6800	80	0,02543	470,1	5,6

Tabla 26. Velocidad óptima de PIQUERO en caso de volar en loiter.

Nuevamente, para una configuración del motor al 62% de su aceleración máxima, con una velocidad de 3100 RPM se tiene que va a volar una distancia de 594,4 millas náuticas. A continuación se trazan los resultados para demostrar como en realidad el pico más alto genera la mayor distancia de vuelo.



Figura 10. Velocidad óptima de vuelo en crucero

En los dos casos se encuentra que se aumenta la distancia de vuelo a una velocidad de 67 KCAS con una configuración al 62% y a 3100 RPM.

Una vez que se ha determinado la velocidad óptima se procede a determinar el volumen de combustible para saber exactamente con cuanto se deberá volar y consecuentemente evaluar el valor en la tabla de rendimiento del avión.

4.5 Volumen de combustible necesitado en las etapas de vuelo

Para el volumen de combustible tanto en ascenso como en descenso se estima mediante el uso de datos históricos, según Raymer en el libro de Aircraft Design, se obtiene lo siguiente:

$$\frac{W_1}{W_0} = 0.985$$

$$W_1 = 0.985 * 55lbs = 54.175lbs$$

El volumen de combustible consumido en el ascenso es de:

Wascenso = 55 - 54,75 = 0,825lbf $\forall combustible = 0,1375gal$ Masacombustible = 0,38kg

4.5.1 Volumen Crucero

Para estimar el volumen necesitado, se usa la fórmula de rango (ec. 32) a una velocidad constante y una altura constante, es decir una densidad constante.

Además, como se quiere despejar el volumen de combustible se estima una distancia de vuelo con la ecuación e=V*t, tomando una velocidad de 116,46 ft/s y 16 horas de vuelo se obtiene un valor de 6708096 ft.

$$\tan^{-1} \left(\frac{2\sqrt{k}}{\rho V^2 S_{ref} \sqrt{C_{D_{min}}}} W_{ini} \right) - \tan^{-1} \left(\frac{2\sqrt{k}}{\rho V^2 S_{ref} \sqrt{C_{D_{min}}}} (W_{ini} - W_f) \right) = \frac{RC_t \sqrt{KC_{D_{min}}}}{V} \text{ (ec. 32)}$$

$$\tan^{-1}\left(\frac{2\sqrt{0,0376}}{0,002242 \ slug \ / \ ft^3 \left(116,46 \ ft \ / \ s\right)^2 12 \ ft^2 \sqrt{0,02636}} 54 \ lbf\right) - \\ \tan^{-1}\left(\frac{2\sqrt{0,0376}}{0,002242 \ slug \ / \ ft^3 \left(116,46 \ ft \ / \ s\right)^2 12 \ ft^2 \sqrt{0,02639}} \left(54 \ lbf \ - W_f\right)\right) \\ = \frac{6708096 \ ft * 5,535 \ e - 5\sqrt{0,0376 * 0,02636}}{116,46 \ ft \ / \ s} \\ \tan^{-1}\left(0,7072\right) - \tan^{-1}\left(0,7072 - 0,0131W_f\right) = 0,10070 \\ W_f = 10,80 \ lbf \\ \forall req = 1,80 \ gal$$

El combustible usado en descenso será:

$$\frac{W_5}{W_4} = 0.995$$

 $W_5 = 0.995(55 - 0.825 - 2.66 - 9.133 - 2.66)$
 $W_5 = 39.52lbs$
 $Wdescenso = 39.72 - 39.52 = 0.202lbf$
 $\forall combustible = 0.034gal$
 $Masacombustible = 0.024kg$

4.5.2 Volumen Total

$$W_{Total} = Wascenso + Wcrusero + Wloiter + Wcrusero + Wdescenso$$
 (ec. 33)
$$\forall_{Total} = 0.1375 gal + 1.80 gal + 0.034 gal$$

$$\forall_{Total} = 1.97 gal$$

$$Densidad = 722 Kg / m^3$$

$$1.97 gal = 7.47 l = 0.0075 m^3$$

$$Masa = 5.42 Kg$$

A continuación se presentan las tablas de rendimiento en la etapa de crucero que será de 16 horas:

PERFORMANCE											
INPUT DATA											
Description	Symbol	Value	Units								
Weight at condition	$W_{ref} =$	54	lb_f								
Fuel weight for loiter	$W_{\text{fuel}} =$	10,8	lb_f								
Wing Area	$S_w =$	12	ft²								
Minimum drag coefficient	$C_{Dmin} =$	0,02636									
CL at minimum drag	$C_{LminD} =$	0,2694									
Induced drag constant	k =	0,0376									

Tabla 27. Condiciones iniciales de rendimiento de vuelo hasta llega a destino.

DRAG ANALYSIS											
FLIGHT CONDITION											
Altitude	H =	2000	ft								
Design crusing speed	VKCAS =	67	KCAS								
Design crusing speed	VKTAS =	69	KTAS								
Design crusing speed	V =	116,46	ft/s								
Mach Number	M =	0,10									
Density Ratio	$\sigma =$	0,942773									
Air Density	ρ =	0,002242	slugs/ft ³								
Outside Air Temperature	T =	512	0 R								
Viscosity (Sutherland's Formula)	μ=	3,70E-07	lbf-s/ft2								

Tabla 28. Condiciones iniciales de vuelo hasta llega a destino.

ATMOSPHERIC DATA										
Altitude	$H_{ref} =$	2000	ft							
Pressure at altitude	$P_{alt} =$	1967	lbf/ft²							
Outside Air Temperature	$T_{alt} =$	511,5	°R							
Density	ρ=	0,002241	slugs/ft ³							
Density ratio	$\sigma =$	0,94								

Tabla 29. Condiciones atmosféricas de vuelo hasta llega a destino.

ENGINE POWER										
Power setting	Throttle =	62	%							
Total power	BHP =	1,86	BHP							
Max RPM	RPM =	3100	RPM							
Max RPS	n =	83,33	RPS							
Propeller diameter	D =	1,58	ft							
Specific Fuel Consumption	SFC =	0,5592	lbf/hr/BHP							

Tabla 30. Condiciones de potencia hasta llega a destino.

A continuación se presentan las tablas de rendimiento del avión en condición de vuelo de mayor rendimiento.

	AERODYNAMIC COEFFICIENTS												
	Air	speed, V		Dyn. Press	$ \mathbf{C}_{\mathrm{L}}$	AOA C _D				C _L /C _{D (MAX L/D}	C _L ^{1.5} /C _{D (MAX}	$C_L^{0.5}/C_{D(MAX}$	
KCAS	KTAS	ft/s	Valid KCAS	lbf/ft²		Degrees		RATIO)	ENDURANCE)	RANGE)			
37	38	64,32	-	4,6	0,9708	7,3	0,0448	21,65	21,33	21,97			
38	39	66,05	38	4,9	0,9204	6,7	0,0423	21,77	20,89	22,69			
39	40	67,79	39	5,1	0,8738	6,3	0,0401	21,80	20,38	23,32			
40	41	69,53	40	5,4	0,8307	5,8	0,0382	21,75	19,82	23,86			
41	42	71,27	41	5,7	0,7906	5,4	0,0366	21,62	19,23	24,32			
42	43	73,01	42	6,0	0,7534	5,1	0,0352	21,43	18,60	24,69			
43	44	74,74	43	6,3	0,7188	4,7	0,0339	21,18	17,95	24,98			
44	45	76,48	44	6,6	0,6865	4,4	0,0329	20,87	17,29	25,19			
45	46	78,22	45	6,9	0,6563	4,1	0,0320	20,52	16,63	25,33			
46	47	79,96	46	7,2	0,6281	3,8	0,0312	20,14	15,96	25,41			
47	48	81,70	47	7,5	0,6016	3,5	0,0305	19,72	15,30	25,43			
48	49	83,44	48	7,8	0,5768	3,3	0,0299	19,29	14,65	25,39			
49	50	85,17	49	8,1	0,5535	3,1	0,0294	18,83	14,01	25,32			
50	51	86,91	50	8,5	0,5316	2,8	0,0289	18,37	13,39	25,19			
51	53	88,65	51	8,8	0,5110	2,6	0,0285	17,90	12,79	25,04			
52	54	90,39	52	9,2	0,4915	2,4	0,0282	17,42	12,22	24,85			
53	55	92,13	53	9,5	0,4731	2,3	0,0279	16,95	11,66	24,64			
54	56	93,87	54	9,9	0,4558	2,1	0,0277	16,48	11,12	24,41			
55	57	95,60	55	10,2	0,4394	1,9	0,0274	16,01	10,61	24,15			
56	58	97,34	56	10,6	0,4238	1,8	0,0273	15,55	10,12	23,89			
57	59	99,08	57	11,0	0,4091	1,6	0,0271	15,10	9,66	23,61			
58	60	100,82	58	11,4	0,3951	1,5	0,0269	14,66	9,21	23,32			

59	61	102,56	59	11,8	0,3818	1,3	0,0268	14,23	8,79	23,03
60	62	104,30	60	12,2	0,3692	1,2	0,0267	13,81	8,39	22,73
61	63	106,03	61	12,6	0,3572	1,1	0,0266	13,40	8,01	22,43
62	64	107,77	62	13,0	0,3457	1,0	0,0266	13,01	7,65	22,13
63	65	109,51	63	13,4	0,3349	0,9	0,0265	12,63	7,31	21,82
64	66	111,25	64	13,9	0,3245	0,8	0,0265	12,26	6,98	21,52
65	67	112,99	65	14,3	0,3146	0,7	0,0264	11,90	6,67	21,22
66	68	114,72	66	14,7	0,3051	0,6	0,0264	11,56	6,38	20,92
67	69	116,46	67	15,2	0,2961	0,5	0,0264	11,22	6,11	20,62
68	70	118,20	-	15,7	0,2874	0,4	0,0264	10,90	5,84	20,33

Tabla 31. Coeficientes de sustentación, fricción, ángulo de ataque y C_L/C_D a velocidades aceptadas en crucero. Coeficientes para mayor rango y horas de vuelo a velocidades aceptadas en crucero.

En la tabla 31 se incluyen las velocidades en las cual puede volar, la condición para que el PIQUERO vuele es que el coeficiente que se genere a esa velocidad sea mayor al coeficiente de sustentación máximo del perfil y la segunda condición es que el motor pueda proveer la potencia suficiente para proporcionar el empuje necesario. El valor máximo es a la velocidad que el PIQUERO volará ya que a esa configuración del motor no se puede volar a una menor velocidad. La columna de "KCAS Válidas" indica si el avión puede volar con el coeficiente de sustentación generado y si el motor es capaz de generar tal potencia, si se cumplen las dos condiciones es válido sino está representado por "-". Además se obtienen las velocidades a las cuales se van a generar los coeficientes de mayor tiempo de vuelo y mayor distancia de vuelo.

					DRAG A	ND THRU	ST			C	LIMB PERI	FORMAN	CE
	Airspeed, V			Drag	P ₁	req			T	P_{AV}	P _{EX}	ROC	Theta
KCAS	KTAS	ft/s	Valid KCA S	lb _f	ft·lbf/s	BHP _{req}	J	η	lb _f	ft·lbf/s	ft·lbf/s	fpm	deg
37	38	64,32	-	2	160	0,344	0,79	0,85	13	864	704	782	11,7
38	39	66,05	38	2	164	0,350	0,81	0,85	13	868	704	783	11,4
39	40	67,79	39	2	168	0,358	0,83	0,85	13	871	704	782	11,1
40	41	69,53	40	2	173	0,367	0,85	0,86	13	874	701	779	10,8
41	42	71,27	41	2	178	0,377	0,87	0,86	12	875	697	775	10,4
42	43	73,01	42	3	184	0,390	0,89	0,86	12	876	692	768	10,1
43	44	74,74	43	3	191	0,404	0,91	0,86	12	875	685	761	9,8
44	45	76,48	44	3	198	0,420	0,93	0,86	11	874	676	751	9,4
45	46	78,22	45	3	206	0,438	0,96	0,85	11	872	666	740	9,1
46	47	79,96	46	3	214	0,458	0,98	0,85	11	869	654	727	8,7
47	48	81,70	47	3	224	0,480	1,00	0,85	11	865	641	713	8,4
48	49	83,44	48	3	234	0,504	1,02	0,84	10	860	627	696	8,0
49	50	85,17	49	3	244	0,530	1,04	0,84	10	855	610	678	7,6
50	51	86,91	50	3	255	0,559	1,06	0,83	10	848	593	658	7,3
51	53	88,65	51	3	267	0,590	1,08	0,82	9	841	573	637	6,9
52	54	90,39	52	3	280	0,624	1,10	0,82	9	832	552	614	6,5
53	55	92,13	53	3	294	0,662	1,13	0,81	9	823	530	589	6,1
54	56	93,87	54	3	308	0,702	1,15	0,80	9	813	506	562	5,7
55	57	95,60	55	3	322	0,746	1,17	0,79	8	802	480	533	5,3
56	58	97,34	56	3	338	0,793	1,19	0,77	8	791	453	503	4,9
57	59	99,08	57	4	354	0,845	1,21	0,76	8	778	424	471	4,5
58	60	100,82	58	4	371	0,901	1,23	0,75	8	764	393	437	4,1

59	61	102,56	59	4	389	0,963	1,25	0,73	7	750	361	401	3,7
60	62	104,30	60	4	408	1,030	1,27	0,72	7	735	327	363	3,3
61	63	106,03	61	4	427	1,103	1,30	0,70	7	719	291	324	2,9
62	64	107,77	62	4	447	1,183	1,32	0,69	7	702	254	282	2,5
63	65	109,51	63	4	468	1,271	1,34	0,67	6	684	215	239	2,1
64	66	111,25	64	4	490	1,368	1,36	0,65	6	665	175	194	1,7
65	67	112,99	65	5	513	1,475	1,38	0,63	6	645	132	147	1,2
66	68	114,72	66	5	536	1,593	1,40	0,61	5	625	88	98	0,8
67	69	116,46	67	5	560	1,724	1,42	0,59	5	603	43	47	0,4
68	70	118,20	-	5	586	1,870	1,44	0,57	5	581	-5	-5	0,0

Tabla 32. Fricción producida, potencia requerida, coeficiente de avance y eficiencia de hélice a velocidades aceptadas en crucero. Rendimiento en subida a velocidades aceptadas en crucero.

La tabla 32 demuestra como al aumentar la velocidad la eficiencia de la hélice aumenta de igual manera conforme el coeficiente de avance aumente. Se puede obtener la potencia disponible, se manejan dos rangos donde ya la potencia no va a generar el suficiente empuje para la sustentación del avión, esas velocidades son a 37 y 68 KCAS.

	DESCENT						RANGE				
	Air	speed, V		P _{EX}	ROD	Theta	$\mathbf{c_t}$	R	E	SR	
KCAS	KTAS	ft/s	Valid KCAS	ft·lbf/s	fpm	deg	1/sec	nm	hours	nm/gal	
37	38	64,32	-	-160	-178	-2,6	2,145E-05	1368,7	35,9	760,4	
38	39	66,05	38	-164	-182	-2,6	2,193E-05	1420,0	36,3	788,9	
39	40	67,79	39	-168	-187	-2,6	2,242E-05	1467,8	36,5	815,5	
40	41	69,53	40	-173	-192	-2,6	2,294E-05	1511,9	36,7	839,9	
41	42	71,27	41	-178	-198	-2,7	2,347E-05	1551,9	36,8	862,1	
42	43	73,01	42	-184	-204	-2,7	2,403E-05	1587,5	36,7	881,9	
43	44	74,74	43	-191	-212	-2,7	2,461E-05	1618,6	36,5	899,2	
44	45	76,48	44	-198	-220	-2,7	2,522E-05	1644,9	36,3	913,8	
45	46	78,22	45	-206	-229	-2,8	2,586E-05	1666,4	36,0	925,8	
46	47	79,96	46	-214	-238	-2,8	2,652E-05	1682,9	35,5	935,0	
47	48	81,70	47	-224	-249	-2,9	2,722E-05	1694,5	35,0	941,4	
48	49	83,44	48	-234	-260	-3,0	2,795E-05	1701,2	34,4	945,1	
49	50	85,17	49	-244	-271	-3,0	2,873E-05	1703,0	33,7	946,1	
50	51	86,91	50	-255	-284	-3,1	2,954E-05	1699,9	33,0	944,4	
51	53	88,65	51	-267	-297	-3,2	3,039E-05	1692,2	32,2	940,1	
52	54	90,39	52	-280	-311	-3,3	3,130E-05	1679,9	31,4	933,3	
53	55	92,13	53	-294	-326	-3,4	3,225E-05	1663,4	30,5	924,1	
54	56	93,87	54	-308	-342	-3,5	3,326E-05	1642,6	29,5	912,6	
55	57	95,60	55	-322	-358	-3,6	3,434E-05	1617,9	28,6	898,9	
56	58	97,34	56	-338	-376	-3,7	3,549E-05	1589,6	27,6	883,1	
57	59	99,08	57	-354	-394	-3,8	3,671E-05	1557,7	26,5	865,4	
58	60	100,82	58	-371	-413	-3,9	3,801E-05	1522,7	25,5	845,9	
59	61	102,56	59	-389	-432	-4,0	3,941E-05	1484,6	24,4	824,8	

60	62	104,30	60	-408	-453	-4,2	4,091E-05	1443,9	23,4	802,2
61	63	106,03	61	-427	-475	-4,3	4,253E-05	1400,6	22,3	778,1
62	64	107,77	62	-447	-497	-4,4	4,428E-05	1355,2	21,2	752,9
63	65	109,51	63	-468	-520	-4,5	4,617E-05	1307,7	20,2	726,5
64	66	111,25	64	-490	-545	-4,7	4,823E-05	1258,4	19,1	699,1
65	67	112,99	65	-513	-570	-4,8	5,048E-05	1207,5	18,0	670,8
66	68	114,72	66	-536	-596	-5,0	5,294E-05	1155,3	17,0	641,8
67	69	116,46	67	-560	-623	-5,1	5,565E-05	1101,8	16,0	612,1
68	70	118,20	-	-586	-651	-5,3	5,865E-05	1047,4	15,0	581,9

Tabla 33. Condiciones de descenso a velocidades aceptadas en crucero. Horas de vuelo, y distancia que cubriría el vuelo a ciertas velocidades en crucero.

Se presenta la tasa de descenso del avión al momento de volver del patrullaje.

La tabla 33 demuestra el rango de velocidades a las cuales el avión volará y la respectiva distancia y horas de vuelo.

Para realizar un vuelo completo de 16 horas a la misma velocidad con un volumen de 1,80 galones se tiene:

Vuelo a velocidad constante								
Velocidad Distancia de vuelo vuelo								
Aceleración	RPM	SFC	KCAS	C_{Dmin}	(nm)	(h)		
62	3100	0,5592	67	0,02636	1101,8	16		

Tabla 34. Configuración para vuelo que maximice la distancia de vuelo.

CAPITULO V

DISEÑO ESTRUCTURAL

El diseño estructural del PIQUERO es un tema especial debido que la reducción de peso de un componente se traduce en aumento de eficiencia en vuelo, es decir el avión podrá tener la capacidad de realizar un vuelo con una cobertura de terreno mayor puesto que disminuirá el consumo de combustible.

Para realizar el análisis estructural se determinaron los elementos del PIQUERO que son partes clave para la reducción de peso, como son el tanque de combustible, los anillos internos estructurales, el ducto de entrada y salida de aire para la refrigeración del motor, el tail boom, los tubos de soporte de las alas, los tubos estructurales de la cabina, el fuselaje posterior del fuselaje y el diseño de la piel para poder determinar cuántas capas de fibra se deben aplicar.

5.1 Diseño de tanque de combustible.

El tanque de combustible debe ser capaz de abastecer al avión con el combustible suficiente para que vuele las 16 horas sin ningún inconveniente. Para ello un tanque especial debe ser diseñado, el tanque debe tener la forma de la estructura interna del avión y no debe ser muy largo puesto que se debe dar espacio a los

componente electrónicos. Además, se debe considerar que es mandatorio mantener el centro de gravedad del avión en un mismo punto.

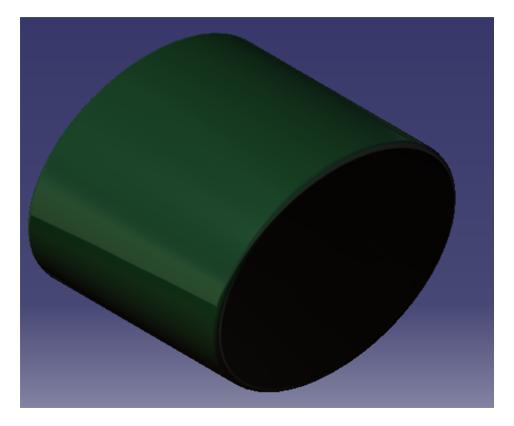


Figura 11. Producto final del tanque de combustible.

Para el desarrollo del diseño del tanque de combustible se tuvo que realizar cambios estructurales en la zona del fuselaje. Los anillos internos se cambiaron para poder dar espacio y aprovechar el diámetro del fuselaje.

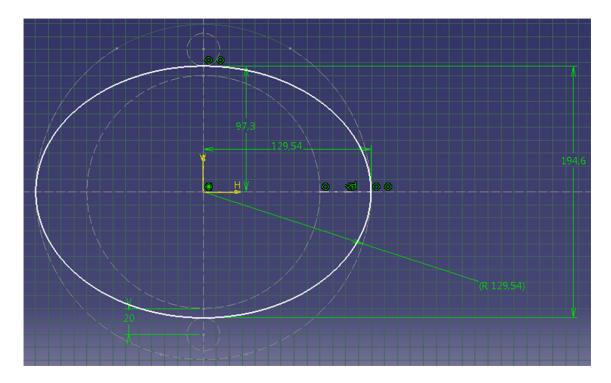


Figura 12. Trazado 2D del perfil posterior del tanque de combustible.

Para asegurar el volumen de combustible se realizó un trazo 2D para obtener los perfiles tanto del PCP como de los anillos. Se tomó una forma ovalada para pueda ir conforme a los contornos del PCP, de los anillos y de los tubos estructurales. Se obtuvo lo siguiente:

$$A = \pi.a.b$$

$$A = \pi * 0,126m^2 * 0,0943m^2$$

$$A = 0,03733m^2$$

Viendo la disposición de los anillos podemos hacer uso de ésta área y tan solo una longitud de 0,254m puesto que a continuación se tienen los componentes electrónicos, con ello el volumen se tiene:

$$\forall_{total} = 0.03733m^2 * 0.205m = 0.0076m^3$$

Este volumen es suficiente, ya que además se está considerando 1 mm de espesor de cada lado de los ejes y además 1 mm de espesor al anillo estructural y al PCP para que se pueda manufacturar el tanque externo o la piel que va a contener el combustible.

El volumen concuerda con el volumen de combustible obtenido en un inicio, la estructura externa de fibra de vidrio si se lo hace de 1mm de espesor tendría un volumen de 1,40e-004m3 de acuerdo al software CATIA.

Figura 13. Estructura interna del fuselaje actual.

En la Figura 13 se puede ver que los dos tubos internos estructurales reducen el espacio del tanque de combustible, para ello se realiza el siguiente cambio de posición en los anillos internos.

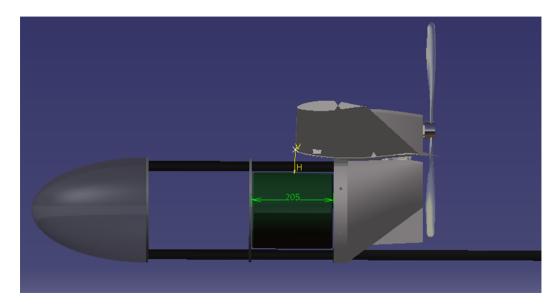


Figura 14. Dimensión de distancia de anillo para la ubicación del tanque de combustible

Después de analizar la cabina se puede dar mayor espacio a la cabina de electrónicos, haciendo que el PIQUERO sea más sencillo de ensamblar.

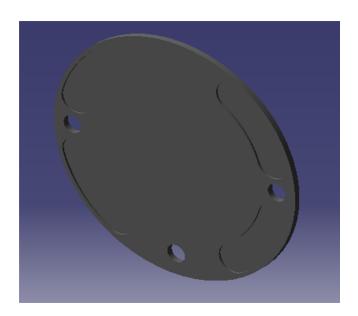


Figura 15. Cambio de la estructura del anillo estructural.

Se ha realizado un cambio de igual manera al anillo frontal puesto que antes no se consideró la unión de la cámara, ahora se construirá un disco completo para poder fijar la cámara sin inconvenientes.

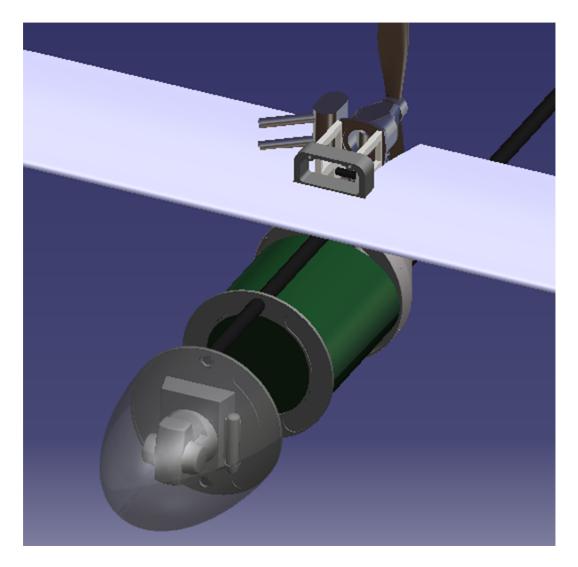


Figura 16. Disposición estructural nueva.

Además de aumentar el área para poder almacenar mayor cantidad de combustible en menor volumen, se removieron los dos tubos de aluminio y se reemplazaron por dos tubos de fibra de carbono, uno en la zona baja del fuselaje y otra en la zona superior como inicialmente se tenía planteado, con ello además se reduce peso innecesario. La forma del tanque de combustible es obtenida tanto de los anillos como del PCP para que con ello el cobertor del PIQUERO que será un óvalo de fibra de vidrio no tenga problema en ingresar y cubrir los componentes internos como se puede ver en la Figura 21. (Unmanned Vehicle, 2013).

El tanque de combustible debe ser fabricado con fibra de vidrio y hacer uso de resina "#6060-5 Isophthalic Resin" curada con resina tipo A "#1520-5". La iso resina se

recomienda dado su buena adhesión a la fibra de vidrio y no se desgasta con el contacto con el combustible. (Aircraft Spruce 2012).

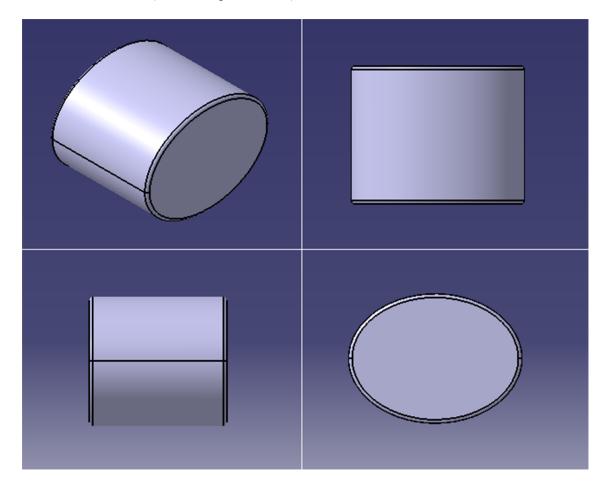


Figura 17. Tanque de combustible

En la Figura 17 se da a conocer el tanque de combustible y su configuración ovalada, para la manufactura se debe tomar en cuenta que no hay que determinar la posición de los rompe olas puesto que este tanque servirá de reserva para un tanque menor que será instalado en la parte superior del motor para que se produzca una caída y no haya problemas de succión.

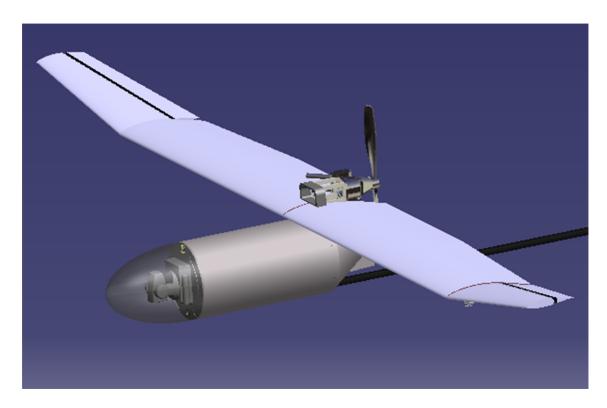


Figura 18. Piquero con cambios realizados en fuselaje.

En la figura 18 se reemplaza la antigua lámina por una estructura de fibra de vidrio que va a proporcionar protección a los componentes internos del fuselaje.

5.2 Diseño de ducto de entrada y salida de aire para refrigeración del motor

El enfriamiento se da por el cruce de flujo de aire a través de las aletas del intercambiador de calor o nuestro radiador y mediante el proceso de convección se remueve la energía térmica generada. Mientras aumente el flujo másico de aire mayor será la refrigeración del motor, para ello se depende de los siguientes factores: velocidad del aire, temperatura del ambiente, densidad, potencia de salida del motor, consumo de combustible y temperatura de operación.

En éste análisis se idealiza un problema de enfriamiento del motor mediante una entrada de aire-radiador-salida de aire y asumiendo una compresión y expansión adiabática en la entrada y salida respectivamente.

Al ingresar el aire su velocidad irá disminuyendo hasta tener una velocidad de cero en la cara posterior del radiador o el área de salida del radiador. La efectividad del enfriamiento radica en una diferencia de presión a través del radiador o también denominada caída de presión y es necesaria para poder remover la energía térmica. Un valor aproximado en motores a pistón es una recuperación entre 60% y 80% (Gudmundson, 2009).

El diseño es semejante al ensayo Venturi donde se disminuye el área externa para así generar caída de presión al aumentar la velocidad.

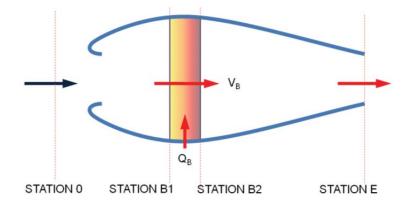


Figura 19. Diagrama de entrada y salida de aire a través del radiador. (Gudmundson 2009).

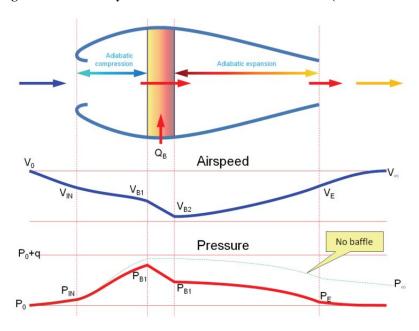


Figura 20. Análisis de presión y velocidad a través del radiador. (Gudmundson 2009).

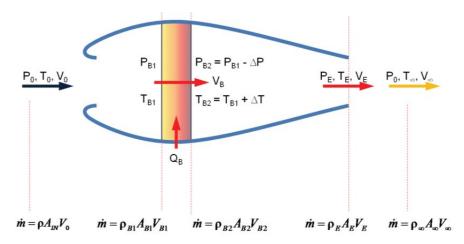


Figura 21. Modo de obtener el flujo másico y presión en las estaciones. (Gudmundson 2009).

5.2.1 Cálculos

$$h = 2000 ft$$

$$V = 67KCAS$$

$$BHP = 1,86HP$$

$$OAT = 30^{\circ} C - 86^{\circ} F$$

$$CHT = 100^{\circ} C - 212^{\circ} F$$

$$\Delta T = 139^{\circ} F$$

$$PR = 75\%$$

$$Estación - 0$$

$$T_{o} = 518,69 - 59 + 86 = 545,69^{\circ} R$$

$$P_{o} = 2116(1 - 0,0000068756 * 2000)^{5,2561} = 1967,47 psf$$

$$\rho_{o} = \frac{P}{RT} = \frac{1967,47}{(1716)(545,69)} = 0,002101095 slug / ft^{3}$$

$$V_{o} = 67KCAS = 69KTAS = 116,46 ft / s$$

$$Estación - B1$$

$$\frac{P}{P_o} = \left(\frac{T}{T_o}\right)^{\frac{\gamma}{\gamma - 1}} \to \frac{P}{P_o} = \frac{P_o + kq}{P_o} = \left(\frac{T}{T_o}\right)^{\frac{\gamma}{\gamma - 1}} \tag{ec. 54}$$

$$T_{B1} = T_o \left(\frac{P_o + kq}{P_o}\right)^{\frac{\gamma - 1}{\gamma}}$$
 (ec. 55)

$$q = \frac{1}{2}\rho V^{2} = \frac{1}{2} (0,002101095slug / ft^{3}) (116,46ft / s)^{2} = 14,25psf$$

$$T_{B1} = 545,69 \left(\frac{1967,47psf + 0,75(14,25psf)}{1967,47psf} \right)^{\frac{1.4-1}{1.4}} = 546,53^{\circ}R$$

$$P_{B1} = P_{o} + kq = 1967,47psf + 0,75(14,25psf) = 1978,15psf$$

$$\rho_{B1} = \frac{P}{RT} = \frac{1978,15psf}{(1716)(546,53)} = 0,002109slug / ft^{3}$$

Bernoulli

$$\frac{V_0^2}{2} + \frac{\gamma}{\gamma - 1} \frac{P_o}{\rho_o} = \frac{V_{B1}^2}{2} + \frac{\gamma}{\gamma - 1} \frac{P_{B1}}{\rho_{B1}}$$

$$V_{B1} = \sqrt{V_o^2 + \frac{2\gamma}{\gamma - 1} \left(\frac{P_o}{\rho_o} - \frac{P_{B1}}{\rho_{B1}}\right)}$$
(ec. 56)

$$V_{B1} = \sqrt{116,46^2 + \frac{2(1,4)}{1,4-1} \left(\frac{1967,47 \, psf}{0,0021010905 s lug \, / \, ft^3} - \frac{1978,15 \, psf}{0,002108732 s lug \, / \, ft^3} \right)} = 58,40 \, ft \, / \, s$$

$$m = \rho_{B1} V_{refrigeracion} Ain$$

$$V_{refrigeracion} = \eta (RPM)(19in)(60)(0,0000231)$$
 (ec. 57)
$$V_{refrigeracion} = 65,3 ft/s$$

En la ec. 57 se obtiene la velocidad que debería ir el aire para poder mantener el motor refrigerado. En el caso del vuelo en crucero el avión deberá ir a 38 KCAS o 65,3 ft/s en caso del PIQUERO no tiene problema ya que el rango de velocidades para loiter es mayor a la velocidad de enfriamiento. El fabricante no tiene curvas de enfriamiento frente a la velocidad sino que afirma que el motor funciona perfectamente y sin problemas de refrigeración mientras el aire que impulsa la hélice choque con el radiador. Como el caso del PIQUERO es especial ya que es al revés, debemos obtener el flujo másico, para ello se obtiene una velocidad de refrigeración que se obtiene de las revoluciones a las que esté girando la hélice, el tamaño de la hélice y la eficiencia. Se realiza esta aproximación dada la falta de datos del fabricante y es necesaria para obtener a qué velocidad se da la refrigeración del motor

$$m = 0.002108732slug / ft^3 (65.3 ft / s) (0.090277 ft^2) = 0.01236lbf / s$$

$$\Delta P = \frac{m}{\rho} = \frac{0.0123638^2}{0.002108732} (5.2) = 0.376951 \, psf \qquad \text{(ec. 58)}$$

Station - 2

$$P_{B2} = P_{B1} - \Delta P$$

 $P_{B2} = 1977,52 \, psf - 14,30 \, psf = 1963,24$
 $T_{B2} = T_{B1} + \Delta T = 546,49^{\circ} \, R + 126^{\circ} \, F = 672,49^{\circ} \, R$
 $\rho_{B2} = \frac{P}{RT} = \frac{1977,2375 \, psf}{(1716)(672,49)} = 0,001701 \, slug \, / \, ft^3$
 $V_{B2} = 0 \, ft \, / \, s$

Exit
$$P_{E} = P_{o} = 1967,47 psf$$

$$\rho_{E} = \rho_{B2} \left(\frac{P_{E}}{P_{B2}}\right)^{\frac{1}{\gamma}}$$

$$\rho_{E} = 0,001713 slug / ft^{3} \left(\frac{1967,47 psf}{1963,85 psf}\right)^{\frac{1}{1.4}} = 0,00170 slug / ft^{3}$$

$$\frac{V_{B2}^{2}}{2} + \frac{\gamma}{\gamma - 1} \frac{P_{B2}}{\rho_{B2}} = \frac{V_{E}^{2}}{2} + \frac{\gamma}{\gamma - 1} \frac{P_{E}}{\rho_{E}}$$

$$V_{E} = \sqrt{\frac{2\gamma}{\gamma - 1}} \left(\frac{P_{B2}}{\rho_{B2}} - \frac{P_{E}}{\rho_{E}}\right)$$

$$V_{E} = \sqrt{-\frac{2(1,4)}{1,4-1}} \left(\frac{1963,25 psf}{0,001701 slug / ft^{3}} - \frac{1967,47 psf}{0,001703 slug / ft^{3}}\right) = 70,43 ft / s$$

$$A_{E} = \frac{0,0107026013 \ lbf / s}{32,174 slug / s^{2}}$$

$$A_{IN} = \frac{0,0107026013 \ lbf / s}{32,174 slug / s^{2}} = 0,0035 \ ft^{2} = 3,22 cm^{2}$$

$$\frac{0,0107026013 \ lbf / s}{32,174 slug / s^{2}} = 0,0057 \ ft^{2} = 5,36 cm^{2}$$

$$D_{C} = m(V_{o} - V\infty) = \frac{0,010726013 lbf / s}{32,174 slug / s^{2}} (132.63 - 116,46 ft / s) = 0,0054 lbf$$

D_C es la fuerza de fricción causada en éste proceso.

5.2.2 Producto final

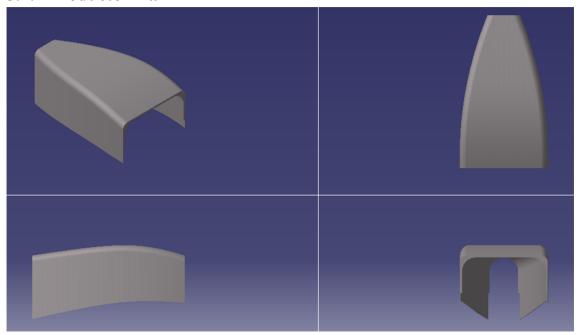


Figura 22. Ducto de entrada de aire de refrigeración, parte superior.

La relación de área salida frente al área de entrada es mínimo de 1:2. El área de salida de esta zona es de 0,0017m² y sobrepasa los límites mínimos y la entrada es de 0,007m² lo cual genera que haya una relación 1:4,11 siendo tolerable para que exista una caída de presión deseada.

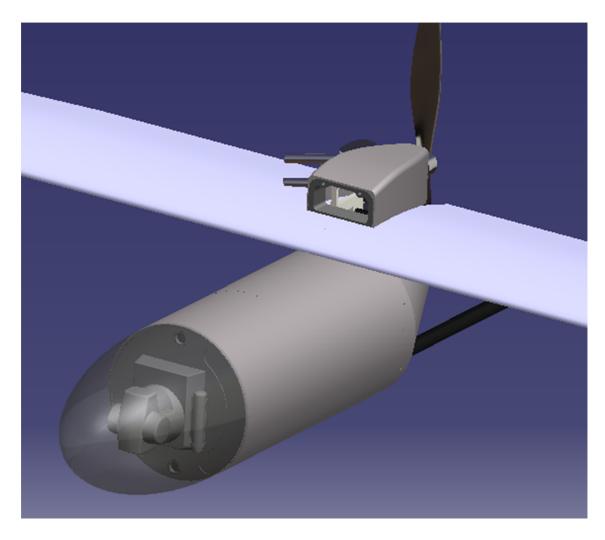


Figura 23. PIQUERO 02 con ducto de entrada de aire.

Se puede observar el ensamble del ducto de entrada de aire, una vez manufacturado se deberá realizar un corte en la zona superior para poder direccionar el aire de mejor forma para que baje al cilindro y el coeficiente de convección aumente, mejorando así la refrigeración del motor.

5.3 Transmisión de carga aerodinámica a la estructura del avión. Método de dinámica de fluidos computarizada. (CFD por sus siglas en inglés.)

El documento de Airworthiness refiere en cuanto a la estimación de cargas lo siguiente:

- 1 Verifique que los factores de carga de vuelo utilizados en el diseño del fuselaje son los factores de carga máximos y mínimos autorizados.
- 2 Verifique que la estructura del avión tiene suficiente integridad estructural del vehículo de aire para despegar, aterrizar y operar sobre el terreno.
- Compruebe que la carga límite utilizada en el diseño de los elementos de la estructura del avión sujeta a los criterios de diseño deterministas son la combinación máxima y la más crítica de las cargas que pueden resultar de la autorización del control del vehículo aéreo en tierra y aire. Estos incluyen las cargas durante las actividades de mantenimiento, fallos del sistema de recuperación, y las cargas experimentadas a lo largo de toda la vida de uso.
- 4 Compruebe que la estructura del avión está diseñado de tal manera que todas las cargas resultantes de fallos del sistema son cargas límites. Compruebe también que las cargas resultantes de un fallo de un solo componente se diseñan como cargas límites sin tener en cuenta la probabilidad de ocurrencia del mismo.
- Verifique que la estructura del avión está diseñado de tal manera que las cargas de ruptura se obtienen por multiplicación de cargas límites por los factores apropiados de incertidumbre. También verifique que las cargas últimas se utilizan en el diseño de los elementos de la estructura del avión.

- 6 Compruebe que la estructura del avión está diseñado de tal manera que todas las fuentes de cargas repetidas son consideradas e incluidas en las cargas de vuelo no pueden disminuir la vida de servicio de la estructura del avión.
- 7 Verifique que la estructura del avión está diseñado de tal manera que la potencia o empuje del sistema de propulsión instalada es acorde con las condiciones de vuelo en aire y tierra.
- Verificar que las condiciones de carga de vuelo se basan en condiciones realistas de respuesta del fuselaje a las maniobras del piloto, inducidas o autónomas, a la pérdida de las maniobras de control y la turbulencia. Verifique también que en las condiciones reales consideradas se encuentran combinaciones críticas de configuraciones, pesos brutos, centros de gravedad, empuje o potencia, altitudes, velocidades, y el tipo de ambiente las cuales se utilizan en el diseño de la estructura del avión.
- 9 Compruebe que la estructura del avión está diseñado para condiciones de carga en tierra y además operaciones de mantenimiento.

Para realizar un análisis estructural se debe estimar las cargas que van a estar actuando en el avión. Para ello se realizan dos métodos, el primero el cual se va a mostrar a continuación es un proceso asistido por el computador entonces primero se realizó el modelado haciendo uso de software CATIA V5 R18. Se procede a guardar el archivo como ".igs" que es un formato en común con ANSYS para que pueda ser leído. El trabajo se realizó en conjunto con el profesor Victor Hidalgo de la Escuela Politécnica Nacional, el cual contribuyó con sus enseñanzas de CFD y además con el uso del software.

Para el pre procesamiento de datos se realizó un mallado fino, de tamaño de elementos de 1 cm, haciendo uso de elementos tetraédricos de 4 nodos. El propósito es encontrar las fuerzas que actúan en las caras de los elementos para poder diseñar posteriormente los tubos estructurales. A continuación se muestran los resultados.

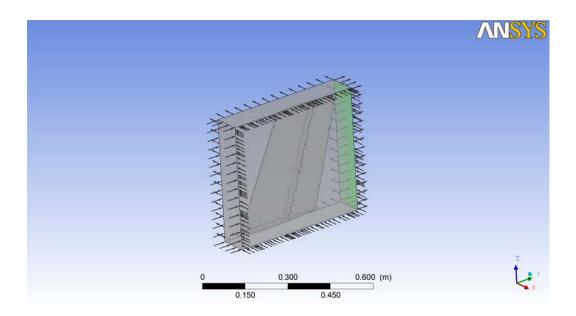


Figura 24. Aplicación de condiciones iniciales para la obtención de fuerzas.

Las condiciones que se aplicaron son vientos una velocidad de 125 km/h en la dirección Y y vientos a una velocidad de 25 km/h en la dirección X, representando los vientos cruzados estipulados por el Parque Nacional Galápagos.

Primero se realiza el análisis de la cola vertical y los resultados son los que se muestran a continuación.

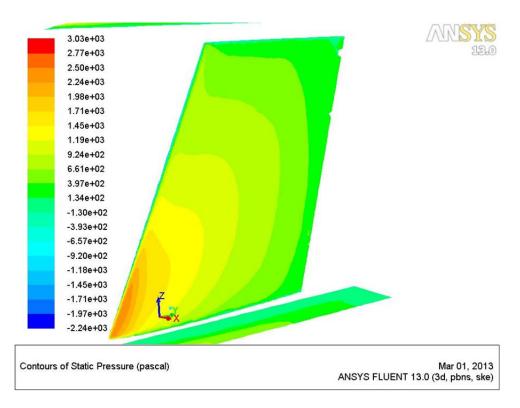


Figura 25. Presiones mostradas en la cola vertical.

La imagen muestra como se ve afectada la cola vertical dado el choque con los fuertes vientos, aumentando las presiones en la cara lateral.

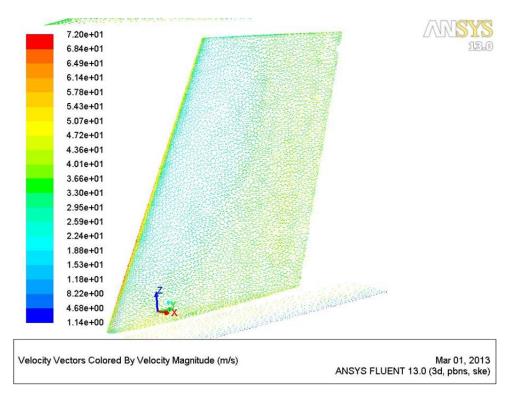


Figura 26. Velocidad de aire en cola vertical

Los resultados que generó el programa fueron una fuerza de 23,64 lbf o 105 N en la dirección X, en la dirección Y y Z fueron bajos, valores que no se van a considerar.



Figura 27. Líneas de flujo en cola horizontal

En la figura 27 se puede ver las condiciones aplicadas, en la dirección Z un viento cruzado de 25 km/h y en la dirección Y vientos de 125 km/h, siendo la velocidad máxima que tendrá el piquero en vuelo.

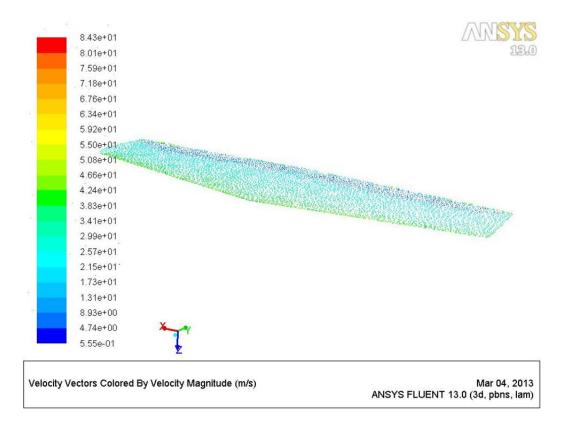


Figura 28. Velocidad de viento en la cola horizontal.

En la figura 28 se puede observar la velocidad del flujo a través del ala y en la figura 29 podemos ver los contornos de presión, siendo un valor aproximado de 34 m/s y 450 Pa respectivamente.

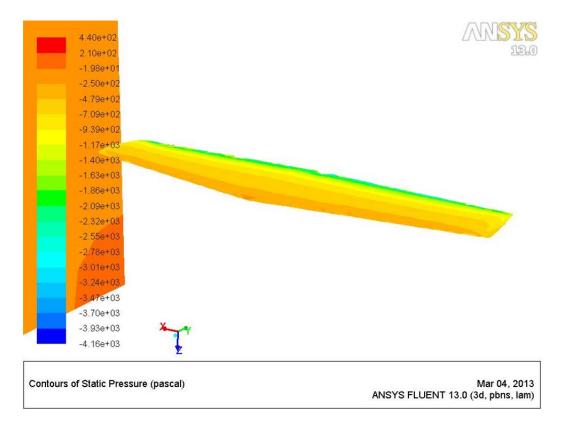


Figura 29. Contornos de presión sobre cola horizontal.

Los resultados de fuerzas aplicadas sobre la cola horizontal se obtuvieron para un valor máximo de 37,16 lbf o 165 N en la dirección Z, los valores para las otras dos direcciones no se toman en cuenta dado que son valores bajos.

5.4 Diseño de tubo con sección transversal variable

Recordando, bajo el ensayo de CFD realizado en el computador se obtuvieron las cargas tanto en la cola horizontal como vertical con las siguientes magnitudes:

Fuerza en cola vertical				
23,64	lbf			
Fuerza en cola horizontal				
37,16	lbf			

Tabla 35. Fuerzas actuando en cola del avión de acuerdo a la simulación en CFD.

Las fuerzas obtenidas en CFD son correctas, sin embargo no se tomó en cuenta un factor importante como es que la deflexión del timón de cola y elevadores genera un aumento en el coeficiente de sustentación, haciendo que las fuerzas que actúan paralelas al vuelo del avión se incrementen, eso se puede ver en los siguientes gráficos.

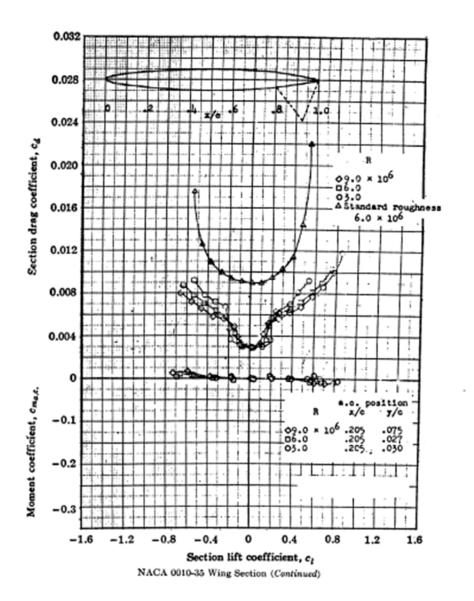


Figura 30. Deflexión de timón de cola horizontal. (Theory of wing sections, 1958)

En la figura 30 se puede ver que para la cola horizontal hay una deflexión de 60° para el timón, haciendo que aumente el coeficiente de sustentación. La magnitud se muestra en la figura 31.

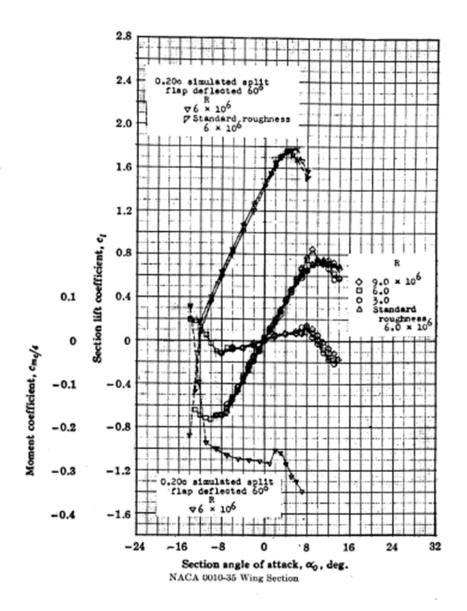


Figura 31. Aumento de coeficiente de sustentación dada la deflexión del elevador. (Theory of wing sections, 1958)

El valor del C_L aumenta de 0,8 a 1,8 aproximadamente.

Para la cola vertical se tiene:

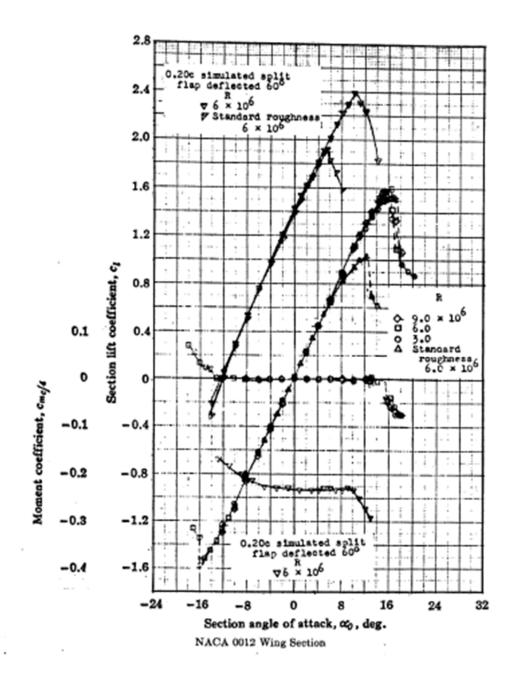


Figura 32. Aumentos de coeficiente de sustentación en el timón de cola vertical (Theory of wing sections, 1958) $El~C_L~aumenta~de~1,6~a~2,4~aproximadamente.$

Para realizar el cálculo del espesor mínimo del tail boom como del tubo principal de ala se realizará el siguiente análisis:

$$\begin{split} I &= \pi r^3 t \\ \sigma &= \frac{M.C}{I} = \frac{F.d \, r_{\rm est}}{\pi \, r_{\rm est}^3 \, t} \\ \tau &= \frac{T.r}{G.J} \\ \sigma_{1,2} &= \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{x,y}^2}}{2} \\ \sigma_{1,2} &= \frac{F_{HT} \, d.r_{\rm est}}{\pi \, r_{\rm est}^3 \, J} + \frac{F_{IT} \, d.r_{\rm est}}{\pi \, r_{\rm est}^3 \, J} \pm \sqrt{\left(\frac{F_{HT} \, d.r_{\rm est}}{\pi \, r_{\rm est}^3 \, J} - \frac{F_{IT} \, d.r_{\rm est}}{\pi \, r_{\rm est}^3 \, J}\right)^2 + \left(\frac{T.r_{\rm est}}{G.\frac{1}{2} \, \pi \left[r_{\rm est}^4 - \left(r_{\rm est} - t\right)^4\right]}\right)^2} \\ &= \frac{18677 \, r_{\rm est}}{\pi \, r_{\rm est}^3 \, J} + \frac{8245,46 \, r_{\rm est}}{\pi \, r_{\rm est}^3 \, J}}{2} \\ &\pm \sqrt{\left(\frac{18677 \, r_{\rm est}}{\pi \, r_{\rm est}^3 \, J} - \frac{8245,46 \, r_{\rm est}}{\pi \, r_{\rm est}^3 \, J}\right)^2} + \left(\frac{3019,22 \, r_{\rm est}}{725190.\frac{1}{2} \, \pi \left[r_{\rm est}^4 - \left(r_{\rm est} - t\right)^4\right]}\right)^2} \\ &F_{HT} &= \frac{1}{2} \rho v_e^2 \, SC_L \eta + \frac{1}{2} \rho v_{\rm gast}^2 \, SC_L \eta \\ &F_{HT} &= \left(\frac{1}{2} \, 0.002241 \, \frac{slug}{ft^3 \, s} \, (113)^2 \, \frac{ft}{s} \, 2,025 \, ft^2 \, . (1,2015+1)\right) + \left(\frac{1}{2} \, 0.002241 \, \frac{slug}{ft^3 \, s} \, (22.78)^2 \, \frac{ft}{s} \, 2,025 \, ft^2 \, . (1,2015+1)\right) = 69,45 \, lbf + 2.82 \, lbf = 72,27 \, lbf = \eta F_{HT} &= 72,27 \, (5.23) = 378 \, lbf \\ &F_{YT} &= \frac{1}{2} \rho v_e^2 \, SC_L \eta + \frac{1}{2} \rho v_{\rm gast}^2 \, SC_L \eta \\ &F_{YT} &= \left(\frac{1}{2} \, 0.002241 \, \frac{slug}{ft^3 \, s} \, .113^2 \, \frac{ft}{s} \, .1,17 \, ft^2 \, (1,3243+0.8)\right) + \\ &+ \left(\frac{1}{2} \, 0.002241 \, \frac{slug}{ft^3 \, s} \, .22,78^2 \, \frac{ft}{s} \, .1,17 \, ft^2 \, (1,3243+0.8)\right) = 35,56 \, lbf + 1,44 \, lbf = 37 \, lbf \\ &\eta F_{TT} &= 37 \, (5.23) = 193,54 \, lbf \end{cases} \end{split}$$

A continuación se verifica cuál de las condiciones de la ec. 1, ec.1.1 y ec. 1.2 se cumple y es más crítica, además para poder obtener un diámetro, se desea que el valor del esfuerzo principal sea menor o igual al esfuerzo crítico obtenido, es decir el

diámetro que cumpla con la condición que no falle bajo ruptura ni bajo deformación plástica.

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{x,y}^2}$$

$$\tau_{\text{max}} = \sigma_{1,2} = \frac{1}{2} \left(\frac{\sigma_{ult}}{1,5}\right) = \frac{1}{2} \left(1,3 \left(\frac{580000}{1,5}\right)\right)$$

$$\sigma_{1,2} = 251333,33 \, psi$$

$$\tau_{\text{max}} = \sigma_{1,2} = \left(\frac{\sigma_{yield}}{2}\right) = \frac{580000}{2} = 290000 \, psi$$

Se puede ver que el valor crítico es en esfuerzo normal último. Comparando las fuerzas obtenidas en la simulación contra las obtenidas previamente:

Simulación	Manualmente	Error
Fuerza en cola vertical	Fuerza en cola vertical	Vertical
23,64 lbf	23,46 lbf	0,77%
Fuerza en cola horizontal	Fuerza en cola horizontal	Horizontal
37,16 lbf	39,44 lbf	5,78%

Tabla 36. Comparación de resultados obtenidos.

Se hace uso de los cálculos obtenidos manualmente ya que es una aproximación más precisa de las cargas, la simulación en CFD puede no ser precisa dado el mallado que se usó, el mallado no fue lo suficientemente fino dado que el procesador no lograba terminar la iteración.

Para la obtención de cargas se ha realizado un cálculo tanto manual como haciendo uso del software MDsolids, el cual proporcionó los siguientes resultados del análisis del tubo.

Para la cola horizontal se aplica una carga de 378 lbf a una distancia de 49,4 in desde el empotramiento.

Figura 33. Diagrama de carga aplicada a la cola horizontal.

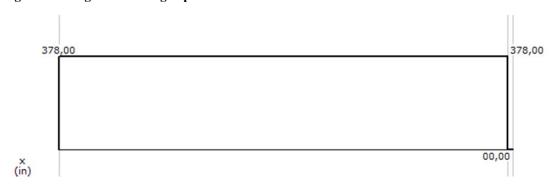


Figura 34. Diagrama de cortante sobre el empotramiento del tubo principal dada la aplicación de carga sobre la cola horizontal.

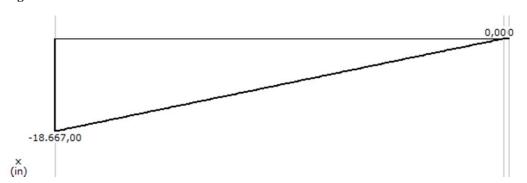


Figura 35. Diagrama de momento flector afectado en el empotramiento dado la aplicación de carga sobre la cola horizontal.

Para la cola vertical se aplica una carga de 193,54 lbf a una distancia de 42,6 in del empotramiento.

Figura 36. Diagrama de carga aplicada a la cola vertical.

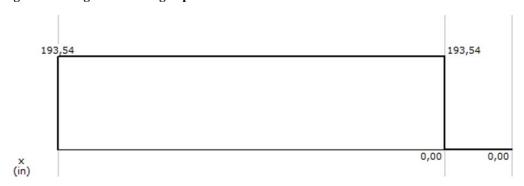


Figura 37. Diagrama de cortante sobre el empotramiento del tubo principal dada la carga aplicada sobre la cola vertical.

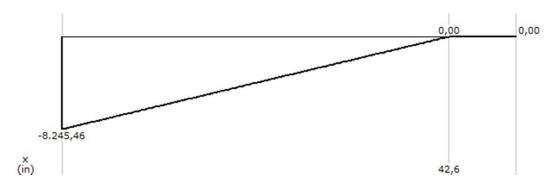


Figura 38. Diagrama de momento flector afectado en el empotramiento dado la aplicación de carga sobre la cola vertical.

El momento resultante sobre el empotramiento es:

$$M = \sqrt{(18667)^2 + (8245,46)^2} = 20406,97lbf$$

Haciendo uso del siguiente programa iterativo obtenemos el diámetro externo deseado con las cargas obtenidas previamente de los momentos.

```
clear all
F1 = 378;
F2 = 193.54;
%F1 y F2 son las fuerzas aplicadas en la cola tanto vertical como horizontal, además
son fuerzas multiplicadas por el factor de carga de 5.23%
M1=18677
M2=8245.46;
%M1 y M2 son los momentos que generan en el origen del tubo principal, con las
distancias respectivas%
M=20406.97;
%M es el momento resultante de M1 y M2%
t=2.5/25.4
%Defino un espesor de 2.5 mm para saber cuál es el diámetro que necesito%
sigma=252333.33;
%Sigma es el valor límite del material con el que se va a comparar el trabajo realizado
en CATIA, obtenida de la tabla de fibra de carbono y tomando en cuenta el factor de
seguridad usado en la industria aeronáutica%
i=1;
error=0.01;
%Error es el valor mínimo que quiero que haya de tolerancia entre mayor y menor a
sigma%
x=0;
j=0;
clc
while i==1
```

```
N1=0.5*((M1+M2)*x/(pi*x^3*t));
  N3=0.5*((M1-M2)*x/(pi*x^3*t));
  N2=(3019,22*x/(725188.69*0.5*pi*(x^4-(x-t)^4)));
  y(j+1)=N1+sqrt(N3^2+N2^2);
%Establezco los valores de la ecuación por separado para poder manejar ecuaciones de
menor tamaño%
  if (sigma \le y(j+1) + error) & (sigma \ge y(j+1) - error)
    i=0;
    'EXITO'
  End
%Comparo la ecuación con el valor de sigma, sino se cumple X aumenta en 0,00001
hasta converger%
  x=x+0.00001;
  j=j+1;
  if y(j) \le sigma
    i=0;
    'ERROR'
  End
%Aquí se pone una condición en la que si se cumple en una primera vez ya no siga
realizando el proceso%
end
x*2, 'Pulgadas de diámetro con espesor de',t, 'pulgadas, es decir',t*25.4, 'milimetros'
N1=0.5*((M1+M2)*x/(pi*x^3*t));
Esfuerzocortanteminimo=-0.5*((M1-M2)*x/(pi*x^3*t))
Esfuerzocortantemaximo=0.5*((M1-M2)*x/(pi*x^3*t))
```

 $N2=3019,22*x/(725188.69*0.5*pi*(x^4-(x-t)^4));$

Esfuerzoprincipal1=N1+sqrt(N3^2+N2^2)

Esfuerzoprincipal2=N1-sqrt(N3^2+N2^2)

Mises=sqrt((((Esfuerzoprincipal1^2)+(Esfuerzoprincipal2^2)+((Esfuerzoprincipal1-

Esfuerzoprincipal2)^2))/2))

Resultados obtenidos						
Diámetro	0,98 plg					
Espesor (pulgadas)	0,0984 plg					
Espesor (milímetros)	2,5 milímetros					
Esfuerzo cortante máximo (τ1)	7,046e+004 psi					
Esfuerzo cortante mínimo (τ1)	-7,046e+004 psi					
Esfuerzo principal 1 (σ1)	2,52e5e+005 psi					
Esfuerzo principal 2 (σ3)	1,12e5e+005 psi					
Esfuerzo Von Mises (σMises)	2,19e+005 psi					

Tabla 37. Resultados obtenidos para la obtención de diámetro bajo un espesor dado.

La respuesta en cuanto al costo fue la siguiente:

ID: .803"

OD: 1.00" +/- .008"

Length: 60"

Outer: Fabric cello

Qty: 4 tubes

Cost: \$162 USD ea.

Para el diámetro menor, dado que se encontró el espesor correcto que cumpla con el requisito y no falle en la zona crítica, se toma como condición inicial en la parte

posterior ya que no es crítica esa zona, se corrió el proceso iterativo con sus respectivas cargas y se encontró lo siguiente.

```
clear all
clear all
F1=377.97;
F2=193.51;
M1=4955.27;
M2=4942.76;
M=2536.96;
t=1/25.4
sigma=252333.33;
i=1;
error=0.01;
x=0;
j=0;
clc
while i==1
  N1=0.5*((M1+M2)*x/(pi*x^3*t));
  N3=0.5*((M1-M2)*x/(pi*x^3*t));
  N2=(3019,22*x/(725188.69*0.5*pi*(x^4-(x-t)^4)));
  y(j+1)=N1+sqrt(N3^2+N2^2);
  if (sigma \le y(j+1) + error) & (sigma \ge y(j+1) - error)
    i=0;
    'EXITO'
  end
```

```
x=x+0.00001;
j=j+1;
if y(j)<=sigma
i=0;
'ERROR'
end
end</pre>
```

x*2, 'Pulgadas de diámetro con espesor de', t, 'pulgadas, es decir', t*25.4, 'milimetros'

Resultados obtenidos						
Diámetro	0,5041 plg					
Espesor (pulgadas)	0,0984 plg					
Espesor (milímetros)	2,50 milímetros					

Tabla 38. Resultados obtenidos para diámetro menor del tubo principal.

5.5 Análisis con método de elementos finitos (FEM por sus siglas en inglés) en piezas críticas de la estructura.

Para poder simular el comportamiento de las piezas críticas del avión se realiza el análisis de elementos finitos para además descartar falla por ruptura o por sobrepaso de esfuerzo de cedencia.

5.5.1 Simulación Comparando con simulación realizada en Catia V5

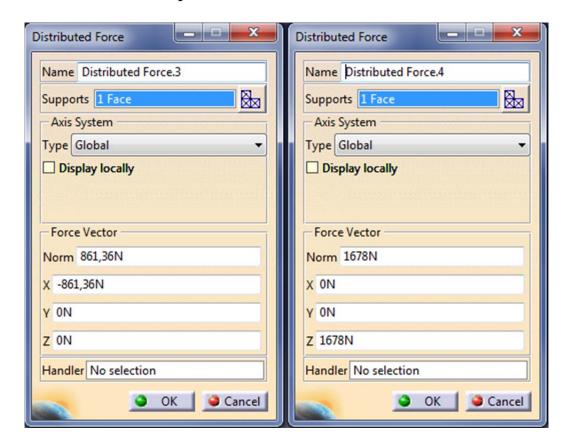


Figura 39. Fuerzas aplicadas al tubo principal.

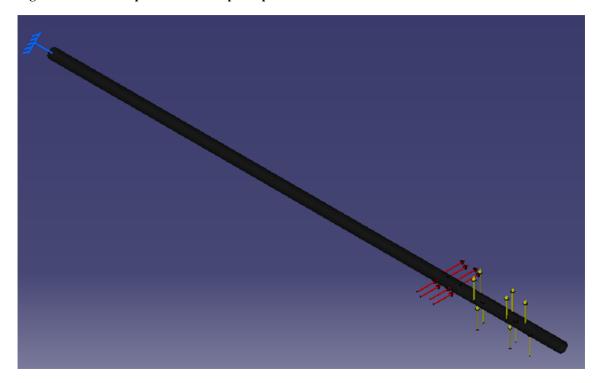


Figura 40. Cargas aplicadas en la cola vertical y horizontal

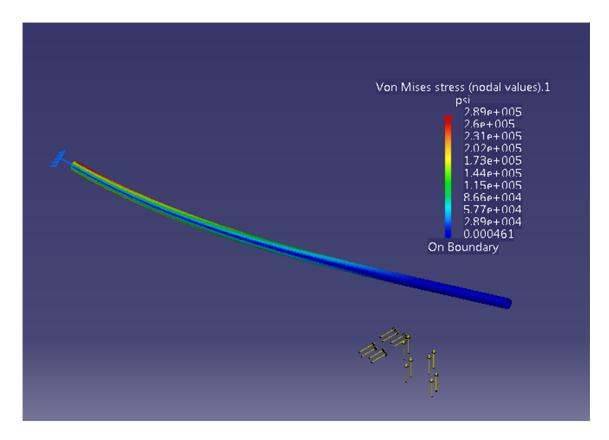


Figura 41. Análisis de tubo mediante el método de elementos finitos.

El valor del esfuerzo máximo de Von Mises que encuentra el programa en un punto máximo de la extrusión del tubo es de 2,89e5 psi.

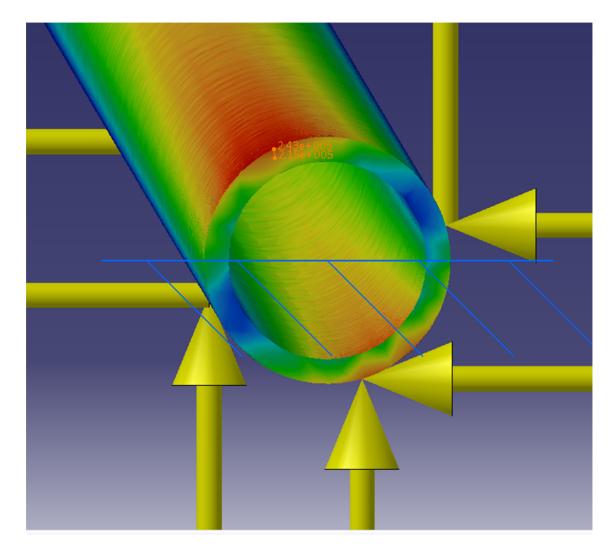


Figura 42. Resultados obtenidos de esfuerzos en la cara frontal del tubo principal.

En la cara 2D como se analizó para obtener el espesor se tiene un esfuerzo máximo de 2,43e5 psi donde el valor de C es mayor es decir en la superficie externa del tubo.

Se calcula el error obtenido en el modelo de MATLAB frente al resultado obtenido en la simulación en software de elementos finitos en la zona que se analiza, que es la cara del tubo.

$$Error = \frac{2,43e5 - 2,19e5}{2,43e5} = 0,0987$$
$$Error = 9,87\%$$

Tomando en cuenta que el valor del espesor no es un valor comercial, se tuvo contacto con la empresa fabricante y se tuvo que llenar un formulario donde se especifica el pedido.

5.6 Diseño de tubos para ala

Para los tubos principales del ala se hizo uso del código previamente usado, ya que lo único que varía son las magnitudes de cargas y momentos ya que están aplicados de la misma forma. El código se puede ver en el anexo C. A continuación se da a conocer las cargas aplicadas para el uso en el código.

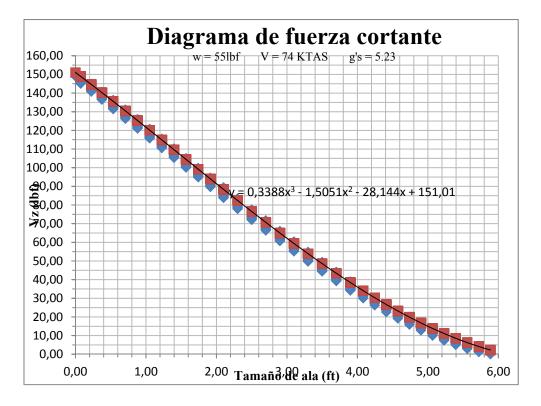


Figura 43. Figura de diagrama de fuerza cortante obtenida en colaboración con Embry-Riddle Aeronautical University en software SURFACES.

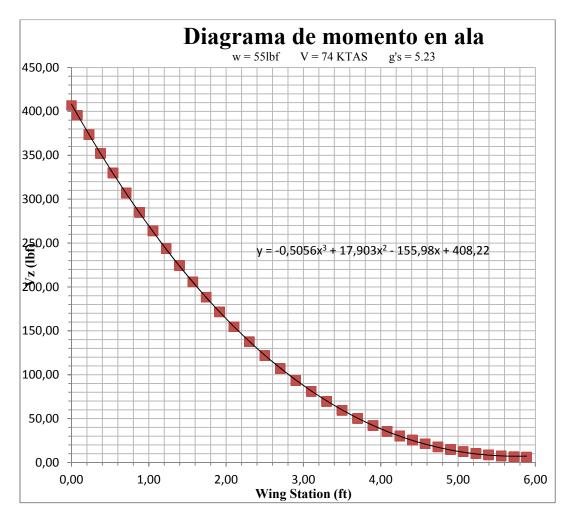


Figura 44. Figura de diagrama de momento obtenida en colaboración con Embry-Riddle Aeronautical University en software SURFACES

Las figuras 43 y 44 fueron obtenidas en el software "SURFACES", programa que es semejante a ANSYS CFD, el cual proporciona los diagramas.

Resultados obtenidos						
Diámetro	0,6416 plg					
Diámetro	16,29 mm					
Espesor (pulgadas)	0,0598 plg					
Espesor (milímetros)	1,50 milímetros					

Tabla 39. Resultados obtenidos para diámetro de tubos de ala.

El diámetro diseñado de igual forma es 1 pulgada. Se debe tomar en cuenta que si el diámetro es muy pequeño el tubo va a perder rigidez, por ello es que se va a manejar un espesor de 1,5 mm. Para los pines de torsión simplemente se reemplazará el material por el peso, se puede hallar a continuación:

OD inches	ID inches	WALL inches	LENGTH inches	WEIGHT lbs / ft.	PRODUCT ID/DESCRIPTION	PRICE	BUY NOW
.325"	.250"	.037"	36"	.022	SM3236F \ Roll Wrapped Fabric	\$32.30	Add to Cart
.450"	.375"	.037"	48"	.032	SM4548F \ Roll Wrapped Fabric	\$ 44.55	Add to Cart
.495"	.375"	.060"	48"	.057	SM5048F \ Roll Wrapped Fabric	\$59.40	Add to Cart
.575"	.500"	.037"	60"	.042	SM5760F \ Roll Wrapped Fabric	\$ 49.46	Add to Cart
.620"	.500"	.060"	60"	.074	SM6260F \ Roll Wrapped Fabric	\$69.50	Add to Cart
.620"	.500"	.060"	29.9"	.074	SM6230F \ Roll Wrapped Fabric	\$39.75	Add to Cart
.700"	.625"	.037"	60"	.052	SM7060F \ Roll Wrapped Fabric	\$62.06	Add to Cart
.700"	.625"	.037"	29.9"	.052	SM7030F \ Roll Wrapped Fabric	\$36.03	Add to Cart
.745"	.625"	.060"	60"	.090	SM7560F \ Roll Wrapped Fabric	\$87.91	Add to Cart
.745"	.625"	.060"	29.9"	.090	SM7530F \ Roll Wrapped Fabric	\$48.96	Add to Cart

Fabric Pricing EMAIL FOR VOLUME PRICING

Figura 45. Tubos de torsión de ½" de espesor 0,060" o 1,5 mm en la industria.

5.7 Diseño de espesor mínimo de piel

Para el diseño del espesor mínimo que debe ser usado en la superficie externa del ala se aproxima a un volumen rectangular para simular la estructura del ala. Se maneja fibra de vidrio tipo S y se utilizan las cargas cortantes y momentos flectores en las zonas críticas haciendo uso de los datos en las figuras 43 y 44.

$$V = 151lbf$$

$$M = 408lbf.ft$$

$$M = 4896lbf.in$$

$$\frac{1}{2} \left(\frac{\sigma_{ult}}{1.5} \right) = \frac{1}{2} \frac{696181.14psi}{1.5} = 232060.38psi$$

$$M\acute{o}duloYoung = 85GPa$$

$$\sigma_{yield} = 665000$$

$$\frac{1}{2} \sigma_{yield} = 3325000psi$$

Con resina PR2032 en mezcla con PH3665 tenemos por otro lado:

$$V = 151lbf$$

$$M = 408lbf.ft$$

$$M = 4896lbf.in$$

$$\frac{1}{2} \left(\frac{\sigma_{ult}}{1.5}\right) = \frac{1}{2} \frac{90822.6psi}{1.5} = 30274,20 psi$$

$$M\'oduloYoung = 2520Ksi$$

$$\sigma_{yield} = 45870 psi$$

$$\frac{1}{2} \sigma_{yield} = 22935 psi$$

$$\frac{1}{2} \frac{MC}{I} = 22935 psi$$

Se toma el valor del esfuerzo que condicione el cálculo.

$$\frac{1}{2} \frac{MC}{I} = 232060.38 psi$$

$$I = \frac{th^2(3b+h)}{6}$$

$$\frac{1}{2} \frac{M\frac{h}{2}}{th^2(3b+h)} = 232060.38 psi$$

$$232060.38 psi = \frac{1}{2} \frac{4896 lbf.in*0.98 in}{t(0.98)^2} \frac{((3*13.81)+0.98)}{6}$$

$$t = 0.0015 in = 0.04 mm$$

$$I = \frac{th^2(3b+h)}{6}$$

$$\frac{1}{2} \frac{M\frac{h}{2}}{th^2(3b+h)} = 22935 psi$$

$$22935 psi = \frac{1}{2} \frac{4896 lbf.in*0.98 in}{t(0.98)^2} \frac{((3*13.81)+0.98)}{6}$$

$$t = 0.0154 in = 0.39 mm$$

Una vez obtenido el cálculo se procede a realizar una simulación bajo el método de elementos finitos para la resina y la fibra de vidrio.

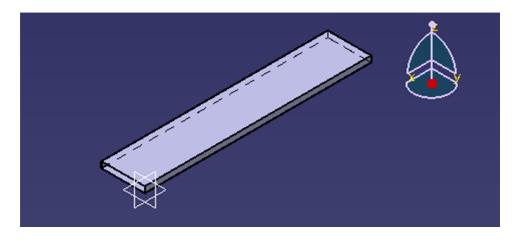


Figura 46. Forma rectangular del ala con las medidas de la longitud de la raíz y la longitud del ala de un solo lado.

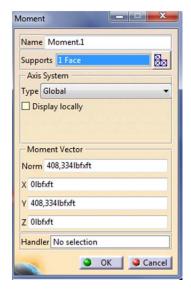
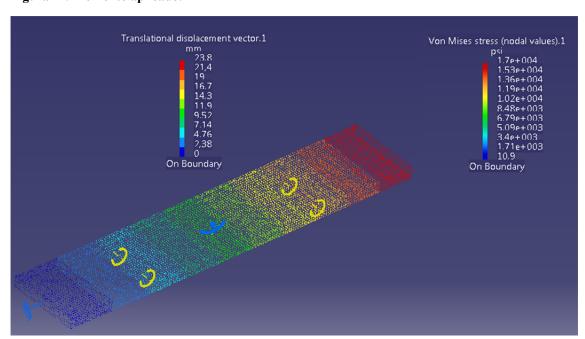



Figura 47. Momento aplicado.

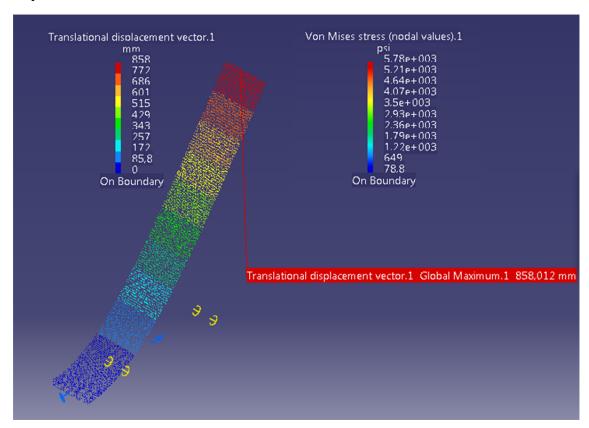


Figura 48. Simulación de resina curada sometida a cargas. Obtención de esfuerzos de Von Mises y desplazamientos.

Figura 49. Esfuerzos de Von Mises obtenidos de la simulación.

En la Figura 48, la resina bajo las cargas aplicadas está sometida a esfuerzos que no exceden el límite de fluencia del material, como es el valor de 1,7e4 psi frente al valor de la resina de 4,58e4psi

En la Figura 49 podemos apreciar que el valor de Von Mises registrado es de 5,78e3 psi y si comparamos con el valor obtenido bajo los regímenes de seguridad de la fibra de vidrio que es de 2,32e5 psi podemos apreciar que la fibra no va a tener ningún problema estructural al momento de aplicar las cargas.

Primero fallaría la fibra, se rompería pero la fibra de vidrio mantendría la forma y funcionalidad de las alas.

5.8Análisis de fuselaje de Piquero I y II

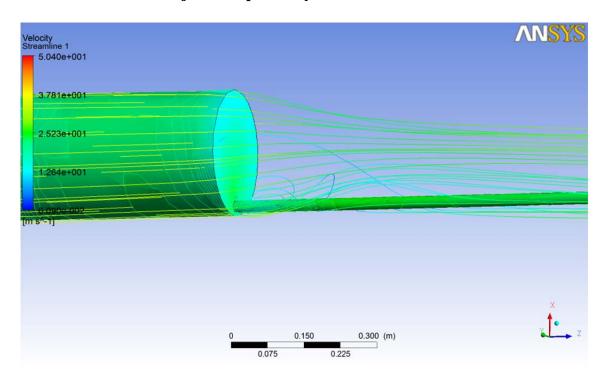


Figura 50. Simulación CFD del flujo de aire en zona crítica.

En la Figura 50 se puede ver que se usó nuevamente el método de dinámica de fluidos computacional para poder apreciar como el flujo se separa del fuselaje en la parte posterior. El flujo al llegar al final del fuselaje genera remolinos que disminuyen la eficiencia de la hélice del motor. El coeficiente de fricción generado en esta zona es de 0,086.

5.8.1 Manufactura de fuselaje de cola

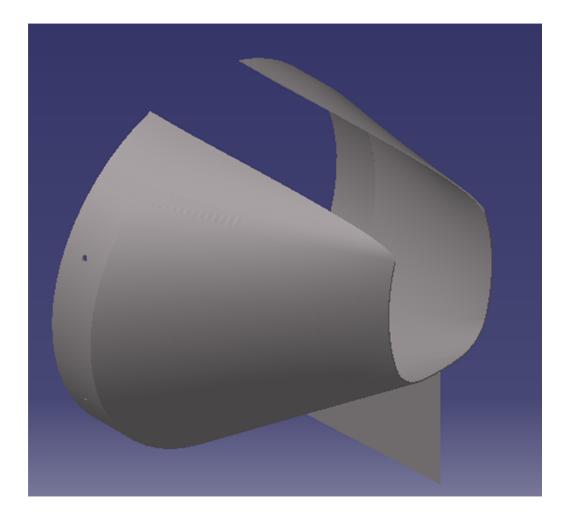


Figura 51. Producto final del fuselaje de cola.

Para poder diseñar el fuselaje de cola se tuvieron que tomar en cuenta muchos aspectos como son la posición de las alas, PCP, motor (más que nada el cilindro donde se genera la combustión interna), escape y tanque de combustible.

El fuselaje de cola tiene el propósito de continuar el flujo de aire que viene del fuselaje que cubre los componentes electrónicos y el tanque de combustible, haciendo que el flujo de aire no genere remolinos en la parte posterior ni se despegue de la piel del avión. Para ello se tomaron las dimensiones y las posiciones de los componentes que van en la parte posterior del avión. A continuación se detalla el proceso de diseño y dibujo.

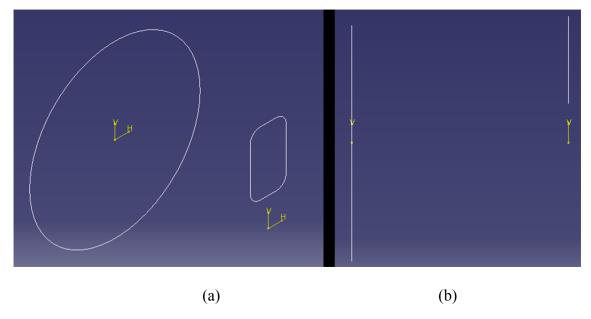


Figura 52. Contornos de dibujo del fuselaje de cola. Vista isométrica (a). Vista lateral (b)

Se parte de la geometría del PCP, como se puede ver en la Figura 52 (a) y se concluye en la parte posterior previo a la hélice.

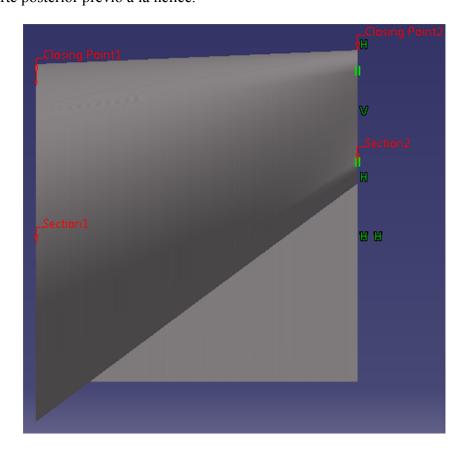


Figura 53. Extrusión y adición de aleta al fuselaje de cola.

En la figura 53 se aprecia la inclusión de la aleta, para estabilizar la cola del fuselaje posterior, y la unión de los dos perfiles, esto se puede realizar de la misma

forma en una máquina CNC si se agregan los siguientes perfiles en dos torres de corte. Se obtiene la forma en polietileno y se maneja un mismo resinado de fibra de vidrio.

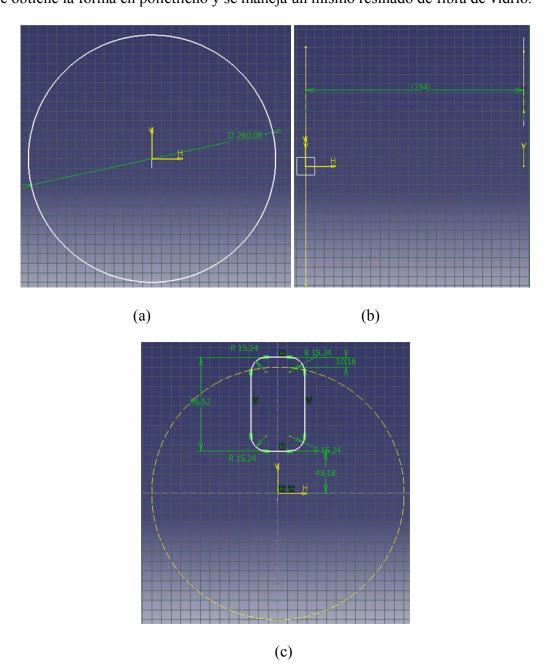


Figura 54. Forma de manufactura de los perfiles de cola. Uso para maquinado en CNC. Figura (a): Perfil circular de acuerdo a la pieza central (PCP). Figura (b): Distancia entre perfiles. Figura (c): Perfil posterior, perfil de salida.

Si se realiza la configuración bajo coordenadas tenemos lo siguiente:

	Perfil circular 1							
Coordenada		Comentario						
X	Y							
0	0	Se maneja todo desde el origen						
Diáme	tro							
260,08	mm	Se agrega un milímetro para que encaje en el PCP						

Tabla 40. Coordenadas de perfil 1 para su manufactura y configuración de torre 1 en CNC.

Perfil final cuadrado 2							
Coordenadas							
X	Y						
0	43,68						
-12,192	43,68						
-23	48,175						
-27,432	58,92						
-27,432	124,96						
-23	135,705						
-12,192	140,2						
12,192	140,2						
23	135,705						
27,432	124,96						
27,432	58,92						
23	48,175						
12,192	43,68						

Tabla 41. Coordenadas de perfil 2 para su manufactura y configuración de torre 2 en CNC.

Finalmente se proceden a hacer los cortes de acuerdo a los objetos que están cercanos al fuselaje de cola para no provocar una colisión.

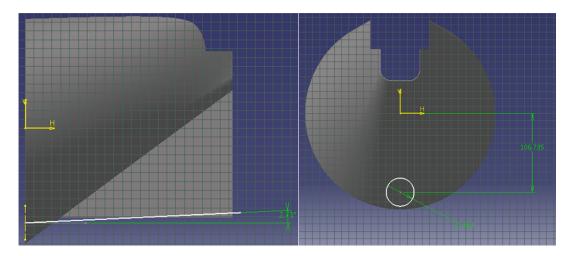


Figura 55. Corte circular para tubo principal.

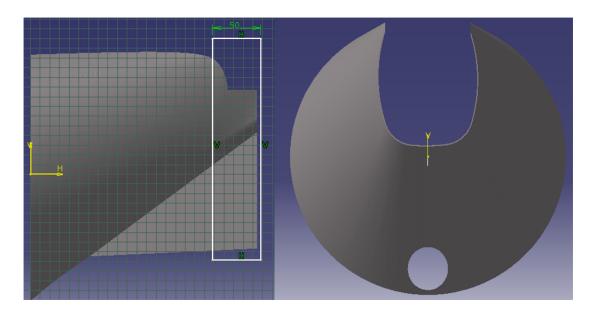


Figura 56. Vista posterior de cortes realizados conforme a la forma del tubo principal de sujeción y el motor.

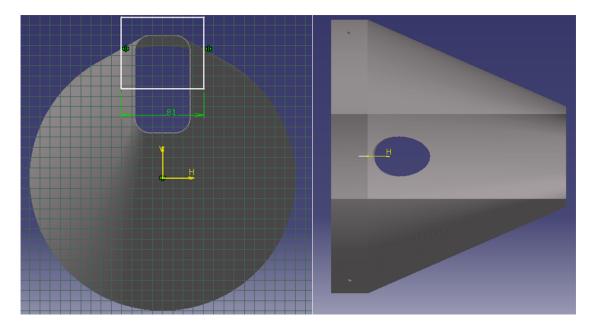


Figura 57. Vista superior de los cortes y adición de superficie para su ingreso al PCP.

En las figuras 55, 56 y 57 se muestran los cortes que deben hacerse para que pueda ser fácil el ensamblaje y esté perfectamente en el avión.

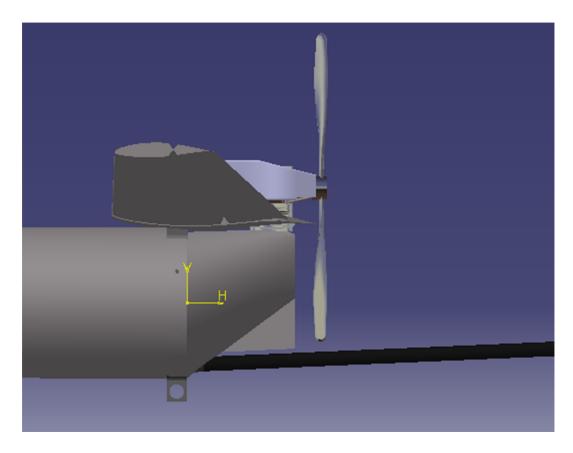


Figura 58. Producto final ensamblado.

Una vez finalizado el diseño se procede a realizar una simulación en CFD para observar y analizar el comportamiento del aire con la adición del nuevo fuselaje de cola

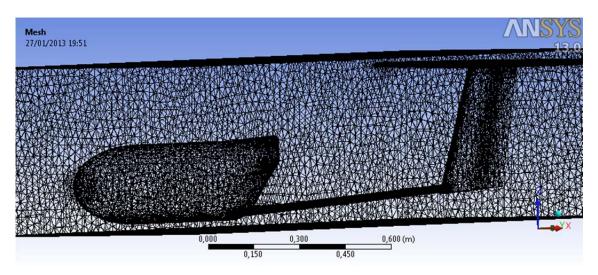


Figura 59. Mallado en CFD.

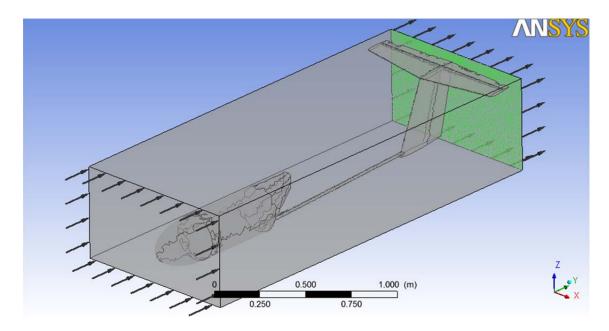


Figura 60. Aplicación de condiciones de vuelo.

Se aplica una velocidad de viento de 128km/h.

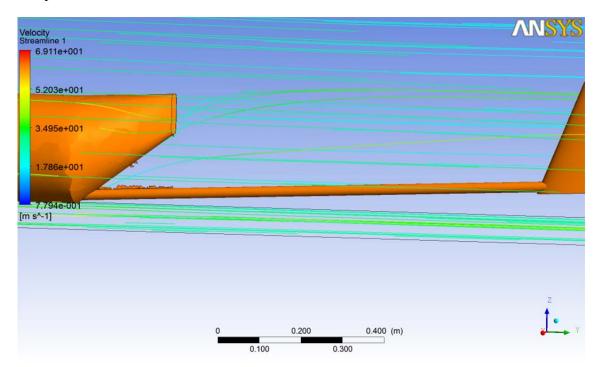


Figura 61. Flujo de aire con adición de fuselaje de cola.

Se puede ver en la Figura 61 como el aire fluye sin despegarse del fuselaje y entrando directamente hacia la zona de actuación de la hélice. El coeficiente generado de fricción es de 0,052.

5.9 Centro de gravedad del avión

Una vez realizados los cambios estructurales se debe obtener el centro de gravedad del avión. Para éste cálculo se ha considerado que el avión esté completamente lleno, con los componentes electrónicos y además solamente la parte estructural con el tanque de combustible.

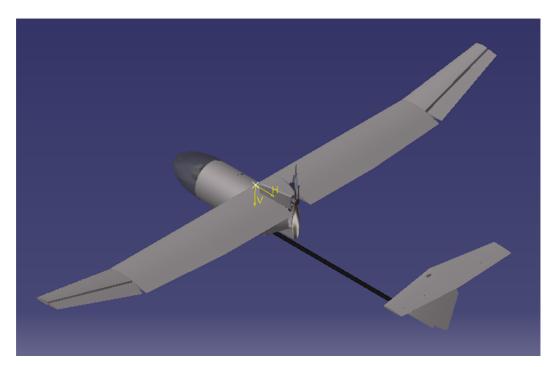


Figura 62. Ejes usados para el cálculo de centro de gravedad.

El avión es simétrico respecto al eje Y, no hay desequilibrio sobre el eje X, sin embargo, los ejes que se van a considerar para la obtención del centro de gravedad son el eje Z así como el eje Y como se muestra en la Figura 62.

Internal Structure Weight										
	Weight [lb]	Y [in]	Z [in]	W-Y	W-Z					
PCP	2,27	4,45	-4,46	10,09	-10,11					
Front Disc1	0,26	-4,43	-5,94	-1,16	-1,55					
Front Disc2	0,70	-5,22	-10,27	-9,73	-5,66					
Cockpit Boom 1	0,20	-4,74	-1,61	-0,94	-0,32					
Cockpit Boom 2	0,20	-5,22	-4,76	-0,99	-1,95					
Total =	3,59			-3,50	-19,59					
Xcg =	-0,98									
Zcg =	-5,46									

Tabla 42. Centro de gravedad de la estructura interna del avión.

Description	Weight [lb]	Y [in]	X [in]	Z [in]	W-Y	W-X	W-Z
Wing	4,92	5,88	0,00	0,00	28,95	0,00	0,00
H-Tail	0,66	61,98	0,00	7,59	40,91	0,00	5,01
V-Tail	0,43	58,87	0,00	-8,55	25,31	0,00	-3,68
Fuselage Film	0,51	-4,85	0,00	-6,08	-2,45	0,00	-3,08
Enya 180X-GS + Propeller	3,14	10,76	0,00	1,01	33,79	0,00	3,17
Internal Structure (excluding Tail Arm)	3,71	-0,54	0,00	0,00	-2,00	0,00	0,00
Tail Arm (Tail Boom)	0,78	31,75	0,00	-9,03	24,87	0,00	-7,07
Inlet	0,47	8	0	5	3,75	0,00	2,30
Aft fuselage	0,47	7,59	0,00	-5,73	3,57	0,00	-2,69
Wing	4,92	5,88	0,00	0,00	28,95	0,00	0,00
H-Tail	0,66	61,98	0,00	7,59	40,91	0,00	5,01
V-Tail	0,43	58,87	0,00	-8,55	25,31	0,00	-3,68
TOTAL	15,72				162	0	-26

Tabla 43. Centro de gravedad del avión sin los componentes electrónicos.

Description	Weight [lb]	Y [in]	X [in]	Z [in]	W-Y	W-X	W-Z
Alternator/Starter	3,00	13	0,00	-2,20	39,00	0,00	-6,60
Fuel Tank	11,82	-0,279	0,00	-5,96	-3,30	0,00	-62,06
TOTAL	14,82				36	0	-69

Tabla 44. Pesos de combustible y alternador.

Los datos de la tabla 44 no son fijos ya que el alternador se está considerando y el combustible no se lo usa en su totalidad ya que se están haciendo vuelos de prueba.

Descripción	Peso	ALT/STRT	Comb.	TOTAL	X [ft]	%MGC	Z [ft]
Punto neutral fijo					0,700	67,230	
No ALT/STRT + Max Combustible	15,85	0	11,82	28	0,481	46,163	-0,2654
No ALT/STRT + No combustible	15,85	0	0,00	15,85	0,860	82,561	-0,1359

Tabla 45. Centro de gravedad del avión sin alternador y un volumen máximo de combustible.

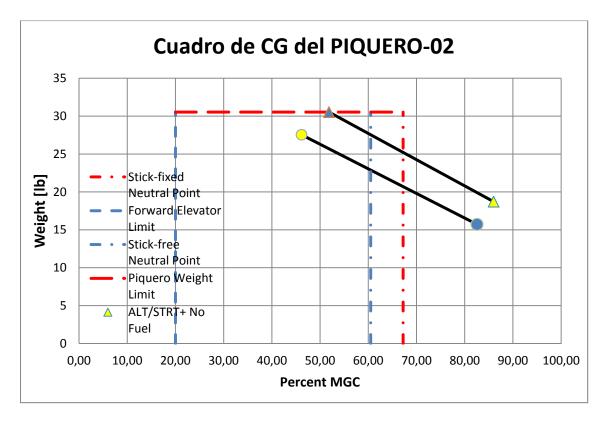


Figura 63. Cuadro de centro de gravedad del PIQUERO tomando en cuenta su estructura y combustible solamente.

Tomando en cuenta que la medición se realiza desde el borde de ataque se comparó con el software CATIA.

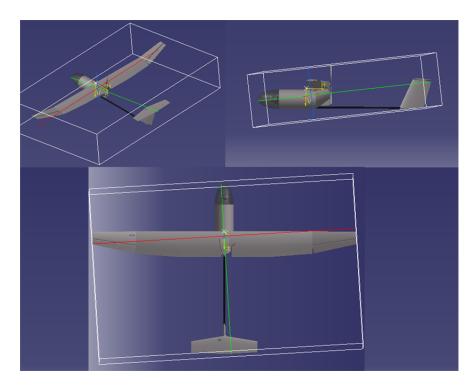


Figura 64. Centro de Gravedad obtenido en CATIA.

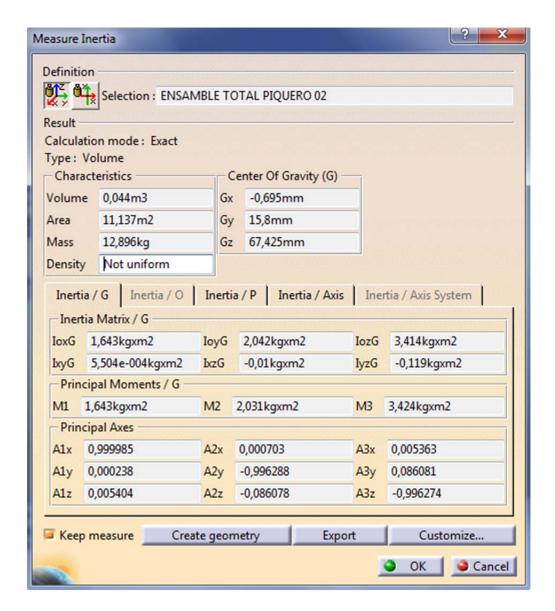


Figura 65. Centro de gravedad desde el punto P.

	CENTRO DE GRAVEDAD										
X	-0,695	mm	-0,027362	in	-0,00228	ft					
Y	15,8	mm	0,6220472	in	0,0518373	ft					
Z	67,425	mm	2,6545276	in	0,2212106	ft					
	PUNTO P EN BORDE DE ATAQUE										
X	-0,439	mm	-0,017283	in	-0,00144	ft					
Y	-116,918	mm	-4,603071	in	-0,383589	ft					
Z	154,426	mm	6,0797638	in	0,506647	ft					
	CEN	TRO DE	GRAVEDAD DESD	E PU	J NTO P						
X	-0,256	mm	-0,010079	in	-0,00084	ft					
Y	132,718	mm	5,2251181	in	0,4354265	ft					
Z	-87,001	mm	-3,425236	in	-0,285436	ft					

Tabla 46. Valores tabulados del centro de gravedad en referencia al borde de ataque.

En la tabla 46 se obtiene el centro de gravedad desde el borde de ataque, se comprueba la diferencia que es baja, dando un error en Y de 9,32% y en Z de 7,00%. La diferencia radica en la diferencia de pesos, la cual es baja de igual forma. Ahora, tomando en cuenta el avión completamente lleno tenemos:

	Weight					W-	
Description	[lb]	Y [in]	X [in]	Z [in]	W-Y	X	W-Z
Wing	4,92	5,88	0,00	0,00	28,93	0,00	0,00
H-Tail	0,66	61,98	0,00	7,59	40,91	0,00	5,01
V-Tail	0,43	58,87	0,00	-8,55	25,31	0,00	-3,68
Fuselage Film	0,51	-4,85	0,00	-6,08	-2,45	0,00	-3,08
Enya 180X-GS + Propeller	3,14	11,00	0,00	1,01	34,54	0,00	3,17
Internal Structure (excluding Tail Arm)	3,58	0,98	0,00	-5,47	3,50	0,00	-19,59
Tail Arm (Tail Boom)	0,91	30,29	0,00	-10,41	27,44	0,00	-9,43
Inlet	0,47	8,00	0	5,00	3,75	0,00	2,30
Fuselaje de cola	0,47	7,59	0,00	-5,73	3,57	0,00	-2,69
Autopilot	0,05	-12,80	0,00	-4,01	-0,64	0,00	-0,20
XR9 Radio	1,10	-13,30	0,00	-1,00	-14,63	0,00	-1,10
Mikrotic Router	1,35	-9,00	0,00	-5,30	-12,15	0,00	-7,16
Camera	2,23	-14,55	0,00	-5,91	-32,45	0,00	-13,18
Power Distribution Bus	0,50	-9,00	0,00	-8,65	-4,50	0,00	-4,33
Batteries	2,20	-10,00	0,00	-5,91	-22,00	0,00	-13,00
Buffer Weight (5%)	1,13	0,00	0,00	0,00	0,00	0,00	0,00
TOTAL	23,64				79	0	-67

Tabla 47. Centro de gravedad del avión tomando en cuenta los componentes electrónicos.

Descripción	Peso	ALT/STRT	Fuel (lbs)	TOTAL (lbs)	X [ft]	%MGC	Z [ft]
Punto neutro fijo					0,700	67,230	
ALT/STRT+Max Combustible	24	3	11,82	38	0,307	29,488	-0,31198924
ALT/STRT+ No Combustible	24	3	0,00	27	0,370	35,472	-0,23005725
No ALT/STRT + Max Combustible	24	0	11,82	35	0,242	23,185	-0,32287302
No ALT/STRT + No Combustible	24	0	0,00	24	0,279	26,777	-0,23598602

Tabla 48. Centro de gravedad del avión con alternador y un volumen máximo de combustible, con alternador y sin combustible, sin alternador y máximo combustible y sin alternador ni combustible.

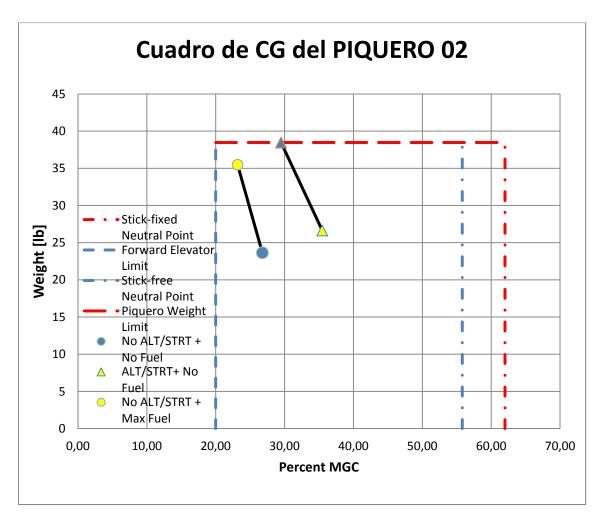


Figura 66. Límites del centro de gravedad del avión tomando en cuenta todos sus componentes.

Mientras que el centro de gravedad esté dentro de los límites de peso, el avión tendrá una adecuada estabilidad y control longitudinal. Si el centro de gravedad está ubicado hacia la parte posterior del avión estará muy cerca del centro de sustentación y el avión será inestable y en caso de entrar en pérdida será difícil de recuperar o imposible.

Si el centro de gravedad está ubicado con una tendencia a la parte frontal del avión, el avión deberá mantener equilibrio en vuelo, siendo como si tuviese peso extra como consecuencia el avión deberá volar a un ángulo de ataque mayor lo cual generará mayor fricción.

Un mayor problema que se puede encontrar cuando el centro de gravedad está hacia la parte frontal del avión es la falta de autoridad de elevación. A velocidades bajas de despegue, el avión puede que no produzca suficiente fuerza de rotación de nariz, haciendo que tenga que existir mayor distancia para despegue y aterrizaje.

Se deberá volar con el centro de gravedad con cierta distancia hacia delante del centro de presiones, esto produce una fuerza fija de inclinación de la nariz que es independiente de la velocidad a la que se esté volando, esto está balanceado con una fuerza de rotación contraria generada por la cola horizontal que varía directamente con la velocidad. (FAA -H-8083-1A, 2007)

5.10 Rediseño de Piquero I a Piquero II. Cambios realizados de

Piquero I al II

5.10.1 Cola horizontal

La cola horizontal actual no tiene inconvenientes, la cola horizontal nueva lleva orificios para poder realizar las respectivas conexiones eléctricas.

5. 10.2 Cola vertical

La cola vertical actual no tiene ninguna perforación interna para el cableado, la nueva cola cuenta con una perforación que facilitará la conexión a los servos de timón y elevador, además ayudará a reducir la fricción en relación al cableado externo que hay actualmente.

5. 10.3 Tubo principal (tail boom)

El tubo principal es un cambio significante en cuanto al peso, el avión actual sufre de un desbalance por tener mucho peso en cola, el cambio de material de aluminio (actual) a fibra de carbono (a futuro) significa una reducción de peso de 69,89%.

5. 10.4 Anillos estructurales

Los anillos estructurales actuales tienen una configuración que restan volumen interno usable, se desperdicia volumen interno. Los anillos que se usarán a futuro tienen una configuración similar a la anterior con la diferencia de la posición para poder dejar el ingreso al tanque de combustible, además de dejar completo un anillo para poder hacer uso como soporte a la cámara. Se añaden tubos de 1" que suplantan a los actuales tubos de 1,5" generando una estructura más estable puesto que tiene 2 soportes de fibra de carbono y además da oportunidad a aprovechar de mejor manera el fuselaje interno.

Se hizo este cambio además ya que el tanque de combustible que se debe usar para completar las 16 horas de vuelo tiene un volumen más grande que el actual que se usa para vuelos de prueba. Para completar las 16 horas de vuelo era poco probable que con la configuración actual se pudiera acomodar cada uno de los componentes dentro del fuselaje.

5. 10.5 Tanque de combustible

El tanque de combustible como descrito previamente debe llevar 1,97 galones de gasolina súper local. Para ello se diseñó un tanque de combustible que cumpla con el requisito de volumen y además que sea diseñado eficientemente de manera que quepa dentro del fuselaje sin tener que ocupar todo el espacio. Se manejó con la forma del

PCP y los anillos para que además esté cerca del centro de gravedad, dando una forma ovalada para poder hacer uso eficiente de la cabina.

5. 10.6 Fuselaje

El fuselaje es una pieza importante ya que por su tamaño genera alta fricción con el aire, por ello se decidió cambiar el actual (lámina de seguridad) por un fuselaje diseñado de acuerdo a los anillos y PCP de tal manera que sea de fácil manufactura y fácil implementación, además que no se va a deformar como la lámina y se reducirá el peso puesto que será hecho de fibra de vidrio. De igual manera será soporte estructural al fuselaje interno.

5. 10.7 Fuselaje de cola

Tras realizar varios vuelos y además después de haber confirmado la turbulencia generada en la parte posterior del fuselaje en CFD se implementó un fuselaje de cola cuya función sea mantener las corrientes de aire en un sentido con el fin de aumentar la eficiencia de la hélice y además para no causar turbulencias ni remolinos de aire que afecten la estabilidad de la cola. Se lo realiza de manera que sea sencilla la manufactura y la instalación, además no influye de gran manera en el peso puesto que es fabricado de fibra de vidrio.

CAPÍTULO VI

PRESENTACIÓN DE RESULTADOS

6.1 Estructura de refrigeración

A continuación se da un resumen de los datos obtenidos en el cálculo del ducto de entrada de aire

INLET / OUTLET ENGINE REFRIGERATION DESIGN					
Initial conditions					
Initial con	Símbolo	Valor	Unidades		
Flight altitude	h	2000	ft		
Flight speed	Ver	69	KTAS		
	Vcr	116,472	ft/s		
Power	P	1,86	BHP		
Outside air temperature	OAT	30	°C		
		86	°F		
Cilinder head temperature	СНТ	100	°C		
		212	°F		
ΔΤ		126	°F		
Pressure recovery		75	%		
		0,75			
Radiator face área	Ar	0,090277	ft^2		
Station 0					
Initial temperature	То	545,69	°R		

	1	1	1		
Initial Pressure	Po	1967,469651	psf		
Initial density	ρο	0,002101091	slug/ft^3		
Initial velocity	Vo	116,472	ft/s		
Station B1	<u>. </u>				
Dynamic Pressure	q	14,25140997	psf		
B1 Temperature	TB1	546,5353726	°R		
B1 Pressure	PB1	1978,158208	psf		
B1 Density	ρΒ1	0,002109237	Slug/ft^3		
B1 Velocity	VB1	58,40471816	ft/s		
Head	Н	1852,114231	ft		
Station B2	1				
Se necesita el flujo másico de refrigeración					
siguiente:					
RPM		3100	rpm		
Diámetro		19	in		
Eficiencia		80	%		
		186000	rph		
		2827200	in/h		
Velocidad	Vrefrig	65,18266667	ft/s		
Masic flux	ṁ	0,012363858	lbf/s		
Presurre drop	ΔΡ	14,3037213	psf		
B2 Temperature	TB2	672,5353726	°R		
B2 Pressure	PB2	1963,854487	psf		
B2 Density	ρΒ2	0,001701676	Slug/ft^3		
B2 Velocity	VB2	0	ft/s		
Station E					
Exit velocity	VE	65,16252192	ft/s		
Exit Pressure	PE	1967,469651	psf		
Exit Density	ρΕ	0,001703913	Slug/ft^3		
Exit Area	AE	0,003461016	ft^2		
		3,215389378	cm^2		

Tabla 49. Valores obtenidos del cálculo de área de salida para ducto de aire.

6.2 Materiales actuales

Descripción	Cantidad Material		Peso	Unidad
Conexión fuselaje cola	1	Aluminio	0,92	Kg
Tubo ala principal	2	Aluminio	1,08	Kg
Tubos de fuselaje	2	Aluminio	0,69	Kg
PCP	1	Nylon 6 (Grilón)	1,10	Kg
Anillos	2	Nylon 6 (Grilón)	0,50	Kg
Pin de torsión	2	Aluminio	0,19	Kg
Total			4,48	Kg

Tabla 50. Materiales actuales que han sido reemplazados bajo los análisis presentados.

La tabla 50 muestra los materiales usados para la manufactura de la estructura del avión, se puede ver el uso de aluminio, haciendo que el peso del avión aumente y sea de naja eficiencia, es un peso innecesario cuando en la actualidad se manejan materiales de mejor calidad, de mejores propiedades mecánicas como se pueden ver y de densidades bajas, haciendo que el peso sea mejor distribuido.

6.3 Materiales renovados

Descripción	Cantidad	Material	Peso	Unidad	Comentarios
Conexión		Fibra de			Tapered =
fuselaje cola	1	carbono	0,410	Kg	0,183 Kg
Tubo ala		Fibra de			Reducción de
principal	2	carbono	0,290	Kg	diámetro
Tubos de		Fibra de			Usando tubo de
fuselaje	2	carbono	0,175	Kg	1 pulgada
					Disminución de
		Nylon 6			diámetros y
РСР	1	(Grilón)	1,027	Kg	extrusión
					Reducción de
					diámetro y
		Nylon 6			reducción a la
Anillos	2	(Grilón)	0,42	Kg	mitad.
		Fibra de			Cambio de
Pin de torsión	2	carbono	0,17	Kg	material
Total			2,49	Kg	

Tabla 51. Materiales renovados.

Tras los respectivos análisis estructurales se determina el nuevo peso estructural del avión, siendo una reducción del 44,41%.

Masa perdida	
1,99	Kg

Tabla 52. Masa ganada con optimización de materiales.

6.4 Inventario de piezas estructurales

Pieza	Número	Peso (Kg)	Comentarios	
		(8)	Uso de densidad de material de 30	
			Kg/m^3 + fibra de vidrio y resina	
Cola vertical	1	0,19	PR2032 + PH3660	
			Uso de densidad de material de 30	
			Kg/m^3 + fibra de vidrio y resina	
Cola horizontal	1	0,19	PR2032 + PH3660	
Tail boom	1	0,36	Fibra de carbono	
PCP	1	1,11	Nylon 6	
			Usando densidad de material de 30	
			Kg/m ³ + fibra de vidrio y resina	
Fuselaje de cola	1	0,21	PR2032 + PH3660	
Pernos M4 de sujeción	_			
fuselaje a PCP	4	0,03	Pernos de acero	
Soportes de sujeción	_	0.61	DI I I : :	
motor a PCP	2	0,61	Placas de aluminio	
Motor + escape + hélice	1	1,43	Aluminio + fibra de carbono	
Pernos M4 de sujeción	4	0.02	Damas da assis	
motor a soportes y PCP	4	0,03	Pernos de acero Usando densidad de material de 30	
Ala izquierda	1	1,12	Kg/m ³ + fibra de vidrio y resina PR2032 + PH3660	
Ala izquiei da	1	1,12	Usando densidad de material de 30	
			Kg/m ³ + fibra de vidrio y resina	
Ala Derecha	1	1,12	PR2032 + PH3660	
Placa de sujeción ala a	-	1,12	111000	
РČР	2	0,01	Placas de aluminio	
			Pernos de acero	
Pernos de sujeción de				
placa a ala	4	0,03		
Tuercas de sujeción de				
pernos de placa a ala	4	0,01	Tuercas de acero	
Spars	2	0,29	Fibra de carbono	
Pin de torsión de ala	2	0,17	Fibra de carbono	
			Combustible + aceite, densidad 722	
m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.00	kg/m ³ + fibra de vidrio y resina	
Tanque de combustible	1	7,03	PR2032 + PH3660	
Anillos estructurales	2	0,39	Nylon 6	
Domo	1	0,33	Acrílico	
Tubos de sujeción	_	0.45	P. 1 1	
estructural de anillos	2	0,16	Fibra de carbono	
Pernos de sujeción	2	0.01	D 1	
Domo a anillo	2	0,01	Pernos de acero	
Fuselaje externo	1	0,23		
Ducto de entrada de aire	1	0,22		
	Total	15,29	Kg	

Tabla 53. Tabla de contenido estructural y combustible del avión.

6.5 Presupuesto

6.5.1 Presupuesto de resina PR2032+PH3660

El precio comercial de la resina es de \$2000 por la compra de 2 kits de 5 galones, con ello se hace el siguiente desglose de partes que se fabrican para obtener un precio por unidad.

PARTE	PESO (Kg)	VOLUMEN (m³)	VOLUMEN (Galón)	PRECIO (USD)
Inlet	0,2	0,0002	0,05	20
Fuselaje	0,25	0,0002	0,06	24
Ala Izquierda	0,35	0,0003	0,08	32
Ala Derecha	0,35	0,0003	0,08	32
Cola (HT+VT)	0,15	0,0001	0,04	16
Tanque de combustible	0,25	0,0002	0,06	24
Fuselaje de cola	0,25	0,0002	0,06	24
TOTAL	1,8	0,0016	0,43	172

Tabla 54. Desglose de resina necesitada en las partes estructurales del avión y sus costos.

6.5.2 Presupuesto de fibra de vidrio

Para obtener el precio por avión fabricado con fibra de vidrio, se hace uso de la fibra de vidrio #4533 S-GLASS CLOTH 5.8 OZ. 60" WIDTH obtenida de http://www.aircraftspruce.com/catalog/cmpages/4533.php. El precio de venta en el mercado es de \$16,5/m².

PRECIO DE FIBRA DE VIDRIO					
PARTE	VALOR (m ²)	PRECIO (\$)			
Cola horizontal	0,4	4,58			
Cola vertical	0,291	3,33			
Ala izquierda	3,496	40,06			
Ala Derecha	3,69	42,28			
Fuselaje de cola	0,273	3,13			
Tanque de combustible	0,259	2,97			
Fuselaje externo	0,816	9,35			
Ducto de entrada de aire	0,117	1,34			
TOTAL	9,342	107,04			

Tabla 55. Precio de fibra de virio para fabricación de piezas del avión.

6.5.3 Presupuesto estructural del avión.

Pieza	Número	Precio unitario	Precio de fibra de vidrio	Precio de resina	Precio total
Cola vertical	1	70	3,33	8	81,33
Cola horizontal	1	70	4,58	8	82,58
Ala izquierda	1	70	40,06	32	140,06
Ala Derecha	1	70	42,28	32	144,28
Fuselaje de cola	1	70	3,13	24	97,13
Tanque de combustible	1	70	2,97	24	96,97
Fuselaje externo	1	70	9,35	24	103,35
Ducto de entrada de aire	1	50	1,34	20	71,34
Soportes de sujeción motor a PCP	2	78	0,00	0,00	156,00
PCP	1	280	0,00	0,00	280,00
Anillos estructurales	2	12,5	0,00	0,00	25,00
Domo acrílico	1	90	0,00	0,00	90,00
Tubos de sujeción estructural de anillos	1	162	0,00	0,00	162,00
Tail boom	1	162	0,00	0,00	162,00
Spars	2	119,96	0,00	0,00	239,92
Pin de torsión de ala	2	59,4	0,00	0,00	118,80
Propeller (20X10)	1	80	0,00	0,00	80,00
Aceite Enya	1	37,73	0,00	0,00	37,73
Gasolina	2,57	2,55	0,00	0,00	6,55
Motor	1	1573	0,00	0,00	1573,00
Bujías	1	12,56	0,00	0,00	12,56
				TOTAL	3760,60

Tabla 56. Presupuesto estructural incluyendo el motor ENYA 180X-GS.

En la tabla 56 se obtiene un presupuesto de la parte estructural del avión, tomando en cuenta valores que se usaron para fabricar los componentes del primer prototipo, además de consideran los nuevos tubos de fibra de carbono, además del motor y sus componentes.

6.5.4 Presupuesto de componentes electrónicos del avión.

COMPONENTE	CANTIDAD	PRECIO UNITARIO	PRECIO TOTAL
Servos	5	32,99	164,95
Cableado	1	16,79	16,79
Conectores macho-hembra	2	5,79	11,58
Cámara	1	791	791,00
CHIMU sensors	1	229	229,00
Airspeed microsensor	1	42,99	42,99
YAPA Assembled	1	125	125,00
Pin headers	15	1,75	26,25
PPM encoder	1	24,9	24,90
Antena avión	2	10,95	21,90
Cables coaxiales	2	31	62,00
Router board rb4338	1	177,88	177,88
Xr9	2	198,56	397,12
Pig tails	2	19,99	39,98
POE	1	55,55	55,55
Control Futaba + receptor	1	279,99	279,99
Starter	1	28	28,00
Total			2492,88

Tabla 57. Presupuesto de componentes electrónicos.

En la tabla 57 se obtienen los precios de los componentes electrónicos que van a ir en el avión, de igual manera los precios obtenidos son los que ya se han pagado para la compra de equipos que actualmente se manejan.

6.5.5 Presupuesto total del avión.

El presupuesto total del avión Piquero es de **\$6253,48**. Este precio engloba los componentes estructurales y electrónicos, ahora, a este precio se le debe sumar el precio de envío de materiales, el cual no se incluye en el presupuesto mostrado dado que se quiere dar a conocer el precio del avión.

CAPITULO VII

CONCLUSIONES Y RECOMENDACIONES

- Después de realizar un análisis de rendimiento del avión, se demostró que el C_{Dmin} tiene un valor de 0,02636 el cual disminuye el consumo de combustible.
- 2. Tras realizar un análisis aerodinámico al avión PIQUERO 02, se determinó que el volumen de combustible que debe cargar en la cabina es de 1,97 galones de combustible "Súper" cuya densidad en mezcla con una tasa de 30:1, es de 722 kg/m³, dando un peso de 5,42 kg de masa.
- 3. Se determinó que el avión PIQUERO 02 cambió sus características de velocidad de misión, inicialmente se manejaban dos velocidades, en crucero a 65 KCAS y loiter a 43 KCAS, sin embargo la velocidad ideal de vuelo que maximiza la distancia de vuelo se da a una velocidad de 67 KCAS lo cual genera un coeficiente de fricción mínimo de 0,02636 y una fuerza de fricción en la piel de 1,16 lbf. La distancia que debe recorrer es de 1101,8 millas náuticas en un solo crucero, consumiendo un volumen de 1,80 galones hasta el descenso final.

- 4. La potencia del motor es del 62%, con una potencia de 1,86 BHP, pérdida reflejada por el vuelo a 2000 pies de altura además, una velocidad de 3100 RPM y un consumo específico de 0,56 lbf/hr/BHP.
- 5. Para la refrigeración del motor se deberá volar como mínimo 61 KCAS o 106,03 ft/s valor que depende de la aceleración a la que se dé la configuración.
- 6. Se determinó que la potencia del motor es suficiente para suplir las necesidades del avión a nivel del mar, se estipularon las velocidades de vuelo que deberá tener el avión para cumplir la misión.
- 7. Haciendo uso de CFD como método manual se establecieron las cargas que afectan al avión en vuelo, con ello se pudo determinar el espesor del tail boom, siendo éste 2,5mm haciendo uso de fibra de carbono cuya disposición de fibras es 0° y 90°.
- 8. Haciendo uso de los diagramas de momento y fuerzas cortantes, se pudo determinar mediante el hallazgo de esfuerzos principales y el uso de la teoría de falla de Tresca el diámetro de los tubos principales del ala, siendo de igual forma 1,5 mm y un diámetro de 25,4 mm.
- Para los tubos de torsión se determinó un espesor de 1,5 mm y un diámetro de 12,7 mm, se cambió de aluminio a fibra de carbono.
- 10. Los tubos estructurales de igual manera que el tubo principal será del mismo diámetro 1 pulgada, de espesor 2,5 para poder realizar empates con férula al tail boom y el material será de igual manera fibra de carbono, no se realizó un cálculo específico dado su baja importancia, es decir, no están sujetos a cargas como los demás componentes.
- 11. El tanque de combustible es diseñado especialmente para el PIQUERO 02, con una forma especial dado el espacio en cabina, como consecuencia se cambió la

- dimensión interna de los anillos estructurales para que quepa el volumen de 1,97 galones.
- 12. Mediante el método de CFD se pudo determinar la falla que existía en la zona posterior del fuselaje, para ello se diseñó una pieza que mantenga el curso del flujo, sin generar turbulencias ni remolinos en el aire, dando como resultado una mayor eficiencia de la hélice. El fuselaje de cola debe ser construido e implementado en el PIQUERO 02, su importancia radica en la continuidad del flujo de aire a través de la piel del avión.
- 13. Se analizó el centro de gravedad del avión y se terminó su posición, se deberá tener cuidado con la posición de los elementos al momento de ensamblar para que no haya problema de inestabilidad longitudinal.
- 14. Se obtuvo una pérdida de peso estructural de 1,99 kg que ayudarán al PIQUERO en ahorro de peso estructural, además pueden ser usados en carga extra de combustible.

CAPITULO VIII

REFERENCIAS

- Abbot, I. (1958), Theory of Wing Sections, USA: Dover publications Inc.
- ACP Composites (1985), Woven Fabrics, extraído el 3 de septiembre del 2012 de http://www.acpsales.com/OnlineStore.php?cat=4975
- Aircraft Spruce, #4533 S-Glass Cloth, extraído el 2 de agosto del 2012 de http://www.aircraftspruce.com/catalog/cmpages/4533.php
- Aircraft Spruce, "1520", extraído el 3 de agosto del 2012 de http://www.aircraftspruce.com/catalog/cmpages/4533.php
- Aircraft Spruce, "6065", extraído el 3 de agosto del 2012 de http://www.aircraftspruce.com/catalog/cmpages/4533.php
- ANSYS release 13.0 (2010), *Design Modeler*, Handbook, USA. (En colaboración del profesor Victor Hidalgo, EPN).
- ANSYS release 13.0 (2009), *CFX-Mesh*, Handbook, USA. (En colaboración del profesor Victor Hidalgo, EPN).
- Avia Sport, Composites, extraído el 3 de septiembre del 2012 de http://aviasport.net/composites/
- Baitra Accesorios Navales, Especial Ánodos, extraído el 5 de enero del 2013 de http://www.baitra.com/pdf/Anodos.pdf
- Beer, F. (2007), Mecánica de materiales, 4ta ed., USA: McGraw Hill.

- Budynas, R. (2008), *Diseño en ingeniería mecánica de Shigley*, 8va ed., USA: McGraw Hill.
- CarbonFiberTubeShop, Medium Tubing, extraído el 3 de septiembre del 2012 de http://www.carbonfibertubeshop.com/medium%20tubing.html
- Chun-Yung Niu, M. (1999), *Airframe Structural Design*, 2nd, USA: HONG KONG CONMILIT PRESS LTD.
- Chung, D. (1994), Carbon Fiber Composites, USA: Butterworth-Heinemann.
- Daniel, I., Ishai, O. (1994), *Engineering Mechanics of Composites Materials*, USA: Oxford University Press.
- Davies, G. (2004), The standard handbook for aeronautical and astronautical engineers, section 9, USA: Mc Graw Hill.
- Department of Defense (2003), *Metallic Materials and Elements for Aerospace Vehicle Structures*, Department of Defense Handbook, USA.
- Department of Defense Handbook (2005), Airworthiness Certification Criteria, USA. Obtenido de: http://www.theiplgroup.com/MIL-HNBK-516B.pdf
- Department of Defense Handbook (2002), Volume 1. Polymer Matrix Composites Guidelines for Characterization of Structural Materials, Composite Materials Handbook, USA.
- Department of Defense Handbook (2002), *Volume 2. Polymer Matrix Composites Materials Properties*, Composite Materials Handbook, USA.
- Department of Defense Handbook (2002), Volume 3. Polymer Matrix Composites Materials Usage, Design, and Analysis, Composite Materials Handbook, USA.
- Donaldson, P. (2008), *Unmanned Vehicles Handbook*, United Kingdom: The Shepard Press Ltd.
- Engineering Toolbox (Diciembre 2012), Elastic properties and Young modulus for some materials, extraído de http://www.engineeringtoolbox.com/young-modulus-d 417.html
- Escuela Universitaria de Arquitectura Técnica de Madrid (2010), Evaluación del Comportamiento Mecánico y Estructural de las Armaduras de Acero Inoxidable Austenítico AISI 304 y Dúplex AISI 2304, España, extraído el 5 de enero del 2013 de http://oa.upm.es/6613/1/TESIS_MASTER_EDUARDO_MEDINA_SA NCHEZ.pdf
- FAA -H-8083-1A, (2007), Aircraft Weight and Balance Handbook, Federal Aviation Administration, U.S. Department of Transportation, USA.

- Federal Aviation Administration (2005), Amateur-Built Aircraft and Ultralight Flight Testing Handbook, U.S. Department of Transportation, USA.
- FAA AFS-400 UAS POLICY 05-01 (2005), Unmanned Aircraft Systems Operation in the U.S. National Airsspace System-Interim Operational Approval Guidance, USA.
- Gautam, P., Python Scripts for Abaqus Learn by Example, Static Analysis of a 3D I-Beam Frame, obtenido de http://www.abaquspython.com/video beamframe.html
- Gudmundson, S. (2010), Preliminary Aircraft Design, Rev. 2, USA.
- Harris, B. (1999), *Engineering Composite Materials*, The Institute of Materials, United Kingdom.
- Hibbeler, R. (2007), Engineering mechanics dynamics, 11th ed., USA.
- Instituto Politécnico Nacional (2009), Diseño Conceptual, Aerodinámico y Construcción con Materiales Compuestos de un Aeromodelo de Carga con Bases del Concurso SAE Aero Design 2008, México.
- Jenkinson, L., Simpkin, P., Rhodes, D. (1999), Civil Jet Aircraft Design, United Kingdom: Arnold.
- JPS Composite Materials, Información de producto, USA, Obtenido el 4 de agosto del 2012 de jpsglass.com/jps_databook.pdf
- Kiusalaas, J. (2005), *Numerical methods in Engineering with Matlab*, USA: Cambridge University Press.
- Mattingly, J. Heiser, W. Pratt, D. (2002), *Aircraft Engine design*, USA: AIAA Educational Series.
- McGeer, T. (1995), A Small Autonomous Aircraft for Remote Sensing of the Atmosphere, Final Technical Report, USA: The Insitu Group.
- Megson, T. (2010), An introduction to aircraft structural analysis, England: Elsevier Ltd
- Megson, T. (2007), Aircraft Structures, USA: Elsevier.
- Miro Plastics Inc, Nylon 66, extraído el 23 de agosto del 2012 de https://secure.microplastics.com/MaterialData.aspx?mat=NYLON%206 6.htm
- Net Composites, Carbon Fiber, extraído el 21 de junio del 2012 de http://www.netcomposites.com/guide/woven-fabrics/40

- Nexus Projectes, Materiales compuestos, extraído el 8 de junio del 2012 de http://www.nexusprojectes.com/durabilidad.aspx?lang=es
- Oberg, E., Jones, F., Horton, H., Ryffel, H. (2008), *Machinery's Handbook*, USA: Industrial Press Inc.
- Performance Composites, Mechanical Properties of Carbon Fibre Composite Materials, Fibre / Epoxy resin (120°C Cure), extraído el 1 de agosto del 2012 de http://www.performance-composites.com/carbonfibre/mechanicalproperties 2.asp
- Radosta, F. (2010), Aerospace Structures, ERAU, USA.
- Raymer, D. (1992), Aircraft Design: A Conceptual Approach, U.S.A: AIAA.
- Roskam, J. (1985), *Airplane Design*, USA: Roskam Aviation and Engineering Corporation.
- Talay, T. (1975), *Introduction to the aerodynamics of flight*, USA: National Aeronautics and Space Administration.
- The Composites Store, Graphlite data, extraído el 2 de agosto del 2012 de http://www.cstsales.com/graphlite_data.html
- The Good Fellow (1946), Poliamida-Nylon 6 (PA 6), extraído el 12 de noviembre 2012 de http://www.goodfellow.com/S/Poliamida-Nilon-6.html
- UAV Factory, Unmanned platform and Subsystems, extraído el 30 de junio del 2012 de http://www.uavfactory.com/page/technical-data
- University of Zagreb. (2008), Graduate work, Zagreb: Faculty of Mechanical Engineering and Naval Architecture.
- Unmanned Vehicle, Fuel Tanks-Fiber Glass Tanks, extraído el 10 de enero del 2013 de http://www.sullivanuav.com/products/fu_fiberglass.html

ANEXOS

Anexo A.

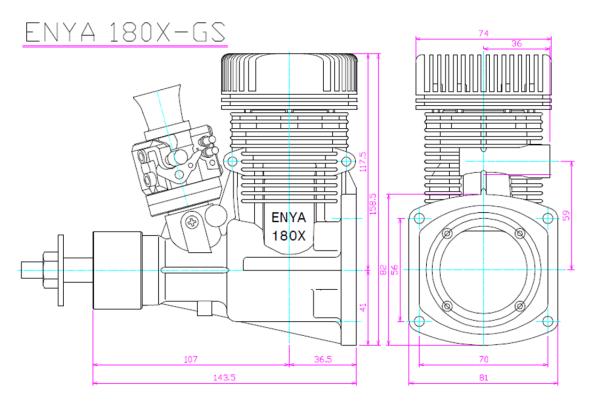


Figura 67. Plano del motor ENYA 180GX del fabricante.

Anexo B

Figura 68. Uso de tacómetro para calibrar las RPM.

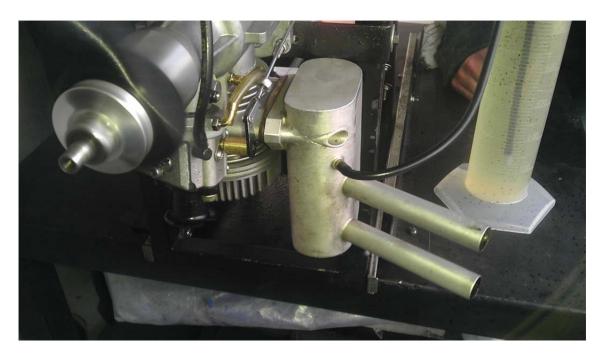


Figura 69. Vista del motor andando con su probeta de consumo de combustible.

Figura 70. Calibración a 4020 revoluciones por minuto.

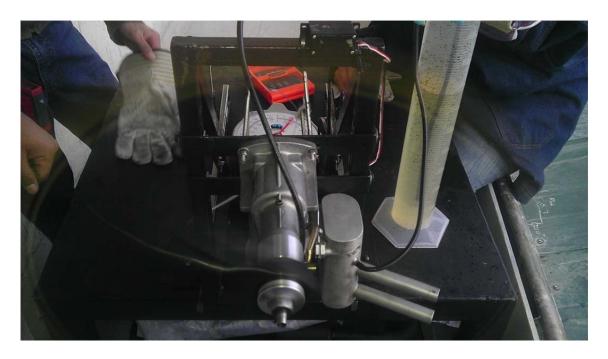


Figura 71. Vista general del motor y su mesa de pruebas.

Figura 72. Encendido del motor.

Anexo C

Código empleado para obtención de espesor de tubos de ala principales. Se manejan valores de propiedades mecánicas de la empresa Rock West Composites.

```
clear all
M2=4881;
M=4881;
t=1.5/25.4
sigma=193333.33;
i=1;
error=0.1;
x=0;
j=0;
clc
while i==1
N1=0.5*((M2)*x/(pi*x^3*t));
N2=(152*x/(1595415.11*0.5*pi*(x^4-(x-t)^4)));
y(j+1)=N1+sqrt(N1^2+N2^2);
if (sigma<=y(j+1)+error)&&(sigma>=y(j+1)-error)
```

```
i=0;
    'EXITO'
  end
  x=x+0.00001;
  j=j+1;
  if y(j) \le sigma
    i=0;
    'ERROR'
  end
end
x*2, 'Pulgadas de diámetro con espesor de', t, 'pulgadas, es decir', t*25.4, 'milimetros'
N1=0.5*((M2)*x/(pi*x^3*t));
Esferzocortanteminimo=-sqrt(N1^2+N2^2)
Esferzocortantemaximo=sqrt(N1^2+N2^2)
N2=(152*x/(1595415.11*0.5*pi*(x^4-(x-t)^4)));
Esfuerzoprincipal1=N1+sqrt(N1^2+N2^2)
Esfuerzoprincipal2=N1-sqrt(N1^2+N2^2)
Mises=sqrt((((Esfuerzoprincipal1^2)+(Esfuerzoprincipal2^2)+((Esfuerzoprincipal1-
Esfuerzoprincipal2)^2))/2))
```

Anexo D

Planos