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Resumen 

La generación y descarga de aguas residuales son un problema a nivel mundial, 
especialmente en países en vías de desarrollo como Ecuador donde la mayoría de las aguas 
no tratadas son descargadas directamente en cuerpos de agua, ocasionando impactos en los 
ecosistemas y poniendo en riesgo la salud pública.  El objetivo de este proyecto es estudiar 
la factibilidad de utilizar microalgas para la remoción de nitrógeno y fósforo como un 
tratamiento potencial en el Ecuador. Ensayos batch aireados y no aireados se llevaron a 
cabo utilizando una agua residual sintética que simule la composición de las aguas 
residuales de Quito con el fin  de determinar la eficiencia de remoción de nitrógeno y 
fósforo de una cepa nativa Chlorella sp. Las concentraciones de NH4-N fueron 79.9 y 83.7 
mg L-1, mientras que las concentraciones de PO4-P fueron 13.3 y 11.7 mg L-1 en 
bioensayos no aireados y aireados respectivamente. Manteniendo una relación N/P 
alrededor de 6.3 a 7.3 en el agua residual sintética. Los experimentos se realizaron a 
temperatura ambiente con fotoperiodos de 12 horas de luz artificial. Los resultados 
experimentales indican que el cultivo de algas puede eliminar exitosamente el nitrógeno y 
fósforo. Las eficiencia de remoción obtenidas fueron 52.6% y 55.6% para NH4-N, 67.0% y 
20.4% para PO4-P y la producción de NO3-N fue 87.0% y 93.1% en los bioensayos no 
aireados y aireados respectivamente. Por tanto, la cepa nativa de Chlorella sp. puede ser un 
tratamiento potencialmente utilizado para la remoción de nutrientes en el país.    
 
Palabras claves: microalgas, aguas residuales, remoción, amonio, nitrato, fósforo.   
 

 

  



7 

	
  

Abstract 

The generation and discharge of wastewater are of major concern worldwide, especially in 
developing countries like Ecuador where the majority of untreated domestic wastewaters 
are directly discharged into bodies of water, resulting in severe impacts to receiving 
ecosystems and posing a risk to public health. The aim of this project is to study the 
feasibility of utilizing microalgae for the removal of nitrogen and phosphorus as a potential 
wastewater treatment process in Ecuador. Non-aerated and aerated batch experiments were 
carried out with a synthetic wastewater sample in order to determine removal efficiencies 
of nitrogen and phosphorus by a native strain, Chlorella sp. NH4-N concentrations were 
79.9 and 83.7 mg L−1 while PO4-P concentrations were 13.3 and 11.7 mg L−1 by keeping 
N/P ratio around 6.3-7.3 in the synthetic wastewater. The experiments were performed at 
room temperature with 12 hours photoperiods of artificial light. Experimental results 
indicated that algae culture could successfully remove nitrogen and phosphorus. NH4-N 
removal efficiencies were 52.6% and 55.6%, PO4-P removal efficiencies were 67.0% and 
20.4% and NO3-N production were 87.0% and 93.1% in non-aerated and aerated bioassays 
respectively. Hence, native strain Chlorella sp. could be a potential treatment for nutrient 
recovery in Ecuador.  
 
Keywords: microalgae, wastewater, removal, ammonium, nitrate, phosphorus.   
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Introduction  

In Latin America, the majority of wastewater does not receive treatment. According to the 

United Nations Water Statistics, in developing countries, 90% of the domestic streams are 

discharged directly into rivers, lakes and coastal zones without any treatment; and Ecuador is 

not an exception (United Nations Statistic Division, 2011). Quito is the capital city of 

Ecuador with a population of 2 239 191 people according to the last census conducted in 

2010 (INEC, 2013). Surprisingly, Quito does not have a Wastewater Treatment Plant 

(WWTP) and, currently, all domestic effluents are being discharged directly into Machángara 

River and Monjas River without prior treatment (EPMAPS, n.d.). Ecuador is one of the 

richest countries in hydric resources in South America, it provides 43 000 m3 per person per 

year, which is 2.5 times more than the world’s mean (Cabrera et al., n.d). However, it is 

estimated that in Ecuador, 70% of the hydrographic watershed below 2800 meters above sea 

level is not adequate for direct human consumption due to the presence of pathogens, solid 

waste contamination, hydrocarbons and other organic contaminants. Moreover, more than 

80% of the industrial, agro-industrial and utilities companies generate wastewater with high 

organic loads that are straight discharged to the sewer systems or waterways (Cabrera et al., 

n.d.). The discharge of untreated wastewater into water bodies has several detrimental effects 

on receiving ecosystems and could pose a risk to public health (Aslan and Kapdan, 2006; 

Taylor and Yahner, 1996). 

According to Secretaría Pública Metropolitana de Agua Potable y Saneamiento 

(EPMAPS) Quito has potable water coverage of 99.82% for urban areas and 94.94% for rural 

areas from which 96.59% in urban areas and 81.97% in rural areas have sewer services 

(Empresa Pública Metropolitana de Agua Potable y Saneamiento, 2011). The amount of 

water that the city consumes each day is on average 639 million L, equivalent to a 
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consumption of 7400 L s-1. In Quito there is no wastewater facilities, which means that all the 

water used in the city is discharged directly to the rivers. In fact, 81% of the rivers´ 

contamination comes from domestic wastewater and the remaining 19% comes from 

industrial discharges (Empresa Pública Metropolitana de Agua Potable y Saneamiento, 

2011).    

Wastewater treatment systems have generally not been implemented in Ecuador for 

the treatment of municipal effluents with a few exceptions in cities such as: Cuenca, Manta, 

Babahoyo and San Cristobal in Galapagos. In fact, the two biggest cities, Quito and 

Guayaquil are still discharging untreated domestic effluents into water bodies. In the case of 

Quito, the wastewater is mainly discharged into the Machángara river and it is estimated that 

almost 70% of the river’s flow corresponds to untreated wastewater (Llanos, 2009).  

Furthermore, to date, there have been no studies in the literature on the quality of the rivers in 

Ecuador. Presumably rivers are contaminated because they receive discharges of domestic 

wastewater, however, to the best of our understanding, no studies have been published that 

could confirm that this is the case. In fact, in Ecuador approximately just 8% of sewage have 

some level of treatment (Cabrera, et al., n.d.) causing in 2013,  654 555 cases of people 

suffering diseases transmitted by water (Dirección Nacional de Vigilancia Epidemiológica, 

2013). 

In wastewater treatment systems, the removal of nutrients, mainly dissolved nitrogen 

and phosphorus, is becoming an important step of treatment. Nutrient concentrations present 

in untreated wastewater can cause eutrophication in water bodies, which is the growth of 

unwanted plants such as algae and aquatic macrophytes (Abdel-Raouf et al., 2012). 

Eutrophication can adversely and even irreversibly affect ecosystems primarily because of 

the presence of high nitrogen and phosphorus concentrations (Abdelaziz et al, 2014). Other 

consequences of the presence of nitrogen compounds in the effluents are toxicity of non-
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ionized ammonia to fish and other aquatic organisms, interference with free chlorine residual 

required in disinfection process and methemoglobinemia (reduced ability of the red blood 

cell to release oxygen to tissues) in influents due to excessive nitrate concentrations (above 

45 g m-3) in drinking water (Abdel-Raouf et al., 2012). 

Numerous studies have demonstrated that microalgal systems hold a great potential 

for the removal on nitrogen and phosphorous from wastewater (Abdelaziz et al., 2014; 

Dickinson et al., 2013). For example, various species of Chlorella and Scenedesmus can 

provide very high (>80%) removals of ammonia, nitrate and total phosphorus from secondary 

wastewaters (Pittman et al., 2011).	
   Similarly, the nutrient removals can reach as much as 

90% of the nutrients load reduction by the time the cultures reach the stationary phase 

(McGinn et al., 2012). The concentration of the nutrient in the waste stream will govern the 

removal efficiency, which will define the optimization between algal strain and wastewater 

composition. Microalgal used to remove nitrogen and phosphorus has numerous benefits, 

foremost, the potential for reducing eutrophication. The nitrogen and phosphorus recovered 

can be recycled into algal biomass which is subsequently suitable for biofuels and fertilizer 

production (McGinn et al., 2012).  Additionally, the amounts of freshwater and commercial 

fertilizers needed for microalgal cultivation can be significantly reduced (Abdelaziz et al., 

2014). Furthermore, the benefits of using algal include lower operating costs, the discharge of 

oxygenated effluent into receiving water bodies (Aslan and Kapdan, 2006), and it does not 

generate additional waste streams that require further treatment like sludge  (Pittman et al., 

2011).  

Microalgal domestic WWT systems hold a great potential for the recovery of 

nutrients and the production of biofuels. Biofuels are high-volume, low-value products and 

this places a number of critical restraints on the use of algal for practical biofuels production. 

Large volumes of water and significant amounts of macro- (N, P) and micronutrients are 



13 

	
  

required and would greatly increase the cost of the process. The use of wastewater to 

cultivate strains is one solution to these challenges and Ecuador has an ideal climate for 

implementing an algal wastewater system. A low operational and maintenance cost and low-

energy process for the treatment of wastewater will be developed, addressing one of the most 

important environmental issues in the country. 

The objective of this research is to evaluate the feasibility of utilizing microalgal for 

nutrient recovery as a potential wastewater treatment process in Ecuador. First, domestic 

wastewater generated in Quito will be characterized physic-chemically. Considering the 

nutrients’ load of the characterization a synthetic wastewater will be used to evaluate the 

native microalgal species for nutrient recovery in aerated and non-aerated batch bioassays.   

Materials and Methods  

Chemicals  

Calcium chloride dihydrate, sodium nitrate, monopotassium phosphate, ferrous sulfate, zinc 

sulfate heptahydrate, cupric sulfate pentahydrate, manganous sulfate monohydrate, glucose, 

boric acid were obtained from Reactivos H.V.O (Quito, Ecuador). Magnesium sulfate 

heptahydrate and ammonium carbonate were purchased from Representaciones Vamarth 

(Quito, Ecuador). 

	
  

Domestic wastewater samples  

Domestic wastewater samples were taken from six different discharge points located in the 

south part of Quito, Ecuador in October of 2014. These points were assigned by the local 

publicly owned water company (EPMAPS) in Quito; Table 1 presents general information 

about sample sites.  
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Microalgae Strain  

The native microalgae was kindly donated from a Chlorella sp. strain from “ESPE”, Escuela 

Politécnica del Ejército. Microalgae was cultivated in a tubular photobioreactor (PBR) with 

inlet upward airflow. The PBR has a 10 L capacity, however it remains at 8 L and it is 

illuminated with fluorescent light with 12 hours photoperiods.   

Synthetic domestic wastewater  

The composition of the synthetic domestic wastewater was ( in mg L-1): CaCl2.2H2O (37.4), 

MgSO4.7H2O (56.7), (NH4)2CO3 (297.9), NaNO3 (6.8), KH2PO4 (55.8), FeSO4.7H2O (0.3), 

ZnCl2 (0.1), CuSO4.5H2O (0.2), C6H12O6 (9.3) y H3BO3 (0.001). The solution was sterilized 

in the autoclave during 15 minutes at 121 ºC prior bioassays.  

Nutrient removal bioassays  

The concentrations of nutrients in the removal bioassays were 86.7, 1.1 and 12.7 mg L-1 of 

NH4
+-N, NO3

- -N and PO4
3--P respectively. Batch bioassays were conducted in duplicates 

using 1000 mL flasks supplied with 1000 mL of synthetic wastewater containing the nutrients 

and 8 mL of microalgae. Abiotic controls (lacking microalgae) were run in parallel to correct 

for the possible removal of nutrients by abiotic reaction. Killed-microalgae control (by 

autoclaving at 120ºC for 15 min) were also set up to determine background nutrient 

concentration and to quantify the compounds removal by sorption to the algal biomass, 

respectively. All bioassays were incubated in an orbital shaker (MAX-Q 2508 Barnstead 

LabLine, USA) at 100 rpm at room temperature (23±2ºC). The bioassays were illuminated by 

tubular fluorescent lamps (OSRAM, 20W) with 12 hours photoperiods for 17 days. For the 

aerated bioassays a system of aquarium pumps was incorporated, which provided an air flux 

of 1 L s- to each flask. 
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Cell density  

Cell density was measured with a Neubauer counting chamber. The sample was prepared by 

diluting 40 𝜇𝐿 of sample in 160 𝜇𝐿 of lugol’s solution, in order to immobilize the cells. The 

counting chamber was loaded with 10 𝜇𝐿 of the mixture. The counting was done in the 40x 

lens of a Leica CME microscope. The cell density was calculated using the Eq. 1.  

𝐶𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦   #  𝑐𝑒𝑙𝑙𝑠  𝑚𝐿!! = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑐𝑒𝑙𝑙𝑠  #  ×𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟  ×10!  (𝑬𝒒.𝟏)   

Biomass and lipids extraction  

Algal biomass and lipid extraction were measured at the beginning and the end of the 

removal bioassays. In the case of biomass determination, a 45 mL sample was centrifuged at 

5000 rpm for 10 minutes and dried at 105℃ for 12 hours. The biomass was determined by 

weight difference. A solvent extraction method was used to obtain the lipids from the 

microalgae. The dry biomass was used and it was grinded until it looked as powder. The 

biomass was transferred to 15 mL falcon tubes; 2 mL of chloroform (CHCl3) and 1 mL of 

methanol  (CH3OH) were added and centrifuged at 5000 rpm for 10 minutes. The supernatant 

was transfer to another falcon tube, 5 mL of distillated water were added and it was 

centrifuged. Next, the third layer containing a mix of chloroform and lipids was transferred to 

digestion tubes, previously weighed. This process was repeated for three times until obtaining 

a clear supernatant. Finally, when the lipids were completely dry the tubes were weighed and 

the dry lipids and lipids content were calculated (Eq. 2 and 3).   

 

𝐷𝑟𝑦  𝑙𝑖𝑝𝑖𝑑𝑠   𝑔 = 𝑔𝑙𝑎𝑠𝑠  𝑡𝑢𝑏𝑒  𝑤𝑖𝑡ℎ  𝑙𝑖𝑝𝑖𝑑𝑠    –𝑔𝑙𝑎𝑠𝑠  𝑡𝑢𝑏𝑒  (𝑬𝒒.𝟐)   

 

𝐿𝑖𝑝𝑖𝑑𝑖𝑠  𝑐𝑜𝑛𝑡𝑒𝑛𝑡    %   !
!

= !"#  !"#"$%   !
!"#  !"#$%&&   !

  ×  100  (𝑬𝒒.𝟑)   
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Analytical Methods 

Turbidity, potential redox (ORP), pH, dissolved oxygen (DO), temperature and conductivity 

(SM 2510) were measured with a Thermo Scientific Orion 5-Star portable multiparameter 

meter (Thermo Scientific, Beverly, MA 01915, USA). Ammonium, nitrate, chloride and 

fluorides were measured using an Orion ion-selective electrode respectively. Sulfides, 

chemical oxygen demand (COD) and phosphates were measured by a colorimetric method 

using a Spectronic 20D+ spectrophotometer (Thermo Fisher Scientific Inc. Waltham, MA, 

USA).   Sulphates and total solids (TS) were measured by a gravimetric method.  

Parameters such pH, DO, temperature, ORP and conductivity were daily monitored. 

Spending a day, 90 mL samples withdrawn from flasks were centrifuged at 5000 rpm for 10 

minutes to separate algae. NH4
+–N, NO3

--N and PO4
3--P measurements were carried out in 

clear supernatant by electro analytical methods for nitrate and ammonium and vanadate-

molybdate colorimetric method for phosphate.  All analytic methods were determined 

according to Standard Methods for Examination of Water and Wastewater (APHA, 2012).    

Results and Discussion 

Domestic wastewater characterization  

The physical-chemical characterization of six discharge points of domestic wastewater 

samples from Quito, Ecuador is presented in Table 1. All the wastewater samples were 

neutral with a pH of around 7. Similarly, redox potential was about 360-400 mV. 

Temperature and DO varied in each discharge point, from 1 to 3.6 mg L-1 and 16 to 19 ºC 

respectively with an exception, “Ortega” discharge point had a higher OD level (5.9 mg L-1) 

and lower temperature (10ºC). As expected at higher temperatures the DO was lower.  

Conductivity was around 650-850 µS cm-1, once again Ortega was an exception with a value 

of 233 µS cm-1. Fluoride and sulphides concentrations were very low in all the samples from 
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0.1 to 0.3 mg L-1 and from 9 to 13 mg L-1 respectively.  Sulphates concentration ranged from 

70 to 100 mg L-1. Nutrients concentration, nitrate, ammonium and phosphate, varied in all the 

points from 3 to 10 mg L-1, 13 to 36 mg L-1 and 13 to 28 mg L-1 respectively. Chloride 

concentration was also different, the lower value was 7 mg L-1 and the highest was 119 mg  

L-1. Finally, TS and COD were different in all the samples from 250 to 1060 mg L-1 and 30 to 

895 mg L-1 receptively. As expected, a correlation between TS and COD was observed.  

In general terms, wastewater samples present different characteristics, which doesn’t allow 

determining a typical domestic wastewater composition of the city. According to EPMAPS, 

these differences show the possibility of infiltration in the system and the mix of industrial 

and domestic wastewater effluents. However, for this study wastewater characterization from 

the discharge point named “Calicanto” was chosen to prepare the synthetic wastewater. 

Calicanto sample presented typical values for medium to high strength domestic wastewater, 

for instance, the COD was 895.6±36.4 mg L-1, while the typical COD range is 500 to 800 mg 

L-1  (Metcalf and Eddy, 2014). In the case of the contaminants of interested, typical domestic 

wastewater values for ammonium concentrations are in a range of 45-75 mg NH4
+ L-1 (Henze 

and Comeau, 2008), 6-24 mg PO4
3-  L-1 (Minnis, n.d.), 10-15 mg P L-1 (Henze and Comeau, 

2008) and less than 1 mg NO3
- L-1 (Minnis, n.d.). Calicanto wastewater sample, showed 

concentrations of 36±0.6 mg NH4
+ L-1, 28.4±0.3 mg PO4

3- L-1, 9.3±0.1 mg P L-1 3.6±0.0 mg 

NO3
- L-1. 

NH4-N and PO4-P removal  

The variation of NH4-N concentration with time for 17 days of non-aerated batch 

operation is depicted in Fig. 2B. NH4
+-N removal efficiency was 52.6±5.9% when the initial 

concentration of the synthetic wastewater was 79.9±3.0 mg L−1. The variation of NH4-N 

concentration of aerated batch operation is represented in Fig 3B, with a removal efficiency 
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of 55.6±7.4% when the initial concentration was 83.7±0.7 mg L−1. The ammonium removal 

efficiencies achieved in this study were almost the same to some of other studies. For 

example, a 50% NH4-N removal was observed when the media concentration was between 

41.8–92.8 mg L−1 in aerated batch bioassays (Aslan and Kapdan, 2006); which is the same 

range of the initial concentration of the synthetic wastewater employed in this study. In other 

studies with Chlorella sorokiniana, ammonium concentrations were reduced almost by 65%, 

however the initial concentration was 35-40 mg L-1 (Lizzul et al., 2014), which is almost half 

of the concentration of this study. Removal efficiencies for Chlorella sp. were 82.4% from a 

wastewater before primary settling with a initial concentration of 33.4 ± 0.6 mg L-1, 74.7% 

from a wastewater after primary settling with a initial concentration of 32.2±0.4 mg L-1 and 

78.3% from a centrate from sludge centrifuge with a concentration of 71.8±1.1 mg L-1 

(Wang, 2010). 

Chlorella and Scenedesmus species can grow in a variety of organic and inorganic 

compounds; in fact they can change from autotrophic to heterotrophic when the carbon 

source change (Larsdotter, 2006). The two main nitrogen sources for Chlorella growth are 

ammonium and nitrate salts. When both elements are supplied together, microalgae will 

preferentially assimilate ammonium first and incorporated it into their organic compounds 

(De-Bashan et al.,2005). As a result, if ammonium is present any other nitrogen source won’t 

be assimilated (Larsdotter, 2006). Other findings show that species as Chlorella sorokiniana 

prefer ammonium as a source of nitrogen, this conforms to a metabolic preference for 

reduced nitrogen species that is common within many types of algae (Lizzul et al., 2014). 

The removal efficiencies for PO4-P were 67.01±1.5% and 20.4±6.9% when the initial 

concentration was 13.3±0.2 mg L-1 and 11.7±0.6 mg L-1 in non-aerated and aerated batch 

conditions respectively (Fig 2C and Fig 3C). In the case of the phosphate removal in non-
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aerated batch operation, the efficiency was similar to a study with Chlorella vulgaris, which 

had an initial concentration of 7.7 mg PO4-P L−1 and a removal efficiency of 78% (Aslan and 

Kapdan, 2006). However, the phosphate removal efficiency of aerated batch operation is 

similar to the study with Chlorella kessleri, which was able to uptake between 8 and 20% 

phosphorus under the light/dark cycle for PO4-P concentration of 10 mg L−1 (Lee and Lee, 

2001), initial concentration that is very similar to the one of this study.  

The ways in which phosphorus can be removed form wastewater are direct cellular 

absorption under aerobic conditions and sedimentation under anoxic conditions (González et 

al., 1997). In the case of this study, phosphorus was removed in aerated conditions by the 

interaction with nitrogen, because of the absence of a sedimentation zone that didn't permit a 

phosphorus precipitation. Considering nitrogen is the limiting nutrient in the synthetic 

wastewater, phosphorus concentration will continue to be high after ammonium exhaustion 

(González et al., 1997). The maximum NH4-N removal occurred at 192 h (Fig. 1B), when the 

concentration was 39.9 mg L-1, thus PO4-P removal started at 240 h (Fig. 1B).   

The removal rates were 0.12 mg NH4-N L-1 h-1 and 0.03 mg PO4-P L-1 h-1 in non-

aerated bioassays, while in aerated conditions were 0.34 mg NH4-N L-1 h-1 and 0.03 mg PO4-

P L-1 h-1. The NH4-N removal efficiency between the non-aerated and aerated bioassays was 

almost the same because it occurred by the 192 h period, however the PO4-P removal 

efficiency decreased by a factor of 3.4 in the aerated bioassays. Aeration can damage the cells 

when the bubbles detach from the sparger, breakup, collide or burst in the liquid’s surface 

(Acién Fernández et al., 2013), this could directly influence in a reduction in PO4-P removal 

because in aerated bioassays PO4-P removal took longer than in non-aerated bioassays.   

The optimal inorganic N/P ratio for freshwater algae growth was suggested to be in the range 

of 6.8–10 (Wang, 2010). In the case of non-aerated bioassays the ratio was 6.32 and in 

aerated conditions was 7.28. As a result, the N/P ratio was good enough for the operation of 
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both experiments.  

NO3-N production  

The biological depletion of NH4
+-N produced an increment in NO3-N in the synthetic 

wastewater bioassays. The nitrogen conversion could possible happen by non-biological 

mechanisms such as air-stripping, absorption and sedimentation (González et al., 1997). In 

this study two aerobic batch operation systems were evaluated, considering the aerated batch 

condition, air-stripping mechanism could be responsible for the nitrogen conversion. 

However, one of the conditions required for air stripping is a pH of around 9, yet the nutrient 

removal bioassay had a pH of 6.1-6.2. Hence, air stripping wasn’t a nitrogen removal 

mechanism during this study.   

It is very likely that a nitrification process was carried by the microalgae since a NO3-

N production was observed. Fig 2A and 3A show the increase in NO3-N concentration over 

the 17 days of operation. The productions were 87.0±0.2% and 93.1±0.0% when the levels 

increased from 3.9±0.0 to 30.1±0.6 mg L-1 and 1.4±0.0 to 19.6±0.2 mg L-1 in non-aerated and 

aerated batch conditions respectively. The production rates were 0.16 and 0.04 mg NO3-N L-1 

h-1 in non-aerated and aerated bioassays. Studies with Chlorella vulgaris cultures also showed 

increments in nitrate levels from 5 to 45 mg L-1 after 144 h of operation (González et al., 

1997). 

In non-aerated bioassays the NO3-N was produced since 144 h (Fig. 2A) despite NH4-

N reduction started by the 48 h (Fig 2B); which indicates a previously nitrite production 

(NO2). On the other hand, in the aerated bioassays the NO3-N production initiated at the same 

time NH4-N started been reduced (48h) (Fig 3A and 3B), indicating that as expected aeration 

allows a faster conversion of NH4 to NO3.	
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Nitrogen Balance 

The NH4-N removal generated a NO3-N production (Fig. 2A and Fig. 3A), hence a 

nitrogen balance was performed in order to quantify the initial and final nitrogen 

concentration. In non-aerated batch operation the initial N-concentration was 83.8±3.0 mg L-1 

and the final was 68.1±6.8 mg L-1 (Table 2), with a difference of 15.7 mg L-1. Similarly, in 

aerated batch operation the initial concentration was 85.1±0.8 while the final was 56.8±0.3 

mg L-1 (Table 2) with a difference of 28.3 mg L-1. It is expected that the differences between 

the initial and final concentration (Fig. 4) are due to the microalgae nitrogen assimilation, 

considering that the nitrogen content of algal biomass is around 5-10%, i.e. 15-30 mg-N for 

300 mg dry cell weight (Lee and Lee, 2001).  In this study, the final biomass concentration 

was 933.7 mg L-1 and 370.4 mg L-1, which will result in 46.7 and 18.51 mg N L-1, considering 

5% of nitrogen content, however the difference in the nitrogen balance was 15.7 and 28.3 mg 

L-1 in non-aerated and aerated bioassays, respectively. As a result, non-aerated bioassays had 

an assimilation of 1.7%, while aerated had a 7.7% of nitrogen assimilation. Additionally, 

microalgae assimilation is expected because nitrogen containing compounds such as ATP and 

NADPH are produced actively when microalgae undergo photosynthesis, or when the cells 

are illuminated. (Lee and Lee, 2001) 

Monitoring of daily parameters 

The initial pH of the nutrients removal bioassays was between 8.5-8.9, in the abiotic 

control and heat-killed control, the pH remained constant during the 17 days of operation. 

However, in the nutrients removal treatment bioassays it declined until it reached values 

between 6.1-6.2. Ammonium was the nitrogen source in this study, despite it is a good 

nitrogen source for miroalgae growth in unfavorable concentrations it can cause growth 

inhibition or acidifys the culture media during algal growth (Karthikeyan et al., 2012). 
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Moreover, when ammonium is used as carbon source, pH can decrease to 3 which is to acid 

for microalgae growth (Larsdotter, 2006). The temperature varied from 21 to 25 ºC, the 

optimal temperature for most of algae species is between 15 and 26 ºC reaching a maximum 

cell density at 23 ºC (Kumar et al., 2010). Dissolved oxygen (DO) varied from 4-7 mg L-1 in 

non-aerated batch operation and 3-5 mg L-1 in aerated batch operations. The dissolved oxygen 

of the study was appropriated considering that oxygen levels above air saturation, 7.2 mg O2 

L-1, can inhibit photosynthesis in many algal species. Furthermore, elevated levels of oxygen 

combined with high levels of irradiance can lead to severe photo-oxidation that reduces the 

yield of the cultures (Acién Fernández et al., 2013). Redox potential oscillated from 100 to 

400 mV in non-aerated and 200 to 350 mV in aerated bioassays. Finally, conductivity 

remained practically constant in abiotic control and heat killed control with values of 410-430 

µS cm-1, while in nutrients removal treatment bioassays a small reduction was observed from 

461 to 380 µS cm-1. This indicates an algae nutrients reduction because the treatments 

conductivity decreased which shows that fewer ions (NO3- and NH4+) were presented during 

the operation time. 

Microalgae and bacteria competition  

The main purpose of this study was to show that native Ecuadorian microalgae are 

capable of removing nutrients from a synthetic wastewater. In fact, the use of several 

microalgae species as tertiary water treatment was reviewed more than a decade ago and 

continues to be evaluated today (Gonzalez-Bashan et al., 2000). The fundament assumption 

is that microalgae will transform the contaminants to nonhazardous materials in order to 

reuse or discharge the water in a safety way. Nevertheless, wastewater carries a large 

microbial population, meaning a possible interaction or competition between microalgae and 

bacteria in the wastewater bioremediation of the microalgae (Gonzalez-Bashan et al., 2000). 
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Moreover, competition for limiting nutrients such as phosphate can exist between bacteria 

and algae (Qu et al., 2014). 

In the case of this study, inoculated microalgae and sterilized synthetic wastewater 

were used with the purpose of avoiding the presence of other microorganisms, yet it is 

possible the presence of environmental bacteria in the bioassays. However, the nutrients 

removal is granted to microalgae considering that the maximum removal occurred until day 

17th. In fact, the relative long hydraulic retention times of microalgae detain the widespread 

application of the algal treatment process when comparing to conventional activated sludge 

process that can achieve efficient overall reduction of COD, ammonium, and phosphorus in 

4– 6 h (Wang, 2010). Other studies, found that the maximum nutrient removal were achieved 

in 10 h by introducing bacteria into the system (Wang, 2010).    

An investigation carried out with two microorganisms, Chlorella vulgaris and 

Azospirillum brasilense (nitrogen fixing bacteria) showed that the removal of the co-

immobilization of both microorganisms was superior to the removal by the microalgae alone 

(De-Bashan et al., 2004). In 6 days, the co-immobilization reached a removal of 100% 

ammonium, 15% nitrate and 36% phosphorus, compared to the microalgae removal of 75% 

ammonium, 6% nitrate and 19% phosphorus (De-Bashan et al., 2004). This research 

demonstrate that in this study nutrients removal can be attributed to microalgae because the 

removal efficiencies were not as high at the ones achieved when bacteria are removing 

nutrients as well, nor the retention times were that short.  Considering the same study it is 

important to highlight that bacterial presence can contribute in a positively form because 

nutrient absorption capacity of the microalgae increases from the association. Despite, 

microalgae plays an important role owing to the fact that Azospirillum brasilense alone did 

not remove measurable quantities of ammonium or phosphorus, while Chlorella species were 
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capable of eliminating most of the ammonium when immobilized alone (De-Bashan et al., 

2004). It has been observed that bacteria and microalgae exhibit mutual benefit relationship, 

in which bacteria profit from the exudates of Chlorella vulgaris, and the microalgae growth is 

promoted by the bacterial products such as carbon dioxide and inorganic compounds (Qu et 

al., 2014). 

Cell density  

The initial cell density in non-aerated bioassays was 3.5x106 cells mL-1 while the final 

was 7.3x106 cells mL-1. In the case of aerated batch operation the initial cell density was 

1.3x106 cells mL-1 while the final was 1.7x106 cells mL-1 (Fig. 4). In both experiments, there 

was an increment in cell density, however final non-aerated bioassays cell density was much 

higher than aerated bioassays. This result can be explained with the fact that the aeration 

permitted a higher probability of contamination in the bioassays. A contamination in the 

batch bioassays is likely in part due to the long hydraulic retention times (> 7 days) required 

for nutrient removal which may have provided sufficient time for the proliferation of algal 

grazers (McGinn et al., 2012). It is not consider that the NH4-N and NO3-N concentrations 

could influence in cell density because both experiments had almost the same concentration, 

however just in the aerated bioassays the cell density did not significantly incremented. A 

study with Chlorella kessleri showed that with different NO3-N concentrations the final cell 

concentration was almost the same, which suggests that there is not growth inhibition caused 

by the nutrients concentration so other factors such as CO2 mass transfer, light intensity or 

mixing may limit the microalgae growth (Lee and Lee, 2001). 
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Biomass concentration and lipids content 

Biomass concentrations at the beginning of the bioassays were 215.6 and 105. 9 mg 

L-1, while final concentrations were 933.7 and 370.4 mg L-1 in non-aerated and aerated batch 

operation respectively (Table 3). The increment in non-aerated was 718.1 mg L-1 and in 

aerated was 264.44 mg L-1. In both cases, the biomass concentration increased over the 

operation time, which indicates a microalgae growth. However, under non-aerated conditions 

the growth was more pronounced as seen in the cell density too (Fig.3).  

Concerning to lipids content the initial contents were 11.8 and 8.6%; the final 

contents were 16.7 and 10.8% in non-aerated and aerated batch operation respectively. The 

lipids content increased in 4.91% in non-aerated conditions and 2.2% in aerated batch 

operation. The lipids content increment is not significantly because nutrient limitation is well 

known to cause an increase in lipid and TAG contents or starch content in algal biomass 

(Dickinson et al., 2013). In fact, it is known that under partial nitrogen deprivation, 

microalgae grow at lower rates but produce significantly more lipids, which are reserve 

compounds synthesized under stress conditions, even at the expense of lower productivities 

(Kumar et al., 2010) 

Conclusions  

Nutrients removal from a synthetic wastewater using native microalgae was 

successfully studied in non-aerated and aerated batch bioassays. The use of an orbital shaker 

with no extra aeration resulted in better nutrients removal efficiencies and microalgae growth 

that adding aeration with pumps. Nutrients removal with microalgae was shown to be an 

effective alternative to treat domestic wastewater considering that NH4-N efficiency removal 

was 52.6±5.9% and PO4-P was 67.0±1.5%. It is highly recommended to study the microalgae 

nutrients removal in continuous system since other studies demonstrate that with this system 
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the overall biomass productivity is higher because the time required to accumulate biomass 

includes the initial 2–3 days when growth rates are high but biomass concentrations are low 

and the final 2–3 days when the reverse is true (McGinn et al., 2012). Moreover, the 

hydraulic retention times are shorter that in batch operation (McGinn et al., 2012) which can 

assure less chance of contamination. This study contributes to the development of a 

wastewater treatment process that could be successfully implemented in Ecuador.  
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Figure 1: Native microalgae strain Chlorella sp. 

	
  
Table 1: Description and physical-chemical characterization of domestic wastewater 
samples  

 
Parameter 

 

 
Unit 

 
Pasocucho 

 
Ortega 

 
Calicanto 

 
Capuli 

 
Caupicho 2 

 
Caupicho 

Description  Ravine Collector Ravine Ravine Collector Collector  
Ammonium  mg L-1 14.5±0.8 0.8±0.01 36±0.6 14.7±0.6 25.7±0.2 13.1±0.6 

Chloride  mg L-1 50.3±0.8 7±0.1 119.5±10.1 84.6±0.3 119,5±3.7 87.7±1.4 
COD  mg L-1 178±9.1 30.2±12.1 895.6±36.4 435±3 430.8±21.2 225.1±15.1 

Conductivity  µScm-1 849.5±4.9 233.9±4.7 808.5±72.8 674±15.6 833±1.4 663±11.3 
Dissolved 
Oxygen 

 
mg L-1 1±0.0 5.9±0.2 3.6±0.6 3.5±0.2 1.7±0.5 3.4±0.2 

Fluoride  mg L-1 0.3±8.6E-4 0.1±3.5E-4 0.2±1.1E-3 0.2±6.3E-4 0.2±1.3E-3 0.2±1.3E-3 
Nitrate  mg L-1 3.7±0.0 16.3±0.8 3.6±0.0 3.2±0.3 4.8±0.02 9.8±0.4 

pH - 7.4±0.0 7.1±0.3 7.6±0.0 7.4±0.0 7.4±0.0 7.2±0.0 
Phosphate  mg L-1 3.8±0.4 1.2±0.5 28.4±0.3 6.3±0.5 6.3±0.5 3.5±0.9 

Redox Potential  
 

mV 406.2±1.4 403.4±1.6 397.6±5.9 368.1±5.7 359.7±1.3 362.4±0.2 
Sulphates mg L-1 85.6±2.3 70±3.5 98±10.5 91.4±3.5 98.8±18.6 76.6±3.5 
Sulphides  mg L-1 9.1±1.4 11.7±1.1 12.7±0.3 12.8±1.4 12±0.3 11.2±0.8 

Temperature  ºC 16.3±0.0 10.9±0.4 17.3±0.1 17.3±0.4 19.1±0.1 18±0.1 
TS  mg L-1 754±42.4 260±5.7 1066±25.5 786±127.3 722±25.5 592±33.9 

Turbidity  NTU 38.1±0.1 5.2±0.7 289.5±6.4 72.3±2.1 55.6±3.7 34±1.3 
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Figure 2: Nitrate production (A), ammonium removal (B) and phosphates removal 
(C) in non-aerated batch operation,  nutrient removal treatment bioassays (u) abiotic 
control bioassays (�) and heat killed control bioassays (n).Error bars (shown if larger 
than the symbols) represent standard deviations of duplicate assays. 
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Figure 3: Nitrate production (A), ammonium removal (B) and phosphates removal 
(C) in aerated batch operation,  nutrient removal treatment bioassays (u) abiotic 
control bioassays (�) and heat killed control bioassays (n).Error bars (shown if larger 
than the symbols) represent standard deviations of duplicate assays. 

 

Table 2: Nitrogen balance of aerated and non-aerated nutrients removal treatment 
bioassays 

N-concentration Units Non-aerated 
conditions 

Aerated conditions 
 

Initial  mg L-1 83.8 85.1 
Final  mg L-1 68.1 56.8 
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Figure 4: Nitrogen balance of aerated and non-aerated nutrients removal bioassays. 
Initial concentration (n) and final concentration (n) 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

Figure 5: Cell density, non-aerated batch conditions (�), aerated batch conditions 
(n). Error bars (shown if larger than the symbols) represent standard deviations of 
duplicate assays. 

	
  
Table 3: Initial and final biomass concentration and lipids content in non-aerated and 
aerated batch operation bioassays.  

Parameter Time Unit Non-aerated Aerated 
Biomass 

concentration 
Initial mg L-1 215.6 105.9 
Final mg L-1 933.7 370.4 

Lipids 
content 

Initial % 11.8 8.6 
Final % 16.7 10.8 
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