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RESUMEN 

 

 

La diarrea es una de las principales causas de morbilidad y mortalidad en 
niños a nivel mundial, donde Escherichia coli juega un papel importante, 
especialmente en los países en desarrollo. Nosotros utilizamos “Multilocus sequence 
typing” (MLST) para describir la relación genética de E. coli diarreogénicas aisladas 
de 498 muestras de heces humanas recolectadas de 22 comunidades vecinas en el 
noroeste de Ecuador entre Julio de 2012 y Julio de 2013. De un total de 39 cepas de 
E. coli pertenecientes a diferentes patotipos encontramos 19 Sequence Types (STs). 
La mayor diversidad de STs fue encontrado en la principal comunidad, Borbón. Estos 
resultados confirman estudios previos que muestran evidencia que un pueblo, que 
era el centro de actividades sociales y comerciales, puede ser también la fuente de 
patógenos entéricos.  
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ABSTRACT 

 

 

 Diarrhea is one of the main causes of morbidity and mortality among children 
in the world with Escherichia coli playing an important role, especially in developing 
countries. We used Multilocus sequence typing (MLST) to describe the genetic 
relatedness of diarrheagenic E. coli isolated from 498 human fecal samples collected 
from 22 neighboring communities in northwestern Ecuador between July 2012 and 
July 2013. From a total of 39 E. coli strains belonging to different pathotypes we 
found 19 Sequence Types (STs). The largest diversity of ST was found in the main 
community, Borbón. These results confirm previous studies showing evidence that a 
village, which was a center for social and commercial activities, may be also the 
source of enteric pathogens.  
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1. GENERAL INTRODUCTION 

 

1.1 Infectious diarrhea  

Escherichia coli is a gut commensal bacterium of warm-blooded animals. It typically 

colonizes the gastrointestinal tract of human infants within a few hours after birth (1). 

Usually, E. coli and its human host coexist in good health acting as a beneficial 

member of the human microbiome in both digestion and defense against 

opportunistic pathogens (2), and rarely cause disease except in immunocompromised 

hosts or where the normal gastrointestinal barriers are breached (1). However, there 

are some strains that have developed the ability to cause damage even in healthy 

individuals (3).  

Horizontal gen transfer (HGT) has allowed E. coli the acquisition of pathogenic 

characteristics, which enable it to cause disease in healthy hosts (4). In fact, virulence 

factors acquired for these E. coli strains are frequently encoded in mobile genetic 

elements (MGE), which could move into different strains or remain “locked” into the 

genome (2). The most successful combinations of virulence factors have persisted to 

become specific ‘pathotypes’. Three general clinical syndromes can result from 

infection from one of these pathotypes: enteric/diarrheal disease, urinary tract 

infections (UTIs) and sepsis/meningitis (1, 5). In fact, E. coli is responsible for up to 

90% of all human urinary tract infections, and they are a frequent cause of 

septicemia, gastro-intestinal and other infections (2). 

Among the intestinal pathogens, there are well-described categories of E. coli: 

enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enterotoxigenic 
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E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), 

diffusely adherent E. coli (DAEC) (1) and Shigellae. 

Despite the fact that Escherichia coli and Shigellae have been historically separated 

into different genera within the Enterobacteriaceae family, it has been suggested to 

include Shigella sp. as part of E. coli. In fact, numerous studies (6, 7, 8) have shown 

that Shigella sp. and E. coli are taxonomically similar at the species level; suggesting 

they should be considered a single species. For instance, EIEC is more similar to 

Shigellae than to typical E. coli, and some EIEC strains have essentially all the 

properties of Shigella strains (8). Therefore we refer to all Shigella strains as forms of 

E. coli.  

Escherichia coli is one of the most important causes of childhood diarrhea (9). It is 

responsible for 30% of all the deaths caused by diarrhea in children under the age of 

five in developing countries (2). According to the World Health Organization, diarrhea 

is one of the principal causes of morbidity and mortality among children in the world, 

and although mortality rates have declined in the past several decades, it still causes 

up to 760,000 childhood deaths every year (10).  

In the developing countries where there is inadequate clean water and poor 

sanitation, ETEC is an important cause of diarrhea (11, 12, 13). Among all the 

etiologic agents of diarrhea, diarrheagenic Escherichia coli (DEC) play an important 

role in low-income countries (14). For instance, two studies conducted in a rural area 

in Bangladesh (15) and in Egypt (16) showed that ETEC was the most common 

pathogen found in children. Therefore, serious efforts need to be made in order to 

improve the awareness of the importance of diarrheagenic E. coli mainly in people 
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living in the developing world. 

 

1.2 Bacterial Molecular Genotyping  

The ability to differentiate accurately among related strains (of infectious agents) is 

vital for epidemiological surveillance and public health decisions, but there are no 

totally satisfactory methods to achieve this goal (17, 18).  

Identifying different types of organisms within a microbial species is called typing, and 

for a long time, conventional typing schemes, such as bacteriophage typing (based 

on resistance to a standard set of phages), serotyping (based on differences in 

antigens), biotyping (according to the metabolic capabilities of the cell) (19) or 

biochemical typing, have been used to understand the epidemiology of infections 

caused by strains of clinically relevance (17). Although bacterial phenotyping is useful 

for specific purposes, this usually does not reflect the genetic relationships of the 

microorganism (17, 20). In fact, in outbreak investigations a typing method must have 

the discriminatory power to distinguish all epidemiologically unrelated isolates from 

the same species (21).  

Determining the genetic relatedness of isolates of pathogenic microorganisms is 

fundamental to molecular epidemiological studies in order to identify sources of 

pathogens (22). Therefore, conventional phenotyping methods have been largely 

replaced by genotyping methods because they show lower discriminatory power than 

molecular methods (20).     

Molecular epidemiology employs genetic techniques to characterize or identify clones 

of infectious agents (23). Different techniques have been developed to compare the 
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genotypes of microbial species. Some genotyping methods such as gel-based 

fingerprinting techniques (e.g., ribotyping, MLEE and PFGE) rely on comparison of 

banding patterns generated by gel electrophoresis (22). PCR-ribotyping is based on 

polymorphism of the intergenic spacer region located between the 16S and the 23S 

rRNA genes (24). Multilocus enzyme electrophoresis (MLEE) detects allelic variation 

of slowly evolving metabolic genes, on the basis of the differing electrophoretic 

mobility of enzymes  (19). Pulsed-field Gel Electrophoresis (PFGE) is based on the 

digestion of chromosomal DNA with a restriction endonuclease that cleaves 

infrequently and produces only a few high-molecular-weight fragments (25). Even 

several studies have shown that techniques such as PFGE resolve isolates that are 

indistinguishable by MLEE (18) and by ribotipying (26, 27), all these methods can 

suffer from inter-laboratory variability introducing subjectivity and greater potential for 

error (18, 22).  

To overcome these problems scientists have started to use nucleotide sequence 

data; for instance, variation at multiple housekeeping loci has become increasingly 

popular for strain characterization (22, 23). Finally, whole genome sequence (WGS), 

the ultimate method for bacterial typing, has the potential to resolve single base 

differences between two genomes provinding high-resolution in genomic 

epidemiology; however, it cannot completely replace other typing systems due to its 

cost (21). Thus, it is important to choose carefully the typing method because some 

typing methods do not work with certain microorganisms or work at different temporal 

or geographic scales (21).  
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Multilocus sequence typing (MLST) 

Multilocus sequence typing is based on the principles of phenotypic multilocus 

enzyme electrophoresis (MLEE) (21), and employs nucleotide sequences of internal 

fragments of seven genes for characterizing isolates (28, 29). MLST is a technique 

based on the sequence variation of housekeeping genes, which are under stabilizing 

selection (22, 23), and the variation within these genes is nearly neutral (19).  The 

sequences of each fragment (alleles) are compared with all the previously identified 

sequences in the MLST database and are assigned allele numbers at each of the 

seven loci, and every novel sequence is assigned a new allele number by the curator 

and is entered in the allele database (28). The combination of the seven allele 

numbers determine the allelic profile which unambiguously defines the sequence type 

(ST), of each isolate. 

Most bacterial species have variation within the seven loci providing many alleles per 

locus and making it possible to distinguish billions of distinct allelic profiles (18); 

therefore, it is unlikely that two unrelated isolates have the same allelic profile (30). 

This technique provides a number of advantages over other typing approaches. For 

instance, it is relatively cheap, and easy to perform; therefore, does not require 

access to specialized reagents or training (28, 31). The fact that it uses sequence 

data, allows detecting changes at the DNA level not apparent by phenotypic 

approaches (31). In fact, sequence data are unambiguous in contrast to most tying 

which involve comparing DNA fragment sizes on gels (22). Moreover, the digital 

format of MLST data can be held on a central database; therefore, it has facilitated 
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the establishment of global accessible databases for a variety of organisms that can 

be queried through a web service rapidly contributing to our understanding of the 

clonal distribution of infectious disease agents (22, 29). Additionally, it allows the 

access to specific information as sequencing protocols and primer sequences on the 

MLS website for each species, allowing data to be produced rapidly (28). 

Furthermore, the data generated is fully portable among laboratories and can be 

shared easily throughout the world via the Internet (31, 32). Finally, analysis of 

multiple loci can provide better evolutionary pictures than the one that can be 

obtained by single-locus analysis (19). 

MLST applications 

MLST was first developed for Neisseria meningitidis in 1998 to overcome the poor 

reproducibility between laboratories of older molecular typing schemes (33). Since 

then, it has been mostly used in molecular epidemiological studies of several 

bacteria. MLST has been applied for the study of pathogenic bacterial species 

including Streptococcus pyogenes (29, 30), Staphylococcus aureus, Escherichia coli 

(34, 35), Streptococcus pneumoniae and Salmonella serotypes (35). Therefore, 

MLST has been applied to a number of different pathogenic and nonpathogenic 

bacteria as a tool for epidemiological surveillance as well as to study the population 

structure and evolutionary biology of the species (31, 35).  

Unfortunately, the variability of housekeeping genes among different bacteria makes 

it impossible to develop MLST schemes for some bacteria (36). For example, despite 

the fact that MLST provides a satisfactory level of discrimination among Salmonella 

isolates, within a particular serovar of Salmonella (35), and in Methicillin-Resistant 
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Staphylococcus aureus (MRSA) typing, MLST may not be suitable for distinguishing 

related strains due to their low genetic variability (37). As a result, PFGE still remains 

the gold standard for surveillance and outbreak investigations of these bacteria (35, 

37).  

In addition, MLST does not provide sufficient discrimination for all typing purposes, 

including resolving differences among variants of single-clone (recently emerged 

pathogens), low diversity, asexual pathogens such as Bacillus anthracis and Yersinia 

pestis (36). Hence, it is important to have some idea of the population genetics of the 

pathogen before using as a typing tool (38). 

In Enterobactereacea, MLST scheme has been used for the characterization of 

nosocomial isolates for Klebsiella pneumoniae (39). Furthermore, it has been 

recommended for population biology studies and epidemiological tracking of 

Plesiomonas shigelloides strains which are considered as an emerging pathogen 

responsible for intestinal diseases and extraintestinal infections in humans and other 

animals (40). Moreover, there are several sequence-based studies involving the use 

of MLST scheme to characterize clones or phylogenetic subgroups within E. coli (34, 

41, 42, 43).  However, it would appear that MLST is useful for epidemiologic studies 

of E. coli O78 strains while it is of little value for studies in O157:H7 (41, 42). In fact, 

the genes selected for the analysis of E. coli O157:H7 (a recently emerged pathogen) 

showed little diversity to be useful as an epidemiological tool (41). Thus, the genes 

selected for a typing study may have the sufficient variation to be useful in 

epidemiological investigation. 

Therefore, there are three distinct E. coli MLST schemes that can be used in order to 
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establish the relationship among isolates (44). For instance, T. Whittam’ s scheme 

uses up to 15 genes (http://www.shigatox.net); the Pasteur institute scheme, uses 8 

genes (http://www.pasteur.fr/recherche/genopole/PF8/mlst/EColi.html), and the Mark 

Achtman scheme, set of 7 housekeeping genes (http://mlst.warwick.ac.uk). Although 

probably the most widely scheme used is the Achtman’ s scheme. 

In this study, for analyzing the distribution of different pathotypes of Escherichia coli 

diarrheagenic, we used the Achtman’ s scheme. The seven loci used for Escherichia 

coli were internal fragments of the following genes: adenylate kinase (adk), fumarate 

hydratase (fumC), DNA gyrase (gyrB), isocitrate/isopropylmalate dehydrogenase 

(icd), malate dehydrogenase (mdh), adenylosuccinate dehydrogenase (purA), 

ATP/GTP binding motif  (recA) (45). Consequently, determining the usefulness of 

MLST as a molecular epidemiological tool to study the distribution of diarrheagenic E. 

coli in remote communities in northwestern Ecuador could help us to determine not 

only the relatedness of a group of bacterial isolates, but also the interaction of genetic 

and environmental factors which may be playing a role in pathogen dissemination of 

diseases.   
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 INTRODUCTION 

Diarrhea is one of the main causes of morbidity and mortality among children in the 

world (1). Despite diarrhea mortality has been globally reduced, it is still considered 

as the second leading cause of death due to infections (1). It causes around 1.7 

billion cases every year, and kills approximately 760,000 children under five years old 

(2). The global median incidence of all types of diarrhea in the developing world is 

high in children aged less than one year (3). The major etiologic agents of diarrhea 

are rotavirus (5) and diarrheagenic Escherichia coli (DEC) with DEC being the most 

common agent in children especially in low-income countries (6).   

Diarrheagenic E. coli are classified in: enteropathogenic (EPEC), enterotoxigenic 

(ETEC), enteroinvasive (EIEC), enterohemorrhagic (EHEC), enteroaggregative 

(EAEC), diffusely adherent (DAEC) (7), and Shigellae (8,9). ETEC is the most 

common cause of E. coli-mediated human diarrhea worldwide (10), and it is the most 

significant cause of diarrhea in developing countries and among travelers (11, 12, 

13). In fact, about 50 million children under five years old are at any time colonized 

with ETEC (3). However, despite it is difficult to estimate the mortality due to ETEC 

infections; with adequate treatment it should be very low (<1%) (14). In 2006, 

Ecuador reported that diarrhea was one of the most common causes of hospital visits 

(4) and 4% of the deaths in children under five years old were caused by diarrhea 

(15). 

In this report we used MLST to document the transmission of 39 diarrheagenic E. coli 

among 22 neighboring communities in a remote region of northwestern coastal 

Ecuador.  
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MATERIALS AND METHODS 

Study region. The study was carried out in the 22 communities located in 

northwestern coastal Ecuador in the Canton Eloy Alfaro, Esmeraldas province. 

Some of these communities are located along three rivers: the Cayapas, the Santiago 

and the Onzole, which drain into the main town, Borbón (pop. ∼ 8,000 inhabitants). 

Borbón is considered the commercial and social center of the region. In this 

community, a random sample of 200 households participated. In the remaining 21 

communities, all households were chosen and 98% were enrolled in the study after 

they consented to participate. Institutional review boards at the Universidad San 

Francisco de Quito and University of Michigan approved all protocols. 

 

Study design. From July 2012 to July 2013, eight 15-day case-control studies were 

conducted in the 22 communities.  During each visit, fecal specimens were collected 

for every case of diarrhea in the community; for every case found, 3 asymptomatic 

control specimens were randomly selected (1 household control and 2 community 

controls). A case was defined as an individual that had 3 or more loose stools in a 24-

hour period and a control was defined as an individual with no signs of diarrhea in the 

previous 6 days. 

 

Pathogen detection. Stool samples were collected by field staff from cases and 

controls and tested for the presence of E. coli and Shigellae. Fecal samples were 

plated directly onto Salmonella/Shigella (SS) (BD, New Jersey, USA) agar or 

MacConkey agar (MKL) (BD, New Jersey, USA); lactose positive colonies were 
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further cultured in Chromocult® Coliforms Agar (Merck, Darmstadt, Germany). All 

lactose-negative isolates that were identified by an API-20E test kit (BioMèrieux, 

Marcy l’Etoile, France) as either E. coli or Shigellae, and a random sample of 5 

lactose-positive isolates were pooled, suspended in 300μL of sterile distilled water, 

and boiled for 10 min to release the DNA. The resulting supernatant was used for 

PCR testing. 

Identification of E. coli pathotypes was performed with primers designed to identify 

the heat-labile toxin gene (eltB) and heat-stable toxin gene (estA) of ETEC, the 

bundle-forming pilus gene (bfp) of EPEC, and the invasion plasmid antigen gene 

(ipahH) of EIEC or Shigellae (Table 1) (16). The PCR amplification protocols were 

published previously (16).  

 

Multilocus sequence typing (MLST). Bacterial colonies belonging to different 

pathotypes were submitted to DNA extraction using Dnazol® Reagent (Invitrogen 

Carlsbad, CA, USA) following the manufacturer’s protocol. Fragments of seven genes 

were amplified and sequenced from all the isolates using the primers in Table 2. The 

amplification reaction conditions for all the primers were published previously (17), but 

we introduced the following modifications: The reaction conditions for all the primers 

were as follows: 2 min at 95°, 30 cycles of 1 min at 95°, annealing at 57° for 1 min, 2 

min at 72° followed by 5 min at 72°. The PCR reaction contained 50ng of 

chromosomal DNA; 0.6μL of 10μM of each primer; 0.2mM of dNPTs; 1X of PCR 

buffer; 1.25mM of MgCl2; 0.025U of Taq polymerase (Promega, Madison, Wisconsin, 

U.S.A.), and water to 30μL. The PCR products were sequenced in Functional 
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Biosciences (http://functionalbio.com/web) and uploaded to the MLST for E. coli 

(http://mlst.warwick.ac.uk) in order to assign them an allelic profile. 
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RESULTS 

Pathotypes. Between July 2012 and July 2013, a total of 445 E. coli isolates were 

analyzed from 498 feces samples collected in the study region. We isolated 39 

diarrheagenic E. coli (8.76%) from cases and controls in 15 of the 22 studied 

communities (Table 3). Twenty-one (4.7%) of these isolates were identified as ETEC 

(12 ETEC-LT, 8 ETEC-ST, 1 ETEC-ST/LT); 11 (2.47%) isolates were identified as 

EIEC; 5 (1.12%) were Shigellae, and 2 (0.45%) were EPEC. All pathotypes were 

found in 15 of the 22 communities enrolled in this study, and a higher number of 

pathotypes was found in Borbón than in the rest of communities (Table 4).  

 

Multilocus sequence typing. In total, 19 MLST profiles (STs) were identified (Table 

5). The largest diversity of STs was found in Borbón (9 different STs); 6 of these STs 

(ST2332, ST4, ST10, ST155, ST279, ST6) were also found in other communities. 

(Table 5; Figure 1). We also found the STs 328,152, 630 that were present in some 

communities but they were absent in Borbón (Table 5; figure 2).  The most frequent 

STs were the ST6 and ST4, which comprised the 12,8% (5 of 39) and 10,3% (4 of 39) 

of the whole population respectively. Thus, while the number of individual STs was 

low in most of the communities, the greatest proportion of STs was accounted in the 

main community (Borbón).  

We found 2 novel sequence types that were named ST4267 and ST4268 which were 

isolated in Borbón (July 2012) and in the San Agustin community (March 2013) 

respectively.  
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DISCUSSION 

In this study the largest number and the greatest diversity of pathotypes and STs 

were found in   Borbón, the economical and social center of the region. Most of the 

STs found in Borbón (ST2332, ST4, ST10, ST155, ST279, ST6) were also found in 

smaller and more remote communities (San Francisco, Loma Linda, San Miguel, 

Guadual, Herradura, Timbire, San Agustin, Colon Eloy, Punta Piedra) (Figure 1). By 

selecting strains isolated within 12 months we were able to capture the dissemination 

of E. coli pathotypes from the most populated (and more connected) community to 

the least populated (and more remote) communities.  

These results confirm previous studies, which suggested that the commercial and 

social center of the region (Borbón) was also the source of enteric pathogens for the 

smaller and more remote communities in the region (8, 18, 19, 20, 21). This 

phenomenon may result from road access, as Borbón is the main village with larger 

number of visitants from other cities in Ecuador and the center of social and 

commercial activities in the region (19, 21). In fact, some studies have shown higher 

rates of diarrheagenic E. coli (9,19), and other intestinal pathogens in Borbón than in 

the rest of communities in the study region (19). Consequently, in more remote 

communities, individuals may experience decreased risk due to a lower rate of 

contact with individuals from outside the region (20, 22).  

Finally, it is accepted that strains with identical sequence types (ST) may not be 

clonal   (23, 24) because MLST analyze only 7 housekeeping genes of the whole 

bacterial genome (25). As result, in this study we found 4 cases where bacteria 

belonging to distinct pathotypes shared the same ST (ST328 was found in EPEC and 
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ETEC; ST6 and ST630 were found in EIEC and Shigellae; ST4 was found in ETEC-

ST, ETEC-LT, ETEC-ST/LT). We were unable to determine whether these ST 

coincidences were due to random event or represent different stages of evolutionary 

process occurring locally, i.e. ETECs that acquire (or lose) genes or EIEC evolving to 

Shigellae (26, 27, 28). 

MLST has already been used to characterize different pathogenic bacteria (29, 30, 

31, 32). For instance MLST is useful for epidemiologic studies of extended spectrum 

beta-lactamase BL-producing E. coli strains (33), and E. coli O78 strains (34) while it 

is of little value for studies in O157:H7 (35). This observation may be explained by the 

fact that E. coli O157:H7 (a recently emerged pathogen) is a highly clonal serotype 

(35). MLST may require different or in some cases, additional loci for different 

bacteria (33). However, our study shows that MLST could serve as a molecular tool to 

study dissemination of diarrheagenic E. coli among communities.  
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TABLE 1. Pathotypes sequence primers 

Gene Primer sequence (a)     Product length: 

bfp gene (EPEC) F 5'CAATGGTGCTTGCGCTTGCT3'    324 

 
R 5'GCCGCTTTATCCAACCTGGT3' 

  

      
lt gene (ETEC) F 5'GCGACAAATTATACCGTGCT3' 

 
708 

 
R 5'CCGAATTCTGTTATATATGT3' 

  

      
sta gene (ETEC) 5'CTGTATTGTCTTTTTCACCT3' 

 
182 

 
5'GCACCCGGTACAAGCAGGAT3' 

  

      
ipaH gene (EIEC, Shigellae) 5'GCTGGAAAAACTCAGTGCCT3' 

 
424 

  5'CCAGTCCGTAAATTCATTCT3'     

(a). F, forward; R, reverse 
     

Reference: Tornieporth, N., et al. 1995 
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TABLE 2. PCR primers for multilocus sequence analysis 

Gene (function) Primer sequence (a) 
Amplicon 

size (bp) 

   
adk (adenylate kinase) F 5'-ATTCTGCTTGGCGCTCCGGG-3'  583 

 
R 5'-CCGTCAACTTTCGCGTATTT-3' 

 

   
fumC (fumarate hydratase) F 5'-TCACAGGTCGCCAGCGCTTC-3'  806 

 
R 5'-GTACGCAGCGAAAAAGATTC-3'  

 

   
gyrB (DNA gyrase) F 5'-TCGGCGACACGGATGACGGC-3'  911 

 
R 5'-ATCAGGCCTTCACGCGCATC-3' 

 

   
icd (isocitrate/isopropylmalate 

dehydrogenase) 
F 5'-ATGGAAAGTAAAGTAGTTGTTCCGGCACA-3'  878 

 
R 5'-GGACGCAGCAGGATCTGTT-3' 

 

   
mdh (malate dehydrogenase)  F 5'-ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG-3'  932 

 
R 5'-TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT-3' 

   
purA (adenylosuccinate 

dehydrogenase) 
F 5'-CGCGCTGATGAAAGAGATGA-3' 816 

 
R 5'-CATACGGTAAGCCACGCAGA-3'  

 

   
recA (ATP/GTP binding motif) F 5'-CGCATTCGCTTTACCCTGACC-3'  780 

  R 5'-TCGTCGAAATCTACGGACCGGA-3'   

(a). F, forward; R, reverse 
  

Primers are maintained at http://mlst.warwick.ac.uk  
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TABLE 3. Percentage of pathotypes (cases and controls) 

Pathotype 
Number of E. coli isolates 

(n=445) 
Percentage (%) 

ETEC-ST 8 1.8 

   
ETEC-LT 12 2.7 

   
ETEC-ST/LT 1 0.22 

   
EIEC 11 2.47 

   
Shigellae 5 1.12 

   
EPEC 2 0.45 
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TABLE 4. Pathotypes of E. coli founded per community 

Community 
Number of diarrheagenic 

E. coli isolates  

BORBÓN 13 

SAN AGUSTIN 4 

COLON ELOY  3 

SAN MIGUEL 3 

GUADUAL 2 

TRINIDAD 2 

LOMA LINDA 2 

PUNTA DE PIEDRA  2 

TELEMBI 2 

EL PROGRESO 1 

ZANCUDO 1 

VALDEZ 1 

TIMBIRE 1 

HERRADURA 1 

SAN FRANCISCO 1 
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  TABLE 5. Sequence type (ST) and ST complex  

 
Pathotype Community 

Month of 

Isolation/year 
ST 

Allelic Profile ST 

Complex adk  fumC gyrB icd mdh purA recA 

1 ETEC-ST BORBON 07/12 4267 6 6 4 16 24 8 7 **** 

2 ETEC-ST BORBON 08/12 4267 6 6 4 16 24 8 7 **** 

3 ETEC-ST COLON ELOY 03/13 69 21 35 27 6 5 5 4 st69 Cplx 

4 ETEC-ST VALDEZ 06/13 2525 10 11 5 10 12 1 2 **** 

5 ETEC-ST BORBON 08/12 2332 274 4 96 1 24 8 6 **** 

6 ETEC-ST SAN FRANCISCO 01/13 2332 274 4 96 1 24 8 6 **** 

7 ETEC-ST GUADUAL 10/12 4 6 5 4 8 8 8 2 st10 Cplx 

8 ETEC-ST PUNTA DE PIEDRA 01/13 4 6 5 4 8 8 8 2 st10 Clpx 

9 ETEC-ST/LT SAN MIGUEL 10/12 4 6 5 4 8 8 8 2 st10 Cplx 

10 ETEC-LT BORBON 08/12 4 6 5 4 8 8 8 2 st10 Clpx 

11 ETEC-LT BORBON 07/12 10 10 11 4 8 8 8 2 st10 Clpx 

12 ETEC-LT SAN AGUSTIN 03/13 10 10 11 4 8 8 8 2 st10 Clpx 

13 ETEC-LT SAN AGUSTIN 03/13 10 10 11 4 8 8 8 2 st10 Clpx 

14 ETEC-LT BORBON 07/12 155 6 4 14 16 24 8 14 st155 Cplx 

15 ETEC-LT HERRADURA 07/13 155 6 4 14 16 24 8 14 st155 Cplx 

16 ETEC-LT LOMA LINDA 10/12 641 9 6 33 131 24 8 7 st86 Cplx 

17 ETEC-LT LOMA LINDA 10/12 2758 10 27 5 8 8 8 2 **** 

18 ETEC-LT BORBON 08/12 3857 9 6 162 131 24 8 7 **** 

19 ETEC-LT TELEMBI 07/13 2602 6 95 3 274 9 8 2 **** 

20 ETEC-LT SAN AGUSTIN 03/13 328 9 23 81 18 11 8 6 st278 Cplx 

21 ETEC-LT TRINIDAD 06/13 328 9 23 81 18 11 8 6 st278 Cplx 

22 EPEC EL PROGRESO 10/12 328 9 23 81 18 11 8 6 st278 Cplx 

23 EPEC SAN AGUSTIN 03/13 4268 142 43 13 455 348 14 137 **** 

24 EIEC PUNTA DE PIEDRA 01/13 99 6 4 22 18 9 26 7 **** 
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25 EIEC BORBON 08/12 279 6 25 7 75 1 2 2 st280 Cplx 

26 EIEC BORBON 08/12 279 6 25 7 75 1 2 2 st280 Cplx 

27 EIEC GUADUAL 10/12 279 6 25 7 75 1 2 2 st280 Cplx 

28 EIEC TELEMBI 07/13 152 11 63 7 1 14 7 7 st152 Cplx 

29 EIEC TRINIDAD 07/13 152 11 63 7 1 14 7 7 st152 Cplx 

30 EIEC TIMBIRE 06/13 6 8 7 1 1 10 8 6 **** 

31 EIEC BORBON 07/12 6 8 7 1 1 10 8 6 **** 

32 EIEC BORBON 08/12 6 8 7 1 1 10 8 6 **** 

33 EIEC COLON ELOY 03/13 6 8 7 1 1 10 8 6 **** 

34 Shigellae COLON ELOY 03/13 6 8 7 1 1 10 8 6 **** 

35 EIEC SAN MIGUEL 10/12 630 6 61 6 11 6 95 7 **** 

36 Shigellae SAN MIGUEL 10/12 630 6 61 6 11 6 95 7 **** 

37 Shigellae ZANCUDO 11/12 630 6 61 6 11 6 95 7 **** 

38 Shigellae BORBON 07/12 245 6 61 6 11 13 3 50 st245 Cplx 

39 Shigellae BORBON 08/12 245 6 61 6 11 13 3 50 st245 Cplx 

**** NO DATA 
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FIGURE 1. Distribution of STs on the map of the study region where most of the STs 

were found in Borbón 

 

 

(*) ST6 found in Colon Eloy belongs to a Shigellae strain. The (*) ST4 founded in San 

Miguel and Borbón belong to an ETEC-ST/LT and ETEC-LT, respectively. 
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Figure 2. Distribution of STs on the map of the study region with the STs that were 

not found in Borbón 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(*) ST328 found in El Progreso belongs to an EPEC strain. (*) One of the two ST4 

found in San Miguel, belongs to an EIEC strain. 

 

 

* * 
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Appendix 1.  Variable nucleotide position among the intern fragments of the 7 

housekeeping genes. Numbers in the top row represent the position of the 

polymorphic base. Dots (.) represent nucleotide identity among all 19 STs 

40 145 201 202 205 295 298 316 322 331 334 340 346 358 388 400 424 430 442 454 460 481 493 496 505 514 516 517 526 535

ST4267 T C G T T C C T T A C C T T G C A T C A G C T A C C C C G T

ST10 . . . . . . . C C C T . . . . . . . T G A . A . . . . . A .

ST155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST2332 . . . . . T T C C G G T C C . T G C T . A T . G T T . A T C

ST3857 . . A . . . . C C C T . C . . . . . T G A . A . . . . . . .

ST279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST641 . . A . . . . C C C T . C . . . . . T G A . A . . . . . . .

ST2758 . . . . . . . C C C T . . . . . . . T G A . A . . . . . A .

ST328 . . A . . . . C C C T . C . . . . . T G A . A . . . . . . .

ST630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST4268 C . . C C . . . C . . . C . . . . . . G A . . . . . . . . .

ST6 . . . . . T T C C G T T C C . T G C T . A T . G T T . A T .

ST2525 . . . . . . . C C C T . . . . . . . T G A . A . . . . . A .

ST2602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST152 . . . . . . . . . . . . . . . . . . . . . . . . . . T . . .

ST69 . T . . . . . C . C T . . . T . . . . . . . . . . . . . . .

14 62 63 80 120 123 152 158 167 194 212 227 248 251 257 278 281 282 296 302 307 311 317 320 323 338 344 350 353 365 368 375 380 383 391 405 416 420 437

ST4267 G G C C C G C C A G C G G G G G G C A G G A G T A C C A C C C C A A A G C C C

ST10 T . . . . . T . . . . . . . . T . . . A A G C . T . T T T T . T G G . . . . .

ST155 . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . .

ST245 . . . . . . T . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . .

ST2332 . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . .

ST3857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST279 . . . . . T . . . . . . . . . . . . . A A . . . . A . . . . . . . G . . . . .

ST4 T . . . . . T . . . . . . . . T . . . A A G C . T . T T T T . T G G C . . . .

ST641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST2758 T . . . . . T . . . . . . . . T . . . A A G C . T . T T T T . T G G . A . . .

ST328 . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . G . . . . .

ST630 . . . . . . T . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . .

ST99 . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . .

ST4268 . . . . T . . . . . . . A A . A A . C . . . C C . . . T . . G T G G . . G . .

ST6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . T .

ST2525 T . . . . . T . . . . . . . . T . . . A A G C . T . T T T T . T G G . . . . .

ST2602 . . . . . . . . . C . . . . . . . . . . . . . . . A . . . . . . . G . . . . .

ST152 . . . . . . . . . . . . . . . . . G . A . . . . . . . . . . . . . G . . . . .

ST69 . A T T . . . T G . T A . . . . . . . . . . . . . A . . . . . . . G . . . . T

27 63 117 121 174 180 282 288 291 294 321 330 372 375 387 396 405 411 417 427 444 83 263 278 320 329 359 377 389 420 443 447 470

ST4267 A C C C C C C C C C C G C G C T C T C T C A G C T G T T C C C C C

ST10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST155 . . . . T . . T . . . . . . . C . . . . . . . . . . . . . . . . .

ST245 . T T . . . . T . . . A . A . C . . T C . G . . C . . . . . . . A

ST2332 . . A T . . . . . . . . T . T C . . . . . . . . . . . . . . . . .

ST3857 T . T . . . T T . . . . . . . C . . . . . . . . . . . . . . . . .

ST279 . . A T . . . . . . . . . . . . . . . . . G . . C . . . . . . . .

ST4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST641 T . T . . . . T . . . . . . . C . . . . . . . . . . . . . . . . .

ST2758 . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST328 . . T . . . . T . . . . . . . C . . . . G . . . . . . . . . . . .

ST630 . T T . . . . T . . . A . A . C . . T C . G . . C . . . . T . . A

ST99 . . . . . . . . . . . . . . . C . . . . . G . . . . . . . . T . A

ST4268 . . . . A T . . T . . . . . . C . . . . . G T T . . C . T . . T .

ST6 . . T . . . . T . . . . T . . C . . . . . . . . . . . . . . . . .

ST2525 . . T . . . . . . . . . . . . . . . . . . G . . . . . . . . . . .

ST2602 . . . . . . . . . . T . . . . C . . . . . . . . . . . . . . . . .

ST152 . . A T . . . . . . . . . . . . . . . . . . . . . . . . . . T . A

ST69 . . T . A . . . . T . . . . . C T C . . . G . . C T . A . . . . .

1 19 25 28 49 52 55 421 451 472 505 3 54 63 85 92 93 138 141 144 147 156 219 237 348 384 396 405 420 429

ST4267 C C C T G C C C A T C T C G G C C C T T A T T C T T G G A C

ST10 . . . C . . . . G C . C . . . . . . A . . . . . . C . A G .

ST155 . . T . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST245 . . . . . T . . . . . C . . . A . . A . . . . . . . . . . .

ST2332 . . . . . . . . G C . . . . . . . . . . . . . . . . . . . .

ST3857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST279 . . . C . . . . G C . . . . . . . . A . . . . . . . . . . .

ST4 . . . C . . . . G C . C . . . . . . A . . . . . . C . A G .

ST641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST2758 . . . C . . . . G C . C . . . . . . A . . . . . . C . A G .

ST328 . . . . . . . . G C . . . . T . . . A . G . . . . . A A . .

ST630 . . . . . . . . . . . C . . . . . . A . . . . . . . . . . .

ST99 . . . . . . . . . . . . . . . . . . A . G . . T . . A A . T

ST4268 . T . C T . . . G C . C T A . . T T A G T A . . . . . . . .

ST6 . . . . . . . . G C . . . . . . . . A . G . . . . C . A . .

ST2525 . . . C . . . . G C . . . . . . . . A . G . . . . C . A G .

ST2602 . . . C . . . . G C . . . . . . . . A . G . . T . . A A . T

ST152 . . . . . . . . . . . . . . . . . . A . G . C T . C . A . .

ST69 T . . C . . T T G C T . . . . . . . A . G . . . C . . . . .

Sequence 

Type (ST)

Sequence 

Type (ST)

Sequence 

Type (ST)

Sequence 

Type (ST)

recA gene

adk  gene

fumC gene

gyrB gene

mdh  gene

purA  gene

 


