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RESUMEN 

La producción de biocombustibles se ha expandido en la última década y la demanda de 
biodiesel ha aumentado en todo el mundo. El biodiesel puede ser producido a partir de 

lípidos que se encuentran en las células de microalgas debido a su alto metabolismo 
fotosintético. Este proceso de producción de biodiesel representa los biocombustibles de 
tercera generación, que tienen un gran potencial para la producción de energía 

renovable de manera sostenible. Por lo tanto, el ob jetivo de esta investigación es 
producir biodiesel a partir de microalgas Chlorella sp. nativa cultivada en un 

fotobiorreactor a escala de laboratorio para maximizar el contenido de lípidos. Un 
tubular fotobiorreactor de 10 L (FBR) se instaló con un flujo de aire ascendente de 3 L 
min-1. Luz artificial fue proporcionada por cinco lámparas blancas fluorescentes frías de 

20 W con 12 horas de luz y oscuridad, respectivamente. Se observó que el contenido de 
lípidos más alto fue de 38% con una concentración celular óptima de           células 

ml-1,cuando se limitó las fuentes de nitrógeno. Un pH neutro de 7 aseguró una tasa de 
remoción de amonio de -5,2 mg L-1 d-1 y la tasa de producción de nitrato de 9,9 mg L-1 

d-1. Los lípidos a partir de microalgas fueron convertidos en biodiesel por un proceso de 
transesterificación, utilizando un catalizador homogéneo KOH y metanol. La presencia 

de ésteres metílicos (biodiesel) fue confirmada por Cromatografía de Capa Fina (CCF) 
utilizando un solvente mezcla compuesto de éter de petróleo, éter dietílico y ácido 
acético (80: 19: 1) y una cámara de yodo para revelar las placas de CCF. Biodiesel de 

soya fue elaborado a partir de aceite de soya comercial como un control positivo para el 
biodiesel de microalgas. A partir de un contenido total de lípidos de 27,4% (v / v), se 

obtuvo 6 ml de biodiesel de microalgas. El factor de retardo relativo (Rf) obtenido fue 
0.76 para biodiesel producido a partir de microalgas e indica lo cercano que es este 
valor en comparación a otros expuestos en la literatura. De esta manera, la cepa nativa 

Chlorella sp. podría ser una fuente potencial para la producción de biodiesel. 

Palabras Clave: microalgas, lípidos, transesterificación, biodiesel.  
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Abstract 

Biofuel production has expanded in the last decade and the demand for biodiesel has 

increased worldwide. Biodiesel can be produced from lipids found in microalgae cells 
due to its high photosynthetic metabolism. This process of biodiesel production 

represents the third-generation fuels, which have a great potential for renewable energy 
production in a sustainable way. Thus, the goal of this research was to produce biodiesel 
from native microalgae Chlorella sp cultivated on a laboratory scale photobioreactor to 

maximize the lipid content. A 10 L tubular bench-scale photobioreactor (T PBR) was 
installed with an upward airflow of 3 L min-1. Lightning was provided by five white 

fluorescent cold 20 W lamps with 12 hours of light and darkness, respectively. The 
highest lipid content of 38% with an optimal cellular concentration of          cells 

mL-1 was observed when a deprived N-concentration medium was supplied to the 
culture. A neutral pH of 7 ensured an ammonium’s removal rate of -5.2 mg L-1 d-1 and a 

nitrate’s production rate of 9.9 mg L-1 d-1. The lipids from microalgae were converted 
into biodiesel by a transesterification process utilizing a homogeneous catalyst KOH 

and methanol. The presence of methyl esters (biodiesel) was confirmed by Thin Layer 
Chromatography (TLC) utilizing a solvent mixture composed of petroleum ether, 
diethyl ether and acetic acid (80:19:1) and an iodine chamber for reveling TLC plates. 

Soja biodiesel from a commercial soja oil was produced as a positive biodiesel control 
for microalgae biodiesel. From a total lipid content of 27.4 % (v/v), 6 mL of microalgae 

biodiesel was obtained. The relative retardation factor (Rf) was calculated 0.76 for 
biodiesel produced from microalgae and indicated how close is this value from the 
values reported in the literatures. Hence, native strain Chlorella sp. could be a potential 

source for biodiesel production.  
 

Keywords: microalgae, lipids, tranesterification, biodiesel, Thin Later Chromatography 
(TLC)   
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Introduction  

Continuously usage of petroleum-sourced fuels is now broadly recognized as 

unsustainable and environmental unfriendly because of the depleting supplies and 

release of Green House Gases (GHG) into the atmosphere (Hu et al., 2015). According 

to the statistics presented by the World Energy Council, North America and Asia are the 

regions that consume the largest amount of energy worldwide, 34.8 % and 32.5 % 

respectively (WEC, 2015). Latin American countries that consume the major quantity of 

petroleum barrels per day are Argentina (770), Brazil (3003) and Venezuela (746). In 

2010, Ecuador consumed 243 thousand of petroleum barrels per day, while during 

2013; Ecuadorian population consumed 254 thousand of petroleum barrels per day 

(U.S. Energy Information Administration, 2015). Evidentially, the global consumption 

of fossil fuels tends to increase, and eventually the diminishing of these is warrantied.   

The increase of crude oil prices and environmental degradation such as 

accumulation of GHG in the atmosphere and oil spills; have forced governments, 

industries, scientists and researchers worldwide to find out alternative energy sources. 

Biofuels have received considerable attention in recent years, as they are primarily 

produced from non-toxic, biodegradable and renewable resources, and they do not 

affect the environment, since its use leads to a reduction in harmful CO2 emissions, 

hydrocarbons, particulate matter (PM), and elimination of SOx emissions (Gouveia and 

Oliveira, 2009). As claimed by Alam et al., biofuel production from renewable sources 

is considered to be one of the most sustainable alternatives to fossil fuels, it is viable for 

environmental and economic sustainability because it maintains natural resources 

through energy efficient methods (Alam et al., 2015).  Biodiesel is currently produced 

from oil crops, waste cooking oil or animal fat. These sources are the candidates to 

reduce the consumption of fossil fuels, but in truth they are not viable enough to satisfy 
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even a small fraction of the total demand of fossil fuels (Hu et al., 2015). In Brazil 

ethanol is produced from sugar cane, in USA ethanol is mainly produced from maize 

and Europe produces an estimated of 8% of the global biodiesel from domestically 

grown rapeseed (SAASTA, 2013).  

Research has begun to focus on alternative biomass-derived fuels. On this way, 

one promising source of biomass for alternative fuel production is microalgae, which 

can be used as a fuel to supplement coal in generation of electricity (Richardson et al., 

2010). From worldwide total biodiesel production, just a simple fraction of 2.42% 

comes from miocroalgae because its production is still being studied. Main algae 

biodiesel producers are The Netherlands, UK, USA, Canada and Argentina (Torres et  

al., 2013). 

Currently, microalgae are promoted as an ideal third generation biofuel 

feedstock due to its fast growth rate, greenhouse gas fixation ability (CO2 fixation) and 

high capacity of lipids production (Alam et al., 2015). Microalgae are converters of 

solar energy capable of producing double time the biomass per unit area contrasted to 

terrestrial plants. Even so, microalgae are efficient biological factories able to convert 

zero energy –CO2 gas emissions- into valuable oils and biomass as feedstocks to 

produce biofuels (Ghayal and Pandya, 2013).  

There are several species of microalgae that biologists have previously 

categorized depending by their pigmentation, life cycle and basic cellular structure 

(Ghayal and Pandya, 2013). Main potential species for biodiesel production include 

Chlorella and Scenedesmus because they can double their biomasses within 24 hours 

and the oil contents are in the range of 20-30 % (dry wt.) (Alam et al., 2015). Oil 

productivity, which is the mass of oil produced per unit volume of microalgae, duplicate 
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per day (Hu et al., 2015). Microalgae with optimal growth-rates and content of lipids 

are suitable options for producing biodiesel.     

Biodiesel is a mixture of monoalkyl esters of long chain fatty acids, which can 

be transesterified from algae lipids (Yusuf Chisti, 2007). The most significant 

distinguishing characteristic of algae oil is its yield, and hence its biodiesel yield. As 

stated by Ahmad et al., the yield per acre of oil from algae is over 200 times the yield 

from the best-performing plant or vegetable oils such as maize and sugar cane(2013). 

There are several methods used to extract oil from algae including chemical solvents, 

mechanical systems, thermal and plasma techniques (Li et al., 2007). In the case of the 

former one, algae oil can be extracted by using suitable solvents such as chloroform and 

methanol. Transesterification is the most common method that leads to monoalkyl 

esters of algae oil (Ahmad et al., 2013). This process requires a homogeneous catalyst 

(KOH) and methanol to perform successfully the reaction.  

The objective of this study was to assess the biodiesel production from native 

Ecuadorian microalgae. Optimized cultivation techniques were applied to improve the 

growth rate of microalgae and to maximize the total content of lipids. The effect of 

injecting CO2 to the photobioreactor was evaluated in the culture.  Simultaneously, a 

weekly monitoring was conducted during the reactor operation time to evaluate nutrient 

assimilation, biomass production and lipids production.  Finally, biodiesel was produced 

by tranesterification process using a chemical homogeneous catalyst (KOH) and 

methanol. Presence of methyl esters compounds (biodiesel) was confirmed by Thin 

Layer Chromatography employing silica plates revealed with an iodine chamber.  
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Materials and Methods  

Chemicals.  

Sodium nitrate, calcium chloride dehydrate, dipotassium phosphate, 

monopotassium phosphate, sodium chloride, sodium bicarbonate and proteose peptone 

were obtained from Reactivos H.V.O (Quito, Ecuador). Magnesium sulfate 

heptahydrate was acquired from Representaciones Vamarth (Quito, Ecuador). For lipids 

extraction and tranesterification process, chloroform, hexane, methanol, potassium 

hydroxide, petroleum ether, dietylether and acetic acid were obtained from Reactivos 

H.V.O (Quito, Ecuador). All the reagents used in this study were of analytical grade and 

were used as received.   

 

Microalgae strain cultivation.  

The native microalgae was donated from a Chlorella sp. strain from ―ESPE‖, 

Escuela Politécnica del Ejército. Microalgae were cultivated in a 10 L tubular 

photobioreactor (T PBR) with a 3 L min-1 constant aeration rate, provided by an 

aquarium pump.  Optimal cultivation conditions were assured by offering artificial light  

with 5 fluorescent 20W OSRAM tubes with 12 hours photoperiods.    

 

Nutrient & fertilizer medium.  

The composition of the nutrient medium was (g L-1):  NaNO3 (0.25), CaCl2  2 

H2O (0.025), MgSO4  7 H2O (0.075), K2HPO4 (0.075), KH2PO4 (0.175), NaCl (0.025), 

Proteose Peptone (1) and NaHCO3 (0.1).  When needed, fertilizer medium was added to 

the tubular photobioreactor for improving the culture conditions and the composition 

was: 5 mL of salts solution which include (g): NH4Cl (100), MgSO4  7 H2O (4), CaCl2 
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 2 H2O (2), 5 mL of phosphate solution (K2HPO4 and KH2PO4), 1 mL of Sueoka’s high 

salt medium, 1 mL of an 8% sodium bicarbonate solution and 1g of Agroquality  

fertilizer. Both mediums were sterilized in the autoclave during 15 minutes at 121ºC 

prior adding to the T PBR. 

 

CO2 injection. 

A CO2 air Aluminum cylinder tank provided carbon dioxide (CO2) to the tubular 

photobioreactor. The inlet flow was regulated by a gas proportioner instrument (Model 

G, AALBORG). A mixture of 95% air and 5% CO2 , was injected to the 

photobioreactor using a homogeneous Model G gas proportioner blended. 

 

Tubular photobioreactor monitoring (T PBR). 

Daily monitoring included taking out 400 mL of medium from the T PBR and 

measuring in-situ parameters. Dissolved Oxygen (DO), temperature, pH and 

conductivity were measured with a Thermo Scientific Orion 5-Star portable 

multiparameter meter (Thermo Scientific, Beverly, MA 01915, USA). Afterwards, 400 

mL of fresh nutrient medium were added.  

Once a week, microalgae nutrients assimilation was analyzed. NH4
+-N and NO3

- 

-N concentrations were determined using Orion ion-selective electrodes, respectively. 

Chemical oxygen demand (COD) and phosphates were measured by a colorimetric 

method using a Spectronic 20D+ spectrophotometer (Thermo Fisher Scientific Inc. 

Waltham, MA, USA). Samples for biological oxygen demand (BOD) test were 

incubated into the Oxitop Box – Thermostat box with forced air circulation for 20 (±0,5 

°C) during 5 days. Concurrently, cell density, cellular concentration and total co ntent of 

lipids were measured every week.  
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Cellular concentration. 

Cellular concentration was determined by using a Neubauer counting chamber. 

To set up this test, 40    of microalgae sample was diluted in 160    of lugol’s 

solution. This solution helps to immobilize the cells. 10    of the prepared mixture 

were added to the counting chamber. Cell counting was carried out in 40X lens of a 

Leica CME microscope.  Cellular density was calculated by using Eq. 1.  

                       [            ]                                        Eq.1 

 

Biomass and lipids extraction. 

For biomass determination, a 45 mL sample was centrifuged at 5000 rpm for 10 

minutes. Biomass was dried by placing it into the oven at 105ºC overnight. Total 

biomass was determined by weight difference (Eq. 2). Lipid extraction was achieved by 

a solvent extraction method based on chloroform and methanol. Dried biomass was 

grinded and transferred to 15 mL falcon tubes. 2 mL of chloroform (CHCl3) and 1 mL 

of methanol (CH3OH) were added and centrifuged at 5000 rpm for 10 minutes. The 

upper layer (supernatant) was the one that contained the extracted lipids. This layer was 

transferred into another falcon tube where 5 mL of distilled water was added. When 

centrifugation was done in the last falcon tube, three layers were distinguished: upper 

layer-water, intermediate layer- organic particles and bottom layer- chloroform and 

lipids mixture. The bottom layer was transferred into previously weighed digestion 

tubes. This process was repeated from 3 to 5 times until obtaining a clear supernatant. 

Finally, when chloroform was totally evaporated, digestion tubes with dry lipids were 

weighed. Total content of lipids was calculated with Eq. 3 & 4. 

  

                 
                                              

                     
      Eq. 2 
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                      ( )                          –                      Eq.3 

                   (
 

 
)  

           ( )

            ( )
                         Eq. 4 

Transesterification. 

Transesterification was accomplished in presence of a homogeneous catalyst 

(KOH) and methanol according to the protocol described by Geris et al (2007). 

Previous extracted lipids were added (approx. 2 g) to the solution of KOH and methanol 

in agitation for 1.5 hours. This mixture was placed into a separatory funnel and distilled 

water was added to wash the biodiesel produced. The washing biodiesel process started 

with the removal of the aqueous phase. Subsequently, 15 mL of NaCl saturated solution 

was added to the separatory funnel. This process was repeated until the aqueous phase 

was totally cleaned, and pH measurements were conducted until obtaining neutral 

values (7-6). Biodiesel (upper phase) was transferred into a test tube to determine the 

total volume of biodiesel obtained. Magnesium sulfate anhydrous was added until 

biodiesel turned apparently white. In order to confirm the effectiveness of the 

transesterification process commercial soja oil was employed to produce soja biodiesel 

as a positive control. 

 

Thin Layer Chromatography (TLC) & Rf values.  

TLC plates EMD Millipore Company were prepared by marking two reference 

points at the bottom and upper part (solvent front) of the plate. The solvent mixture 

consisted on petroleum ether (8 mL), ethyl ether (1.9 mL) and acetic acid (0.1 mL). 

With a capillary tube, biodiesel was placed at the starting point (bottom part) of the 

TLC plate.  The TLC plate was stood in a shallow layer of the prepared solvent mixture 

in a covered beaker until the solvent reached the ―solvent front‖. Ultimately, the TLC 
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plate was revealed with an iodine chamber. TLC plates for soja biodiesel produced from 

commercial oil were also run as a reference.   

Rf values are the measurements of the travelled distance by the solvent, and the 

distance travelled by individual spots. Rf values were calculated using Eq. 5. 

   
                                

                             
  Eq. 5 

  



18 

 

Results and Discussion 

Optimization of microalgae cultivation. 

  

Nutrient medium was used to cultivate Chlorella sp. (Fig. 1), which provided 

many elements for the growth of microalgae such as C, O, H, N, K, Ca, Mg, P, and 

trace elements. The initial concentration of nitrate (NO3
-) was 180 mg L-1. Ammonium 

concentration (NH4
+) was provided from protesoe peptone and its initial concentration 

was 177.8 mg L-1.  In the case of P, the initial phosphates (PO4
3-) concentration was 

162.1 mg L-1.  

Fig 2 illustrates the assimilation of nitrogen and phosphorous by native 

Chlorella sp. strain cultivated in the tubular photobioreactor as a function of operation 

time. Ammonium absorption started at the second week even faster than nitrate 

production. According to Zhu et al., the absorption and utilization of nitrogen have the 

following order: ammonium > urea > nitrate > nitrite (2013).  
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Figure 1: Native Ecuadorian microalgae strain Chlorella sp. 
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Figure 2: () Nitrate production, () ammonium and (•) phosphate assimilation of 

Chlorella sp. strain cultivated in a 10 L T PBR with a 3 L min-1 constant aeration rate 
and 5 fluorescent artificial light 20W OSRAM tubes with 12 hours photoperiods.    
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Thus, ammonium is directly used to synthesize amino acid while the other 

nitrogen sources have to be converted to ammonium and then amino acids can be 

synthesized (Zhu et al., 2013). It was also found that microalgae grow properly using 

sodium nitrate (NaNO3) as a nitrogen source as illustrated by an optimal biomass 

productivity and lipid content of 30% (Yusuf Chisti, 2007). The Hydraulic Retention 

Time (HRT) in the tubular photobioreactor was 20 days hence significant nutrient’s 

removal was observable at the end of this period. 

As exposed in Figure 2, there is an evident NO3-N production and NH4
+-N 

removal. Nitrogen balance was done in order to determine the initial and final N-

concentration during the HRT. Initial N-concentration was 178.9 mg L-1 and after 20 

operating days, the concentration was 123.6 mg L-1, with a difference of 55.2 mg L-1. N-

concentration for all period is exposed in table 1. None period presented the same N-

concentration at the beginning and at the end of every 20 days. For every case there was 

a difference of N-concentration which indicates that part of the nitrogen was 

incorporated into microalgae biomass, considering that 5-10% of it is nitrogen (Zaimes 

and Khanna, 2013).  During microalgae cultivation N and P became limiting since they 

both played a role in controlling the growth rate and lipid production of microalgae.   

 

Table  1: Nitrogen balance for the photobioreactor during operation time 

Period mg N-NO3 L
-1

 mg N-NH4 L
-1

 mg N L
-1

 Difference [mg N L
-1

] 

Incorporated 

in Biomass 

[% ] 

Day 1 40,6 138,3 178,9   

Day 20 67,1 56,6 123,7 55,2 7,5 

Day 40 80,3 19,1 99,4 79,5 11,7 

Day 60 84,0 18,7 102,8 76,2 11,0 

Day 80 88,9 27,9 116,8 62,2 9,6 

Day 100 90,4 18,4 108,8 70,2 10,3 
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Fertilizer medium was used since week 6 due to poor conditions of microalgae  

in the photobioreactor. This fertilizer medium is rich in P-source but short in N-source, 

for all that, low cellular concentration of           cells mL-1 measured. In fact at this 

point, a maximum concentration of PO4
3- of 86.2 mg L-1 was registered. At the end of 

the monitoring time, nutrients’ concentrations were almost constant. For instance, Zhu 

and coworkers in their study about cultivation microalgae for biodiese l found that a 

possible reason for the final T PBR’s stationary state is traceable to the low 

concentration of microalgae cells and limiting nutrient conditions (Zhu et al., 2013).      

 

Effect of CO2 injection in microalgae growth.  

The effect of CO2 injection in microalgae growth was evaluated in the tubular 

photobioreactor. Throughout week 5, a mixture of air (95%) and CO2 (5%) was 

supplied to the T PBR. As established by Zhu et al, maximum photosynthetic efficiency 

is often achieved with CO2 concentrations from 1% to 5% (by volume) (Zhu et al., 

2013). In this study, the nutrient medium used already had a C-source, which was 

NaHCO3 (0.1 mg L-1). Zhu’s et al study demonstrated that NaHCO3 can be used as a 

buffering agent to control the pH (2013). However, in this study the CO2 injected did 

not have a positive effect in microalgae growth. In fact, as illustrated in Fig. 3 the pH 

decreased to acid values. In addition, low concentrations of phosphates were 

assimilated, while fewer nitrates were produced as demonstrated in Fig. 2. However 

ammonium was normally assimilated.    
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Figure 3: pH monitoring for Chlorella sp. strain cultivated in a 10 L T PBR with a 3 L 
min-1 constant aeration rate and 5 fluorescent artificial light 20W OSRAM tubes with 12 

hours photoperiods.  
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pH is another main factor influencing the cultivation of microalgae. When 

beginning with the monitoring (Fig. 3) the pH of the cultivation was 9, while an optimal 

growth pH range is from 6 to 7 (Yusuf Chisti, 2007). As described by Zhu et al, when 

pH > 8.3 the most abundant ion present in the cultivation is HCO3
- and when the pH <5 

the majority of dissolved inorganic carbon is CO2 (2013). Therefore the predominant 

ion when pH was 9, was HCO3
- because of the high concentration of NaHCO3

-.   

Daily monitoring of operational parameters. 

Daily monitoring of operational parameters in the photobioreactor included pH, 

DO, temperature and conductivity measurements. pH is one of the factors influencing 

the cultivation of microalgae in the photobioreactor. As illustrated in Fig. 3 when 

beginning with the monitoring, the pH of the cultivation was 9, while according to the 

literature for an optimal growth, the pH values typically range from 6 to 7 (Yusuf 

Chisti, 2007). As described by Zhu et al, when pH > 8.3 the most abundant ion present 

in the cultivation is HCO3
- and when the pH <5 the majority of dissolved inorganic 

carbon is CO2 (2013). Therefore, in the cultivation medium evaluated in this study, 

HCO3
- was the predominant ion when pH was 9 because of the high concentration of 

NaHCO3
-.   

 Temperature varied from 19-25 ºC (Fig. 4), the ideal temperature for microalgae 

culture ranges between 15-27 ºC (Pruvost et al., 2015). Dissolved Oxygen values 

oscillated between 5-7 mg L-1 (Fig. 4) and are the appropriated for the culture of 

microalgae. Low oxygen concentrations (< 4 mg L-1) can have deleterious effects on 

microalgae causing significant decrease in photosynthetic performance (Haas et al., 

2014). DO over 8 mg L-1 is toxic for Chlorella sp. because it causes oxygen tension 

during periods of high light intensity (morning times) leading to photo-oxidation which 

reduces the yield of the culture (Dormido et al., 2014).  
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Figure 4: Dissolved Oxygen () and Temperature ( ) monitored for Chlorella sp. 

strain cultivated in a 10 L T PBR with a 3 L min-1 constant aeration rate and 5 

fluorescent artificial light 20W OSRAM tubes with 12 hours photoperiods.  
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In the photobioreactor, conductivity had values within 1500-2000 μS cm-1 

during first operation time while using nutrient medium. When fertilizer medium was 

added to the culture (day 80), conductivity values were mainly constant between 1000 

and 1500 μS cm-1 (Fig 5). Conductivity indicates the total ions present on the culture. 

As nutrient medium is abundantly composed by salts and organic compounds, 

conductivity increases (Mostafa et al., 2012).  
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Figure 5: Conductivity () monitoring for Chlorella sp. strain cultivated in a 10 L T 
PBR with a 3 L min-1 constant aeration rate and 5 fluorescent artificial light 20W 
OSRAM tubes with 12 hours photoperiods. 
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Cellular concentration, lipid content and biomass production. 

 
Cellular concentration measurement are a good indicator of cells growth and 

presented an initial concentration of         cells mL-1. As shown in figure 6, during 

the first 3 weeks cellular concentration was not constant. The second week presented 

less concentration than the initial one, while in the third and fourth week showed an 

increment on cells growth. However, during CO2 injection (week 5) there was a 

remarkable decline on cells growth, showing a concentration of         cells mL-1. 

Fertilizer medium improved the culture growth and straightaway, the reported cellular 

concentration was         cells mL-1. Since week 6 cellular concentration remained 

partially constant within a range of         -         cells mL-1.  

Air enriched with CO2 is considered to upgrade microalgae growth because they 

incorporate it into the photosynthesis process, providing energy and higher capability 

for cells to duplicate (Tsuzuki et al., 1990). In contrast, cellular concentration in this 

experiment decreased when CO2 was injected to the photobioreactor. This is attributable 

to the low pH values registered during week 5. When fertilizer medium was supplied, 

cellular concentration values incremented considerably. As stated by Zhu et al., cellular 

growth increases with increasing concentration of P since this element plays an 

important role in metabolic processes of microalgae such as transduction and energy 

conversion during photosynthesis (2013).  

An important part of this study was is to determine the total lipids content or 

triacylglycerol (TAG) because these are used for biodiesel production. Figures 6 & 7 

show the lipids content according to cellular and biomass concentration, respectively. 

There is a notorious relationship between cellular concentration and content of lipids. 

The initial value for lipids content was 9.0 %(v/v). During week 5, when the lowest 

cellular concentration was measured, the lipids content was 10.3 %(v/v). A meaningful 
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increment on the content of lipids was appreciated since week 6, when fertilizer 

medium was supplied. In week 8, the highest cellular concentration was registered 

(         cells mL-1) as well as the highest content of lipids 38.4 %(v/v). 

Subsequently, microalgae culture reached an optimal content of lipids within 25-30% 

(v/v). Microalgae oil content for Chlorella sp. varies from 28-32 % (v/v) 

(Andruleviciute et al., 2014).  
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Figure 6:Cellular concentration (•) and lipid content (  ) for Chlorella sp. strain 

cultivated in a 10 L T PBR with a 3 L min-1 constant aeration rate and 5 fluorescent 
artificial light 20W OSRAM tubes with 12 hours photoperiods. 
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In the case of the biomass concentration, during the first week the concentration 

was 0.7 g mL-1. The lowest biomass concentration (0.1 g mL-1) was found during week 

5 (Fig. 7). As can be observed, from week 5 to 6, biomass concentration increased by 

17.4 % which leads to a final concentration of 0.69 g mL-1. In addition, 0.8 g mL-1 was 

the highest biomass concentration, and it was measured during week 8. Since then, the 

concentration tended to be constant and oscillated within 0.6- 0.7 g mL-1. 

Lipid content in microalgae highly depends on nitrate in the medium. N-Stress is 

a suitable option for increasing lipid content. The possible reason is tha t the content of 

adenosine monophosphate deaminase (AMPD) increases under N-stress conditions, 

promoting the catalysis of adenosine monophosphate (AMP) to ionsine monophosphate 

(IMP) and ammonia. Because most of isocitrate dehydrogenase (ICDH) in 

mitochondrion is dehydrogenase dependent on AMP, reducing AMP would inhibit the 

activity of ICDH (Zhu et al., 2013). Afterwards, ICDH is used to produce ATP 

molecules, if ATP is not being produced, ICDH will accumulate in the cell. Therefore, 

additional lipids stock would be expected.   

Consequently, as high lipid production is correlated with nutrient deprivation, it 

results in diminished photosynthetic efficiency and decreased cellular growth (Chiu et  

al., 2009). Hence, the two conditions of high lipid content and high biomass 

productivity are mutually exclusive. When fertilizer medium was provided to the 

culture, lipids content incremented significantly from 10 to 25% (v/v) (Fig. 7) and even 

the highest content of lipids was registered 38.4% (v/v), because there was a N-

privation.  However, the microalgae strain has gained an optimal content of lipids and 

an ideal growth rate of        cells mL-1 d-1.   
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Figure 7:Biomass production () and lipid content (  ) for Chlorella sp. strain 

cultivated in a 10 L T PBR with a 3 L min-1 constant aeration rate and 5 fluorescent 
artificial light 20W OSRAM tubes with 12 hours photoperiods 
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Production of biodiesel from transesterification process. 

 
Catalytic transesterification is a common and well-established chemical reaction 

in which alcohol reacts with triglycerides of fatty acids (microalgae lipids) in the 

presence of a catalyst (KOH) (Krishnakumar et al., 2008) (Fig. 8). Therefore in this 

study, transesterification of microalgae TAGs took place in presence of methanol and 

KOH as a homogeneous catalyst to obtain methyl esters (biodiesel). Several 

investigators found that the reaction starts very fast and almost 80% of the conversion 

takes place in the first 5 minutes and after 1 hour nearly 93-98% of triglycerides are 

converted to ester (Krishnakumar et al., 2008). In the present work, three 

transesterification trials were made. Table 2 presents the results for the 

transesterification process including different content of lipids (%), amount of lipids (g) 

and final volume (mL) of obtained biodiesel. The reaction time was 60 minutes, which 

ensures total conversion of TAGs into methyl esters. For the first trial, when washing 

biodiesel, saponification occurred because using KOH conducted to hydrolyze any 

produced ester. This undesirable saponification reduces the ester performance (Geris et  

al., 2007). A NaCl saturated solution was used for the next two trials to avoid emulsion 

formation and impeding biodiesel separation process. The third trial presented the 

highest amount of lipids (2.2 g) as well as the highest biodiesel volume (6 mL). 

Biodiesel final volume does not depend on the content of lipids (Ault et al., 2012). As 

indicated in table 2, first trial had an elevated content of lipids (38.35 %) however, the 

final biodiesel volume was 2mL, which is the lowest volume between the three trials. 

Obtained microalgae biodiesel had a color between white and light green and a neutral 

pH.    
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Figure 8: Transestrification of tricyceride (microalgae TAGs) in presence of KOH 
(homogeneous catalyst) to methyl esters (biodiesel). 

 

Table  2: Tranesterification process including different content of lipids (%), amount of 
lipids (g) and final volume (mL) of obtained biodiesel     

 

Trial Content of lipids [%] Lipids [g] Biodiesel [mL] 

1 38.4 0.9 2 

2 30.9 1.2 2.6 

3 27.4 2.2 6 

 

The reaction efficiency of the transesterification process was evaluated using 

TLC plates. The chromatogram analysis confirmed the conversion of triglycerides in 

methyl esters. Retardation factors (Rf) values calculated in this study are presented in 

table 3, since these factors are difficult to keep constant from one experiment to another, 

―Relative Rf values‖ are generally considered (Ault and Pomeroy, 2012) . According to 

Geris et al, Soja biodiesel has a relative Rf value of 0.83 (2013), which is similar to the 

Rf value for the soja biodiesel obtained in this study, 0.82. On the same way, Shan et al. 

experiments on biodiesel from microalgae, presented a relative Rf value of 0.7 (Shan et  

al., 2012). Relative Rf values for this work are reasonably close to the one obtained in 

Shan et al. studies, 0.71 and 0.76 for trial 2 and 3, respectively. Differences between 

these values are caused by the purity of solvents, the solvent mixtures, TLC plates, 

amount of methyl ester spotted and temperature (Wegeberg and Felby, 2010).   

 

Catalyst CH2-OCOR1         CH2-OH   R1-COOCH3 

CH-OCOR2  +     HOCH3        ⇌         CH – OH +     R2-COOCH3 

 

CH2-OCOR3         CH2-OH   R3-COOCH3 
Triglyceride                         Methanol                                       Glycerol      Methyl esters 

(parent oil)   (alcohol)              (biodiesel) 
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Table  3: Retardation factor (Rf) determined by using Thin Layer Chromatography 
(TLC) for three different trials of microalgae biodiesel a Soja biodiesel control  

 

Substance  Rf  

Microalage biodiesel 
(trial 1) 

0.65 

Microalage biodiesel 
(trial 2) 

0.71 

Microalage biodiesel 
(trial 3) 

0.76 

Soja Biodiesel 
(control) 

0.82 
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Conclusions  

 
 The feasibility of producing biodiesel from native Ecuadorian microalgae was 

successfully studied based on microalgae culture optimization, total lipid content and 

the transesterification process. Chlorella sp. is a good lipid producer with optimal lipid 

content, presenting an ideal growth. The optimal microalgae growth was obtained when 

using fertilizer medium. Nevertheless, it is essential to find out a desirable concentration 

of NaHCO3 and CO2 to maintain an optimal pH in the culture medium.  Cellular 

concentration always had optimal values ranging from                 (Saeid 

and Chojnacka, 2015), lipids content oscillated from 20% to 30% which is optimal for 

Chlorella sp. (Nurachman et al., 2015).   It is highly recommended to carry out a Life 

Cycle Assessment in order to determine if its production is sustainable.  The present 

study provides important information regarding microalgae culture conditions for 

biodiesel production as the first biofuel from microalgae processed in Ecuador.  
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