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RESUMEN

Obtenemos los términos de order superior para la desviacién de la luz alrededor
de un agujero negro utlizando el método perturbativo de Lindstedt-Poincaré para re-
solver la correspondiente ecuacion de movimiento. Ademas, obtenemos aproximantes
de Padé diagonales a partir de esta expansion perturbativa, y mostramos que estos se
ajustan mds a los datos numéricos. Adicionalmente, mostramos cémo estas aproxi-
maciones se pueden utilizar para algoritmos de raytracing, en el modelamiento de la
desviacion de la luz alrededor de agujeros negros. También consideramos las ecua-
ciones de Friedmann correspondientes al caso en que G, A y c son functiones del
tiempo, y en el caso particular en que ¢(t) es una funcién lineal del tiempo — y mante-
niendo a G y A constantes —, resolvemos estas ecuaciones para obtener un estimado de
la edad del universo.



ABSTRACT

We obtain the higher-order terms for the deflection of light around the black hole
using the Lindstedt-Poincaré method to solve the equation of motion of a photon
around a black hole. Additionally , we obtain diagonal Padé approximants from this
perturbation expansion, and we show how these are a better fit for the numerical
data. Furthermore, we show how these approximations can be used in ray-tracing
algorithms to model the bending of light around a black hole. We also obtain the cor-
responding Friedmann equations for the case in which G, A and c are all functions of
time, and in the case in which ¢(t) is a linear function of time — and with constants
G and A —, we solve the Friedmann equations to obtain an estimate of the age of the
universe.
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INTRODUCTION

The equations of General Relativity

General Relativity, perhaps one of the most elegant theories ever devised, was put
forth by Albert Einstein in its current form in a 1916 publication, which expanded
on his previous work of 1915. [1-3]. In these publications, Einstein showed both his
famous fields equations, and the geodesic equations, which together form a total of 14
equations that govern General Relativity. Einstein’s Field Equations can be written as:

G — N9y = KT}, (1.1)

where G, is Einstein’s tensor, which describes the curvature of space-time, A is
the cosmological constant (originally introduced by Einstein in 1917 [4]), g, is the
metric tensor, 7),, is the stress-energy tensor, which describes the content of matter and
energy, and k = ¥, where c is the speed of light in vacuum and G is the gravitational
constant. The Einstein’s tensor is defined as follows:
1
G;w = R,LLI/ - ég;wR (12)
where R, is the Ricci tensor, and R is the Ricci scalar, which is the trace of the Ricci
scalar

R =R," (1.3)

We can obtain an alternate form of Einstein’s field equations by taking the trace of
equation and replacing this value on the original equation to obtain on equation
for R,,:

1
Rp,u + Ag;w =k (Yj;w - éguuT> (14)
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where T is the trace of 7, : T'=T",

Einstein’s field equations describe how space-time curvature arises from the distri-
bution of matter and energy. The equation of motion of a test particle inside a gravita-
tional field is given by the geodesic equation:

% +T7,5U°UP =0 (1.5)

where a sum in repeated indices is implied, U* is the y—th component of the four-

velocity vector of the particle, 7 is the proper time of the particle, and 17,5 is the

Christoffel symbol of the second kind, a measure of the dependence of the unit vec-
tors with respect to the different coordinates [5].

Both of these equations were succinctly described by John Archibald Wheeler, re-
ferring respectively to the geodesic equation and the field equations: "Spacetime tells
matter how to move; matter tells spacetime how to curve." [6]

Equation (1.1) is an equation between symmetric second-rank tensors, and in 4D
space-time, it corresponds to a total of 10 highly non-linear differential equations for
9w, the metric tensor, which corresponds to the deviation of Pythagoras’s theorem in
tinding the dot product between two vectors with components A* and B*:

A-B=A"B, = g, A"B (1.6)

G, obeys the following property

Gl =0 (1.7)

where the semicolon on the indices indicate the covariant derivative of G**. Equa-
tion (1.1) implies that T*”,, = 0, and therefore, the 7),, is related to a conserved quantity,
which is a statement of the local conservation of energy.

Both equations and can be derived from an action principle. To derive
Einstein’s Field Equations, we can start from the following action:

S = / d'zv/=g[R — 2kLp + 2A] (1.8)
R

where R, the Ricci scalar, one of the simplest non-trivial scalar related to the cur-
vature [5], Lr is the Lagrangian density due to the fields of matter and energy, A is
the cosmological constant, g is the determinant of the metric tensor, and we take the



14

integral over all space-time. We need to take the variation of this action with respect to
a variation of the metric, dg,, to obtain the Einstein’s field equations. It is important to
note that £ is related to 7},, as follows [7]:

2 [9(V=9£) 9 (V=9£)
T, = — O | =7 1.9
Vg { o~ %\ 00,9 2
The following Lagrangian can be used to derive the geodesic equation for a test
particle:
L dr® o) _ _ ( u)@d_xﬁ (1.10)
do " ) T TN s o '

where o is a parameter of the trajectory of the particle, which is usually taken to be
the proper time, 7, or an affine parameter for massless particles [8]. An alternate form
of the geodesic equation, easily derived from the previous Lagrangian, is the following;:

% — 1%[]5(]’7

= 1.11
dr 2 0z~ (111)
This geodesic equation, with an affine parameter )\ instead of the proper time 7 (and
&= instead of U* = %) can be used to obtain the trajectory of massless particles, for

which 7 = 0.

General Relativity and stellar bodies

In 1916, just a month after Einstein’s 1915 paper, Karl Schwarzschild published forth
the first non-trivial exact solution for the Einstein’s Field Equations, which was corre-
sponded to a spherical symmetric space-time, with a mass M in the center of the coor-

dinate system [8]. Schwarzschild metric is the following, with coordinates (2°, 2!, 22, 2°) =

(ct,r, 6, 0):

11— 0 0 0
0 —(1-2=)"" o0 0
L = r 1.12
o 0 0 -0 (12
0 0 0 —r%sin?0
where r, is the Schwarzschild radius:
. 2GM (1.13)
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For a radius r < r;, all massless and massive test particles eventually reach r = 0.
Thus, any particle (even photons) that falls beyond this Schwarzschild radius will not
escape the black hole, neglecting quantum effects, such as Hawking Radiation [3]].

General Relativity and Cosmology

Not long after Einstein developed his theory of General Relativity, he tested his theory
on the whole Universe. However, in order to obtain a static universe, he added the
cosmological constant, A, into his equations to counteract the attractive forces of
gravity [3]. However, observations by Slipher on the redshifts of galaxies were more
similar to cosmological models by de Sitter’s and Friedmann’s cosmologies, the latter
of which had a metric with an explicit dependence with time [4].

Current cosmologies theories depend on two main assumptions: the isotropy and
homogeneity of the universe. These two assumptions lead to the Robertson-Walker

metric [3], with coordinates (z°, ', 2%, 23) = (ct, 7,0, ¢):

10 0 0
~EG g 0
v = ke (1.14)
0 0 —Rt) 0
0 0 0 —R?(t)r*sin®0

where R(t) is a scale factor for the universe, and k =0,—1,1 for a flat, open and
closed Universe, respectively. From the Robertson-Walker metric, and employing equa-
tions (1.7) and (1.4), we can obtain both of Friedmann’s equations:

1 &®R kc? A2
EF:—?(pﬁ-?)P)—F? (1.15)

1 dR\> kc?p k2 AP

H? —— | = -+ = 1.16
(R dt ) 3 RT3 (1.16)
which can be used to calculate the age of the Universe, under assumptions of the

curvature (l;: in the Robertson-Walker metric) and the composition of the universe [3].
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Aim

The aim of the present work is to obtain the higher-order terms in the deflection of
light around a massive object, and to test this values against numerical calculations.
Additionally, we seek to obtain the equivalent to the Friedmann equations when G, ¢
and A depend explicitly on time, and try to obtain the change in the age of the universe
in the case of ¢(t), for a speed of light that varies linearly with time.



17

DEFLECTION OF LIGHT AROUND A MASSIVE OBJECT

Geodesic equation for a photon in a Schwarzschild metric

Consider a photon traveling in the equatorial plane (§ = 7/2) around a black hole. For
a photon (and other massless particles), dr = 0 and thus, we use an affine coordinate,
A, as a parameter for the trajectory instead of the proper time, 7. The geodesic equation,
for the coordinates ct (z°) and ¢ (z°) are:

d [d(ct) rs\|
5 [W (1- 7)] =0 1)
and
d (do 5\

Both of these equations define the following constants along the trajectory of the
photon around the black hole:

dt T
2— — —S —
- (1 T) E (2.3)
and
dp 5

where E has units of energy per unit of mass and J has units of angular momentum
per unit of mass (when A has units of time). The invariant infinitesimal translation in

the Schwarzschild metric for § = /2 is given by:

2dr? = (1 _ %) dt? — (1 — E>_1 dr? — 12dé? = 0 (2.5)

r
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We can divide Equation (2.5) by d)\2 on both sides, and use % = 99 {4 obtain:
q y dx — dp dx

2 2 2 2
9 rs\ [ dt rs\ 1 [ dr d¢ o [(do
—— )= - (1=——= — — | - — | = 2.
¢ (1 r) (dA) (1 r) (d¢ o) T \an) 70 (2.6)
If we multiply Equation by (1 — %) in both sides, and insert the definitions of
J and E we obtain:

E> 1 (dr\’ 1 r
— (=) - (1-2)J*=0 2.7
2 ot (dqb) 72 ( r) 27)
This equation can be turned into an equation for U(¢) = T(lgs) , noting that
dUu 1 dr
= - 2.
do r2deo (2:8)
so we arrive at the following equation for U(¢):
E*  (dUN? ,
— = ~U*(1—7rU)J* =0 29
- (%) #-rra-nn) 29)

By taking the derivative of Equation with respect to ¢, we arrive at the follow-
ing differential equation for U(¢)

dU U )\
<%) (2de2 +2U — 3r,U ) =0 (2.10)

The differential equation in (2.10) can be separated into two differential equations
for U(¢). The first one of this equation is the equation for a photon that travels directly
into or out from the black hole:

av _
do

the other differential equation, applicable for trajectories in which U(¢) is not con-

0 (2.11)

stant with respect to ¢, is the following:

d*U 3
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This equation can also be written in the following way, using the definition of the
Schwarzschild radius:
d*U 3GMU?
— + U —
do? c?

This is the equation for the trajectory of a massless particle that travels around a

(2.13)

black hole in the equatorial plane.

Differential equation for the trajectory of a photon

In the previous section, we obtained the following differential equation for a photon
traveling around a black hole:
d?U 3GMU?
—+ U =
d¢? c?
where the coordinates of the trajectory of the photon are given in spherical coordi-
nates. The photon is taken to travel in the # = 0 plane, and in Equation (2.14), U is
the reciprocal of the radial coordinate of the Schwarzschild metric, U(¢) = @ Equa-

(2.14)

tion (2.14) has an exact constant solution, for the unstable circular orbit of an electron
around the black hole:

_3GM

2

(2.15)

Te
C

where 7, is the radius of the so-called photon sphere [9]. We note that the radius of

the photon sphere can be expressed in terms of the Schwarzschild radius:

3
o2
The orbit described by a photon in the photon sphere is actually an unstable orbit,

(2.16)

Te

and a small perturbation in the orbit can lead either to the photon escaping the black
hole or diving towards the event horizon [9].

Equation is nonlinear, an highly difficult to solve analytically. However, a
perturbative solution of this equation can be readily obtained, and is the basis for one
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of the experimental tests of General Relativity, the deflection of light around a massive
object [9]. Let’s first rewrite Equation in terms of r.:
% +U =r.U? (2.17)
Consider the initial conditions shown in Figure The smallest value of the
r—coordinate in the trajectory, r = b, is taken such that the photon escapes the black
hole, b > r.. Thus, let’s try and rewrite Equation in terms of ¢ = % < 1, which
we will use as a non-dimensional small number for our following perturbative expan-
sions. Note that by multiplying both sides of Equation by b, and defining the

non-dimensional trajectory parameter

(2.18)

Equation (2.17), with the inclusion of the term ¢ = %, then becomes a differential

equation for equation in V' (¢):

d*V 9
— = 2.1
00 +V =€V (2.19)
where ¢ = Ti < 1, and with initial conditions given by
d
Vip=0)=1: d—‘;(¢:0) 0 (2.20)

In Appendix|[A]we show that under these conditions, V(¢) is bounded such that
V(e) <1 (2.21)

First-order solution for V' (¢)

A first idea to obtain a solution of Equation (2.19) is to consider a V(¢) as a power

series in €:

V(gse) = V(@) + eVi(9) + € Va(¢) + ... (2.22)
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Plugging the expansion (2.22)) into Equation (2.19) results in the following;:

(d2vo PVi L dVs

d¢? +€d¢2 € 052 —|—...)—|—(‘/0+€‘/1—|—62‘/2+...) :e(%+elfl+62V2+...)2 (2.23)

We can group the powers of € in Equation (2.23):

e’ :Cf;‘g +VW=0 (2.24a)
¢! :%V; + V=V’ (2.24b)
€ :ﬁfj + Vo =2V, (2.24¢)
o Vs Vs = (V1)* 42V, Vs (2.24d)

a5

Note that the initial conditions of V(¢), applied to the asymptotic expansion in
Equation (2.22), imply the following, by grouping powers of e:

e :V5(0) = 1; ‘;—‘2(0) =0 (2.25a)
"V (0)=0; C;—‘;‘3(0):0; E>1 (2.25b)

From these differential equations and initial conditions, we can readily obtain 1
and V] iterativelyﬂ

Vo(¢) = cos(¢) (2.26)
Vi(o) = g — %cos(@ - %0032(@ (2.27)

!t is convenient to write the Vj,(¢) in terms of polynomials in cos(¢)
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Thus, we obtain an equation for V' (¢), per Equation (2.22):

V(p) = cos(¢) + € E - %cos(qﬁ) — %6082((25)} + O(€%) (2.28)

Consider the truncated version of this equation:
V(6) = 2et (1- 2 e cos? 2.29
(¢) = zet ( - §€> cos(¢) — 3€cos (®) (2.29)

According to the coordinate system shown in Figure 1, the photon goes through a
total angular deflection of 2cv. This corresponds to setting V' (¢) = 0 for both ¢ = 7/2+«
and ¢ = —7/2 — a. From both of these conditions we get the same equation for «a(e),

assuming that V' (¢) is a well-defined function of cos(¢). This occurs because

cos(m/2 4 a) = cos(—m/2 — a) = —sin(«) (2.30)

Setting V' (7/2 4+ o)) = 0 in Equation (2.29) gives the following equation for sin(«):

esin*a + (3 — €)sina — 2¢ =0 (2.31)

Which is an equation for a second-order polynomial in sin(«). We can readily ob-

tain sin(«) from Equation (2.31):

—3 4+ €4+ V9 — 6e + 9¢2
2¢

The actual relevant solution for sin(«) is sin(a. ), which has a series expansion in e
of:

sin(ag) = (2.32)

2
sin(ay) = 36 + O(é?) (2.33)
whereas sin(a_) has a series expansion with a leading term of order 1/e:
2
sin(a_) = 23 +1-— 56 + O(€) (2.34)
€
Because both sides of Equation (2.33) are “small”, 0 < ¢ < 1, we can approximate

sin(a) ~ a and obtain the first order deflection:

an = (2.35)
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However, the more general method is to work with the inverse function of sin(a),
employing the Taylor series of arcsin(z) around =z = 0. This approach will be used
when obtaining « at higher orders. The total angular deflection of the light beam,
) = 2« is thus:

bec? bc?

YT S [(GM) ] (2.36)

Towards a second-order solution for (2(¢)

We will now see how to obtain higher-order solutions for 2. The differential equation
in (2.24¢) has the following solution:

Va(o) = —g + %cos(@ + 50032@) + %cosg(gb) + 15—2¢sz'n(¢) (2.37)
However, the term in Equation that goes as ¢sin(¢) grows without bound,
and occurs because the right-handed side of Equation contains terms propor-
tional to the homogeneous solution of Equation (2.24d): a cos(¢) + b sin(¢). When this
happens, the solution contains terms that grow without bound, such as ¢sin(¢), called
secular terms [10]. Thus, if we naively include Equation in V(¢), our solution is
no longer bounded. Thus, we have to eliminate any and all secular term that arises to
arrive at a well-behaved solution for V' (¢).
One method to do this, due to Lindstedt and Poincaré, is by solving the differential

equation in the following strained coordinate [10]:

$=0¢(1+wietuwe +..) (2.38)

Where the w;, are constants to be determined.In terms of this new strained coordi-
nate ¢, Equation (2.19) becomes

(1 + wie 4+ wee® + .. .)2 % +V(p) = eV2(9) (2.39)

where we have used the chain rule for the derivative with respect to ¢:

¢ _dbd _ oyl
i (1+ wie+wae” +...) Py (2.40)
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We proceed in the previous way, and assume an asymptotic expansion on V' (¢):

V(die) = Vi(d) + eVi(d) + 2Va(d) + ... (2.41)
Plugging in the expansion(2.41) in Equation (2.39), we obtain:
By PV ,d
€ € =

e+
dg? dg? dg?
—e(Vo+eVi+ eV +..)° (2.42)

(1+w16+w262+...)2( +...)+(VO+6V1+EQVQ+...)

We can group the powers of € in Equation (2.42):

d?*V,

e d~2“ +Vy=0 (2.43a)
d? d?

e Vi + 11 =Vp? — 2wy Vo (2.43b)
do? do?
d?V: A’V d?

62 = 2 -+ ‘/2 = 2‘/0‘/1 — (W12 -+ QCUQ) ~0 — 2(.4.71 YI (24:3C)
do? do? d¢?
d?V. d?*V; d?V, d?

e ~3+V3:V12+2V0V2—(2w1w2+2w3) ~0—(w12+2w2) 19y }/2
do? do? do? dg?

(2.43¢)

With some care due to the definitions of the scaled variable and its derivative, we

arrive at initial conditions for the Vj(¢) from the initial conditions of V' (¢):

e Volp=0)=1; Z—‘g(o) =0 (2.44a)
. Vi
€ Vi(p=0)=0; d_gE(O):O; k>1 (2.44b)

Solving the differential equation (2.43a)) with initial conditions (2.44a)), we arrive at

the zeroth-order contribution to V' (¢):

Vo(8) = cos(d) (2.45)
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Similarly, we can obtain V;(¢) from Equation (2.43b) subject to initial conditions
(2.44D):

2 1 ~

Vi(¢) = 3 §cos(¢) — %cosz(cg) + wigsin(o) (2.46)

We note that a secular term has appeared for V;(¢). However, we use our freedom

in the definition of w; to eliminate this secular term by setting

w =0 (2.47)
so that the final form of V;(¢) is:
201 ~ 1 5, -
Vid) = 5 — 5eos(d) — 5c05*(9) (2.48)

We proceed in a similar fashion and obtain V5(¢):

e A5 v 2 e L, L
Va(o) = ot 36cos(¢) 508 () + T5¢08 (o) + 144(144w2 +60)psin(4)  (2.49)
To eliminate the secular term in V5(¢), we set

5)
and obtain the well-behaved second-order term
Va(d) = —= + —cos(d) + g0052(@ + i0033(@ (2.51)
2T 97 36 9 12 '

From all the solutions obtained so far, we can obtain the second-order correction to

Q(e). Note that V' (¢) is given by:
V(6) = cos(d) + e (5 = geostd) - eos(d))

L[ 4 5 )
+6 (=5 + amcos(d) + 3eos(3) + ot @)+ ) + O(E) @52)

We set up ¢ = 7/2 + @& in Equation (2.52), such that V(7/2 + &) = 0 and obtain:
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4 5 2 g I o5

+€2 (—§ - %sm(a) + §szn2(a) - Esmg(a)—k) +0(*) =0 (2.53)

We could truncate this Equation and solve the resultant cubic polynomial in sin(&).
However, this method would not be easy to generalize, because we do not have a gen-
eral formula for the roots of fifth-order polynomials and above, according to Galois
theory [11]. Also, an n—th order polynomial results in n different complex solutions,
one of which we expect to have a leading term of order ¢, to obtain a better approxi-
mation of (2, and we would need to check all the n different solutions for this. Addi-
tionally, we have to remember that so far this is an asymptotic expansion in ¢, and the
truncation of the higher-order terms does not allow us to clearly see what the order of
our estimate for €(e) is. All of these problems are solved by assuming that sin(&) has

the following expansion in ¢, with a leading term of order €':

sin(@) = ex1 + €2x2 + Ex3 + ... (2.54)

where the y;, are constants to be determined. Inserting this new expansion into
Equation (2.53) leads to the following algebraic Equation:

We equate to zero the different powers of € in this last Equation. Equating to zero

the terms with ¢! we arrive at:

2
X1=3 (2.56)

and equating to zero the terms with ¢* we arrive at:

2
X2 = 9 (2.57)
Thus, sin(a) is given by:
sin(@) = 26 — 262 + O(€%) (2.58)

3 9
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To obtain &, we employ the Taylor series of arcsin(z) around x = 0:

3

arcsin(r) = x + % + O(2”) (2.59)
and obtain
-2 2, 3
— L 2 2.
G=ge—ge + O(€”) (2.60)

However, what we actually want is a. From the definition of the strained coordinate

¢ in (2.38), it is clear that:

S
; ta

T
- = 2.61
2 e 1 4+ wie + wae? + O(€3) (2.61)
From this latter Equation, an using the Taylor expansion of - around z = 0, we
obtain:
2 5Sm 2 , 3
a—36+<24 9)6 + O(€”) (2.62)

From which we can obtain the total deflection angle, {2 = 2«

4 (5m 4N, 5 AGM (157 GM\*

Higher order solutions for (2(¢)

(2.63)

Gary’
bec?

The previous procedure can be automated to obtain high-order expressions for €2. No-

tably, all the solutions for the V(¢) are in the forms of (k + 1)—order polynomials of
cos(¢), and a secular term that is eliminated by choosing a suitable w;. The use of the
expansion of sin(&) in powers of € guarantees both the form of sin(a) with a leading
term of order ¢, and leads to algebraic equations for the y; that are exceedingly easy
to solve. Notably, getting a higher-order solution conserves the lower-order terms.

Consider the formal Taylor expansion of (2 around € = 0:

O = ki€t + Ko + kg + ... (2.64)
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A table of the coefficients «,, of the series of €2 in (2.64) can be found in Table
These x,, were found using the method of the previous sections, and obtaining the

solutions up to Vao(¢).

Exact value Numerical value
Ky 4 1.33333
g br_ 4 0.864552
K 2 _ on 0.633508
Foa sor _ 130 0.494911
s Tr83 _ 386w 0.403082
ke 103565m _ 21397 0.338319
. 544045 _ 85085m 0.290571
s S e 0254143
" e 0.225577
e _ il 0.202655
S 0.183502
S 0.163300
ks “SNbioTossl L ISHToB060 0.155132
i1a FdsnosTOeSs T O1s1SsI09s 0.143875
K15 S eoIEi550 - — - sarsincesn0e 0.134145
F16 | iriiRoToscomsise T ~ " ao0huaasat 0.125654
Fir | ot 1060820570072 - 0.118179
Fis | 2 ierronssonts  —  STisssolsensos 0111548
K19 10875919358944£)2631358%1()52052822712251 _ 39955342;15)2651124?765?1();23(?; - 0.105625
Fao | = oesomsmossmatmot — aotssorssesnsisi | 0-100303

TABLE 2.1: Coefficients «,, of the series of Q in (2.64). For these coefficients,
we report both the exact values and the numerical values with 6 significant

figures.

Clearly, as € — 1, {2(¢) — oo, because the photon starts going around the black hole

as it starts closing in the photon sphere (b — 7). This means that (2(¢) has a singularity
at ¢ = 1. The Taylor expansion of 2(¢) around €0 that we found at Equation (2.64) does

not return an estimate for the position of this singularity, because a polynomial does

not have a singularity. However, we can obtain Padé approximants for 2 around € = 0,

and these will return an estimate for the position of this singularity.
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As a small refresher on Padé approximants, we note their definition. A Padé ap-

proximant of a function f() is a rational function fILMl(z) of the form:

L

aop + a1z + asx? + ...+ apx

fLEiM) (z) = T S B (2.65)
where f(z) and fl*IMl(z) are equal in their first L + M + 1 derivatives around = = 0
[12,/13]. A diagonal Padé approximant fI¥(z) is a Padé approximant in which N =
L = M. We can obtain the diagonal Padé approximants for up to N=10 with the Taylor

series expansion for Q(¢). For example, the Q!!(¢) Padé approximant is given by:

481+ (64 + 16m — 15m°) €

Ol
(€) 96 + (32 — 307)e

(2.66)

The exact formulas for the Padé approximants of (2(¢) are rather complicated be-
cause of the powers of 7 involved. Due to this, our work with Padé approximants will
be purely numeric. All the Padé approximants QIV)(¢) have a singularity of order 1 at
a position around e = 1. The position of this singularity, ,, is tabulated for the 10 Padé

approximants in

€
1.54222
1.21736
1.11036
1.06664
1.04532
1.03238
1.0245
1.01915
1.01537
1.01264

NRIE-CRIRN [ e N 6; B 'S SR SR N o

—
(a]

TABLE 2.2: The position of the singularity near e = 1 for the Padé approx-
imants, QM (e).
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Numerical tests for 2()\) and its Padé approximants

All the coefficients for the Taylor expansion of €)(¢) were obtained around ¢ = 0. We
can test the correctness of the methods thus far used to obtain this function by compar-
ing it to the results of numerical solutions of Equation (2.14). This is done with both
truncated n—th order Taylor polynomials from 2(¢) and for the Padé approximants we
obtain from this function, Q" (¢). This comparisons are shown in Figures 2.2 and

We see from Figures and that the Padé approximants are much faster at
converging into the actual form of (2(¢). The convergence of the Padé approximants
is such that for ¢ = 0.99, the NV = 10 diagonal Padé approximant is within 3% of the
corresponding numerical value. This is mainly due to the fact that Padé approximants
are better in approximating functions that have singularities [13]. Once we know that
the €2(e) behave correctly, we can use the €2(¢) to simulate the bending of light around
a black hole. A simple first-order ray tracing algorithm that does this for the different
approximations of (2(¢) we have found is shown in Appendix Bl



- "
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b

FIGURE 2.1: Trajectory of a photon outside the photon sphere. The initial

conditions are taken such that 74—y = b, and is called the impact param-

eter of the trajectory - the closest distance from the trajectory to the center

of the black hole. We thus have, g—;\ =0 = 0 and %Lﬁ:o = 0. The photon
experiences a total angular deflection of 2c.

31
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Truncated Taylor series
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FIGURE 2.2: Numerical points obtained for €2(e) compared to the trun-
cated n—th order Taylor polynomials of €(¢), up to 20—th order. With
increasing value of n, the polynomials take larger values.



f(e)

Padé approximants

Numerical points
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FIGURE 2.3: Numerical points obtained for €2(e) compared to the trun-
cated N—th diagonal Padé approximants of Q(e), up to N = 10. With

increasing value of N, the Padé approximants take larger values. For
e = 0.99, the N = 10 Padé approximant is within 3% of the numerical

value of 2(e).
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FRIEDMANN EQUATIONS FOR TIME DEPENDENT G,
A, AND c

Einstein field equations with time-dependent GG, A, ¢

We will now consider G, A and ¢ to be all function of time: G(t), A(t), and ¢(t). Do-
ing this for the first two quantities removes some of the covariance of our equations,
making the time-coordinate 2° = ¢(t)t explicitly different from the rest. We also clarify
now what we mean by saying that the speed of light, ¢, varies with respect to time: at
different cosmological times ¢, the conversion factor between what we call time and the
coordinate z°, which is just the speed of light ¢, varies with time. Thus, in the formulae
that require derivatives with respect to the coordinate z°, we shall use the following:
0 9, 1 0

= = — 3.1
9z0  O(c(t)t) e+t ot G-1)

Under these conditions, the Hilbert action is given by the integral over all space-

time:

S = / d*z [R — 2k(t)Lp + 2A(1)] (3.2)

where k(t) = 8:4G(t()t). Because the variation of this action is taken with respect to a

variation of the metric, 6g"”, and noting that neither k() nor A(¢) depend explicitly on

the metric coefficients nor its derivatives — note Equation (1.9)-, we obtain a similar

expression for Einstein’s field equations:

G — A1) g = k()T (3.3)

which we can put in a form similar to the form of Equation (1.4):

1
By + A8)gy = k(1) (TW - 5g,wT) 64
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Also note that

Because the Robertson-Walker metric is obtained from purely geometrical means
(considerations of homogeneity and isotropy of the universe), we posit that the Robertson-
Walker metric is also a solution to Equation (3.4). The next step should then be to derive

equations equivalent to the Friedmann equations, using the Robertson-Walker metric,

and Equations (3.3), (3.4), and (1.7).

Form of the Friedmann equations with G(¢), A(t), and ¢(t)

At large scales, we can consider the universe to be made of a perfect fluid of energy
density p and pressure p, and moving with 4-velocity U*. This perfect fluid would
have the following energy-momentum tensor [3]:

_pPtPD
=5

T,uz/ U,u Ul/ — P9 (35)

And in a reference frame that is in rest with respect to the universal fluid, U* =

(¢,0,0,0). With this, the mixed-index energy-momentum tensor is given byfl}

p 0 0 O
0O —p 0 0
TV — b (3.6)
0 0 —p O
0O 0 0 —p
Equation (1.7), lowering the p index, implies that:
(k()T," + A(t)éu”);y =0 (3.7)
this Equation can be simplified into
ko, T," + KT,",, + At),6," =0 (3.8)

noting that §,” is constant. We are actually interested in solely the ;1 = 0 compo-
nent of Equation (3.8). The most complicated term we have to evaluate for the ;1 = 0
component of Equation (3.8) is

0
oxv

Ty = —To" — To" T, + T’ T 4, (3.9)

Inote that we use g*, = §*,
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The only Christoffel symbols different from zero in Equation are

a2 R(t)
R(t)
With the Christoffel symbols in (3.10) and with the use of Equation (3.9), the 1 = 0
component of Equation becomes

1 2 2
F01:F02:F03:

(3.10)

ok dp ZR(t) ON
Py +k B0 +3 RD) (p+p)| + 520 = 0 (3.11)

Equation is equivalent to the conservation of energy equation [3]. Due to
the nature in which 2° is defined, we can readily obtain the components of the Ricci
tensor from reference [3]. In this reference, professor Carroll uses a (—1,1,1,1) sign
convention, but we note that the Ricci tensor is invariant under the change of sign
convention, g,, — —g,., because the Christoffel symbols are in turn unchanged by a
change in the sign of the metric. Thus, we can read both the Christoffel symbols and the
component of the Ricci tensor directly from Equations (8.44) and (8.45) of reference [3].
With this in mind, we write the following components of the Ricci tensor, which is
diagonal [3]:

O R(t)
_ _ 902"
Ry = =3 R (3.12)
2 b 2 R
Ryy = R2(t) R<t>3xo2R(t) +2 (@R@O + 2k (3.13)
The 00—component of Equation 3.4} using expression (3.12), is:
25 R(1) k(t)
3=+ A(t) = — 3 3.14

where we used that ' = p — 3p. This expression can be further simplified as:

LRk A(t)
6RT = —6(,0 +3p) + KN (3.15)
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which is equivalent to Equation (1.15), the Friedman acceleration Equation. The
22—component of Equation 3.4} using expression (3.13), is:

2

Ox0?

R*(t) | R(t) — AR (t)r* = —k()r*R*(t)(p—p) (3.16)

R(t) 42 (%R(m)2 + 2k

this latter equation can be further simplified into:

L R(t) 1 9R\> &k k(t)

00 - _ A t = —— — 3.17
9%
The value of % in Equation (3.15) can be inserted in Equation (3.17) to obtain,
after some simplifications:
1 OR\®> k() k  A(t)

= — 3.18
(R(t) ag;0> 5 R0 3 (3-18)

which is equivalent to the Friedmann Equation in (1.16). Equations (3.11)), (3.15),
and (3.18) are the equations of motion of this cosmology.

It is convenient to add the cosmological constant A into the energy density in Equa-

tion (3.18)), using
A kpa
- = — 3.19
we obtain the following Equation:
1 OR\> k(t)yp k
= - 2
(R(t) 8m0) 3 R2(t) (3.20)

where p now includes the contributions due to A. In the next section, we will con-
sider a solution to these equations for a time-dependent speed of light, ¢(t), with the
other two parameters held constant.
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Age of the universe with a speed of light that varies linearly with time

We will consider one of the simplest form of time-dependence: that of constant %. We
will now use Equation(3.20) with constants k(t) and A(?):

1 OR\®> kp k
) =2E_ 21
<R(t) 8:{;0) 3 R) (3:21)
It is convenient to define the critical density, p.:
_3(_1 0R i (3.22)
Pe =% \ R(t) 920 '

and the density parameter, 2:

ao="
Pe

noting that both of these parameters are time-dependent. With these two parame-
ters in mind, Equation (3.21)) can be written as

(3.23)

k 1 OR\’
=57 Q-1 3.24
R? (R(t) (9950) ( ) (3.24)
Another important parameter to consider is a parameter that takes the time-dependence
of R(t), a(t):
R(t) = Royal(t) (3.25)
such that at our present time, ¢y, a(ty) = 1. With this parameter, we can now write:
E_(LORN o (3.26)
R2 \R(t)az0 ) " '
where the 0 index refers to the parameters evaluated at the present time. If we insert

2
back this last Equation into Equation (3.21), and divide by ( ! dR) in both sides, we
0

R(t) dz0

obtain:

1 OR\ [/ 1 9R\* 1
(maw), (mwam) =5+ 0= g 27
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Equation (3.11), with A and %k constants, and using the relation p = wp, implies
that [3]:
poc RT3 () oc g3+ () (3.28)

where we have different vales for w for matter, radiation and vacuum energy (A):
w = 0,1/3, —1, respectively. From this, and from defining piecewise density parame-
ters, such as 2y = pa/p., we arrive at the following differential Equation:

1 OR\N 2/ 1 0R\* [Qo Qo -0
<W@)o (W@> - [a4(t)+a3(t)+QA’0+a2—<t) (3.29)

where (1, o is the density parameter for matter (and dark matter) at the current time,

2, is the density parameter for radiation at the current time and (2, is the energy
parameter associated to dark energy (i.e. due to the Cosmological constant). This
equation can be put into a more readable form by using the Hubble parameter, H(¢)
(note: R(t) is a function of time alone, so partial derivatives become total derivatives
in this definition):

1 dR
and by using the derivative rule of Equation (3.1), we obtain [}
co
Aot ) 252 R PR (3.31)
S R TN REET '
c+t% 0

There is one last detail to consider before we try to solve this equation. We have
to note that astronomers measure the (2 without the factors that appear in (3.1) due

to the time-dependence of ¢(t) in 4%, For any k = m,r, A and for the total density
parameter, we defined:
Qo = Pro _ Pk,0 _ Pk,0 (3.32)

2 2
Pec,0 3 1 OR 3Hg c
k \ R(t) 0zY 0 kcg c+t% 0

Zwe multiply the numerator and the denominator in the left side by c2, the speed of light at the

present time, so these become non-dimensional numbers
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where ¢ is the current value of the speed of light. Meanwhile an astronomer would
use Equation (3.22), taking c to be a constant, to obtain:

3H?
astro 0
== 3.33
c,0 kcg ( )
and thus would make use of the following definition:
astro pk70 pkvo
Qk}) = Tasto 3H2 (334)
c,0 kcg

Thus, to make use of the values of the density parameters as measured by as-

tronomers, we have to use the following substitution:
Qpie
2
(c+t% > 0
Making use of Equation (3.35) in Equation (3.31), and multiplying both sides by

2
(L> , We obtain
c+

Qo= (3.35)

t% /o
2
2 < — (astro
co | H? Qe Qo (m@) 6
- i ) ) (astro dt / 0 .
(c + t%) H? a(t) + ad(t) R R a?(t) (3.36)
This can be simplified further, as long as
tod
2 <<t (3.37)
Co dt to
we can write
2
—x | =1- ) (3.38)
c+ t% o 0 '
where (%) is given by
2
to dC t() dC
d(ty) =2—— —— 39
(0> Codtt 0 (ngtt> (33)
0
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With the definition of 4(t,), Equation (3.31) becomes

2
H2 Qastro Qastro 1 — Qastro _ 5 t
( X > o R e G

e ) B (a0 @ (1)
Noting that
1da
H=-— 41
adt (3.41)

Equation (3.40) can be separated as follows}

o 4pde L q [Qastro Qastro 1 — Qastro _ 5(to) —1/2
H dt dt — da= | =9 m,0 ()astro 0 0 3.42
/ o / “a Lﬁ(t) Tam T T T A (342)

We can define

Hy Do | O, 1-0
2 T o T e ]

1! da
T(20, 2.0, o, Qap) = —/ [ 7 (3.43)
0

where T'(Qq, .0, im0, 2a0) is easy to interpret: it would be the age of the Uni-
verse employing this cosmological model if we did not take into account the time-
dependence of ¢(t). The integrand in the left-hand side of Equation (3.42) is:
cH 19 o+ (2t — o) %

= (3.44)
Co Co

where we have explicitly put the linear time-dependence of c(t), ¢(t) = co+(t—to) %.
By integrating Equation (3.42) we obtain:

to = T + §(to), QI0, QIS0 Q340) (3.45)

m,0

Equation (3.45) can be solved iteratively until we obtain a converging value for t.

As a first iteration, if we set 6(#y) = 0, we would arrive at the usual age of the Universe,

1dc

to = 13.813£0.038 Gyr [14]. Let’s now consider an experimental bound for % in order

3This equation is valid for any ¢(¢) in which Equation lb holds.
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to obtain a second iteration for ¢;. We will use the following experimental bound for

the fine-structure constant, o = 4;;2 = [15], with 1 significant figure:
1 da
—— =2x 10" yr! 3.46

From the definition of the fine-structure constant, it is straightforward to show that

do & (3.47)
a c

assuming that the changes in « are purely due to changes in c. Thus, the experi-

1 de

mental bound for — y
co dt

= —2 x 1071% yr~'. With this value, we obtain for our second
iteration:

§(tg) = —6 x 107° (3.48)

This value is much smaller than the uncertainty in both Q7% and Q¥(°, which are
both £0.0062 in the most precise estimates by Planck experiment [14]. Clearly, any
further iteration for ¢, will return a value well within the experimental and statistical
uncertainties for the age of the universe. Therefore, no more iterations will be done for
to.
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CONCLUSIONS AND RECOMMENDATIONS

We have successfully obtained both expressions for €)(¢), the angular deflection of a
photon traveling around a black hole, and §(¢,), the change in the overall density pa-
rameter that arises from considering a speed of light that varies linearly with time. In
the first case, we assumed that the parameter ¢ was small, and we were able to obtain
Q(e) at such a high order in ¢ (and with the use of Padé approximants) that the best
approximation for €2(¢) we obtained was consistent with the numerical data even for
an € ~ 0.99. Furthermore, we were able to use this estimate for (2(¢) to simulate the
bending of light around a black hole.

Interestingly, when we were trying to find how the lifetime of the Universe changes
when we consider a time-dependent speed of light, the actual effect of this was mainly
observed in the value of ), the present-day value for the overall density parameter.
We found out that this varies, at first order, by d(ty) = 6 x 107°. This change of ),
however, does not result into a change of the lifetime of the Universe above its current
uncertainty, because the uncertainty in both 2,,, o and 2, o are two orders of magnitude
higher than §(¢,). We also arrived at a general result for ¢, where the speed of light is a
function of time, Equation (3.42):

—-1/2

Ho/todtcﬁf’_: = /1d ! {Q:—s(t’o + QaLS%()+§2aAs*f°Jr L= O™ = 9(t)

0 o 0 a La'(t)  a¥(t) a’(t)

In order to arrive at this equation, the only assumption we employed was (%) 0 << L
Still, there are some things that have been left undeveloped in the current work.

For example, we did not try to solve either the Einstein Field Equations (for a metric

different than the Robertson-Walker metric), nor the Friedmann equations where G

and A where functions of time. Likewise, we did not analyze what differences, if any,

could be obtained with our approximation of (2(¢) when using gravitational lensing to

estimate amounts of mass in galaxy clusters. Equation could also be employed
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for models of ¢(¢) other than the linearly-varying model we studied in this work. These
might well be topics of interest for future colleagues.
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ON THE BOUNDEDNESS OF V(0)

Consider the differential Equation for V'(¢), Equation (2.19):

% 9
subject to initial the initial conditions
av
=1;, —(0) = A2
V() =15 G 0) =0 (A2)
and where ¢ < 1. Equation (A.1)) is equivalent to the 1-D equation of motion of a
mass (m = 1) on a spring (with spring constant £ = 1) with an additional higher-order

term:

—— +a(t) = ex?(t) (A.3)
with equivalent initial conditions:

dx
z(0) =1; E(O) =0 (A4)

Consider the following 1-D potential energy function:
1 1
Ep(z) = §x2 — gex?’ (A.5)
It is straightforward to show that a unit mass (m = 1) affected by this potential
follows the equation of motion in (A.3), noting that
. dzl’ dEp

v _ = A.
dt? dx (A.6)
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More importantly, this means that the total energy of the unit mass is a constant of
motion, given by the initial conditions in (A.4):

1 (de\® 1 1, 1 1
E J— - —_ 2_— 3:——— A.7
tot = 3 (dt) PR S R (A7)

and noting that kinetic energy is non-negative:

2
% (%) >0 (A.8)

Therefore, the unit mass particle in the potential well given by Ep can only have
positions x(t) whenever
Ep(x) = %x2 — %ex?) < Eipp = % — %(—: (A.9)
and the trajectory of the unit mass is given by the connected positions x(t) that
satisfy the inequality in . This defines an interval of valid positions, [z, z2]. The
end—points of this interval satisfy Ep = E},;. One of this points occurs for —1 < z; < 0.
This is clear due to the form of Ep(x), which behaves like 122 4 §|z|* well for z < 0, so
there is always a potential barrier at z < 0, which generates a positive force acting on
the unit mass whenever = < 0:

dE
=2 50,2<0 (A.10)
dz
From this, and noting that
1 1 1 1
= ])=—d4-e>=-—= All
Ep(x 1) 2+3€> 5~ 3¢ ( )
we note that the point + = —1 is only attainable when € = 0 — the unit mass bounces

back from the potential wall before reaching this point.
The potential energy Ep has a maximum at z,,,, = 1/e. If this maximum occurs at
a point at the right of the initial position of the unit mass, ., > 1, then the unit mass

will always bounce back from the potential well. Thus, as long as 1/e¢ > 1 we have that:

1<a(t) <1 (A.12)
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Noting that the minimum value of x(t) is strictly higher than —1 when 0 < ¢ < 1,

we obtain:

—l<z(t)<1l;for0<e<]1 (A.13)

These equations imply the boundedness of V(¢), by the replacements ¢ — ¢ and
x— V.

—1<V(p) <1 (A.14)

and

—1<V(p)<1l;for0<e<]1 (A.15)
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RAY TRACING USING €)(e)

Consider an observer A immersed in a background distribution of far away light sources.
This observer can obtain the angular position of every object in the sky, and deter-
mine the intensity of light that comes from every point in the sky, 74(f, ¢), in spher-
ical coordinates. Now, imagine another point in space, B, far enough from the ob-
server A such that the intensity of light that comes from every point in the sky, accord-
ing to an observer in point B, is also given by the distribution found by observer A:
I5(0,¢) = 14(0, ¢). If we place a black hole at point B, then light coming from the far-
away sources will bend around the black hole such that the original observer will see a
different distribution of light around the black hole. In this condition, the observer will
be able to note that the black hole effectively subtends a solid angle in the sky — region
in the sky devoid of any light due to the black hole. One half of the angle subtended
by the black hole will effectively give the “radius” of the black hole, as seen by the
observer, rgp.

If we consider that the black region of the sky due to the black hole is due to the
radius of the photon sphere, 7, instead of the the Schwarzschild radius, 7 ﬂ If we
choose the coordinate system such that the black hole is at the positive x-axis, § = /2
and ¢ = 0, then, by definition of ry, the new distribution of light measured by the
observer will obey (for small enough rzx):

1(0,6) = 0; (0 = 7/2)* + ¢* < rpu (B.1)

'One can convince himself of this by considering the light from faraway objects that grazes the black
hole at a distance given by r» = b. This trajectory of this light is bended by the black hole for b >
ro. However, if b < r., the light will not escape and effectively no light coming from faraway objects
will seem to originate from r < r., which becomes an effective radius for the black hole, according to
observer A in these conditions. In the case that mass enters the black hole, and emits light from an r that
obeys r; < r < rc, the light can escape the black hole, and is severely red-shifted. However, we are here
considering a black hole with no light sources between r, < r < 7.
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For other values of (0, ¢), the observer sees light distribution shifted by the Q(e),
where € is given by:

€= = Lo B.2
/(P o2

for 6 ~ /2. We can use a further simplification of this latter equation, and use the

coordinates (0,,6,) defined by 6, = ¢, 6, = 6 — 7 /2. For small values of ¢, and 6,, say,

in the order of milliradians, we can write:

I(@x,ey) :0; 99264-(9; <rpg (B3)

and

e— _'BH (B.4)

where the analogue with Cartesian coordinates is evident. This coordinate system

is shown in Figure for a black hole that subtends 47 x 1079 steradians, such that
rgg = 2 mrad.

This coordinate choice allows one to define the distribution of intensities that ob-

server A sees to be (disregarding some attenuation factors):

I(Qx,ey) =14 (930 — 8326 + @; > TBH (BS)

0z 0y .
Q(E)Wa 0, — Q(Qﬁ) ;
where we have used 14(6,,0,), the angular distribution of intensities seen by ob-
server A without the black hole present, and using the coordinates (0,, 6,). We can see
the effect of applying equation by using the 74(6,,6,) defined from Figure

To model the deflection of light with the distribution in Figure we use Equation
with (e) approximated as a truncated first-degree Taylor polynomial, and as
diagonal Padé approximants with N = 2 and N = 10. The resulting images can be
found in Figures to We use a black hole with 7557 = 10 mrads.

The most notable difference between Figures|B.3|and |B.4|is the position of the white
ring around the black hole, corresponding to the gravitational lensing of the big, white
star at the black hole position ¢, = 0. When using a better approximation of {2(e), this
ring has greater inner and outer radii, and is thinner. In Figure there are 8 white
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FIGURE B.1: A black hole with rgy = 2 mrad in the center of the (6,,6,)
coordinate system.

pixels around 62 + 62 = 10 millirads, corresponding to a second ring of light due to the

big, white star.



FIGURE B.2: 600 x 600 image corresponding to the intensity due to back-

ground light sources, 14(0,,§,), without a black hole present. Each pixel

corresponds to 1 mrad. The big star, in white, has a radius of 50 mrad. The

small stars, in gray, have a radius of 3 mrad. The star is at the center of the
coordinate system, (6, 6,) = (0,0).
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(2) | O (8)

(<) T (D)

FIGURE B.3: Background of Figure warped by a black hole at (A4) 6, =
300 mrad, (B) 6, = 200 mrad, (C) §, = 100 mrad, and (D) 6, = 0 mrad.
We make use of the truncated first-order Taylor polynomial of (e).
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(<) (D)

FIGURE B.4: Background of Figure warped by a black hole at (A) 6, =
300 mrad, (B) 0, = 200 mrad, (C) 6, = 100 mrad, and (D) 6, = 0 mrad.
We make use of the diagonal N = 2 Padé approximant of (e).
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() (B)

() (D)

FIGURE B.5: Background of Figure[B.2l warped by a black hole at (A) §, =
300 mrad, (B) 0, = 200 mrad, (C) 6, = 100 mrad, and (D) 6, = 0 mrad.
We make use of the diagonal N = 10 Padé approximant of 2(¢).



55

BIBLIOGRAPHY

[1] A. Einstein, “Die feldgleichungen der gravitation,” Sitzungsberichte der Koniglich

Preussischen Akademie der Wissenschaften zu Berlin., 1915.

[2] A. Einstein, “Die grundlage der allgemeinen relativitdtstheorie,” Annalen der
Physik, 1916.

[3] C. Sean, Spacetime and Geometry. Addison Wesley, 2004.
[4] S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys., 1989.
[5] D. Koks, Exploration in Mathematical Physics. Springer, 2006.

[6] ]J. Wheeler and K. Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics. W.
W. Norton & Company, rev. ed., 2000.

[7] C.Marin, La expansién del Universo. Una introduccion a Cosmologia, Relatividad Gen-
eral y Fisica de Particulas. USFQ, segunda ed., 2011.

[8] J. Hartle, Gravity. An introduction to Einstein’s General Relativity. Addison Wesley,
2003.

[9] C. Misner, K. Thorne, and J. Wheeler, Gravitation. W.H. Freeman and Company,
1973.

[10] A. Bush, Perturbation methods for engineers and scientists. CRC Press, 1992.
[11] J. Tignol, Galoi’s theory of algebraic equations. World Scientific, 2002.
[12] E. Saff and R. Varga, Padé and rational approximation. Academic Press, 1977.

[13] H. Yamada and K. Ikeda, “A numerical test of padé approximation for some func-

tions with singularity,” International Journal of Computational Mathematics, 2014.



56

[14] P. Collaboration., “Planck 2015 results. xiii. cosmological parameters.,”
arXiv:1502.01589 [astro-ph.CO], 2015.

[15] J. Magueijo, “New varying speed of light theories,” Reports on Progress on Physics,
2003.



	Declaration of Authorship
	Resumen
	Abstract
	Acknowledgements
	Introduction
	The equations of General Relativity
	General Relativity and stellar bodies
	General Relativity and Cosmology
	Aim

	Deflection of light around a massive object
	Geodesic equation for a photon in a Schwarzschild metric
	Differential equation for the trajectory of a photon
	First-order solution for V()
	Towards a second-order solution for ()
	Higher order solutions for ()
	Numerical tests for () and its Padé approximants

	Friedmann equations for time dependent G, , and c
	Einstein field equations with time-dependent G, , c
	Form of the Friedmann equations with G(t), (t), and c(t)
	Age of the universe with a speed of light that varies linearly with time

	Conclusions and Recommendations
	On the boundedness of V()
	Ray tracing using ()
	Bibliography

