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ABSTRACT  

The potential environmental hazard of acid mines drainages (AMD) is a problem that 

need to be addressed in mining regions worldwide; biological treatments catalyzed by 

sulfate reducing bacteria (SRB) present an interesting alternative because they are much 

cheaper and more efficient than conventional chemical and physical treatments. The 

objective of this research was to evaluate the metabolic activity of sulfate-reducing 

bacteria present in anaerobic samples collected near mining areas and different 

inoculum in batch assays amended with sulfate (2000 mg L
-1

) as electron acceptor and 

acetate (2.5g COD acetate L
-1

) as carbon source under environmental control conditions 

of pH and temperature. A physical, chemical and microbiological characterization of 

samples collected near mining regions was also carried out with samples collected from 

different sectors of Portovelo-Zaruma the most important mining region in Ecuador.  

Then, the presence of sulfate-reducing bacteria (SRB) in the same samples was 

evaluated through the measurement of sulfide production and sulfate reduction. 

Bioassays were conducted to determine the highest sulfate-reducing activity between 

the granular sludge of: the treatment plant of the National Brewery, the artificial lagoon 

of the University San Francisco de Quito (USFQ); and the sample collected near 

Oroporto mine (homogenized of the sediments and supernatant). The best inoculum 

evaluated was the sediment of the artificial lagoon at University San Francisco de 

Quito, showing a sulfate reducing activity of 7821.67 mg SO4
2- 

kg
-1

 VSS d
-1

 and a 

sulfide production of 4855.69 mg S
2- 

kg
-1

 VSS d
-1

. The production of methane in the 

sediments of the artificial lagoon at USFQ was also monitored to study microbial 

competition under anaerobic conditions; obtaining a methanogenic activity of 0.0115 of 

g COD-CH4 g
 
VSS

-1
 d

-1
 . 
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According to acetate consumption the SRB showed a value of 111.35 mg COD-acetate 

L
-1

 d
-1

, while methanogens consume 53.27 mg COD-acetate. L
-1.

 d
-1

;
 
concluding that 

acetate was a highly effective substrate during the microbial sulfate reduction and could 

be used as substrate for this process.  

These results suggest that the sediments from the artificial lagoon can be potentially 

used as the microbial inoculum during the production of biogenic sulfide in a bioreactor 

for the treatment of acid mine drainage through the precipitation of heavy metals. 

Keywords 

Sulfate reducing bacteria, sulfate, sulfide, acid mine drainages, methanogenesis. 

1 Introduction 

Acid mine drainage (AMD) are naturally generated in the environment from abandoned 

mines and mine tailings by chemical reaction between water and rocks containing 

sulphur-bearing minerals [1]. AMD have contaminated water bodies and created large 

acidified lakes all over the world [2], being a major environmental problem in many 

mining areas [3].  AMD typically pose an additional risk to the environment because 

they often contain elevated concentrations of metals (iron, aluminum, copper and 

manganese, and possibly other heavy metals) and metalloids (of which arsenic is 

generally of greatest concern) [4] Being the presence of copper in AMD an important 

problem in mining industry, that despite being an abundant trace element found in the 

earth's crust and a micronutrient for both plants and animals at low concentrations, it 

may become toxic to some forms of aquatic life at elevated concentrations. Copper 

concentrations from 1 to 8000 µg L
-1

 have been shown to cause environmental problems 

as inhibition of growth of various freshwater plant species[5]. So that, acid mine 

drainage causes environmental pollution that affects many countries having historic or 

current mining industries [4]. 
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In Ecuador, the mining activity make up a large portion of the country´s 

economy with the four main gold districts concentrated in the south region of Portovelo-

Zaruma, Nambija, Ponce Enriquez, and Santa Rosa. Portovelo-Zaruma is the most 

important because of the exploitation of gold with several hundred years old of mining 

tradition [6], [7]. The Portovelo-Zaruma district is located in the province of El Oro, 

southwest of Ecuador, in the foothills of the Western ¨Cordillera de Los Andes” The 

mining activity carried out in the district is formal and informal. The first main mining 

company established in Zaruma-Portovelo was the American company Sadco (South 

American Development Co.), that later was followed by the invasion of local miners, 

which are located to north and south of the confluence of the Calera and Amarillo 

rivers.  These two rivers are tributaries of Puyango river which flow south-west, 

eventually through Peruvian territory and enters the ocean at the city of Tumbes [6]. In 

1999, the Portovelo–Zaruma mining district consisted of about 400 mines, 66 plants for 

crushing, grinding and amalgamation, and 80 cyanidation plants [8]. Currently mining 

and processing are occurring at numerous locations in a 16 km by 9 km area situated 

north and south of the confluence of the Calera and Amarillo rivers  [8]. The most 

exploited mines in Zaruma city are Sexmo, Miranda, Pillacela, Palacios, Vizcaya, 

among others, while in the canton Portovelo can be found Portovelo, Abundance, 

Oroporto, Cantabria mines and holdings of gold in the sands of the Amarillo river [9].  

The environmental impacts associated with the mining activities of the 

Portovelo-Zaruma district were first acknowledged in a number of studies in the early 

1990s and being currently the areas more affected by discharges of process tailings, in 

the canton Zaruma: the Pache region; and the banks of Calera, Amarillo and Pindo 

rivers, tributaries of the Puyango river [6, 10, 11]. Most mineral processing plants are 

located along the Calera river and the  mining wastes are discharged into the river [6]. 
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The same applies to the Amarillo River due to the presence of numerous small plants 

that unload their tails into the river without any type of treatment [12]. These discharges 

cause that regularly the metals and cyanide levels in rivers water exceed environmental 

quality criteria downstream of the mining district. However, metals are mainly 

associated with sediments and suspended solids due to the prevalently neutral to slightly 

alkaline river waters. The Calera river located downstream of the mining area is 

considered a dead river with no fish nor invertebrates, whereas the Amarillo river has 

had its fauna severely diminished [6]. Moreover, fish and aquatic invertebrates are 

nonexistent more than 20 km after the confluence of the two rivers. Further 

downstream, some life reappears, although the invertebrate fauna is still severely 

reduced up to 160 km downstream of the mining area, within Peruvian territory [6]. 

Several treatment methods have been proposed in the literature to minimize 

environmental problems caused by AMD, keeping water away from acid generating 

materials and preventing AMD formation [1].  Preventing the formation or the 

migration of AMD from its source is generally considered the preferable option, 

although this is not feasible in many locations, and in such cases, it is necessary to 

collect, treat, and discharge mine water. There are various options available for 

remediating AMD, which may be divided into those that use either chemical or 

biological mechanisms to neutralize AMD and remove metals from solution. The 

abiotic and biological systems include those that are classified as active or passive [4]. 

Active treatment involves installing a water treatment plant, where the AMD is first 

dosed with lime to neutralize the acid and then passed through the settling tanks to 

remove the sediment and particulate metals. While passive treatment aims to develop a 

self-operating system that can treat the effluent without constant human intervention 

[1]. The majority of bioremediation options for AMD are passive systems, and of these, 
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only constructed wetlands and compost bioreactors have so far been used in full-scale 

treatment systems [1].  

The basis of biological remediation of AMD derives from the abilities of some 

microorganisms to generate alkalinity and immobilize metals, thereby essentially 

reversing the reactions responsible of for the formation of AMD [13]. Microbiological 

processes that generate net alkalinity are mostly reductive processes and include 

denitrification, methanogenesis, sulfate reduction, and iron and manganese reduction 

[1]. Bacteria that catalyze the dissimilatory reduction of sulfate to sulfide generate 

alkalinity by transforming a strong acid (sulfuric) into a relatively weak acid (hydrogen 

sulfide) by the action of sulfate reducing bacteria (SRB) [1]. SRB are anaerobic 

prokaryotic microorganisms that can utilize carbon sources such as organic acids 

(acetate) or alcohols as electron donors for the reduction of sulfate to hydrogen sulfide 

through dissimilatory way of sulfate [14, 15]. The ability of sulfate reducers to couple 

acetate oxidation to sulfate reduction is of particular interest during the treatment of 

AMD given also the importance of acetate as an intermediate in methanogenesis [16]. 

The higher energy yields enables the sulfate reducers to grow at lower hydrogen 

concentrations; in addition, they can utilize a much boarder range of substrates and 

therefore outcompete the methanogens [17]. 

Besides the ameliorative effect on AMD brought by the resulting increase in pH, 

the reduction of sulfate is an important mechanism for removing toxic metals from 

AMD, since as many ions such as e.g., zinc, copper and cadmium form highly insoluble 

metal sulfides [1]. Due to the combined removal of acidity, metals and sulfate; sulfate-

reduction appears to be the most promising bioprocess for AMD treatment and metal 

recovery [13].  
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Much research work has been focused on characterizing and evaluating the 

application of sulfate reducing processes to remediate contaminated AMD sites. For 

example, Moosa et al, studied the activity of SRB with acetate as carbon source in a 

continuous stirred tank reactor obtaining sulfate reduction rates of  43 and 19 mol 

𝑆𝑂4
2−𝑚−3𝑑−1, in 2002 and 2006, respectively [18], [19]. Also in a study conducted by 

Koschorreck and co-workers, in 2010 about the accumulation and inhibitory effects of 

acetate in a sulfate reducing in situ reactor for the treatment of an acidic Pit Lake, 

sulfate reduction rates ≤ 65𝑔 𝑆𝑂4
2−𝐿−1𝑑−1 were obtained [20]. Also, in 2005, Vallero 

et al evaluated the rate of sulfate reduction in a submerged anaerobic membrane 

bioreactor (SAMBaR) at high salinity, where acetate was used as carbon source, 

obtaining sulfate reducing rates of 69𝑔 𝑆𝑂4
2−𝐿−1𝑑−1 [21]. 

As acetate can be a substrate for methanogens and SRB, studies of competition 

between these two groups has been made. For example, Santegoeds, C.M., et al, in the 

study of microsensor measurements in methanogenic-sulfidogenic aggregates revealed 

that the activity of sulfate-reducing bacteria was of 2 to 6 mmol of S
2−

 m
−3

 s
−1

 or 2 × 

10−9 mmol s−1 per aggregate. While methanogenic activity in the methanogenic-

sulfidogenic aggregates was of 1 to 2 mmol of CH4 m
−3

s
−1

 [22]. Also, in the study of 

influence of acetate and propionate on sulphate-reducing bacteria activity by van den 

Brand, T.P.H., and coworkers, in an acetate fed reactor, a complete COD substrates 

removal was achieved, but no sulfate reduction occurred, while with pure acetate 

feeding methanogens outcompeted the SRB. However on the mixed substrate of acetate 

and propionate a culture of SRB dominated.[23]. Also is known that in the presence of 

adequate sulfate concentrations, SRB typically out-compete methanogens due to kinetic 

and thermodynamic advantages. However, the coexistence of SRB and methanogens 

has been observed in anaerobic sewer biofilms in the presence of sulfate. In the study of 
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Sun, et al in an annular biofilm reactor, was found that sulfide and methane were 

produced simultaneously in the reactor, with concentrations of sulfide (13.0 to 18.6 mg 

S liter
-1

) and methane (9.3 to 14.9 mg liter
-1

) and a COD utilization per gram of sulfide 

and methane formed of 2 g COD/g H2S-S and 4 g COD/g CH4, respectively. Therefore, 

sulfidogenesis accounted for 36.0% of the COD loss in the wastewater whereas 

methanogensis accounted for 60.0% .[24] 

As biological sulfate reduction is increasingly replacing chemical unit processes 

in mining biotechnology, the objective of this study was to evaluate the metabolic 

activity of sulfate-reducing bacteria present in anaerobic samples collected near mining 

areas and different inoculum in batch assays and its possible applications in the bio 

treatment of acid mine drainage. Samples collected from mining areas were also 

characterized based on physical, chemical and microbiological parameters. In addition, 

microbial competition between sulfate reducing bacteria and methanogens was 

evaluated in the presence of acetate as electron donor. 

2 Materials and methods 

Chemicals 

Sodium sulfate (100 % purity) was obtained from JT Baker (Phillipsburg, NJ, USA). 

Sulfate of ammonium and iron (III) and sodium acetate were obtained from Chemical 

Laboratories H.V.O. (Quito, Ecuador). Sulfuric acid (95.0 - 97%) were obtained from 

Merck KGaA (Darmstadt, Germany). The DMP (oxalate N, N -dimethyl- p- 

phenylenediamine) (> 99%) was obtained from Acros Organics (Geel, Belgium). Zinc 

chloride (97.1 %) was obtained from JT Baker (Zedelgem , Belgium ). The N2 gas was 

delivered from AGA Ecuador (Guayaquil, Ecuador). All reagents were used in the state 

in which they were received. 
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Sediment samples 

Four samples were collected near mining areas in the south of Ecuador, in the mining 

district Portovelo-Zaruma. The samples correspond to sector “Agua Dulce”, near 

Oroporto mine, surrounding areas of Amarillo river and sector “El Pache”, in Canton 

Portovelo (Figure 1). The samples were collected in 1 gallon plastic bottles (80% 

sediments and 20% supernatant). Sediments and supernatants were characterized based 

on physical, chemical and microbial parameters. All samples were kept in refrigeration.  

The sulfate reducing metabolic activity bioassays were conducted with 

supernatants and sediments from the mining areas, anaerobic sediments from the 

artificial lagoon at Universidad San Francisco de Quito and granular sludge from a 

wastewater treatment plant in Quito (National Brewery). The content of total suspended 

solids (TSS) and of volatile suspended solids (VSS) of the sediments evaluated were: in 

sector “Agua Dulce” (59.5, 2.5%), near Oroporto mine (68.9, 3.8%), surrounding areas 

of Amarillo river (77.6, 2.4%), sector “El Pache” (77.7, 1.9%), granular sludge of 

National Brewery (9.7, 8.4%) and artificial lagoon of the USFQ (52.8, 6.2%), 

respectively. 

Basal medium 

The basal mineral medium used in the bioassays of sulfate-reducing activity and 

methanogenic activity, contained (in mg L
-1

): NH4Cl (280); KH2PO4 (195); MgSO4 

(49); CaCl2 (10); NaHCO3 (3000); yeast extract (10) and 1 mL L
-1

 of a solution of trace 

elements. The solution elements trace was composed of (in mg L
-1

): H3BO3 (50), 

FeCl2∙4H2O (2,000), ZnCl2 (50), MnCl2 (32), (NH4)6 Mo7O24∙4H2O (50), AlCl3 (50), 

CoCl2∙6H2O (2,000), NiCl2∙6H2O (50), CuSO4∙5H2O (44), NaSeO3∙5H2O (100), EDTA 

(1,000), resazurin (200) and 1 mL L
-1

 of HCl (36%), similar to other batch assays 
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carried out by Ochoa-Herrera and co-workers [25]. The pH of the basal mineral medium 

was adjusted to 7.1-7.3 with HCl and NaOH, as required. 

Analytical Methods 

Ammonium, nitrate, conductivity and pH were measured using a portable multi-

parameter Thermo Scientific Orion 5-Star (Thermo Scientific, Beverly, MA, USA) and 

according to protocols established in Standard Methods for Examination of Water and 

Wastewater [26]. Biological Oxygen Demand (BOD) was determined using the OxiTop 

system and OxiTop Box incubator (WTW, Weilheim, Germany) for five days at a 

temperature of 20°C [26]. Chemical Oxygen Demand (COD) was determined using a 

colorimetric method [26]. Total suspended solids (TSS) and volatile suspended solids 

(VSS) were determined by the method of crucibles and filters according to Standard 

Methods for Examination of Water and Wastewater [26]. Sulfate was determined by the 

method of barium sulfate precipitation [26]. Sulfide in cultures of sulfidogenic bacteria 

was determined by the methylene blue reaction [26]. All measurements were conducted 

in triplicates. Prior to the analysis, the sediments and supernatant of miming samples 

were homogenized; in addition for the measurement of sulfate and dissolved sulfide, the 

samples were centrifuged at 6000 rpm for 15min [27]. The presence of sulfate-reducing 

bacteria in sediments of artificial lagoon at USFQ was determined quantitatively by the 

most probable number method (Most Probable Number, NMP, for its acronym in 

English)[28]. Detection of coliforms and E. coli (MPN/100 mL) were determined by 

two techniques: membrane filtration, with 0.45 μm filter, which were placed in Petri 

dishes with chromocult agar [29]; and the most probable number technique per 100 mL 

[30], [31]. Five dilutions (10
-1

 to 10
-5

) were done for quantification of total numbers of 

bacteria (CFU mL
 -1

). 
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Batch Microbial Bioassays 

Bach microbial bioassays were conducted in triplicates using 160 mL glass serum 

bottles sealed with butyl rubber stoppers and aluminum crimp seals. The headspace was 

flushed with N2 gas to assure anaerobic conditions. Flasks lacking microorganisms were 

also incubated and served as abiotic controls. All bioassays were incubated in a home-

made climate-controlled chamber at 30±2°C. In sulfate reducing activity and 

methanogenic activity bioassays, each flask was supplemented with 100 ml basal 

mineral medium, 2000 mg 𝑆𝑂4
2−  as sodium sulfate, 10% w/v or v/v of microbial 

inoculum and acetate 2.5 g COD L
−1

 as organic substrate. For the case of the assays 

with the supernatant of samples collected near mining areas, each flask was 

supplemented with 90 mL basal mineral medium concentrated. In methanogenic 

activity, the methane production was measured by a liquid displacement method [32]  

by an inverted flask of 125 mL with an alkaline solution of 2% NaOH [33],[34]. The 

reduction of sulfate to sulfide was periodically monitored by measuring the S
2−

 

concentration in aqueous phase. 

The sulfate reducing activity and specific methanogenic activity were calculated 

from the slope obtained by plotting sulfide or methane concentration against time, 

expressed as COD and the amount of VSS utilized in the bioassays. Maximum specific 

activity of sulfate reduction, sulfide generation and methanogenic production were 

expressed in mg SO4
2- 

kg
-1

 VSS d
-1

, mg S
2- 

kg
-1

 VSS d
-1

 and g COD-CH4 g
-1

 VSS
-1 

d
-1

, 

respectively. 

3 Results and Discussion 

In the first stage of this study, different samples collected near mining regions were 

analyzed based on physical, chemical and microbiological parameters. Table 1 presents 
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the results of the characterization of samples (sediments and supernatant) collected in 

the mining district Portovelo-Zaruma. 

The concentrations of nutrients in samples collected near mining regions ranged 

from 112.2 to 6414.2 mg L
-1

 of ammonium and 415.9 to 3515.3 mg L
-1

 for nitrate. The 

phosphate concentration was very similar for all samples ranging from 105.2 to 172.3 

mg L
-1

 as well as the pH values that varied from 5.6 to 6.9; while conductivity values 

ranged from 420 to 918 µS cm
-1

.  

Sulfide concentration varied widely, the sample collected near Amarillo river 

showed the highest value of 47.2 mg L
-1

.
 
The values of chemical oxygen demand were 

very high between 1418.9 to 14012.1 mg L
-1

.
 
In contrast, biological oxygen demand 

values ranged from 25 to 250 mg L
-1

. 

Regarding sulfate, one of the characteristic parameters of AMD, the values 

varied from 1083.86 to 2085.41 mg L
-1

. These values are similar to other mining areas, 

as example in Finland, in Vehkankuilu mine the sulfate concentration was 1100 mg L
-1

 

[35].  

The ratio of volatile suspended solids (VSS) and total suspended solids (TSS) of 

the samples collected were: in sector “Agua Dulce” (0.04), near Oroporto mine (0.05), 

surrounding areas of Amarillo river (0.03), sector “El Pache” (0.02), granular sludge of 

National Brewery (0.8) and artificial lagoon of the USFQ (0.1). The determination of 

these parameters is necessary as a common measure of effectiveness of anaerobic 

digestion process [36] The relationship between SSV/SST of the samples collected near 

mining areas is below the values reported in the literature (0.5-0.6) for healthy 

inoculum[37]. This indicates that the sample contains a large amount of inert material, 

represented as ash, and the concentration of microorganisms is small [38] compared to 

the others microbial inoculants evaluated. 
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The microbiological results showed the presence of coliforms in all samples 

evaluated with values >1600 MPN/100 mL. On the other hand, samples collected near 

Oroporto mine and Amarillo river were the only ones that presented fecal 

contamination. These results suggest a possible contamination with other kind of 

residues that are not necessarily discharge of mining process as it is the case of sewage 

contamination because E. coli are commonly found in human and animal feces [39].  

In terms of environmental legislation, it should be noted that the samples 

collected and analyzed in this study do not meet the local permissible limits for 

discharges to freshwater bodies as established in the Ecuadorian Legislation, in the 

Unified Text Secondary Environmental Legislation ( TULMAS ) [40]. In general terms, 

the majority of parameters evaluated show concentration values higher that the 

permissible maximum limits, as biological oxygen demand, chemical oxygen demand, 

sulfate, sulfide, total suspended solids, coliforms and fecal coliforms, although many of 

the parameters evaluated in this study are not regulated by the Ecuadorian legislation. 

However, based on these results, it can be concluded that samples collected near mining 

areas show contamination and presumably due to domestic and industrial effluent 

discharges. 

The conditions of operation of the bioassays evaluated were determined 

according previous investigations. Andrade and Ochoa-Herrera evaluated in batch 

bioassays the efficiency of acetate, lactate, ethanol and peptone as electron donors (2.5 g 

substrate L
-1

)
 
and sulfate (4000 mg L

-1
) as electron acceptor. The sulfate reduction rates 

(mg 𝑆𝑂4
2−g

-1-1
sustrato día

-1
) obtained, were: acetate (1.5 to 52.4), lactate (0.8-24.9), 

ethanol (0.8-5.3) and peptone (1.2-2.1) [41]. Being acetate the best electron donor under 

the conditions established. These results are supported by other studies in the literature, 
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Manous and co-workers determined that the addition of sodium acetate increased 

significantly the rate of sulfate removal from 24 mM to 16 mM[42].  

Thereafter, Flor and Ochoa-Herrera evaluated the optimal sulfate concentration 

for biogenic sulfide production in a chemical-physical-biological system (CFB) for 

treating acid mine drainage at laboratory scale,. The results obtained determined that 

with a sulfate concentration of 4000mg L
-1 

 there was a sulfide production of 167 mg S
2-

L
-1

; with a reduction to 3000 mg L
-1

 the sulfide stabilized in 170 mg L
-1

; and with 2000 

mg L
-1

 during the first 50 days the reactor do not show a significant change in sulfide 

production, maintaining in 170 mg L
-1

, although the last days the sulfide production 

decrease to 74 mg L
-1

, enough for an efficient copper removal of 98% and a chemical 

oxygen demand increased of 50 to 75% [43]. In base to these studies it was suggested to 

perform bioassays with different microbial inoculums to 2000 mg L
-1

 of sulfate as 

electron acceptor and 2.5 g L
-1 

of acetate as electron donor, with the objective of 

determine if these are the optimal concentrations for AMD treatment. Also was 

suggested a study of molecular identification of different groups of microorganisms 

present in the microbial consortium. 

Table 2 showed the results of specific sulfide production activity and specific 

sulfate reduction activity of several microbial inoculum evaluated. Of the samples 

collect near mining areas, the sample that show betters results correspond to the sample 

collected near Oroporto mine, with the highest sulfate reducing activity (8222.2 mg 

𝑆𝑂4
2−- 

kg
-1

 VSS d
-1

) and sulfide production activity (3534.1 mg S
2- 

kg
-1

 VSS d
-1

). 

However, when this sample was compared with the sediments of the artificial lagoon 

and the granular sludge; the highest sulfide production activity (4855.7 mg S
2- 

kg
-1

 VSS 

d
-1

) was obtained with the sediments of the artificial lagoon, along with the second best 

sulfate reduction activity (7821.7 mg 𝑆𝑂4
2−- 

kg
-1

 VSS d
-1

). While the granular sludge 
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showed the lowest values of specific activities among the three sediment evaluated. The 

specific sulfide production activity of the SRB present in the sediments of the artificial 

lagoon was 1.9 and 1.4 times greater than the granular sludge and the sample collected 

near Oroporto mine, respectively. While the specific sulfate reduction activity was 2.6 

times greater than the granular sludge and had a similar value compared with the sample 

collected near Oroporto mine.  

These results are comparable with literature studies. Mendoza in the study of 

remediation of acid rock drainage with permeable reactive barriers packed with 

compost-zero valent iron-limestone ( C-Z-L ) mixtures, reported a specific sulfate 

reduction activity of 486 mg 𝑆𝑂4
2− 𝑘𝑔−1  VSS d

-1 
[44]. In the case of the sediments of 

the artificial lagoon, the best acetate oxidizer microbial inoculum between the ones 

evaluated in this study, the maximum specific sulfate reduction activity was 16 times 

higher than the one reported by Mendoza under similar conditions. In the same study, 

the sulfate reduction activity of other carbon sources such as compost, the metabolic 

activity ranged from 2178 to 8647 mg 𝑆𝑂4
2−𝑘𝑔−1  VSS d

-1 
 for Erthfood and ARBICO 

composts, respectively [44]. In the case of using propionate as carbon source, 

Ghigliazza and co workers obtained values of 3200 mg 𝑆𝑂4
2−𝑘𝑔−1VSS d

-1 
[45]. The 

specific biological activity of SRB is an important parameter, which provides 

information about the performance and microbial biomass properties. These results 

indicate that SRB present in the sediments of the artificial lagoon were highly efficient 

for the microbial sulfate reduction and are excellent candidates for the bio treatment of 

acid mine drainage in continuous systems. 

Figure 2 illustrates the time course of sulfate reduction (primary axis) and 

sulfide production (secondary axis) in batch bioassays after 61 days of treatment in the 

presence of acetate (2.5 g COD L
−1

) as substrate and 2000 mg 𝑆𝑂4
2− 𝐿−1, in an abiotic 
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control (absence of microorganisms) and with the different sediments evaluated in this 

study. There was practically no sulfide production in the abiotic control, while in the 

treatments bioassay the production of sulfide gradually increased with incubation time, 

while sulfate concentration decreased. The sediments of the artificial lagoon showed a 

sulfate reduction of 55.8% and a maximum sulfide production of 37.3 mg L
-1

, similar to 

results obtained by Andrade and Ochoa-Herrera where the maximum sulfide production 

was 35.9 mg L
-1

 after 45 days of treatment with similar characteristics (2.5 g COD 

acetate L
-1

 and 4000 mg L
-1

 of sulfate) [41]. In the same manner, Dev and Bhattacharya 

in the study about sulfate reduction and growth kinetics of SRB with marine waste 

extract, percentages of sulfate reduction varied between 31.9 to 48.1% with 

concentrations of 1500 to 5500 mg 𝑆𝑂4
2− 𝐿−1 , respectively [47]. These results show that 

SRB present in the samples evaluated used acetate as an electron donor in a greater or 

lesser extent to support microbial sulfate reduction. For the artificial lagoon, it was 

estimated an acetate oxidation of 679.3 mg COD-acetate for the sulfate reduction 

obtained. 

Among the samples evaluated, the anaerobic sediments of the artificial lagoon 

were chosen as the best microbial inoculum because presented the highest sulfate 

reduction with 55.8%; while the other samples had values of sulfate reduction ranging 

between 0-48.1%. Considering that mining and other industries that use sulphur 

compounds, like metallurgical, pulp and paper, and petrochemical industries, are 

responsible for an increase in sulphate concentrations in wastewaters[46], a highest 

sulfate reduction in AMD treatment system is important. 

The relation between the amount of sulfate reduction and the amount of sulfide 

generation in the form of H2S, was established according to the following equation.  
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Equat

ion 1 

 

In Table 3, the sulfur balance show the concentration of dissolved sulfide in the 

effluent, the sulfate concentration in the influent and the sulfate concentration in the 

effluent, resulting 37.3, 728, 321 mg L
-1

 sulfur., showing a loss of sulfur that could be 

due to the high volatility of sulfur that caused that the measurement of dissolved sulfide 

was lower than the theoretical values. 

The determination of the presence of sulfate reducing bacteria in the sediments 

of the artificial lagoon was performed with the most probable number method (MPN). 

During the microbial count of sulfate-reducing bacteria it could clearly see the 

formation of black precipitates in the iron nails evaluated. This demonstrates the 

presence and activity of sulfate-reducing bacteria, as generated sulfide necessary for the 

formation of iron sulfide precipitate black. The results indicate that there were 1.1x10
5 

SRB. 

The metabolic activity of methanogens present in the sediments of the artificial 

lagoon was also evaluated, to study possible substrate competition between 

methanogens and sulfate reducing bacteria. The methane production started at 0.0001 

mol CH4 L
-1

 in the initial hours and reached 0.0042 mol CH4 L
-1 

after 50 days of 

incubation. with a methanogenic activity of  0.011 g COD-CH4 g
-1 

VSS
-1

 d
-1

 (Figure 3), 

a low rate in relation with typical values of specific methanogenic activity of granular 

sludge of  industrial wastewater, that range from 0.5 to 1.0 g COD-CH4 g
-1

 VSS
-1 

d
-1 

[48]. Also, it was estimated an acetate oxidation of 266 mg COD-acetate for CH4 

production. 

1
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With respect to acetate consumption was obtained for SRB a value of 111.3 mg 

COD-acetate L
-1

 d
-1

, while methanogens 53.3 mg COD-acetate L
-1

 d
-1

 .These data show 

that SRB in the sediments of the artificial lagoon used acetate as a highly effective 

substrate for sulfate reduction, under the conditions set in the bioassay. 

With the results obtain, different bacterial consortiums are expected to be 

present in the microbial inoculum evaluated in this study; even more, a potential 

competition between them by the substrate (acetate), the sulfate-reducing bacteria, and 

the methanogens mainly. As sulfate reduction and methanogenesis are both involved in 

the final step of the degradation of organic matter in anaerobic environments, the 

presence of a methanogenic activity is an indicator that exist the presence of several 

bacterial consortia in the anaerobic microbial inoculants evaluated.  

Many sulfate reducing bacteria are metabolically much more versatile than 

methanogenic bacteria and can use all classical fermentation products and oxidize them 

to carbon dioxide, simultaneously reducing sulfate to sulfide. Although a few sulfate 

reducing bacteria that have been isolated recently can also use sugars or amino acids, 

these bacteria do not compete successfully with classical fermentative bacteria on the 

same substrates [17]. The sulfate-reducing bacteria predominate in the sediments of the 

artificial lagoon and that are oxidants of acetate could belong to the genus 

Desulfobacter, Desulfotomaculum, Desulfococcus, Desulfosarcina and Desulfonema 

[41] which subsequently can be confirmed using molecular techniques.  

4 Conclusions 

Sulfate reduction and sulfide production was catalyzed by SRB present in the sediments 

of the artificial lagoon, the granular sludge and the sample collected near Oroporto 

mine. However, the other samples collected near mining areas showed a low sulfate 

reduction and sulfide production under the conditions imposed. 
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SRB present in the sediments of the artificial lagoon showed predominance in acetate 

consumption for biogenic sulfide production as carbon source over the methanogens, 

observing a competition between these two groups of microorganisms.  

It was determined that the sulfate-reducing bacteria present in the sediments of the 

artificial lagoon, constitutes an excellent option for biological treatment of acid mine 

drainage characterized by elevated concentrations of heavy metals, sulfates and acidity, 

because of the high percentage of sulfate reduction obtained. 
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Table 1 Physical, chemical and microbial characterization of the sediments and supernatant of samples collected near mining regions in the 

mining district Portovelo-Zaruma, Ecuador. 

Parameters Units “Agua dulce” Oroporto Mine Amarillo river Pache Sector 

Permissible 

Limits
a
 

Ammonium mg L
-1

 710.0 ± 60.2 6414.2 ± 43.1 112.2 ± 37.7 601.6 ± 3.7 - 

Biochemical Oxygen 

Demand 

mg L
-1

 50.0 ± 1.5 60.0 ± 2.1 250.0 ± 5.4 25.0 ± 0.6 100 

Chemical Oxygen Demand mg L
-1

 14012.1 ± 2759.1 4079.5 ± 752.5 1418.9 ± 501.7 7804.2 ± 1064.2 250 

Conductivity µS cm
-1

 859 ± 0.5
b
 918 ± 0.5

b
 796 ± 0.5

b
 420 ± 0.5

b
 - 

Nitrate mg L
-1

 808.8 ± 28.1 3521.2 ± 15.4 1431.2 ± 78.5 415.9 ± 27.5 10 

pH  5.6 ± 0.01
b
 6.2 ± 0.01

b
 6.8 ± 0.01

b
 6.8 ± 0.01

b
 5-9 

Phosphate mg L
-1

 128.6 ± 33.2 105.2 ± 28.5 172.3 ± 18.9 138.7 ± 18.9 - 

Sulfate mg L
-1

 2085.4 ± 38.8 1207.3 ± 38.8 1083.8 ± 58.2 1660.1 ± 252.2 1000 

Sulfide mg L
-1

 0.2 ± 0.0003 0.7 ± 0 47.2 ± 0.03 4.9 ± 0.002 0.5 

Total solids g L
-1

 82.8 ± 3.3 9.7 ± 0.06 6.4 ± 0.4 547.1 ± 15.6 1.6 
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Total suspended solids g L
-1

 55.5 ± 0.5 8.9 ± 0.7 4.8 ± 0.2 462.1 ± 2.3 0.1 

Total suspended solids in 

sediments 

% 59.5 ± 0,2 68.9 ± 0.1 77.6 ± 0.2 77.6 ± 0.3 - 

Volatile solids g L
-1

 5.9 ± 1.2 1.8 ± 0.1 0.3 ± 0.03 9.4 ± 0.6 - 

Volatile suspended solids g L
-1

 1.6 ± 0.1 0.6 ± 0.1 0.1 ± 0.02 3.7 ± 0.7 - 

Volatile suspended solids in 

sediments 

% 2.5 ± 0.05 3.8 ± 0.1 2.4 ± 0.03 1.9 ± 0.01 - 

Total Bacteria CFU mL
-1

 5.90E+03 7.00E+04 1.48E+06 1,20E+05 - 

Coliforms 

MPN/100  

mL 

n/d >1600 >1600 n/d 

Remotion 

>99.9% 

Fecal coliforms (E.coli) 

MPN/100  

mL 

n/d 130 280 n/d 

Remotion 

>99.9% 

a
 Unified Secondary Environmental Legislation Text (TULSMA), Book VI, Annex 1, Table 12 

b
 Standard deviation of the equipment 

n/d = not detected 
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Table 2 Specific activities obtained with samples collected near mining areas and sediments, evaluated in batch assays, during 48 and 61 days in 

the presence of acetate (2.5 g COD L
-1

) and sulfate (2000 mg L
-1

). 

Sample 

Time of 

treatment (days) 

Type of sample 

Sulfate reduction 

(%) 

Sulfide 

(mg L
-1

) 

Specific activity of 

sulfate reduction 

(mg SO4
2- 

kg
-1

 VSS d
-1

) 

Specific activity of 

sulfide production 

(mg S
2- 

kg
-1 

VSS d
-1

) 

Agua dulce Sector 

48 

 

S 0 1.1±0.01 0 146.1 

St 0 4.3±0.01 0 577.0 

Amarillo river 

S 0 0.1±0.01 0 19.4 

St 0 0 0 0 

Pache Sector 

S 0 4.0±0.09 0 511.9 

St 0 3.5±0.01 0 409.8 

Oroporto Mine St 26.8 15.1±3.5 3354.2 1063.7 

Granular Sludge 

61 

S 15.5 65.8±4.1 2986.4 2474.0 

Oroporto Mine S 48.1 12.7 ±1.9 8222.2 3534.1 

Artificial lagoon  S 55.8 37.3±1.1 7821.6 4855.7 
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S: sediments 

St: supernatant 
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Table 3 Sulfur balance in the bioassay performed with the sediments of the artificial 

lagoon at the USFQ, with a fed of 2000 mg L-1 of sulfate. 

 

Influent sulfate 

(mg L
-1

) 

Effluent Sulfate 

(mg L
-1

) 

Dissolved Sulfide 

effluent 

(mg L
-1

) 

 2181 963 37.3 

Sulfur 

(mg L
-1

) 

727 337 37.3 
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Figure 1 Mining district Portovelo-Zaruma at south of Ecuador. Red points correspond 

to sampling areas. (1) Sector Agua Dulce (Calera river), (2) Sector Pache (Calera river), 

(3) Oroporto mine (Amarillo river) and (4) Banks of Amarillo river. 
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Figure 2 Sulfate reducing activity of sediments during batch assays, by a period of 

treatment of 61 days. Concentration of sulfide in secondary axis (filed figures), sulfate 

in primary axis (open figures): (● and ) control, (▲ and ∆) Granular sludge, (  and ◊) 

Sample collected near Oroporto mine, (  and □) Sediments of the artificial lagoon 

(USFQ). 
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Figure 3 Methanogenic activity of sediments of the artificial lagoon of the University San 

Francisco de Quito (USFQ), after 50 days of treatment. (●) Control. (▲) artificial lagoon. 
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ABSTRACT 

Acid mine drainage (AMD) is a major environmental problem threaten water resources 

worldwide. Passive treatments relying on the activity of sulfate reducing bacteria are 

efficient way to reduce acidity, metal and sulfate concentration of AMD water and 

improve the overall water quality. The objective of this study was to conduct a 

phylotyping of the microorganisms present in a sulfate reducing bioreactor with a 

limestone pre-column for the removal of copper in Ecuador. The system was fed with a 

synthetic acid mine drainage (AMD) with a pH of 2.7 containing high concentrations of 

Cu
2+

 (10-40 mg L
-1

), sulfate (2000 mg L
-1

), and acetate as electron donor (2.5 g COD 

acetate). Copper removal efficiencies ranged from 95 to 99%, with a final concentration 

of 0.53 mg L
-1 

of copper (II) in the two-stage system, with almost complete removal 

occurring in the limestone pre-column. The final sulfate reduction was 37% and 

chemical oxygen demand removal was 59%, with the predominance of COD 

consumption by methanogens during the first 153 days; an almost equal COD 

consumption by methanogens and SRB was obtained after 154 days and a dominance of 

SRB with a COD removal of 41.3% of the total (59%) was obtained at 228 days. 

Finally, a determination of bacterial taxonomic composition was conducted by analysis 

of 16s rRNA and dsr funcional gen at day 113. Methanosaeta and Methanosarcina were 

the most prevalent methanogens in the biological reactor while, Desulfotomaculum, 

Syntrophobacter, Desulfosalsimonas, Desulfobulbus, Desulfacinum, Desulfosarcina and 

Desulfovibrio were the most prevalent sulfate reducing bacteria (SRB). Among the 

sulfate-reducing bacteria which were identified, Desulfotomaculum intricatum (99% 

identity) and Desulfotomaculum acetoxidans (90%) were the most abundant SRB that 

used acetate, as only carbon source.. 
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5 Introduction 

Anthropogenic release of heavy metals in the environment is mainly related to wastewaters 

discharges from industrial and mining activities. In particular acid-mine drainage (AMD), 

which is recognized as the current largest environmental problem facing the mining 

industry, negatively impacts thousands of kilometers of waterways worldwide, affecting 

the aquatic and neighboring terrestrial environment [1]. In Ecuador, mining activities are 

primarily conducted in the district Portovelo-Zaruma (El Oro province); however, the lack 

of treatment systems for AMD and control by state authorities have caused several impacts 

in this mining district [2]. For instance, the discharges of process tailings to the Amarillo 

and Calera rivers affect severely the environment with metals and cyanide levels in river 

water that exceed environmental quality criteria [3].  

AMD is generated through a combination of chemical and biological processes by 

which metal sulfates are converted to sulfide and metal hydroxides when exposed to fresh 

water and oxygen. AMD is characterized by low pH values with high concentrations of 

sulfate and heavy metals ions [4], [5]. Numerous passive AMD treatment systems have 

evolved over the past three decades, however the most common designs involve sulfate-

reducing bioreactors, particularly in low-flow situations where water contains high 

concentrations of metals [6]. This bioprocess is based on biological hydrogen sulfide 

production by sulfate reducing bacteria (SRB), followed by metal sulfide precipitation and 

neutralization of the water by the alkalinity produced by the microbial oxidation of the 

electron donor which is typically an organic compound [7]. Limestone has also been 

studied extensively as AMD pH neutralizer and it is used mainly in passive wastewater 

treatment [8], primarily because of its effective dissolution rates, and its relative abundance 

near mine sites [1]. 
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A vast majority of studies have been reported in the literature regarding the 

precipitation of metals such as copper by biogenic sulfide. Muhammad and co-workers 

reported copper removal as high as 99% in a passive treatment of metal and sulfate rich 

acid mine drainage (AMD) using mixed limestone, spent mushroom compost and activated 

sludge [9]; a similar value also obtained by Ňancucheo and co-workers who used a 

consortia of acidophilic sulfidogenic bacteria for metals removal [10]. Lower percentages 

of removal were obtained by Kiran and co-workers, reaching values of 70% of copper 

removal with 50 mg L
-1

 Cu (II), in batch assays with lactate and using sulfate-reducing 

biomass obtained from a lab-scale upflow anaerobic packed bed reactor [11]. 

Sulfate-reducing bacteria (SRB) involved in these remediation processes use a wide 

range of organic compounds as electron donors; these compounds could be ethanol, 

formate, lactate, pyruvate, malate, succinate [12-14] and  short-chain fatty acids such as 

acetate [15]. SRB use two different pathways to oxidized acetate, a modified citric acid 

cycle used by Desulfobacter postgatei, and the acetyl-CoA pathway used by 

Desulfobacterium, Desulfotomaculum, Desulfococcus and Desulfobacca acetoxidans [12].  

Sulfate reducing bacteria and their activity can be detected molecularly by 

amplifying 16s rRNA gene [12] or sulfate reducing genes such as dsrAB ,which encodes 

the dissimilatory sulfite reductase, or aprBA, which encodes the dissimilatory adenosine-

5′-phosphosulphate reductase [12]. 

The objective of the study was  determine the bacterial taxonomic composition 

present in a sulfate reducing bioreactor with a limestone pre-column for the removal of 

copper at concentrations typically found in mine sites in Ecuador (10-40 mg L
-1

). The 

limestone pre-column allowed an increase of pH and copper removal while the reduction 

of sulfate and additional precipitation of copper were attained in the anaerobic sulfate 

reducing bioreactor fed with acetate as electron donor. AMD samples from mining district 
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of Ecuador were also characterized based on physic-chemical parameters. This study 

provides information regarding the composition of the microbial consortium responsible 

for the bioremediation of AMD in the presence of acetate which could be used in the future 

to develop treatment technologies adapted to local conditions with low operating costs. 

6 Materials and methods 

Acid Mine Drainage (AMD) 

Four samples of AMD were collected in the south of Ecuador, in the canton Portovelo, in 

the mining district Portovelo-Zaruma. The AMDs were collected in amber 1L bottles filled 

to the top and kept in refrigeration at 4
o
C. The samples corresponded to AMD of Oroporto 

Mine, Tramut Mine and mining areas near to Amarillo-Calera River and Amarillo river in 

the black bridge sector. AMDs were characterized as described in Analytical Methods. 

Basal mineral medium  

The basal medium consisted of (in mg L
-1

): NH4Cl (280); KH2PO4 (195); MgSO4 (49); 

CaCl2 (10); NaHCO3 (3000); yeast extract (10), Na2SO4 (2900), CH3COONa (5300) and 1 

mL L
-1

 of a solution of trace elements. The trace element solution was composed of (in mg 

L
-1

): H3BO3 (50), FeCl2∙4H2O (2,000), ZnCl2 (50), MnCl2 (32), (NH4)6 Mo7O24∙4H2O (50), 

AlCl3 (50), CoCl2∙6H2O (2,000), NiCl2∙6H2O (50), CuSO4∙5H2O (44), NaSeO3∙5H2O 

(100), EDTA (1,000), resazurin (200) y 1 mL L
-1

 of HCl (36%) [16].  

Reactor Operation  

The treatment system consisted of a 0.397 L limestone pre-column coupled to a 0.487 L 

biological reactor (Figure 4). The sludge inoculum was obtained from the artificial lagoon 

at Universidad San Francisco de Quito, Ecuador. The content of total suspended solids 

(TSS) and volatile suspended solids (VSS) in the sludge were 52.8 and 6.2%, respectively. 

The limestone pre-column was supplied with 1009.3 g of limestone (CaCO3 ≥ 94.7%) pre-

sieved in mesh # 8 and 16, which retained particles between 1 and 3 mm. Sieved limestone 
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was washed to release any residual dust or impurities; and it was dried at 90°C for 6 hours 

in an oven (Precision Scientific, Winchester, VA, USA). The biological reactor was packed 

with 115.8 g of sediments of the artificial lagoon (15 g L
-1

 of volatile suspended solids), 

and 371.2 g of sand with a density of 1.3 g mL
- 1 

as support for sulfate reducing bacteria. 

The bioreactor was operated according to the information described in Table 4 during the 

various periods of operation. The bioreactor operated as a stand-alone system until day 70 

(Period I). After day 70, the bioreactor operated in series with the limestone bed reactor as 

a pre-column and Cu
2+ 

addition (as CuCl2 2H2O) was initiated (Period II). The bioreactor 

was fed with acetate as electron donor during all operation of the treatment system. The 

reactor influent consisted of basal mineral medium, sulfate, acetate and increasing 

concentrations of Cu (II) (Table 4). Reactor feed and effluent samples were analyzed for 

sulfate, sulfide (H2S), total COD, conductivity and pH. 

Analytical Methods  

Sulfide was analyzed by the colorimetric method of the methylene blue according to 

Truper and Schlege [17]. Sulfate was determined by the gravimetric method by adding a 

saturated BaCl2 solution to form BaSO4 precipitate according to standard methods [18]. 

Chemical oxygen demand (COD) was determined by the colorimetric method with 

potassium dichromate as described in standard methods [18]. Samples for sulfate and COD 

were filtered previously; COD removal and sulfate reduction were calculated as the 

difference between the influent and the effluent COD and sulfate concentrations, 

respectively. Biological Oxygen Demand (BOD) was determined using the OxiTop system 

and incubator (WTW, Weilheim, Germany) for five days at a temperature of 20° C [18]. 

Total suspended solids (TSS) and volatile suspended solids (VSS) were determined 

according standard methods. [18]. 
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Nitrate, ammonium, conductivity, fluoride, chloride and pH were determined with a 

portable multi-parameter Thermo Scientific Orion 5-Star (Thermo Scientific, Beverly, MA, 

USA) according to standard methods [18]. 

Determination of metals such as copper, iron, manganese, magnesium, potassium 

and zinc, in AMD samples collected and influent and effluent samples of the reactors were 

analyzed by an absorption spectrophotometer (AA) Buck Scientific Model 210 VGP 

(Norwalk, USA) with hollow cathode lamps. Calibration curves were conducted for each 

metal using the respective standards with 2% HNO3. Samples were analyzed in triplicates.  

Methane generated in the bioreactor was measured using the liquid displacement 

method following biogas scrubbing through a NaOH solution to remove CO2 and H2S. The 

H2S concentration in the biogas was calculated from the H2S concentration in the liquid 

assuming equilibrium between phases and a dimensionless Henry’s factor of 0.36 [19]. The 

percentages of electron equivalents of reducing power fed to the reactor (CODin, in g 

COD/L reactor. d) utilized for methane (% CH4-COD) and sulfide (% H2S-COD) 

generation were calculated as described in our previous publication [19].  

% CH4-COD = 100(M*Fm)/CODin       Equation 2 

% H2S-COD = 100(S*Fs)/CODin       Equation 3 

where M=methanogenesis (expressed as g CH4/L reactor.d); S=sulfide generation 

(sulfide in the liquid phase + sulfide in the gas phase + sulfide precipitated as CuS, 

expressed as g S
2 –

 L
-1

 reactor.d); Fm= 4 g CH4-COD/g CH4; and Fs= 2 gS
2-

 COD/g S
2-

 

[19]. 

Chemicals 

Sodium sulfate (100% purity) was obtained from JT Baker (Phillipsburg, NJ, USA). 

Ammonium iron (III) acetate (purity) and sodium sulfate (purity) were obtained from 

H.V.O. (Quito, Ecuador). Sulfuric acid (95.0-97.0%) was obtained from Merck KGaA 
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(Darmstadt, Germany). The DMP (oxalate N, N-dimethyl-p-phenylenediamine) (> 99%) 

was obtained from J.T. Baker (Zedelgem, Belgium). N2 gas was delivered by AGA 

Ecuador (Quito, Ecuador). All reagents were used in the state in which they were received.  

Identification of microorganism 

DNA extraction 

Samples of sediments (2 g) were taken from the bioreactor at day 113 corresponding to the 

end of period IIa. The DNA was extracted with the commercial kit for genomic DNA 

isolation PowerSoil
®
DNA Isolation Kit of MoBIO, according the protocol provided by the 

supplier. The purity and concentration of the resulting DNA preparation was determined 

spectrophotometrically at 260 nm using NanoDrop (2000). 

16S Amplicon Library Preparation and Sequencing 

PCR targeting 16S rRNA gene V4 variable region was performed using the primers for 

bacterial/archaea 16S rRNA, 515F and 806R. Sulfate reducing bacteria (SRB) were also 

detected by targeted the functional marker genes dsrAB (alpha- and beta-subunits of 

dissimilatory (bi) sulfite reductase), with taxa-specific DSR1F–DSR4R primers [20, 21]. 

The PCR primers were used in a 30 cycle PCR (5 cycle used on PCR products) employing 

the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94°C 

for 3 minutes, followed by 28 cycles of 94°C for 30 seconds, 53°C for 40 seconds and 

72°C for 1 minute, after which a final elongation step at 72°C for 5 minutes was 

performed. After amplification, PCR products were checked in 2% agarose gel to 

determine the success of amplification and the relative intensity of bands. Multiple samples 

were pooled together in equal proportions based on their molecular weight and DNA 

concentrations. Pooled samples were purified using calibrated Ampure XP beads.  

The pooled and purified PCR product was used to prepare DNA library by 

following Illumina TruSeq DNA library preparation protocol. Sequencing was performed 
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at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq following the 

manufacturer’s guidelines. Sequence data were processed using MR DNA analysis 

pipeline (MR DNA, Shallowater, TX, USA). Operational taxonomic units (OTUs) were 

defined by 97% similarity. Final OTUs were taxonomically classified using BLASTn 

against a curated database derived from GreenGenes, RDPII and NCBI 

(www.ncbi.nlm.nih.gov,[22], http://rdp.cme.msu.edu). 

Phylogenetic analysis of 16S RNA 

A phylogenetic tree was assembled using Mega 6.0 for alignment of 30 most abundant 

OTUs, with the Maximum Likelihood using 100 pseudo-replicate bootstrap. 

3 Results and discussion 

Acid mine drainage (AMD) characterization 

Four AMD samples were collected in the mining district Portovelo (southwest Ecuador). 

Table 5 presents the average composition of acid mine drainages characterized and the 

allowable limits established by the US EPA 40 CFR Part 434 for the coal mining sector 

[23] and the Ecuadorian Legislation for discharges to freshwater bodies [24]  

The concentrations of nutrients measured in acid mine drainages analyzed ranged 

from 176.5 to 7480.3 mg L
-1

 for ammonium, 718.9 to 1299.2 mg L
-1

 for nitrate and 26.5 to 

291.7 mg L
-1

 for phosphate. The pH values were very similar for all samples analyzed 

varying from 1.9 to 3.5, similar to the values reported by Jimenez Rodriguez in Rio Tinto 

[25] as well as in the mining area of Eveline located near Silverton, Colorado in San Juan 

County with pH values of 3.3 [26]. Conductivity ranged widely from 8.5 to 2160 µS cm
-1

, 

comparable with values obtained in the zone of Rio Tinto that varied from 1.18 to 57 µS 

cm
-1

 [27]. The values for COD were between 13.7 to 521.4 mg L
-1

,
 
and for the BOD5, the 

values were very similar around 45 to 50 mg L
-1

. Regarding sulfate, values varied from 

http://www.mrdnalab.com/
http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/
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465.1 to 1831.6 mg L
-1

 which are typical values for AMDs, and the sulfide concentrations 

were very low up to 3.5 mg L
-1.  

Copper concentration ranged between 20.9 to 117.6 showing similar values 

reported previously in an abandoned copper mines in S. Domingos, Mértola, Southeast 

Portugal, with a concentration of 44 mg L
- 

Cu
2+

 [28]. The concentrations of iron were 

between 82.5 and 168.9, values very high in comparison with others acid mine drainages. 

For instance samples collected along Dunkard Creek downstream of Taylortown, 

Pennsylvania with presented numbers of 3.6-19 mg L
-1

 [29] and AMD in the mining 

district of Tharsis (Spain) that reached values of 35.2 mg L
-1

 [27] or samples in in the 

Western Region of Ghana in the Central African gold sector at Bibiani where iron 

concentrations were 22.6-29.2 mg L
-1

 [30]. Magnesium in the samples collected was 

detected in concentrations ranging from 4.0 to 11.4; similar to the value obtained at an 

AMD at Eveline mine in Colorado of 10.8 mg L
-1

 [26]. 

Zinc concentrations reached values between 1.2 to 3.4 mg L
-1

, a little higher 

comparing with those reported for large mine sites in British Columbia near Elk River 

Valley and Goddard Marsh where the concentrations of zinc, copper and iron were <1 mg 

L
-1

 [31]. 

The typical composition of water effluents resulting from sulfide and coal mine 

operations in USA had pH values of 2.6 to 6.3 and concentrations of iron  1-473 mg L
-1

, 

aluminium 1-58 mg L
-1

 and manganese 1-130 mg L
-1

 [32].  

All samples of acid mine drainages collected in Ecuador had pH values and copper 

concentrations higher than the limits set by the Ecuadorian regulation taking into account 

that the maximum allowable limits in Ecuador for copper (1 mg L
-1

) are high in 

comparison to the ones established by the US EPA regulations (0.05); the China Water 
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Risk regulation (0.5) [33] and the national environmental agency of Singapore government 

(0.1) [34], among others. 

Regarding the limits set for sulfates in mining effluents, it can be observed that the 

samples collected in the mining are near Amarillo-Calero river and in the Amarillo river-

Puente Negro sector, exceeded the limits by a factor of 1.8 for the Ecuadorian legislation. 

The samples collected of Oroporto, Tramut mine and Amarillo-Calero river exceeded the 

maximum allowable limits for sulfide established by the Ecuadorian normative [24] by a 

factor of 6.9, 1.2 and 1.9, respectively. The AMDs collected in the areas of Tramut Mine 

and Amarillo-Calero River, also exceeded the maximum allowable limits for manganese 

by a factor of 1.2 and 2.6, respectively. The concentrations of  magnesium is not regulated 

in effluents discharges in Ecuador, however these metals are regulated by the US EPA [32] 

and all samples exceeded the maximum allowable limits established in the American 

legislation.   

Reactor performance   

The performance of sulfate reducing reactor with the limestone pre-column was tested 

using a synthetic acid mine drainage prepared based on the characterization of raw AMD 

samples from the mining district in Ecuador. This synthetic AMD was formulated to 

simulate the effluents generated during mining operations. The efficiency of the treatment 

system was assessed through determination of sulfate reduction, sulfide generation, copper 

precipitation, COD removal and increase of pH in the effluent of the reactor.  

Figure 2 shows the time course of sulfate reduction and sulfide production in the 

sulfate reducing bioreactor with the limestone pre-column. Sulfide production was attained 

in the anaerobic bioreactor. Period I corresponded to the stabilization of the biological 

reactor stand-alone for 70 days with an average final pH of 7.7 to 8.6 (Table 3). As 

expected, the decrease in the concentration of sulfate was accompanied by an increase in 
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the production of sulfide reaching a value of 41 mg S
2-

 L
-1

,
 
and a sulfate reduction of 34% 

at day 61. In period II, at day 74, a sample of the packed sediments was taken and the 

reactor was open which caused a decrease in sulfide production and sulfate reduction due 

to the presence of oxygen. In the followings days, a little increase in sulfide production 

was observed until day 77 when 10 mg L
-1

 copper (II) were added (Period IIa) which 

caused a decrease of sulfide production due to the precipitation of copper sulfide. In period 

IIb, a second sampling of sediments for molecular analysis was conducted at day 116 

causing a decrease in the sulfide production attaining a final value of 1.4 mg S
2-

 L
-1

.s. In 

the period (IIc), a continuous increase in sulfide production was observed, reaching a final 

concentration of 118.3 mg L
-1

 at day 195 with a sulfate reduction of 41%, the maximum 

percentage obtained along the operation of the treatment system. In the last period (IId) the 

sulfide production was stabilized at 88 mg L
-1 

at day 228 with a sulfate reduction of 37%. 

Table 3 presents the sulfur balance for the treatment system, where the concentrations of 

dissolved sulfide in the effluent, sulfate as sulfur in the influent and effluent of the reactor 

were 83.2, 685 and 404 mg S
2-

 L
-1

, respectively. The loss of 23% of sulfur could be due to 

the high volatility of the compound during the addition of the reagents of methylene blue 

method to the sulfide solution [35], as was observed by Cline in a study of 

spectrophotometric determination of hydrogen sulfide in natural waters [36].The average 

substrate utilization in the sulfate reducing bioreactor with the limestone pre-column 

during the various periods of operation presented in Table 3 indicated that during Period I, 

IIa and IIb acetate was degraded mainly by methanogens, with a final organic COD 

removal efficiency of 65, 25 and 35%, respectively, which it was supported by molecular 

diversity analysis performed. In Period IIc, a very similar acetate consumption by SRB and 

methanogens was observed with just 8% of difference. However, in the last period (IId), 

the electron flow in the bioreactor was almost exclusively directed toward sulfate 
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reduction, corresponding to 41% of the total final COD removal (59%), concluding that 

sulfate reduction dominated over methane production in this period. It is important to note 

that during operation of the system there was not complete consumption of acetate, 

observing the presence of acetate in the effluent of the bioreactor. 

The acidity of the system was reduced efficiently from pH of 2.7 to 7.3 due to the 

presence of limestone in the bed reactor and it was raised even more in the bioreactor by 

the production of bicarbonate from the oxidation acetate, that can be used to reduce 

neutralization costs in the treatment of AMD because it is produced simultaneously during 

sulfate reduction during bacterial metabolism [37]. However, an additional alkalinity 

source such as limestone is often augmented with the organic carbon source to improve 

bicarbonate generation[38]. 

The final sulfate reduction obtained of 37% was similar to the values reported by 

Celis (36%) in the start-up of a down-flow fluidized bed with acetate [39]. The 59% of 

COD removal obtained in the treatment system was similar to other studies; Li reported a 

52% of removal in an up-flow anaerobic sludge blanket (UASB) reactor treating saline 

sulfate wastewater with acetate, sucrose and propionate as carbon sources [40]; Bharaty 

obtained a COD removal efficiency of 55% in a study with acetate as carbon source for 

sulfate reduction [13] and Alves and co-workers in a study of copper removal performed in 

an UASB using acetate as carbon source obtained a value of removal of 60% [41].  

These results of this study indicate that when the system was operated at a ratio of 

1.25 g COD g 𝑆𝑂4
2− with acetate as electron donor, a competition between SRB and 

methanogens was promoted. It is known that in anaerobic treatment processes, SRB and 

methanogens always compete for carbon source in greater or lesser degree. In a study with 

pure co-cultures of these two groups of microorganisms it was observed that acetate was 

converted into CH4 and CO2 during the incubation period, suggesting the coexistence of 
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acetoclastic methanogens and acetoclastic sulfate reducers [42]. Jing, Z. in a study 

performed for wastewater treatment in a UASB reactor that run for more than 180 days 

with presence of 3000 mg L
-1

 of sulfate, 1000 mg L
-1

 of ethanol and 1000 mg L
-1

 of acetate 

(about 3000 mg L
-1

 of COD in total) determined that the proportion of COD used for 

methane production was around 50% with a HRT in the range of 3–12 h and SRB 

accounted for 28.4–31.0% of electrons utilization showing a strong competition between 

these microorganisms[43]. 

Flaherty and co-workers observed sulfate-reducing, methanogenic, syntrophic and 

homoacetogenic bacteria in a full up, flow fully packed anaerobic digester sludge which 

was treating sulfate containing wastewater; they also found that methanogenic bacteria 

outcompeted sulfate-reducers for acetate [44]. In contrast, in our study it was observed that 

the growth of SRB was stimulated overtime, suggesting that SRB required some time to 

overcome the competition from other anaerobic species in order to reach a completely 

sulfatorreductor system. According to our results, literature studies have demonstrated that 

the predominance of SRB over methanogenic bacteria in a sulfate medium was only 

achieved after long term operation of bioreactors [45] [46]. For instance, Harada et al 

observed that in a UASB reactor with mesophilic digested sewage sludge the portion of 

electron flow used by SRB ranged from 38.9% at a loading rate of 1.0 kg COD m
-3

 d
-l 

to 

74.9% at 3.0 kg COD m
-3

 d
-1 

in a period of 180 days;
 
these result indicated that SRB had 

been gradually outcompeting methanogens during the long-term operation [45]. Omil and 

co-workers in a study about the competition between acetate utilizing methane-producing 

bacteria  and sulfate reducing bacteria in a mesophilic upflow anaerobic sludge bed 

(UASB) reactors treating volatile fatty acids and sulfate; observed that SRB became 

predominant over methanogens after prolonged reactor operation (250-400 days), 

increasing the amount of acetate used by SRB from 50 to 90% [46]. 
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Copper removal 

Figure 6 shows the concentration of Cu
2+

 in the influent and effluent of the system as a 

function of time. The reactor system proved to be highly efficient for the removal of Cu
2+

 

to the low ppm range. The average concentration of soluble Cu
2+

 in the wastewater was 

reduced from 10 to 0.5 mg L
-1

 in Period IIa, from 20 to 1.6 mg L
-1

 in Period IIb, from 30 to 

0.5 mg L
-1

 in Period IIc and from 40 to 0.4 in Period IId (Figure 6). Therefore, the removal 

efficiency of copper in the reactor ranged from 95.7 to 99.8 %. Only at the end of period 

IIb and the beginning of period IIc, 95 and 91% removal efficiencies were observed; 

however, in the following days values between 97 to 99% were reached. This somewhat 

lowered performance was likely due to several interruptions in the reactor due to sampling 

of the sediments of the reactor for molecular analysis that caused reduction of sulfide 

production. Precipitation of the heavy metals by biogenic sulfides resulted in very low 

metal concentrations in the effluent. These results are similar to those reported by Chambe 

where 99% copper removal was obtained with an initial concentration of 106.6 mg L
-1

 

Cu
2+ 

in the acid drainage of the Production Unit of Cerro de Pasco (Peru) belonging to the 

mining company Volcan; using as carbon source for the growth of the SRB, the manures of 

corral birds, sheep and cattle [47]. In the same manner, Ňancucheo and co-workers in their 

study of selective removal of transition metals from acidic mine waters using a consortia of 

acidophilic sulfidogenic bacteria 99% of copper removal was attained. [10] 

Finally, taking into consideration that 90% of the total copper removal occurred in 

the limestone bed reactor due to the formation and precipitation of the corresponding 

metal-carbonate ligands [48] ; it is recommended to added more limestone to the bed 

reactor if the limestone is exhausted by dissolution [49] or by encrustation with metals 

compounds and gypsum (CaSO4 2H2O) [50]. It is also done with other treatment systems 
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like wethlands that are used for treating AMD for a finite period, after which the system 

must be replenished or replaced [49].  

Microbiological taxonomic composition 

The microbial diversity present in the sulfate reducing bioreactor for the removal of copper 

at day 113 corresponding to period IIa was also evaluated by means of 16S rRNA and 

dsrAB gene analysis.  

16S rRNA library analysis revealed a mixed community of archaeal and bacterial 

species; 61.278 sequences were assigned to taxonomic affiliations with homologies 

ranging from 73 to 100%. Members of the Archaea domain corresponded to 19% of the 

total sequences, Bacteria domain to 31% while Eukarya corresponded to the 0.094%.  

The most abundant phyla were: Euryarchaeota, Protobacteria, Bacteroidetes, 

Firmicutes, Spirochaetes (Figure 7). The most abundant Archaea genera were: 

Methanosarcina (15% abundance) and Methanosaeta spp (3% abundance). While, for 

Bacteria, the predominant genera were: Petrimonas, Spirochaeta, Desulfotomaculum, 

Desulfovibrio, Desulfococcus, Aminivibrio and Bacteroides.  

Methanogens clearly were most abundant that SRB at time of sampling as shown in 

Table 8. Methanosaeta and Methanosarcina were the predominant genera which are 

considered among the most important acetoclastic methanogens with higher affinity for 

acetate [51]. SRB were less prevalent; the main SRB were: Desulfovibrio vulgaris, 

Desulfotomaculum sp (Desulfotomaculum intricatum and Desulfotomaculum acetoxidans).  

Desulfovibrio vulgaris can use acetate, pyruvate, formate, and certain primary 

alcohols as carbon source [52]. Desulfotomaculum intricatum is known to use acetate, n-

butyrate, ethanol and H2 as electron donors for the sulfate reduction [53]. Formate, 

fumarate and pyruvate are also utilized weakly by this species for sulfate reduction; 

moreover its growth is enhanced by the addition of yeast extract [53]. Desulfotomaculum 
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acetoxidans was one of the first sulfate-reducing bacteria known to use acetate for energy 

and carbon source; it oxidizes acetate via the acetyl-CoA/carbon monoxide dehydrogenase 

(CODH) pathway [54, 55]. This bacterium utilizes ethanol, butanol and butyrate as 

electron donors but not hydrogen, lactate, propanol or pyruvate [53, 56].  

Sulfate reducers belonging to Archaea Domain were not identified, probably due to 

the fact that sulfate reducing archaea exhibits optimal growth temperatures above 80C 

[54], while our reactor was maintained at 30C.  

In accordance with Elferink and co-workers, the most abundant SRB in their 

reactor were: Desulfobacter, followed by Desulfotomaculum, Desulfovibrio, 

Syntrophobacter pfennigii and Desulfobulbus. Although Desulfobacter sp. has been 

reported as an acetate-utilizing sulfate reducer, in our bioreactor this specie did not play an 

important role [57]. The main reason may be  that Desulfobacter spp. requires  high levels 

of sodium and magnesium chloride (like sea water)[58], which did not correspond to the 

conditions in our reactor.  

Analysis of the dsrAB revealed (63.725 sequences, homologies ranging 71-98%) 

confirmed the results obtained by the16S sequence (Table 8). The main genera identified 

were: Desulfotomaculum, Desulfovibrio, Syntrophobacter, Desulfosalsimonas, 

Desulfobulbus, Desulfacinum and Desulfosarcina. 

Among the microorganisms identified, Syntrophobacter is known to grow mainly 

in the presence of propionate and sulfate [57], Desulfobulbus sp. has been identified in 

reactors with carbohydrates and/or volatile fatty acids containing wastewater [57]. While, 

Desulfotomaculum alkaliphilum sp can grow in the presence of sulfate plus acetate, 

formate, ethanol, lactate or pyruvate [59]. 

Our study also concurs with the distribution of sulfate-reducing and methanogenic 

bacteria in anaerobic aggregates reported by Santegoeds, C.M and co-workers [60] and so 



54 
 

 

was the composition of metal-removing consortium which was similar to that reported by 

Baldwin in sulfidogenic biochemical reactors (BCRs)[61]  

Finally, it was expected that under the operational conditions applied in this study a 

complex community of methanogens and sulfate reducing bacteria would develop on the 

bioreactor, which was confirmed by molecular analysis. However, we found low SRB 

density in the sediment which was probably due to distinct adaptation times of different  

SRB; for instance Desulfotomaculum (most abundant SRB) when grows solely on acetate  

exhibits slower growth rate than other SRB probably because it possess a non-cyclic 

pathway that does not have substrate level phosphorylation [62]. Santegoeds and 

coworkers also found low SRB population density in UASB reactors fed with acetate, 

butyrate and propionate after 90 days of  operation [60]. 

Although sulfate-reducers were restricted to only a few lineages at the time of 

sampling for molecular analysis in the study (Period IIa), there was evidence of sulfate 

reduction by the detection of sulfide during the treatment system operation. However it is 

important considered that at the end of the study the sulfide concentration increased 

notably and the methane production reduced significantly. This could be an indication that 

the system was shifting from methanogenesis to sulfidogenesis. For this reason, it is 

recommended to determine the microbial community present in the bioreactor at different 

operation times. 

7 Conclusions 

This work demonstrated that the application of a sulfate reducing bioreactor with a 

limestone pre-column can be used for the removal of copper (Cu
2+

) from AMDs, with an 

efficacy between 95 to 99%, as only treatment objective or in combination with reduction 

of sulfate and COD concentrations. The final sulfate reduction obtained was 37% and 
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chemical oxygen demand removal was 59%, with the predominance of COD consumption 

by methanogens during the first 153 days; and the dominance of SRB with a COD removal 

of 41.3% at the end of the study (228 days). Also, the acidity of the system was reduced 

effectively from pH values of 2.7 in the influent to neutral pH values of 7.7. The alkalinity 

generated from the sulfate reduction process as well as bicarbonate alkalinity from acetate 

degradation can be used to reduce neutralization costs in the treatment of AMD 

Finally, according to  molecular analysis at day 116 of operation of the biological reactor, 

was observed the predominance of methanogens (Methanosaeta and Methanosarcina), 

while sulfate reducing bacteria (SRB) were restricted to the genera: Desulfotomaculum, 

Syntrophobacter, Desulfosalsimonas, Desulfobulbus, Desulfacinum, Desulfosarcina and 

Desulfovibrio; The species of SRB responsible for sulfate reduction in presence of acetate 

were probably Desulfotomaculum intricatum and Desulfotomaculum acetoxidans.  

This microbial diversity is similar to others studies where acetate was used as carbon 

source, and was determined that the time of operation is important in the establishment of a 

SRB population that outcompete methanogens. Future studies must performed new 

molecular analysis to determine the microbial diversity present at different times of 

operation of the treatment system. 
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Table 4 Average concentration of components in the influent and conditions maintained 

during the operation of the sulfate-reducing bioreactor. 

Parameter Units Average value 

Sulfate g L
-1

 2.0 (±0.1) 

COD-acetate g L
-1

 2.5 (±0.3) 

pH 

Cu 2
+
 (only periods IIa to IId) 

- 

mg L
-1

 

7.8
 a
 - 2.7

 b
 

10-40
b 

(±0.4) 

Volumetric loading rate g COD L
-1

 d
-1

 3.8
 a
 – 2.1

 b
 

Temperature ºC 30 (±2) 

Hydraulic retention time (HRT) d 1.4
a
-2.5

b
 

a 
Period I: biological reactor stand-alone (70 d). 

b
 Period II: Period IIa: 10 mg L

-1
 Cu

2+
 (36 d), Period IIb: 20 mg L

-1
 Cu

2+
 (40 d),  Period 

IIc: 30 mg L
-1

 Cu
2+

 (40d), and Period IId; 40 mg L
-1

 Cu
2+

 (35d).
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Table 5 Physical and chemical characterization of real acid mine drainages collected in the mining district Portovelo-Zaruma. 

Analysis Units Oroporto Mine Tramut Mine 
Mining area near 

Amarillo –Calero river 

Mining area near 

Amarillo river in 

puente negro sector 

Permissible 

Limits 

Ammonium mg L
-1

 
7480.

3 
± 21.0 176.4 ± 56.9 358.3 ± 38.3 232.2 ± 70.1 - 

Biological oxygen 

demand 
mg L

-1
 50.0 ± 2.7 35.0 ± 1.1 45.0 ± 2.2 50.0 ± 3.1 100 

a
 

Chloride g L
-1

 52.7 ± 2.3 75.7 ± 1.4 27.7 ± 1.6 15.3 ± 1.6 - 

Chemical oxygen 

demand 
mg L

-1
 521.4 ± 65.1 16.0 ± 1.9 18.8 ± 2.4 13.7 ± 0.3 250 

Conductivity µS/cm 12.8 ± 0.5
c
 8.5 ± 0.5

 c
 1521 ± 0.5

 c
 2160 ± 0.5

 c
 - 

Fluoride mg L
-1

 <0.5 <0.5 <0.5 <0.5 - 

Nitrate mg L
-1

 721.8 ± 82.3 718.9 ± 37.8 1299.2 ± 58.1 917.2 ± 35.7 10 

pH - 1.9 ± 0.01
 c
 1.9 ± 0.01

 c
 3.5 ± 0.01

 c
 2.6 ± 0.01

 c
 5-9 

Phosphate mg L
-1

 291.7 ± 27.7 59.2 ± 4.6 206.5 ± 9.2 26.4 ± 3.9 - 

Sulfate mg L
-1

 465.1 ± 5.8 477.4 ± 10.4 1790.4 ± 29.1 1831.6 ± 2.9 1000 

Sulfide mg L
-1

 3.4 ± 0..01 0.6 ± 0.001 0.9 ± 0.003 <0.05 ± 0 0.5 

Total solids mg L
-1

 425.0 ± 14.1 197.5 ± 10.6 14632.5 ± 1219.7 13205.0 ± 2291.0 1600 

Total Suspended 

Solids 
mg L

-1
 252.5 ± 3.5 70.0 ± 21.2 47.5 ± 10.6 455.0 ± 56.6 100

a
-70

b
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Volatile solids mg L
-1

 247.5 ± 24.7 65.0 ± 2.8 20.0 ± 7.1 145.0 ± 49.5 - 

Volatile suspended 

solids 
mg L

-1
 250.0 ± 14.1 62.5 ± 17.6 10.0 ± 1.0 115.0 ± 21.2 - 

Copper mg L
-1

 20.9 ± 1.0 23.1 ± 1.1 34.4 ± 1,4 117.6 ± 2.2 1.0
 a
, 0.05

 b
 

Iron mg L
-1

 148.8 ± 1.4 125.0 ± 2.3 82.4 ± 1.7 168.8 ± 0.2 10
a
, 6

b
 

Magnesium mg L
-1

 3.9 ± 0.3 8.9 ± 0.6 11.3 ± 1.2 4.5 ± 0..04 3.5
b
 

Manganese mg L
-1

 1.3 ± 0.1 2.4 ± 0.4 5.3 ± 1.3 1.1 ± 0.3 2.0
 a,b

 

Potassium mg L
-1

 9.8 ± 0.5 20.2 ± 1.9 23.4 ± 1.3 35.3 ± 1.4 - 

Zinc mg L
-1

 1.2 ± 0.1 1.9 ± 0.01 4.2 ± 0.1 3.4 ± 0.2 5.0
a
, 1.5 

a 
Ecuadorian legislation: Text of Unified Secondary Environmental Legislation (TULSMA), Book VI, Annex 1, Table 12 

b
 USEPA United States Environmental Protection Agency. Development document for final effluent limitations guidelines. 40 CFR Part 434 

c
 Standard deviation of the instrument. 
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Table 6  Average performance of the sulfate reducing bioreactor with the limestone pre-column during the various periods of the system 

operation. 

Period 

Effluent sulfate, 

(mg S L
-1

) 

Effluent pH 

H2S  

(mg H2S L
-1

) 

%COD in
a 

H2S formed CH4 

Organic COD 

removal 

I 685
b
-459 7.7-8.6 41.2 (±0.4) 22.6 (±3.2) 45.4 (±6.2) 68 (±2.4) 

IIa 653 7.0-7.7 4.2 (±0.1) 8.5 (±0.6) 16.5 (±4.1) 25 (±3.4) 

IIb 526 7.0-7.8 11.3 (±0.1) 13.0 (±0.8) 21.9 (±3.7) 35 (±2.3) 

IIc 438 7.0-7.5 70.9 (±0.7) 29.8 (±2,5) 21.2 (±3.5) 51 (±5.4) 

IId 404  7.1-7.7 

88.4 (±1.5) 

(83.2 mg S L
-1

) 

41.3 (±3.1) 17.7 (±0.3) 59 (±1.8) 

a 
Values are expressed as percentage of the initial wastewater COD (CODin). 

b 
Sulfate of the influent 
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Table 7 Influent Cu
2+

 concentration and average removal of copper attained by the sulfate reducing bioreactor with the limestone pre-column 

during the various periods of operation. 

Period 

Time of operation 

(d) 

Cu
2+

 conc.  

(mg L
-1

) 

Removal soluble copper (%) 

Limestone reactor Bioreactor Complete system 

IIa 36 10 (±0.3) 93.5 (±5.7) 6.2 (±1.9) 99.7 (±1.2) 

IIb 40 20 (±1.1) 87.8 (±6.3)) 7.8 (±0.7) 95.7 (±3.4) 

IIc 40 30 (±0.8) 90.5 (±2.5) 9.0 (±0.3) 99.5 (±3.2) 

IId 35 40(±0.5) 94.5 (±1.9) 4.7(±0.2) 99.2 (±0.4) 
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Table 8 Predominant taxa identified by 16s RNA and dsr gene in the sulfate reducing reactor in Period IIa (day 116) of operation of the treatment 

system. 

Taxonomic affiliation 16S rRNA dsr gene 

Domain Phylum Genera Specie 

Homology 

(%) 

Abundance 

(%) 

Homology 

(%) 

Abundance 

(%) 

Archaea Euryarchaeota Methanosarcina Methanosarcina siciliae 99 9 n/d n/d 

Archaea Euryarchaeota Methanosarcina Methanosarcina mazei 100 6 n/d n/d 

Archaea Euryarchaeota Methanosaeta Methanosaeta sp. 98 3 n/d n/d 

Bacteria Bacteroidia Petrimonas Petrimonas spp 99 4 n/d n/d 

Bacteria Synergistia Aminivibrio Amnivibrio pyruvatiphilus 99 2 n/d n/d 

Bacteria Bacteroidia Bacteroides Bacteroides sp 99 2 n/d n/d 

Bacteria Proteobacteria Desulfacinum Desulfacinum infernum n/d n/d 88 2.5 

Bacteria Proteobacteria Desulfobulbus Desulfobulbus spp n/d n/d 84 3.2 

Bacteria Proteobacteria Desulfococcus Desulfococcus spp 99 2 88 0.2 
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Bacteria Proteobacteria Desulfosalcimona 

Desulfosalsimonas 

propionica 

n/d n/d 85 5 

Bacteria Proteobacteria Desulfosarcina Desulfosarcina variabilis n/d n/d 86 1.7 

Bacteria Firmicutes Desulfotomaculum Desulfotomaculum sp 99 2.5 91 53 

Bacteria Firmicutes Desulfotomaculum 

Desulfotomaculum 

intricatum 

99 2 91 30 

Bacteria Firmicutes Desulfotomaculum 

Desulfotomaculum 

acetoxidans 

96 0.1 84 21 

Bacteria Firmicutes Desulfotomaculum 

Desulfotomaculum 

alkaliphilum 

97 0.1 73 1 

Bacteria Deltaproteobacteria Desulfovibrio Desulfovibrio vulgaris 99 2 98 11 

Bacteria Betaproteobacteria Delftia Delftia acidovorans 99 1 n/d n/d 

Bacteria Deltaproteobacteria Syntrophobacter Syntrophobacter 99 7 87 11 

Bacteria Sphingobacteria Solitalea Solitalea canadensis 100 1 n/d n/d 

n/d not detected
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Figure 4. Schematic representation of the sulfate reducing bioreactor with the limestone 

pre-column. (1) Influent, (2) limestone pre-column (height, 25 cm; internal diameter 

(i.d.), 5.5 cm), (3) limestone pre-column effluent/bioreactor influent, (4) biological 

reactor (height, 43.2 cm; i.d., 5.5 cm), (5) gas-liquid-solid separator, (6) biogas, (7) 

biogas scrubber containing 1M NaOH; and (8) treated effluent.. 
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Figure 5 Time course of sulfate reduction and sulfide production in the sulfate reducing 

bioreactor during (204) days of operation: sulfate influent (filled square), sulfate 

effluent (open square), sulfide influent (filled triangle) and sulfide effluent (open 

triangles).   
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Figure 6 Concentration of soluble copper in the influent (filled circles) and effluent 

(open circles) of the sulfate reducing bioreactor with a limestone pre-column system as 

a function of time.   
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Figure 7 Molecular Phylogenetic analysis by Maximum Likelihood method: The 

evolutionary history was inferred by using the Maximum Likelihood method based on 

the General Time Reversible model. The bootstrap consensus tree inferred from 100 

replicates is taken to represent the evolutionary history of the taxa analyzed. Initial 

tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method 

to a matrix of pairwise distances estimated using the Maximum Composite Likelihood 

(MCL) approach. The analysis involved 28 nucleotide sequences. All positions 
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containing gaps and missing data were eliminated. There were a total of 269 positions in 

the final dataset. Evolutionary analyses were conducted in MEGA6. 

 


