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RESUMEN

La proteasa NS3/NS2B es esencial en el proceso de replicacion del Virus del Dengue y
constituye un blanco para el desarrollo de antivirales. Sin embargo, no ha sido posible
desarrollar un farmaco clinicamente efectivo. El objetivo de este articulo es desarrollar un
método para identificar “sitios de unién” alternativos para moléculas farmacoldgicas,
utilizando un algoritmo de multilayer perceptron entrenado para clasificar los residuos que
pueden ser significante para la actividad de la enzima de los residuos no esenciales. Varios
factores obtenidos mediante mutagénesis de alanina, secuencia y conservacion de la
estructura y otros factores basados en la geometria fueron utilizados para entrenar al
modelo. Tres sitios alternativos fueron identificados: NS3-Leu58 y residuos cercanos, el
cluster NS3-His72, Phell6, Thrl56; y los residuos NS2B-Thr77, NS2B-Thr83 y NS2BMet84.

Palabras clave: Virus del Dengue, Escaneo de Mutagénesis computacional de Alanina, DV
NS3



ABSTRACT

Proteasa, DV NS2B cofactor, aprendizaje de mdaquina, ingenieria molecular, sitios de union,
inhibidor de proteasa The NS3/NS2B protease is essential on the Dengue Virus replication
process and constitutes a desirable target for antiviral development. Nevertheless, it has not
being possible to develop a clinically effective drug. The aim of this article is to develop an
approach to identify alternative ”"bindable sites” for druglike molecules using an multilayer
perceptron algorithm trained to classify residues that may be significant for the enzyme
activity from the non essential. Several features derived from computational alanine
scanning mutagenesis, sequence and structure conservation and other geometry-based
features were used to train the model. Three alternative sites were identified: NS3-Leu58
and nearby residues, NS3-His72,Phel16, Thr156 cluster, and NS2B-Thr77, NS2B-Thr83, and
NS2BMet84.

Keywords: Dengue Virus, Computational Alanine Scanning Mutagenesis, DV NS3 Protease,
DV NS2B cofactor, Machine Learning, Molecular engineering, bindability sites, protease
inhibitor
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2 M. A. Méndez et al.

Abstract The NS3/NS2B protease is essential on the Dengue Virus replication
process and constitutes a desirable target for antiviral development. Nevertheless,
it has not being possible to develop a clinically effective drug. The aim of this
article is to develop an approach to identify alternative ”bindable sites” for drug-
like molecules using an multilayer perceptron algorithm trained to classify residues
that may be significant for the enzyme activity from the non essential. Several
features derived from computational alanine scanning mutagenesis, sequence and
structure conservation and other geometry-based features were used to train the
model. Three alternative sites were identified: NS3-Leu58 and nearby residues,
NS3-His72,Phel16, Thrl56 cluster, and NS2B-Thr77, NS2B-Thr83, and NS2B-
Met&4.

Keywords Dengue Virus - Computational Alanine Scanning Mutagenesis - DV
NS3 Protease - DV NS2B cofactor - Machine Learning - Molecular engineering -
bindability sites - protease inhibitor

1 Introduction

The NS3 protease domain bound to its cofactor NS2B (NS2B-NS3Pro) is essential
on the replication process of the Dengue Virus (DV) [1-4] and therefore for the
infection process that can result on dengue fever[5], hemorrhagic dengue [6] and
dengue shock syndrome[4]. The worldwide incidence has being steadily increasing
these last years threatening the health of millions of people.[4, 6, 7]. For these
reasons it has being considered a global health priority to develop antiviral drugs
against DV.[4, 8] The development of inhibitors has being an aim for industry
and academia alike for several years nevertheless a clinical drug has not being
obtained.[4, 9-11] Indeed, mainly supportive fluid therapy constitutes the only
option available for patient treatment.[11] Vaccines are now on clinical trials[12, 13]
though there is not any on the market yet. If a vaccine is released in the near future
it will provide a much needed tool for fighting this virus but their effectiveness on
the global health landscape will need to be tested in the coming years. A combined
approach for the fight against DV should include antiviral drugs as the best option
against this public health threat.

Several strategies are currently being used on the search of effective drug-like
candidates for DV antivirals. Inhibitors for viral proteases are proven targets since
exist at least ten clinical available inhibitors for HIV protease and two for HCV.[9].
Nevertheless, there is not yet a clinical DV protease inhibitor available.[14] The
availability of the DV protease structures for almost all the serotypes has allowed
that methods as docking[15, 16] to be used with the aim of identifying lead com-
pounds. Here we suggest a straightforward and complementary strategy on the
search of these compounds. In particular, we aim to predict and to find bindabil-
ity sites for drug-like molecules. We built a classifier model using machine learning
methods where for the training and validation of the model we generated quan-
titative and qualitative features. These were features related to the function and
structure of the protease in its functional folding. Finally, we used site directed mu-
tagenesis results previously reported in the literature for establishing biologically
relevant classes for the classifier model. The broad contribution from this article
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Identification of bindability sites for drug-like molecules at Dengue Virus protease 3

is that residues and sites found by our methodology as important for the function
of the protease should be targets for further characterization on the development
process of drug-like molecules for DV NS2B-NS3Pro.

2 Methodology

First, we obtained several quantitative and qualitative features by analyzing the
functional structure and sequence of a DV NS2B-NS3 protease. The methodol-
ogy followed here makes use of a crystallographic structure previously reported
(PDB 3U1I)[17] as input for computational alanine scanning mutagenesis and the
calculation of several properties of the enzyme. Second, the amino acid sequence
was used as input for an analysis using several tools provided by the online suite
Phyre2[18] in order to find conservation not only at the level of sequence but at
the level of protein structure. Finally, we compiled from several sources site di-
rected mutagenesis results to create classes (categories) regarding the importance
of a residue for the DV protease activity. Lastly, all this information was used
to train a machine learning classifier that would predict for the residues where
not experimental site directed mutagenesis results were provided, if the residue
will be potentially important for the activity of the enzyme. The methodology is
summarized on Figure 1.

2.1 The DV protease

The structure chosen for all the analysis corresponds to the one reported by Nitsche
et al corresponding to the serotype 3 DV protease [17]. -An important part on
the replication process of the virus is the processing of the DV poliprotein that
contains structural and non structural viral proteins. Host proteases as well as
the DV protease are needed. This poliprotein contains the non structural protein
NS3 whose N terminus has the protease activity (NS3Pro, 180 residues) and it
also contains the NS3Pro’s peptide cofactor NS2B (aprox. 40 residues).[7] Figure
2 shows this structure where the three most important residues for the catalytic
activity (Hisb51, Asp75 and Ser135) of the enzyme are highlighted. This structure
was selected because the NS3Pro protein is folded in its functional conformation
being able to interact with the ligand and forms the active catalytic site. Other
structures are available that may give other kind of insights but many do not
include the protein bound to the ligand in its functional folding.[4]

The full structure of DV serotype 4 NS3-NS2B has being solved,[19] and con-
trary to the Hepatitis C Virus the position of the protease domain relative to the
helicase domain does not include a interface of the protease domain’s catalytic site
in direct contact with the helicase domain. This justifies our choice of working only
with the protease domain/NS2B in this article. We have used the 3UI1 structure
but this crystal structure contains a dimer that contains two protease/cofactor
assemblies that are not equal. For this study only the A and B chains were used.
The chains C, D and the ligands (E, F) were deleted. The sequence of the cho-
sen serine protease subunit NS2B [PDB: 3U1I, chain A] follows: GPLGSDLTVE
KAADVTWEEE AEQTGVSHNL MITVDDDGTM RIKDDETENI L
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4 M. A. Méndez et al.

The Sequence of the serine protease NS3Pro domain [PDB: 3U1l, chain B]
follows: GGGGSGGGGS GVLWDVPSPP ETQKAELEEG VYRIKQQGIF GK-
TQVGVGVQ KEGVFHTMWH VTRGAVLTHN GKRLEPNWAS VKKDLISYGG
GWRLSAQWQK GEEVQVIAVE PGKNPKNFQT MPGTFQTTTG EIGATALDFK
PGTSGSPIIN REGKVVGLYG NGVVTKNGGY VSGIAQTNAE PDGPTPELEE
E

2.2 Data collection for class definition

A machine learning classifier needs for the training and validation sets a known
class or category for each group of features of a certain object, an amino acid
residue on the NS3Pro or the NS2B in this study. The algorithm is going to be
trained to recognize to which specific class each residue belongs to. In the current
case, the three most important classes of interest are the cases where a mutation in
a given residue eliminates, modifies, or it does not have an effect on the enzymatic
activity of the DV protease. We proceeded to collect data reported in the existing
literature from site directed mutagenesis studies where the effect of mutating some
residues in vitro for Alanine, and/or other residues was evaluated. We assigned
our findings for the literature collected experimental mutagenesis results within
categories: A, total loss of activity; B, major loss of activity; C, moderate-activity
lost; D slight activity lost and WT, same catalytic activity as wild type. These
data are presented on Table 1.

2.3 Protease structural and function related feature generation

Computational alanine scanning mutagenesis derived features

Although there are programs for predicting by homology the structure of a
protein such as the online tool Phyre2 that we used for several analysis, these type
of software do not have the functionality to predict the wider structural effect of a
point mutation. Molecular dynamics simulations (MD) in principle could predict
such effects. The MD results will depend on the force field used and the calculation
could be very time consuming since it will need to re-run all the simulations for
each residue or mutated residues. An alternative and useful approach is to use
Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA)
method [20, 21] that performs a series of minimizations of the receptor and ligand
and point energy calculations. Prime MM-GBSA uses an implicit (continuum) sol-
vation model. This allows to efficiently characterize an interaction with a ligand
and allows in fact to mutate every residue on a certain ligand to study the effect
on the interaction. This allowed us to perform an alanine scanning mutagenesis
analysis where each residue is mutated for an alanine residue.[22] The underlin-
ing principle behind this analysis is that if a certain residue is important for the
interaction ligand-receptor when mutated for alanine, the total AG binding will
decrease.[23] The software then calculates the AAG binding (referred here simply
as A affinity). Additionally, the change in stability of a protein caused by the mu-
tation can also be calculated, AAG stability (referred here simply as A stability).
These parameters give us insight on the importance of a residue for the whole
protein structure.(BioLuminate 1.1 user manual)
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Our aim with this computational alanine mutagenesis scanning (CAMS) is
to understand the driving forces underlying protein-protein interactions by an-
alyzing the changes in protein binding affinity and/or protein stability of the
complex NS2B-NS3Pro. For CAMS a known starting structure is required. Ex-
perimental molecular structures can be acquired as pdb files from databases as
the Protein Data Bank or the European Bioinformatics Institute. The structures
on the repositories were obtained by X Ray Crystallography PDB ID: 3U1I as
discussed above.[17] The Crystallographic structure lacks hydrogen atoms and it
does not resemble necessarily its aqueous state. Hence, protein preparation must
be performed prior calculations.

In this work we report A protein binding affinity, A protein stability predic-
tions from computational alanine scanning mutagenesis of the NS2B-NS3 Dengue
Virus (DV) Protease using MM-GBSA approach, OPLS2005 force field, VSGB sol-
vent model, Prime (version 3.1, Schrodinger, LLC, New York, NY, 2012), rotamer
search algorithms included in the program BioLuminate (version 1.0, Schrodinger,
LLC, New York, NY, 2012). For each mutagenesis, energy minimizations were
carried out according to the standard MM-GBSA protocol but not a full molecu-
lar dynamics of the starting structure since we are using a crystal structure in a
known functional conformation. It was decided to explore the point mutation effect
directly on this structure with the required preparation steps mentioned below.

The structure preparation was performed using the Protein Preparation Wiz-
ard tool available in Prime within the Schrodinger suite. This tools uses as input
the original pdb file and perform a series of tasks as elimination of the water
molecules between the ligand and the protein, deletion of duplicated chains on the
file, filling missing atoms and residues, elimination of spurious bonds with metal-
lic ions. In addition, the tool assigns bond orders, formal charges and corrects the
orientation of certain groups if needed. Finally, it runs computational algorithms
to release tensions created during adjustments, examines the refined structure to
identify the need of final adjustments and checks the orientation of water molecules
and other groups present.[24]

Structure-based analysis

Reactive residues identification was performed on the structure. In this analysis
each region or residue is compared with certain established patterns from the pro-
gram default script, then each residue is assigned the reaction that is most prone to
suffer (only reactive residues are reported by the software). The reactions the soft-
ware can identify are deamination, oxidation, glycosylation and proteolysis.[25].

In addition we calculated some physical and chemical properties of each residue
using the Bioluminate Residue Analysis Tool.[25] Specifically we calculated for all
residues on the NS2B and NS3PRo the Solvent Accessible Surface Area (SASA),
the Hydropathy, and the residue charge.

Phyre 2 - Conservation analysis

The residue sequence of NS2B and NS3Pro were analyzed individually using
Phyre2. This online tool compares the residue sequence and the folding pattern
with other reported structures. In this case, the 3U1l DENV3 (Dengue Virus
Serotype 3) Protease was compared with protease structures from the other three
Dengue Virus Serotypes. In addition, it was compared with Proteases from the
West Nile Virus, Murray Encephalitis Virus and Japanese Encephalitis Virus.
Using these data each residue was classified as highly-conserved (folding and se-
quence), moderately-conserved (only sequence); and not conserved. These clas-
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6 M. A. Méndez et al.

sification are reported as 2, 1 and 0 respectively as presented on tables S1, S2,
and S3. In order to combine all the conservation analysis for all DV serotypes, we
established two classes, True (T) and False (F). When the residue on serotype 3
was highly conserved for all serotypes was assigned as T and when not as F. (See
Table 1)

Raptor X - Active site prediction

The residues that are more likely to be part of the active site were identified
using Raptor X.[] In table 1 and Tables S1, S2 and S3 these are reported as 1 and
0 to denote if the residue was predicted as part of the active site or if was not
respectively.

2.4 Representations and diagrams

All representations and diagrams were created using Maestro (Schrédinger LLC) or
Visual Molecular Dynamics Software, version 1.9.1.[27] The detailed color coding
and symbols used can be found in the supporting information Figure S1 and S2.

2.5 Classification

In order to generate an integral interpretation of all the previous analysis, we used
each of them as a feature to train a machine learning algorithm in order to classify
if a certain residue if mutated, and possibly if targeted by a ”drug-like molecule”
would eliminate the function of the enzyme. We perform a literature search for
experimental mutations where the loss, partial loss or no loss of the activity was
reported. With this data we established first five classes (described above), and
later we condensed the five classes into three classes, class A (Total loss or high loss
of activity), class C (moderate loss of activity), and WT (slight loss of activity
or as much activity as the wild type protein). As features we selected fourteen
properties: 1) residue type, 2) activity (NS3 or NS2B), 3) A affinity (as defined
above), 4) A stability solvated (as defined above), 5) Solvent accessible surface
area (SASA), 6) hydropathy, 7) protease’s amino acid sequence conservation with
all DV serotypes (true or false), degree of protease’s amino acid sequence sequence
conservation with 8) DENV1 M, 9) DENV 4 pH 8.5, 10) DENV2, 11) West Nile
Virus, 12) Murray 2 Valley EV, 13) Japanese Encephalitys Virus, 14) RaptorX
prediction if the residue is on the active site.

Two main machine learning algorithms were tested Random Forest and a Mul-
tilayer Perceptron algorithm. The Multilayer perceptron algorithms is a feedfor-
ward neural network trained with the backpropagation learning algorithm. The
neural network was automatically build by the default algorithm provided by
Waikato Environment for Knowledge Analyisis (WEKA) v. 3.6.13 (The University
of Waikato, Hamilton, New Zealand).[28] The parameters and conditions used for
the algorithm were a learning rate of 0.3, momentum term 0.2, a nominal to binary
filter. All the attributes were normalized as well as the the numerical classes. We
did not used a decay scheme. For the validation, a 10 fold cross-validation protocol
was used. For testing these algorithms the software WEKA was used.[28] The size
of the training plus validation set was 40 residues (5 of NS2B and 35 of NS3); a
summary of the this set is presented on Table 1. After the chosen model was built,
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Identification of bindability sites for drug-like molecules at Dengue Virus protease 7

we applied it over all the NS2B and NS3 residues to classify the data within class
A, class C or class WT. To achieve this, we used a two step approach. First with a
Multilayer Perceptron algorithm we classified some residues of the original train-
ing/validation set and from the Test set onto the class A. These residues for the
second phase were removed from the training/validation set and from the Test set
in order to apply a second, best suited, multilayer perceptron model (MP model
2) in order to classify the remaining residues between class C and class WT. In
summary, the parameters for generating this second model (MP model 2) were the
same as for the first, but we used a modified training/validation set without the
data classified as class ”A” for the first Multilayer Perceptron model (MP model

1).

3 Results

A multi step approach has being followed in this study in order to bridge atomistic
details with overall properties evaluated by homology based predictions, geometry
based analysis, and conservation information. We aim to find novel ligandability
sites or ligandability features on the DV protease. For ”bindability” we mean a def-
inition in the same spirit as it is used by Sheridan el al (2010) [29] therefore here we
report measurements as tools to asses ”bindable sites” for ”drug-like molecules”.

Detailed descriptions of the active site of a DV protease has being already
reported.[1, 19, 30-32] Nevertheless, a very detailed description of binding pockets
has being proposed to not necessarily be the best practical approach to identify
”bindable sites” because the molecular interactions in vivo show flexibility and
diversity rather than a static nature.[33] Here we report features and analysis
intended to give a more general description that could provide guidelines or insights
to researchers for the design of novel drug-like molecules for inhibiting this enzyme.
Briefly, first we report a set of analysis based on properties readily derived from
geometry alone including computations based on computer based alanine scanning
mutagenesis analysis, and hydropathy Second, we report predictions based only on
sequence of residues on the active site.[34] Third, a literature search of mutations
on several DV protease and its effects was used as the class for the training and
validation set for a machine learning model that uses the features calculated by us
in order to classify if a residue on the NS2B or the NS3-Pro if mutated potentially
will cause a loss of the activity of the enzyme.

The significant correlation between the predicted and the experimental data
(directed-site mutagenesis) shows that the model performs well at predicting ac-
tivity hot spots (regions or single residues where mutations have significant impact
on the enzyme activity) of the complex and it shows to be a viable methodology
for identification of bindability sites for drug-like molecules.

3.1 Geometry based analysis

For all the analysis we used the geometry of the DV serotype 3, structure PDB 3U11
(chains A and B), that is folded on the functional conformation. With the residue
analysis tool we calculated SASA for each residue, and the Hydropathy profile
both with Maestro. All the NS2B-NS3Pro residues were mutated with the Alanine

15



8 M. A. Méndez et al.

Scanning Mutagenesis Bioluminate Tool, except for the outermost residues (NS2B:
Asp50, Asp88; NS3: Glyl, Gly0, Serl, Gly2, Val3, Leud, Trp5, Asp6, GInl67,
Thr168, Asnl69, Alal70, Glul71). All mutations and calculations were performed
by mutating each residue one by one for Alanine. The properties obtained from
this analysis were A SASA (total), A SASA (not polar), A SASA (polar), A pKa,
Aaffinity, A hydropathy, total rotable bonds, A stability (gas) and A stability
(solvated). From all these variables, we used as features for the classifier model
only A affinity and A stability (solvated).

According to the MM-GBSA method[35] for the alanine scanning mutagenesis,
the first step is to calculate individually the energies of the NS3Pro system, the
NS2B system and finally of the NS2B-NS3Pro system for the wild type; followed
by the calculation of the energies of the same three systems for the mutant type.
The score of A affinity is obtained by comparing the energies of the systems for
the wild type to the systems of the mutant type, for each residue mutation, all
based in a thermodynamic cycle described elsewhere.[35] Here we use a cutoff of
4 kcal/mol to define a hotspot, referred later as a "high” A affinity or "high” A
stability. These results are presented on Table 1 with the "high” marked on red
color.

The A affinity was chosen as a feature for all residues since it will allow iden-
tifying if a residue is important for the interaction between NS2B and NS3Pro.
In addition, the parameter A stability was also selected as feature. These value
give insights about the importance of a residue in the overall stability of the active
conformation. In the case of Hisb1, known as part of the catalytic triad, showed
a high A stability energy. Considering that His51 could be positively charged and
NS2B-Asp81 negatively charged, they may form a salt bridge that will explain the
high A stability of the complex. In addition His51 was predicted susceptible to
undergo oxidation reactions. Ser135, another of the triad catalytic residues, did
not show a high A stability energy. These results suggest that there is not a simple
correlation between A stability energy with the importance of the residue for the
activity of the enzyme. This justify our choice of these variables as some of the
features for the classifier, with the same weight as other properties, since several
properties may characterize a residue as important and not just a single feature.

A summary of the results for the calculations on each residue mutated for Ala
are presented on Table 1 if the experimental site mutagenesis information is in-
cluded. Later this information will be assigned as the class for the training and
validation sets. If the experimental site mutagenesis information was not available
or taken into consideration as a class for the classifier, the results for those particu-
lar residues are reported on Tables S1, S2 and S3. The results of Reactive Residue
Identification are presented on the Supplementary Information, Table S6. Not all
residues are reactive and as a consequence there is not a entry for all residues, this
parameter was not chosen as a feature to be used for classification. Nevertheless,
it may be useful for the reader interested on a particular residue. For example,
Asnl52 that is part of the active site, is located in contact with NS2B and has
a high A affinity, was predicted to be susceptible to deamination. Indeed, this
residue is interacting with NS2B-Gly82 via a hydrogen bond, in agreement with
the calculated interaction energy.
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3.2 Homology based analysis

In order to facilitate a generalization of the methodology presented here, we explore
Raptor X as a tool to predict if a residue is part of the active site. This prediction
tool may be used for proteins where not such detailed knowledge of the residues on
the catalytic site is available. With the Raptor X algorithm of active site prediction,
we analyzed all residues in the DV protease sequence. The results are summarized
on Table 1 and Tables S1, S2 and S3. These results were in good agreement with
the residues identified experimentally and reported previously in the literature[l,
31, 36, 37]. Twenty two residues were predicted to be part of the active site. Asp75,
His51 and Ser135, the three residues of the catalytic triad, were correctly predicted
by raptor X to be part of the active site. On the other hand, geometry based
analysis did not showed neither a high A stability energy neither a high A affinity
energy for the key residue SER135. Another example, in the case of Tyrl61, even
when it showed to be just moderately conserved, Raptor X predicted the residue as
part of the active site. For this residue, Tyr 161, a high A stability energy was found
as well as to be susceptible to oxidation. These examples show that any particular
attribute by themselves is not enough to assign if a residue is important for the
enzyme activity. Therefore, this justify our multi step approach, since it shows
that this particular Raptor X algorithm classifies the residue correctly (a part or
not of the active site), adding a parameter (feature) suggesting that the residue
is important for the enzyme activity even when others of our main parameters
derived from geometry based analysis alone do not suggest its importance.
homology based conservation analysis

Protease inhibitors for HIV and HCV have shown rapid emergence of resistant
viral strains.[9] In order to lead the search in the direction to overcome this pitfall,
we have used several features to train the classifier based on conservation criteria.
The assumption is that the most a residue is conserved the least likely is to be
mutated without an important cost for the virus because of the importance of that
residue for the enzyme activity. In addition, considering that NS2B actively par-
ticipates in the formation of sub-pockets in the protease active site[9], our current
model worked with a structure that contained NS2B when cooperating for the
binding with a ligand. Conservation studies from the point of view of NS2B cofac-
tor could not be made with all serotypes because of lack of structures.(The current
results reflect conservation analysis only with serotypes 1 and 4). Previously for
NS3, it has being reported that the degree of aminoacid sequence conservation is
between 63% to 74% [9] what is positive for the search of drug-like molecules able
to inhibit the protease on all four serotypes. On the other hand, this high degree
of conservation makes more difficult to identify the non obvious key residues for
the enzyme. In order to overcome this, we have used as features for the classifier
also conservation predictions in comparison with West Nile Virus, Murray 2 Valley
EV, and Japanese Encephalitys Virus.

All the results on the present section were obtained with Phyre 2 for the DV
serotype 3. The previous residues identified as part of the active site by Raptor
X were analized with Phyre 2 and showed that 12 of the 22 residues were highly
conserved between the four main DV serotypes, 6 residues showed a moderate
degree of conservation and 4 of them were not conserved with the other three DV
serotypes. Figure 3 shows the degree of conservation for the residues that Phyre
2 identified as part of the active site. In the case of His 51, known as one of
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the catalytic triad residues, a high conservation between the four main serotypes
was found (shown in red). In general, the residues on the NS2B cofactor are not
highly conserved between the DV serotypes studied. A moderate (sequence only)
conservation is observed only with serotypes 1 and 4. Comparisons could not be
made with serotype 2 because there was not an available structure of DV serotype
2 NS2B as mentioned previously on the Phyre2 database. Considering only the
analysis between Serotypes 1, 3 and 4, the conservation degree obtained is in
agreement with previous reports (64.1 % vs 68.1 % [37]) for the NS2B domain. In
addition, there is a high degree of conservation at the sequence level between DV
serotype 3 and the West Nile Virus.

Since high A affinity energy may suggest an important role in the interaction
between NS2B and NS3, we clustered those residues that are highly conserved
and that have a high A affinity energy (a value greater than 4 kcal/mol). It was
found that only six NS3 residues that comply with this criteria were conserved
on all four DV serotypes. These were residues Gly21, Tyr23, Ile25, Phe46, Leub58
and Asnl52. Figure 9 presents the interaction diagram of some of these residues.
The residue Gly21 presents hydrophobic interactions with NS2B-ALA 57. Tyr23 is
in close proximity to residues NS2B-ALA56 and NS2B-Val 53. In addition Tyr23
showed a high A stability that may be explained by hydrogen bonding with other
residues within the same chain.(Figure 9)

In a similar trend of thought as for A affinity, high A stability energy may
suggest an important role in the conservation of the functional structure for the
complex NS2B and NS3. For this reason we clustered those residues that are
highly conserved and that have a high A stability energy (a value greater than 4
kcal/mol). In overall, all residues that complied with these criteria were neutral
amino acids. Some of the residues found were His51, Val52, Thr53, Tyr150, Gly151,
Gly153. Figure S4 presents the interaction diagram of some of these residues. SASA
shows evidence that all six residues are accessible to the solvent. Gly133 and Ser
135 also comply with the criteria and as mentioned previously Ser 135 is one of
the residues of the catalytic triad.

3.3 Machine Learning classification

High-throughput computational screening, and in vitro biochemical assays have
being used to identify possible lead compounds.[11] Anthracene based lead com-
pounds have shown to interact with the active site and P1 pocket of the NS3Pro.
A variety of other compounds of very different structures have being identified
using these methods but many were weakly active or they have too low thera-
peutic index.[9] Some protease inhibitors have being tested for both, West Nile
Virus protease and DV, it was found that they inhibit both enzymes but with
a lower efficacy for DV protease.[9] These results suggested subtle differences on
susceptibility between these proteases.[11] Part of the challenge for developing
the inhibitors has being the shallow nature of the binding site.[9]. (See Figure 3)
Another problem is that certain inhibitors will recognize the Arg in P1 pocket
that is also present in human proteases such as thrypsin, thrombin and elastase.[9]
This difficulty finding promising clinically feasible drug-like compounds suggest
the need for inhibitors that target other sites of the enzyme than the active site
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and sites close to the active site. This constitutes one of the main motivations for
the search of other potentially bindability sites outside the active site.

The search for non competitive inhibitors has also being pursued actively. For
example, Lys74, Leul49 and Asn152 have being previously identified to be on a non
active site pocket.[38] Lys74 is directly bonded to Asp75 so it was suggested that
the formation of a hydrogen bond between Lys74 and one of the tested inhibitors
may have caused a conformational change on Asp75 and therefore an effect on
the catalytic activity.[38] Neither of these three residues was identified by our
classifier since the three residues were already included in our training/validation
set where Lys74 and Leul49 were assigned as resiudes where a very important
change in enzyme activity is observed when mutated. Asn152 showed a moderate
effect (Table 1). Recently, another inhibitor has being found for this pocket close
to the active site.[14] Other inhibitors directed to pockets close to the active site
have proven to inhibit all four serotypes suggesting that it is possible to develop
drug-like molecules against the four serotypes.[39] Within this context we have
made use of our classifier model in order to corroborate previous findings and
suggest other pockets.

A random forest algorithm and a multilayer perceptron algorithm were tested
on their ability to classify the set of data available. The first attempts to classify
on the five categories assigned from literature resulted in classifiers that mostly
assigned all the residues to the category with the largest number of data available.
The performance indexes were poor. We concluded that the classes were unbal-
anced since we have more data for certain categories than for others. We decided
that there was not enough data for five categories and decided to merge categories
into three categories. Categories A and B were merged in class A, category C was
left as class C and categories D and WT were merged on class WT. For these new
data set for validation/training we found that the best performance was obtained
by the multilayer perceptron executed in a two phases approach. Here we report
only the algorithm found to be the best choice to classify the data. All the data to
be classified is presented on the Supplementary Information, Tables. S1, S2 and
S3.

The two phases consisted on first running all the training/validation set in order
to get a first classification. In this first phase, residues classified to class A were
obtained with good performance parameters (Recall 0.722). With this validated
model we proceeded to run the test set to be classified (Tables S1, S2 and S3). In
addition, we also run the validated model on the training/validation set again in
exactly the same form as for the test set. We got as a result each residue classified
into categories A, C or WT.(Suplementary information Fig. S5-8). All data that
was classified as A was taken out of the validation/training set for phase two.
With this approach we were trying to help the phase two algorithm trainin for
an improved classification into classes C and WT that on the first round were
not clearly separated. On the phase two, we proceeded to train a new multilayer
perceptron model and we obtained good performance parameters for this second
classifier (Recall for class C = 0.786). In this way we were able to classify all the
data with high level of confidence within class A, or class C. Residues classified
on class WT on the second phase still did not give as high confidence as for the
residues classified as A on phase one, or the residues classified as C on phase two.
We decided to leave all residues not classified as A or C, on their own category of
“non classified”. The confusion matrix and the detailed accuracy by class for both
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phases can be found on the supplementary information, Table S4 and Table S5.
The class assigned for each residue on phase one is reported in figure S5-8.

One of the aims of the current work was to identify new possible sites on the DV
protease. As a working hypothesis we explored interactions sites between the NS2B
and the NS3 chains. As described previously one of the analysis was to calculate
the A affinity and we identified three regions with residues with high A affinity
energies. (See Figure 4 - CASM). Nevertheless, the results of the classifier showed
that none of the residues on these regions was classified as important but NS2B-
Met 84. Surprisingly, close-by residues on only one of the three regions that showed
higher A affinity values were identified as likely to cause lost of enzymatic activity
if changed (Class A). Those were NS2B-Thr 77 and NS2B-Thr83.(See Figure 4
In addition, other three residues were clustered in a region not characterized by
high A affinity binding energy (NS2B-Thr 68, NS2B-Gly69, and NS2B-His72 as
shown in figure 5). NS2B-Met84 was identified as important by the classifier with a
probability to belong to class A 0.985, the first highest ranked residue other than a
Thr for the NS2B cofactor. NS2B-His72 and NS2B-Gly69 were the next two highest
ranked residues. All residues reported here were identified with a confidence value
by the classifier higher than 0.969). These results suggest other reasons behind the
importance of these clusters different from exclusively their contribution to the
binding between NS2B and NS3.

On the DV NS3 protease the classifier identified on class A the residues Phe46,
Thr48, His51, Thr53, Asp75, Trp89, and Thrl56 as the seven highest ranked
residues. (See Figure 6) Additional residues were classified as class A, all the
25 residues identified from both chains with a confidence higher than 0.95 are re-
ported on the Supplementary Information (Pages S2-S5). To these overall results
we can try to find the rational behind the classification by analyzing some of the
features used on the classification of these residues. For example, Phe46 presents
a high A affinity energy and presents hydrophobic interactions with NS2B-Val53.
NS2B-Val53 is not conserved between the DV serotypes so a better target for a
bindable site is Phe46 on the NS3 rather than the residue on NS2B. In the case
of Thrb3, it was found that the residue is at certain proximity to NS2B-His72
also classified on class A. In addition Thr 53 was calculated to have a high A
affinity but it was not conserved on all four serotypes. NS2B-His72 is moderately
conserved between the DV serotypes. This suggest that this pair may constitute a
possible bindability site. Residues Val52 and Thrb3 are residues exposed to solvent
(SASA 15.55 and 8.18 A2 respectively), both in close proximity to the catalytic
site. The calculations showed both residues to contribute to the overall stability
of the complex. Thr53 presents a hydrogen bond with Tyr79 (See Figure 9)

Furthermore, as expected several important residues are clustered on the ex-
perimental active site. Additionally, it was found a cluster of residues classified as
important (Class A) close to the beta sheet-loop-beta sheet of the NS2B cofac-
tor.(See Fig. 4 Another region on NS3-PRO was constituted by residues 58, 59
and 65 on a beta sheet loop - beta sheet structure as shown in Figure 6. This
one seems to be another important region where residues Leu58 and Thr59 may
contribute to the molecular recognition of NS2B and residues Leu65 and Tyr79 to
the stability of the secondary structure of that region. Phel189 (NS3), NS2B-Met
84 are also in close proximity to this region and and may contribute to the molec-
ular recognition between the two peptides. This is supported from the observation
thatt A affinity for NS2B-Met 84 was found to be one of the highest. Finally, a
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possible NS2B-NS3Pro important recognition site is constituted by NS2B-His 72,
PHE116 and THR156 as shown in Figure 7.

4 Discussion

The finding of novel sites on the DV protease that can be targeted by drug-like
molecules constitutes an important step towards the development of a clinically
effective inhibitor since traditional targets on the binding site and/or close to
the binding site have not yet generated viable compounds. Since tools to corre-
late multiple characteristics of the amino acids constituting both NS2B cofactor
and NS3Pro domain may help to unveil these possible sites, we have used a two
phases- multilayer perceptron algorithm to classify residues unto three groups.
Those residues likely to cause a major change in activity, those likely to cause a
moderate change in activity, and residues that have not being able to be classified.
A similar approach has being used before to help in complex protein problems
such as to assist the design and engineering of new proteins by studying the effect
of introducing certain mutations with comparable or better results than for previ-
ously published results with other methods.[40] In our case we can not effectively
make comparison with experimental results for all the test set since no experimen-
tal values exist for most of these residues. Nevertheless, we have data for some
key residues such as for His51 that was not included on the training/validation
set. The multilayer perceptron phase 1, classified this residue on the A class what
is in very good agreement with the experimental fact that His51 constitutes a
key residue (part of the catalytic triad). Furthermore, in overall for all cluster of
residues classified on class A, it is possible to find sound chemical reasons for such
classification by analyzing their different attributes. No chemical contradiction has
being found to their automatic assignment by the classifier model.

There was not a big overlap with previously identified binding sites since most
of the residues on those sites were used for the training/validation set. Authors
found that site formed by residues Leu58 and nearby residues may be a target
to inhibit binding of NS2B to NS3Pro and possibly disrupting NS3Pro activity.
Something similar can be suggested for residues NS2B-His72, Phel16 and Thr156.
Our model has predicted that one of the bindability sites is precisely close to the
active site (residues NS2B-Met84, NS2B-Thr83 and NS2B-Thr77) where NS2B
forms a beta sheet-loop-beta sheet structure.

In addition, we confirmed the importance of a previously reported site using our
multi step in silico approach. The region comprising the residues Val72, Tyr150,
Gly151, Asn152 , Gly153 is located between the catalitic triad and the NS2B beta
hairpin [41]. All these residues are highly conserved. Residues Tyr150, Gly151
and Gly153 have been experimentally determined to be class A and had a high
A stability. Asnl52 is a class B residue and has a high A affinity. Also, unising
an interaction diagram we determined that Asnl52 interacts with NS2B-Gly82
through a hidrogen bond. Residue Val72 had no experimental data available but
showed a high A stability. Even though Val72 has a low A affinity it is very close
to NS2B-Asp80, NS2B-Asp81 and NS2B-Gly82 residues and showed weak charge
interactions with them. Moreover, Val72 and Gly153 were identified by RaptorX
as part or the active site.
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In a future work the full NS3 including the helicase domain can be considered
in case the interface between the protease domain and helicase domain may reveal
novel bindability sites. In addition exploration of the additional conformation for
the DV serotype 3, 3UIl structure, may reveal new features overlooked in this
study. In addition, other structures that have being resolved in the presence of
inhibitors may be used for the methodology described in this article and some
new consensus between the different structures may allow to have more data to
run a classifier able to assign residues to more informative categories that we were
not able to assign first because the categories were unbalanced and/or with too
little data points. Indeed, due to the amount of features available we needed to
collapse five categories unto three, and the multi step approach was able to assign
residues to two categories leaving many residues without a class. Nevertheless, the
two classes that our model was able to classify were assigned with high level of
confidence and contain the classes of greater interest for development of drug-like
molecules.

The decision of using a methodology employing only the default minimization
steps on the Prime MM-GBSA is supported by the careful comparison reported
by Beard et al[35] that found that minimization of only the side chain of interest
produced the best correlation between the calculated and the experimental results
of protein-protein binding affinity when using point mutations and Prime MM-
GBSA.[35] This observation was explained on the base that mutating an amino
acid by alanine that is always a smaller residue, will avoid clashes with neighbour-
ing atoms so a moderate minimization step is enough. Therefore, though other
methods may be used to characterize the effect of a point mutation on the binding
affinity between two proteins, the Prime MM-GBSA method was shown to perform
very well at a fraction of the computational cost. In addition, the correct proto-
nation state of the amino acids will have a great impact on the binding energy.
PROPKA on the protein preparation Wizard was used for the correct assignment
of these protonation states. Previously, it has been shown to be very reliable for
assignments on entire proteins.[35] We found from the predictions made by our
methodology that the use of Prime MM-GBSA for a computational alanine scan-
ning mutagenesis provides great insights to characterize a protein though by itself
is not enough. This is the reason why other attributes such as conservation-based
were also added to the model. The suggested methodology reported here should
be tested on other systems likely providing useful insights for drug discovery.
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50 ASP NS2B - - C

F 0 2 c
61 TRP  NS2B 5,99 F o [PE o
74 LEU  Ns2B F 0 4 d
76 ILE  NS2B c F 0 1 d
78 VAL Ns2B 2,24 F 0 3 d
19 GLu NS3 1,93 6,2 D F a
27 GLN NS3 0,44 3,13 c F c
31 PHE NS3 0 0,12 D F a
35 GLN NS3 0,27 c T c
54 ARG | NS3 1,28 C F c
83 TRP NS3 -0,52 T 0 1 a
86 SER NS3 -0,05 0,9 D F _ a
105 ASN NS3 0,02 0,2 D F a
111 THR NS3 F 0 1 a
115 THR NS3 1,68 3 F 0 ab
125 ALA NS3 - - c T 0 a
126 ILE NS3 016 [ T T 0 2
129 ASP NS3 1,64 2,97 B T 0 be
130 PHE NS3 oss  EE B 3 0 2 2
131 L¥s NS3 4,5 wT F 0 5 e
133 GLY NS3 B T 0 6 be
134 THR NS3 F 6 be
135 SER NS3 T 0 e
136 GLY NS3 T 0 e
139 ILE NS3 T e
140 ILE NS3 F e
141 ASN NS3 F 0 e
142 ARG | Ns3 F 0 e
143 6L NS3 F 0 5 e
144 GLY NS3 T 0 6 e
148 GLy NS3 T e
149 LEU NS3 T 0 5 e
150 YR NS3 T 0 5 be
151 GLY NS3 T o |7 be
152 ASN NS3 T 0 4 be
153 GLy NS3 T 4 e
154 vAL | Ns3 F 0 e
155 vAL | Ns3 F 0 e
163 SER NS3 T 0 b
165 ILE NS3 F 0 b

a) Mislum Yildiz 2013

b) Sal , Junaid, Angsuth bat, & Katzenmeier, 2010
€) Zhiti Zuo, 2009

d) Niyomrattanakit et al., 2004

) Valle & Falgout, 1508

Table 1: Summary of the Training/Cross validation Set. References correspond to
[37, 41-44]
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Fig. 1: Flow chart of the methods used for generating the features and class for the machine
learning classifier. The categories for the experimental inhibitior result were A, total loss of
activity; B, major loss of activity; C, moderate-activity lost; D slight activity lost and WT,

same as wild type.
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Fig. 2: Structure, including the NS2B cofactor and the protease region of NS3, used for the
computational alanine scanning mutagenesis (3U1l). Surrounded by a red mesh are the most
important residues for the catalytic activity (Ser135, Asp75 and His 51); referred here as the
catalytic triad
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Fig. 3: Conservation degree according to Phyre2 of the residues identified as part of the Active
Site by Raptor X. The NS2B chain is gray and the NS3 chain is blue. Residues identified by rap-
tor as part of the active site are colored according to their conservation level. Highly-conserved
residues are red, moderately-conserved residues are yellow and not conserved residues are green.
It is also evident here that the catalytic site is very shallow. This view is in approximately the
same orientation as on Figure 2. View is in surface representation.
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Fig. 4: NS2B Residues labeled in yellow were classified as class A, likely to be fundamental on
the enzyme activity. The catalytic triad residues are shown in green only as reference points
for the reader.
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Fig. 5: NS2B Residues labeled in yellow were classified as class A, likely to be fundamental on
the enzyme activity. The catalytic triad residues are shown in green only as reference points
for the reader.
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Fig. 6: NS3 Residues labeled in yellow were classified as class A, likely to be fundamental on the
enzyme activity. NS2B is shown in cartoon visualization surrounded by a surface calculation
both on a transparent material. Bindability pocket shown here seems to be important for the
NS2B’s binding to NS3.
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HIS72
THR156

PHE116

Fig. 7: NS3 Residues labeled in yellow were classified as class A, likely to be fundamental on
the enzyme activity. NS2B-HIS72, NS3-PHE116 and THR156 cluster on a possible bindability
pocket. NS2B is shown in surface visualization on a transparent material. Bindability pocket
shown here seems to be important for the NS2B’s binding to NS3. ASP75 in purbole shown
only as a reference point for the reader.
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Fig. 8: Interactions representations’ symbols as found for Phe46 and Tyr79 (NS3Pro residues)
and Suplementary Information.
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Fig. 9: Interactions diagram of Phe46 and Tyr79 (NS3Pro residues) classified as class A, likely
to be fundamental on the enzyme activity.
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Fig. 10: Interactions diagram of Leu58 (NS3Pro residue) classified as class A, likely to be
fundamental on the enzyme activity. Here Leu 58 (center) is showing a backbone hydrogen
bonding interaction with Leu 65 (also classified as A)
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