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RESUMEN 

Un modelo 3D de elementos finitos fue desarrollado para simular la influencia de 
inclusiones en el comportamiento mecánico policristalino de aleaciones a base de Níquel 
de fase dual. Un modelo de endurecimiento por deformación basado en dislocaciones, 
construido en el llamado marco de Kocks-Mecking, se utiliza como la principal estrategia 
para el modelamiento constitutivo de las fases individuales. Un programa de MatLab fue 
desarrollado para acoplar el código de microestructura digital DREAM.3D con el código 
ABAQUS FE. Se observa una fuerte dependencia del esfuerzo de fluencia y la 
deformación plástica en el tipo de fase, el tamaño de la inclusión, la forma y la 
distribución en la respuesta local del agregado. El efecto de los gradientes de 
deformación plástica impuestos por la microestructura también es observado. 
 
Palabras Clave: Microestructuras Digitales; Comportamiento Constitutivo; Elementos 
Finitos; Aleaciones a Base de Níquel; Dislocaciones 
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ABSTRACT 

A 3D finite element model was developed to simulate the influence of inclusions on the 
polycrystalline mechanical behavior of dual-phase Nickel-based alloys. A dislocation based strain 
hardening model, constructed in the so-called Kocks-Mecking framework, is used as the main 
strategy for the constitutive modeling of individual phases. A MatLab program was developed to 
couple the digital microstructure code DREAM.3D with ABAQUS FE code. A strong dependence of 
flow stress and plastic strain on phase type, inclusion size, shape and distribution upon the 
aggregate local response is observed. The effect of plastic deformation gradients imposed by the 
microstructure is also noted.  
 
Keywords: Digital microstructures; constitutive behaviour; finite elements; Nickel-base alloys; 
Dislocations 
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ABSTRACT 

 

A 3D finite element model was developed to simulate the influence of inclusions on the 

polycrystalline mechanical behavior of dual-phase Nickel-based alloys. A dislocation 

based strain hardening model, constructed in the so-called Kocks-Mecking framework, 

is used as the main strategy for the constitutive modeling of individual phases. A 

MatLab program was developed to couple the digital microstructure code DREAM.3D 

with ABAQUS FE code. A strong dependence of flow stress and plastic strain on phase 

type, inclusion size, shape and distribution upon the aggregate local response is 

observed. The effect of plastic deformation gradients imposed by the microstructure is 

also noted.  

 

Keywords: Digital microstructures; constitutive behaviour; finite elements; Nickel-base 

alloys; Dislocations 

 

1. INTRODUCTION 

 

Polycrystalline materials (metals, alloys or ceramics) are commonly used in engineering 

applications ranging from delicate electronic components to very large structures in the 

nuclear and ship-building industries.Their microstructure is characterized by the 

topology, morphology, crystallographic orientation of the individual grains and their 

interfaces as well as microstructural defects within the bulk grains and at the inter-

granular interfaces (Benedetti and Barbe, 2013). A given material´s microstructure can 

be thought of as being constructed using building blocks called ―features‖ such as 

grains, inclusions, fibers, pores, corrosion pits, dislocations, individual atoms and many 

other possibilities. Although these features are very different in the ―real world‖ 

material´s sense, they can digitally be simplified as groups of discrete mesh elements 

(Groeber and Jackson, 2014). The link between microstructure and material 

macroscopic properties, the structure-property relationship, is technologically 

interesting as it may provide valuable information for the design of enhanced materials 

(Hashin, 1983; Mura, 1987; Nemat-Nasser and Hori, 1999; Needleman, 2000; 

Watanabe and Tsurekawa, 1999; Adams and Olson, 1998). 

 

Groeber and Jackson (2014) state that under the Integrated Computational Materials 

Engineering (ICME) framework, engineering materials can be treated as series of 

models (empirical or physical) that link the processing history to a suite of properties 

(mechanical, thermal, optical, electromagnetic, etc.). In the most general terms, 

processing models predict the internal structure of materials under some processing 

mailto:ebonifaz@usfq.edu.ec
mailto:alex.czekanski@lassonde.yorku.ca
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conditions, either directly or through a correlation with continuum state variables like 

thermal history and strain path. Similarly, property models predict a material´s 

performance under some operating conditions, given a description of its internal 

structure. Thus, it becomes obvious that the natural link between these models is the 

internal structure of the material that is output from one and input to the other. The 

internal structure of nearly all materials is complex, multi-scale and not easily defined 

by a small number of parameters (Groeber and Jackson, 2014). 

 

Several researchers demonstrated the existence of a length-scale effect in plasticity 

over the past fifteen years (Öztop, 2013).Their experimental methods consisted either 

of bending, twisting or compressing small well-defined volumes of material, or by 

employing indentation on a material. As such the experiments characterized the 

global response of the specimens, but the experiments gave no direct information 

about the state of the material within the system (Öztop, 2013). On the other hand, 

due to the classical continuum theory not only underestimates the stiffness and 

yielding load of micro-scale structures, but also is incapable of capturing the size-

dependency observed in these structures, the non-classical continuum theories such as 

the strain gradient theory and the modified couple stress theory have been developed 

(Rahaeifard et.al, 2014). Of this manner, by using an appropriate constitutive equation, 

observed length-scale phenomea (e.g. for a fixed inclusion v.f.  in the range of few 

microns,  the strength of MMCs increased with decreasing inclusion size)  can  be  

ver i f ied . 

 

According Aghababaei and Joshi (2013), the strengthening and high hardening 

behavior of metal matrix composites (MMCs) occur due to the high triaxiality in 

the stress state within the matrix region at the inclusion-matrix interfaces.  

Nanocrystalline matrices (Barai and Weng, 2011; Legarth and Niordson, 2010; Farrokh 

and Khan, 2009; Khan et al., 2008; Lloyd, 1994) may be combined with fine-scaled 

inclusions that may strongly mediate the strengthening, ductility and failure of 

polycrystal MMCs. Likewise, in highly textured polycrystalline MMC architectures the 

overall crystallographic orientation  would  be expected  to  produce strong  plastic 

anisotropy,  which may also influence the geometrically necessary dislocations 

(GNDs) induced size effect. In other words, the MMC response becomes length-scale 

dependent- an effect that has been explained in terms of geometrically necessary 

dislocations. Common to all the aforementioned research approaches is the assumption 

of homogenized matrix plasticity in that they ignore the combined effects of 

crystallographic orientation, inclusion size and shape, which are important in 

discerning the local deformation fields that affect global composite response 

(Aghababaei and Joshi, 2013).  

 

Under conditions in which the applied stress is homogeneous over large regions of the 

domain, approximately equal densities of dislocations of opposite signs accumulate 

within the crystal. Such an accumulation of dislocations is known as a statistically 

stored dislocation (SSD) density, which exerts no long-range influence with the 

material. However, when a significant gradient of stress exists within the domain, a net 

density of one sign of dislocations accumulates in certain regions of the crystal while a 
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net density of dislocations of the opposite sign accumulates in neighboring regions. 

The net signed density of dislocations is known as the geometrically necessary 

dislocation (GND) density (Öztop, 2013). According to Meyers and Ashworth (1992), 

the difference in the elastic response between adjacent grains is responsable for the 

generation of stress incompatibility at the grain boundaries. These stress incompatibility, 

added to the resolved shear stress due to the applied load, result in a total stress at the 

grain boundaries considerably higher than that experienced by the bulk of the grain. 

Hence, the grain boundary flows plastically prior to the bulk. The high dislocation 

density initiated from the grain boundaries can be classified as geometrically necessary. 

Their introduction will accommodate the two adjacent grains (crystals) and decrease the 

stress incompatibility, i.e., the plastic flow of the grain boundary region attenuates the 

stress concentration.  As the applied stress increases, the ratio between interfacial and 

applied stress decreases. The stresses become homogeneous when the interfacial layer is 

completely covered. 

 

Carvahlo et al. (2013) developed a user-friendly and time-efficient phenomenological 

model that incorporates details of the microstructure evolution at the grain scale with 

a limited number of material parameters. Particular attention had been focused on 

keeping a strong physical relevance in describing a wide set of interstitial free (IF) steels 

and dual phase (DP) steels and realistically reproducing the experimentally observed 

transients in the macroscopic behavior when strain-path changes occur. It was 

concluded that the proposed strategy allows avoiding the time-consuming mechanical 

characterization and identification procedures once a set of fixed physically-based 

constant parameters is identified. Component level phenomenological models, however, 

may not always be able to predict complex material behaviors, especially if damage 

initiation and evolution are of concern. It is today widely recognized that these aspects 

may be better understood if features of the material microstructure are considered and 

brought into the modeling framework (Benedetti and Barbe, 2013). Computational 

structural analysis of material’s micro-structures requires the generation of reliable 

micro-morphologies and affordable computational meshes as well as the description of 

the mechanical behavior of the elementary constituents and their interactions (Benedetti 

and Barbe, 2013). The simulation of polycrystalline superalloys with a microstructural 

base is limited to few studies. Most of these analyses have been until recently restricted 

to two dimensional cases, due to the high computational requirements. In the last 

decade, however, the more affordabile and increased computational capability has 

promoted the development of fully three-dimensional models (Benedetti and Barbe, 

2013).  

 

The problem of generating a suitable virtual microstructure, morphology and mesh, is 

particularly critical, especially when the analysis of a relevant number of grains in the 

three-dimensional case is of interest (Benedetti and Barbe, 2013). Analyses of this kind 

are of interest, for example, in predicting the strong dependency of flow stress and 

plastic strain on phase type and grain size. Polycrystalline aggregates are idealized as 

simple three-dimensional arrangements of grains called Representative Volume 

Elements (RVEs), where many elements per grain are used to represent nonuniform 

deformations within individual grains, seen as domains separated by boundaries of high 
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misorientation. To investigate the link between micro and macro scale variables for the 

deformation and stress given a description of its internal structure through a 

conventional constitutive model, the Representative Volume Element (RVE) is 

subjected to continuous monotonic strain loading conditions and periodic boundary 

conditions. 

 

Material microstructures are available in many different sizes and shapes and their 

features of interest have different dimensionalities. Data describing attributes of 

microstructure can be obtained using many different devices (Scanning Electron 

Microscopy, Transmission Electron Microscopy, Optical Microscopy, Electron 

Backscatter Difraction, Energy Dispersive Spectroscopy, Wavelength Dispersive 

Spectroscopy, 3D Atom Probe, Atomic Force Microscopy, etc) (Groeber and Jackson, 

2014). By abstracting the materials interpretation of the features and focusing only on 

how the feature is described digitally, DREAM.3D has been able to constitute a general, 

unified structure for digital data that assumes no prior knowledge of length-scale or 

material class (Groeber and Jackson, 2014). 

 

As several experimental studies reported that the macroscopic behavior can be 

attributed to the evolution of the underlying microstructural details, such as 

dislocation structures, more physically based models are developed in order to take 

into account the consequence of the evolution of the dislocation structures on the 

macroscopic behavior and specifically when strain-path changes occur. One may 

envisage scenarios where crystallographic orientation effects are important in 

determining the inclusion-induced size effects. For example, in polycrystalline MMCs 

microstructures with fine inclusions embedded within large grains, the local 

crystallography would be expected to decide the GND distribution. Single crystal 

plasticity based approaches are valuable in such scenarios, but they ignore the 

presence ( i n f l u e n c e )  of pre-existing heterogeneously distributed initial 

dislocation density. 

 

In its present state, dislocation density-related constitutive modeling is considered 

mature enough to be broadly used in finite element codes including viscoplasticity. In 

order to formulate the grain-size dependence of the total dislocation density, it is 

necessary to derive an equation to describe the accumulation of dislocations during 

deformation. The constitutive equation to describe the work hardening process in 

polycrystalline materials, however, has not been well established (Öztop, 2013; 

Rahaeifard et.al, 2014; Narutani and Takamura, 1991). In this work, the constitutive 

equations found in section 2 are used to describe the deformation behavior of 

polycrystals in uniaxial deformation. The constitutive model is constructed based on the 

so-called Kocks-Mecking model (Narutani and Takamura, 1991; Estrin and Mecking, 

1984; Estrin, 1996; Kocks, 1976; Bonifaz and Richards, 2008). The 3D dislocation 

based strain hardening finite element model was developed to simulate the influence of 

inclusions on the polycrystalline mechanical behavior of Nickel-based alloys. Four 

affordable computational dual-phase Representative Volume Elements (RVEs) of 

similar edge size but different inclusion size, shape and distribution were tested to 

investigate the relation between micro and macro deformation and stress variables.The 
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mathematical modeling has been investigated with a view to generating numerical data 

to define an optimum parameter space for an ongoing experimental project in the 

processing of new metal alloys. 

 

2.  THE CONSTITUTIVE MODEL 

 

The constitutive model used in the present FEA work is the dislocation based strain 

hardening model documented in Bonifaz and Richards, 2008.  
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where   represents the equivalent strain, S
 is the statistically stored dislocation density, 

G
 is the geometrically necessary dislocation density, 0

 is the initial dislocation 

density, G is the shear modulus, and the other parameters are defined in Table 1. 

According to Ashby (1970), the difference in crystallographic orientation between 

neighboring grains can be corrected by introducing the geometrically necessary 

dislocations (G), which are introduced to accommodate the incompatibility of 

deformation between grains. The presence of the GND densities introduces both a 

curvature as well as a strain into the crystal lattice. Formally, the relationship between 

the GND densities and the lattice distortion follows from a consideration of the 

compatibility of deformation in circumstances when multiple deformation 

mechanisms can be activated. The GND density (unit: 1/length^2), inherently contains 

a length scale, so GND densities are often invoked as state variables in strain gradient 

plasticity theories as a means of predicting the plasticity length scale effect (Öztop, 

2013).  
 

Table 1. Values of material parameters used in this study 
 

Parameter Matrix Inclusion Reference 
Taylor factor, M 2.73 2.91 Thomson, 1977 

Young´s Modulus, E 207 GPa 294 GPa Reed, 2006 
Critical Resolved Shear Stress, k0 85.1 MPa 170  MPa Bonifaz, 2014 

Elastic limit,      √ 
 
                             147 MPa 295 MPa Bonifaz, 2014 

α constant 0.3 0.3 Ashby, 1970 
K1 9.47E5  1/cm 9.47E5  1/cm Narutani and Takamura, 1991 
K2 6.12 6.12 Narutani and Takamura, 1991 

Initial dislocation density, ρ
0 
 1.0E8  1/cm

2
 1.0E8 1/cm

2
 Kehoe and Kelly, 1970 

Burguer´s vector, b 2.52E-8   cm 2.52E-8  cm Sangal and Tangri, 1989 

Average diameter, d 35 µm 16.8 µm Bonifaz, 2014 

Poisson´s coefficient, ν 0.26 0.26 Reed, 2006 
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The mechanical behavior of each phase is assumed to be represented by the constitutive 

equations (Eqs. 1-3) with appropriate values obtained from Table 1. The constitutive 

material model is incorporated into ABAQUS code through the *PLASTIC option 

(isotropic hardening continuum plasticity). The single slip plasticity assumption was 

considered in all the aggregate. Fig. 1 shows a comparission of the calculated stress-

strain curves of matrix phase and precipitate phase. The weak hardening at low and high 

strains observed in the matrix curve is due to the lower shear modulus G. 

 

 

 
Figure 1: Stress-strain curves obtained with the dislocation based strain hardening constitutive 

model (Eqs. 1 to 3). Model parameters documented in Table 1.  

 

 

3. THE FINITE ELEMENT MODEL 

 

Three-dimensional grain-scale mechanical modeling of polycrystalline materials may 

provide valuable information for the design of enhanced materials. A cubic box with an 

edge size (lo) is used to represent the polycrystalline aggregate. The four random 

polycrystalline aggregates (used in this work), generated with the software DREAM.3D, 

have a constant volume fraction ratio [70% (matrix phase) - 30 % (precipitate phase)]. 

Fig. 2 shows a dual-phase representative volume element constrained within 3-D 

boundary conditions. The individual contribution of the precipitates phase distributed in 

a random manner into the RVE models, are captured by the corresponding composite 

finite element mesh. The volume fraction ratio is kept constant in the four virtual 

specimens and corresponding simulations. To achieve the DREAM.3D and ABAQUS 

coupling, a MatLab
®
 (Mathworks, 2015) program was developed. The program was 

constructed to identify the nodal information belonging to the cubic surfaces on which 

the load and boundary conditions were applied.   
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The macroscopic averaged stress   (surface traction T2 applied in the top surface) and 

strain   in the traction direction are deduced from the resulting force on the face where 

the displacement is applied (for the stress)  
A

dA
A

22

1
  and from the displacement 

itself (for the strain)












0

21ln
l

u
 . Here, u2 is the applied displacement and l0 is the 

cubic box edge size. Virtual specimens with different inclusion size, morphology and 

distribution were used in the finite element simulations. The single slip plasticity 

assumption was considered in all the dual-phase aggregate (matrix and inclusions). The 

boundary and load conditions in a dual-phase representative volume element are shown 

in Fig. 2.   

 
 

Figure 2: A dual-phase (matrix phase + inclusions phase) representative volume element 

constrained with 3D boundary conditions. Continuous monotonic strain loading applied on the 

top face along the y-axis. 

 

The single oriented crystals (70 % matrix and 30 % inclusion grains) presented in Fig. 

3, were uniformly meshed with ABAQUS
®
 code, using 125000 low order 8 noded 

elements (C3D8). The matrix separated from inclusions and the inclusions separated 

from matrix are also shown in Fig. 3d. 
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Figure 3: Four Representative Volume Elements (RVEs) for a dual-phase polycrystalline nickel-

base alloy generated with the software DREAM.3D a) Mesh 1- fine spherical precipitate  b) 

Mesh 2 – cylindrical precipitate c) Mesh 3- mixed spherical precipitate d) Mesh 4 – coarse 

spherical precipitate. Cubic box edge size (lo = 50 µm). Element size = 1 µm. 

 

4. RESULTS AND DISCUSSION 

 

The difference in elastic (and plastic) response between adjacent inclusions and between 

matrix and inclusions are attributed to the generation of stress incompatibility at the 

inclusion boundaries.These stress incompatibilities, added to the resolved shear stress 
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due to the applied load, result in a total stress at the inclusion boundaries considerably 

higher than that experienced by the bulk of the inclusion or the matrix (See Mises stress 

contour values in Fig. 4). Results, shown in Figs. 4 to 6 demonstrate a strong 

dependency of flow stress and plastic strain on phase type, inclusion size, and inclusion 

distribution and morphology. It is noted that under the same load and boundary 

conditions, different points (four analyzed finite elements) located in the same matrix 

phase, present different mechanical behavior (see mixed spherical precipitate stress-

strain curve profiles in Fig. 5). This phenomenon is attributed to the influence of the 

size, distribution and morphology of the inclusions. Of the same manner, for the four 

RVEs (mesh 1 to mesh 4), the difference in stress-strain behaviour and elastic limit 

observed in the same point (same element number) located either in the matrix phase or 

in the precipitate phase, also depends on inclusion size, shape and distribution (see Fig. 

5a). The significance of the yield point variation is that once plastic deformation starts 

in a given area, the metal at this point is effectively softened and suffers a relatively 

large plastic deformation. This deformation then spreads into the material adjoining the 

region that already yielded because of the stress concentration at the boundary between 

the deformed and undeformed areas. In general, deformation starts at a position of stress 

concentration as discrete bands, as clearly observed in Figs. 4b and 6b. It is also 

confirmed that in RVEs composed with cylindrical inclusions (see Fig. 3b- mesh 2), the 

resistance to flow increases when the applied load is perpendicular to the inclusion 

longitudinal axis. Higher S22 stress values are reported for this condition in Figs. 5a, 

5b, and 5d.   
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Figure 4: von Misses stress contours for the 50 micron Representative Volume Element (RVE) 

under displacement loading along the y-axis  a) Mesh 1 b) Mesh 2 c) Mesh 3 d) Mesh 4. The 

elements considered in the analysis are also shown on the right. Stress units in 
 

   
. Element 

size = 1 µm. 
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Fig. 5 shows the stress-strain curves for the documented element number in the four 

representative digital microstructures stated in Figs. 3 and 4. Results reveal that the 

independent mechanical behavior of the analyzed element is affected for the phase type, 

inclusion size, distribution and morphology. 

 

 

 
Figure 5: Element stress-strain curves obtained in the four RVEs subjected to displacement 

loading along the y-axis a) for element number 66950 b) for element number 91600 c) for 

element number 53800 d) for element number 86000. Element numbers documented in Fig. 4 

are located in the righ surface of the cube.  
 

 

Fig. 6 shows plastic effective strain (PEEQ) contours for the four 50 micron 

Representative Volume Elements (RVEs) after a 30 % displacement (15 microns) 

loading along the y-axis. Higher strain values are observed in meshes 3 and 4 when 

compared with meshes 1 and 2. Strain concentration areas appear as a result of the 

applied load, that is, the equivalent strain is not uniformily distributed through the 

aggregate. The effect of plastic deformation gradients imposed by the microstructure is 

clearly observed. The resistance to flow is higher in structures composed of finer and 

homogeneous spherical and cylindrical precipitates because the Mises stresses and 

effective plastic strains are better distributed. 
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Figure 6: Plastic effective strain (PEEQ) contours for the 50 micron Representative Volume 

Element (RVE) under similar displacement loading along the y-axis a) Mesh 1 b) Mesh 2 c) 

Mesh 3 d) Mesh 4. Element size = 1 µm. 
 

 

5. CONCLUSIONS 

 

1. A 3D dislocation based strain hardening finite element model was developed to 

simulate the influence of inclusions in the polycrystalline mechanical behavior of 

Nickel-based alloys.  

2. The effects of the phase type, inclusion (precipitate) size, shape and distribution 

upon the aggregate local response are clearly observed. 

3. To couple the DREAM.3D digital microstructure code with ABAQUS finite 

element code, a MatLab program was developed. The program was constructed to 

identify the nodal information contained on the microstructure cube surfaces where 

the load and boundary conditions were applied.   

4. Results demonstrate a strong dependency of flow stress and plastic strain on phase 

type, inclusion size, shape and distribution. 
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5. The effect of plastic deformation gradients imposed by the microstructure is clearly 

observed. 

6. It is also confirmed that in RVEs composed with cylindrical inclusions, the 

resistance to flow increases when the applied load is perpendicular to the inclusion 

longitudinal axis. 

7. For the same load and boundary conditions, different mechanical behavior is 

observed in a same element number when this is located in differents RVEs.  

8. The resistance to flow is higher in structures composed of finer and homogeneous 

spherical and cylindrical precipitates because the Mises stresses and effective plastic 

strains are better distributed. 

9. The difference in crystallographic orientation, and the incompatibility of 

deformation between neighboring grains were accounted for the evolution of 

geometrically necessary dislocation density, by the introduction of averaged Taylor 

factors, averaged Young´s modulus and single phase elastic modulus. 
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