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RESUMEN 

Escherichia coli diarreogénica (DEC) es una importante causa de diarrea en el mundo 
en desarrollo y la detección de estas bacterias y su perfil de resistencia a los 
antibióticos es necesario para una efectiva terapia. En este estudio, nosotros 
conducimos un estudio microbiológico en 233 muestras de heces, colectadas durante 
un estudio de caso-control en un hospital y centro de salud en un barrio de bajos 
ingresos de Quito, Ecuador desde Abril hasta Septiembre del 2014. Nosotros usamos 8 
sets de primers de PCR para detectar los distintos patotipos de DEC. La prevalencia 
total de DEC fue de 30.5% en los casos y 20.2% en los controles (OR 1.76 IC 95% 0.96-
3.20, p=0.06), E.coli difuso adherente (DAEC) fue el patotipo más frecuentemente 
aislado en casos y controles (15.3% vs. 6.1% respectivamente) y fue el único patotipo 
con una asociación estadísticamente significativa con diarrea (OR 2.78, IC 95% 1.11-
6.96, p=0.03). Para nuestro conocimiento este es el primer estudio que investiga este 
patotipo en el Ecuador. Adicionalmente, patotipos aislados de casos exhibieron 
significativos altos porcentajes de resistencia antimicrobial para específicos 
antibióticos, así como también altos niveles de multidrogo resistencia, que los aislados 
obtenidos de controles. 
 
Palabras clave: diarrea, virulencia, resistencia antibiótica, patotipos de E.coli, 
multidrogo resistencia. 
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ABSTRACT 

Diarrheagenic Escherichia coli (DEC) is an important cause of diarrhea in the 
developing world and the detection of these bacteria and their antibiotic resistance 
profiles is necessary for effective therapy. In this study, we conducted a 
microbiological survey of DEC in 233 stool samples, collected during a case control 
study in a hospital and health center in a low income neighborhood of Quito, Ecuador 
from April to September 2014. We used 8 sets of PCR primers to detect distinct DEC 
pathotypes. The overall prevalence of DEC was 30.5% in cases and 20.2% in controls 
(OR 1.76 CI 95% 0.96-3.20, p=0.06), Diffusely adherent E.coli (DAEC) was the most 
frequently detected pathotype in cases and controls (15.3% vs. 6.1% respectively) and 
was the only pathotype with a statistically significant association with diarrhea (OR 
2.78, CI 95% 1.11-6.96, p=0.03). To our knowledge this is the first study investigating 
this pathotype in Ecuador. Additionally, pathotypes isolated from cases exhibited 
significantly higher levels of antimicrobial resistance to specific antibiotics, as well as 
higher levels of multidrug resistance, than isolates obtained from controls. 
 
Key words: diarrhea, virulence, antibiotic resistance, pathotype E.coli, multidrug 
resistance. 
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GENERAL INTRODUCTION 
 

The normal human microbiota, also known as commensal microbiota are 

microorganisms present on body surfaces, exposed to the external environment  and 

have an important role in development of  the mucosal immune system (Tlaskalová-

Hogenová et al., 2004)(Lederberg, 2001). The human microbiota comprises mostly 

beneficial, harmless bacteria. Pathogenic bacteria, in the other hand, cause disease; 

these bacteria have factors which allow colonization invasion and damage of the host 

(Beceiro, Tomas, & Bou, 2013). Virulence is the ability of a pathogen to cause disease 

via different factors or mechanisms (Clatworthy, Pierson, & Hung, 2007). The study of 

genomes is the main instrument for assessing the presence of virulence factors or the 

combination of factors that determine pathogenicity in bacteria. Also, the levels of 

expression of virulence associated genes can vary to determination of pathogenic and 

non-pathogenic bacteria (Pitout, 2012). 

Escherichia coli is considered a commensal bacteria of the normal gastrointestinal 

microbiota in humans and animals (Bonnet et al., 2009), (de Verdier, Nyman, Greko, & 

Bengtsson, 2012), but some variants cause gastrointestinal disease whereas others 

cause infections outside gastrointestinal tract (Pitout, 2012). The expression of distinct 

virulence factors determines the E.coli pathotype, as well as; the degree of damage to 

cellular processes that trigger diseases like cystitis, pyelonephritis, sepsis/meningitis 

and gastroenteritis (Bonnet et al., 2009). Urinary tract infections (UTIs) in humans 

produced by extraintestinal pathogenic Escherichia coli (ExPEC) are a main cause of 

morbidity and mortality; these have the specific virulence factors to overcome host 

defenses and cause infection (Johnson, Kuskowski, Gajewski, Sahm, & Karlowsky, 

2004). 
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In recent years, alarming increases in antibiotic-resistant E.coli accompanied by 

increased virulence have been reported (Johnson et al., 2004), (Pitout, 2012). 

Antimicrobial resistance is a serious problem that stems from overuse of antibiotics in 

both medical treatment and for agricultural uses. Pathogenic E.coli and commensal 

E.coli have different rates of resistance; resistant commensal E.coli are considered a 

reservoir of antimicrobial resistance genes for dissemination to other bacteria and 

rarely cause disease (Rosengren, Waldner, & Reid-Smith, 2009). Pathogenic bacteria 

have increased antimicrobial resistance due to intense exposure to antimicrobial 

agents and  at a genetic level  due to the physical linkages between antimicrobial genes 

and virulence genes (Boerlin et al., 2005)(Zhang et al., 2015). 

1.1. Genetic of resistance and virulence 
 

Bacteria and their hosts have co-evolved over millions of years, during which time 

bacteria have adapted to overcome the host immune system. On the other hand, 

bacteria have more recently evolved antimicrobial resistance (ability of bacteria to 

resist the action of an antimicrobial agent) (Beceiro et al., 2013). The virulence in 

pathogenic bacteria is a process that requires two gene classes: the first genes are 

related with the survival in host and non-host environments and the second virulence 

genes are genes rarely detected in non-pathogenic organisms and are unique to the 

pathogens (Groisman & Ochman, 1996).  

Pathogenic bacteria evolved by the acquisition of pieces of foreign genetic material 

encoding virulence factors such as toxins and adherence factors. These virulence genes 

are encoded on mobile DNA genetic elements that can be transmitted to other 

microorganisms such as nonpathogenic bacteria or closely related species. Also, 

virulence genes can be found as chromosomal inserts or pathogenicity islands, for 
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example EPEC and EHEC have virulence genes eaeA and espB found within a 35-kb 

insert that also is inserted within selenocysteine tRNA gene (Finlay, 1997). 

The pathogenicity island responsible for pathogenic behavior in enteropathogenic 

E.coli (LEE locus) has 35 Kb and mediates attaching and effacing lesions on intestinal 

epithelial cells. This locus LEE is absent in laboratory strains. In the same chromosomal 

location could be found another pathogenicity island PAI-1 (Groisman & Ochman, 

1996). 

1.2. Dissemination of genes involved in virulence and resistance 
 

Horizontal gene transfer is the mechanism by which bacteria acquire genes associated 

with virulence and resistance (Ochman, Lawrence, & Groisman, 2000), (Martinez & 

Baquero, 2000), (Martínez, 2013). Plasmids and transposons may have led to 

resistance genes of antibiotic-producing organisms (Pang, Brown, Steingrube, Wallace 

Jr., & Roberts, 1994); it is thought that pathogenicity islands were acquired by 

horizontal gene transfer (Groisman & Ochman, 1996), (Finlay, 1997). Next, we 

described the mechanisms and participants involved in the dissemination. 

Mutation and recombination. Gene mutation and recombination are different 

processes involved in antibiotic resistance and virulence phenotypes (Martínez & 

Baquero, 2002). The mutation process has been studied in dividing bacteria, where it 

was observed that mutations occur as the result of errors during the DNA replication 

process. The intrinsic genes that could be antibiotic resistance mutants are genes 

required for the entry of antibiotics (target-access mutations), genes required in the 

protection of the target from the drug (target-protection mutations) (Martinez & 

Baquero, 2000). In the case of virulence, the mutations in intrinsic genes could help 
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generate more virulent phenotypes in opportunistic bacteria (Martínez & Baquero, 

2002).  

Recombination regulates and optimizes the expression of ancient genes producing a 

low-level resistance phenotype and successful pathogenic clones. Some events of 

recent evolution of bacteria into an infectious phenotype by recombination have been 

exposed in recent years;  for example the recombination between different sets of 

genes of S.pneumoniae produces rearrangements in the capsular antigens such as 

mechanism of defense against host immunity (Martínez & Baquero, 2002), starting 

homologous recombination of cps (capsule polysaccharide gene) region in 

K.pneumoniae ST258 strains responsible for the global spread of KPC occurred your 

molecular diversification; studies suggests that ST258 clade I strains evolved from 

clade II (Chen, Mathema, Pitout, DeLeo, & Kreiswirth, 2014). 

Plasmids. Plasmids are vectors for the propagation of antibiotic resistance and 

virulence factors. Antibiotic resistance plasmids can be transported individually and in 

combination with genes encoding bacteriocins, siderophores and cytotoxins. The 

combination of virulence and antibiotic resistance factors in the same genetic element 

can produce coselection (Martínez & Baquero, 2002), the major incompatibility group 

is IncF group implicated in carriage of resistance and virulence genes (Beceiro et al., 

2013). In conjugative plasmids (important for propagation of antibiotic resistance 

genes), the expression of traT genes is also essential in biofilms development, 

phagocytosis and manufacture of pheromones (Martínez & Baquero, 2002). For 

example the Escherichia coli (ETEC) strain EC2173 has a plasmid pTC, a 90 Kb self-

conjugative virulence plasmid, these encoding the STa and STb heat-stable 

enterototoxins and tetracycline resistance (Tn10 transposon) (Fekete et al., 2012). 
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Transposons. Transposons are also important for the spreading of antibiotic resistance 

genes and virulence determinants. Transposons can be integrated in transferable 

plasmids or conjugated and then integrated into bacterial chromosome (Martínez & 

Baquero, 2002). For example, in Shigella flexneri the aerobactin operon is a virulence 

factor that is part of a transposable element that is a fragment of a pathogenicity 

island (Vokes, Reeves, Torres, & Payne, 1999). The relationship between antibiotic 

resistance and virulence in a common transposon is less known, because the 

transposons have a mosaic structure with vastly recombinogenic regions (Lawrence, 

Ochman, & Hartl, 1992).   

Phages. Virulence factors in phages and bacteriophage associates transduction of 

antibiotic resistance factors have been described. For example the Shiga toxin-

producing E.coli (STEC) serotype O104:H4 has virulence features in common with the 

enteroaggregative E.coli (Beutin & Martin, 2012); a pathotype that previously carried 

the plasmid that encoded TEM-1 and CTX-M-15, the most prevalent secondary beta-

lactamases among clinical isolates of Enterobacteriaceae (Brzuszkiewicz et al., 2011). It 

is presumed that the Shiga toxin was transduced from other enterohemorrhagic E.coli 

strains (Beceiro et al., 2013). However, the presence of the two determinants 

(virulence and resistance) on the same phage has not yet been reported due to the 

size requirements for phage DNAs, the addition of genes may generate loss of other 

(Martínez & Baquero, 2002).  

Gene cassettes. The integron family is the most important family of gene cassettes. 

They capture antibiotic resistance genes in Gram negative and Gram positive bacteria. 

Integrons may include antibiotic resistance genes and virulence factors such as the VCR 

cassettes in the chromosome of Vibrio cholerae (Martínez & Baquero, 2002).  
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1.3. Mechanisms implicated in antimicrobial resistance and 
virulence 

 

The association between virulence and resistance can be of great benefit to the 

pathogens, in most cases; either by increasing their resistance with decreased 

virulence and fitness (Beceiro et al., 2013). Next, we will analyze, some examples 

involving virulence mechanisms related to antibiotic resistance. 

The location of the bacteria within the host can modify the susceptibility of bacteria to 

antibiotics. The main characteristic of virulence of Legionella pneumophila is its ability 

to multiply within and kill alveolar macrophages; this environment provides protection 

against host’s humoral response and antibiotics, which are effective in vitro but not in 

vivo. (Barker, Scaife, & Brown, 1995) conducted the first report of growth of 

L.pneumophila in amoeba (A.polyphaga, a strain associated with an outbreak in UK), 

which affected the surface properties of the bacteria by altering proteins, 

lipopolysaccharides, and fatty acid content; these changes limit the action of 

antibacterial molecules to cross the cell envelope. Consequently, the intracellular 

growth of L.pneumophila increases levels of resistance to antimicrobial agents.  

The pathogenicity of the bacteria may contribute to its resistance. Methicillin resistant 

Staphylococcus aureus (MRSA) is a major cause of nosocomial infections worldwide 

(Herold et al., 2007). Resistance to methicillin and oxacillin is conferred via acquisition 

of the staphylococcal chromosomal cassette mec (SCCmec) and due to the emergence 

of community-associated MRSA (CA-MRSA) to cause infections outside healthcare 

settings; (Rudkin et al., 2012) were able to explain why the HA-MRSA (healthcare-

associated MRSA) is restricted to healthcare environments while CA-MRSA is not. Their 

main finding was: the expression of the mecA gene reduces the ability of HA-MRSA to 



19 
 

 

secrete cytolytic toxins. In a murine model of sepsis, these authors showed that 

resistance to methicillin induces changes in the cell wall that affects the bacteria’s agr 

quorum sensing system, reduces expression of toxins and therefore decreases the 

virulence. The emergence by CA-MRSA strains was explained by the decreased 

expression of penicillin-binding protein 2a (encoded by mecA) and maintaining its 

virulence. In this circumstance, the mechanism of pathogenicity of the bacteria may 

serve as mechanism for antibiotic resistance, where the acquisition of resistance to 

oxacillin is associated with the reduction in virulence. 

On the other hand, (Queck et al., 2009) identified and characterized phenol-soluble 

modulins (PSMs) α-type, peptides that represent toxins that contribute to the 

neutrophil lysis in CA-MRSA. The cytolytic PSMα peptides are encoded in the core-

genome located psmα operon. These authors identified the new psm-mec gene 

encoded within a SCCmec MGE (mobile genetic element) that involves a molecular 

connection between virulence and antibiotic resistance. This finding suggests that 

antibiotic resistance and virulence factors can be linked in staphylococcal MGEs. Also 

Zhang et al., 2015 in their study with pathogenic and commensal Escherichia coli 

isolates in a community with its profile of resistance to 12 antibiotics and presence and 

absence of known virulence factor genes determined that the co-occurrence of 

resistance and virulence is due to the pressure of antibiotic selection and genetic 

characteristics of isolates (Zhang et al., 2015). 

Antibiotic resistance factors also favor the bacterial virulence: efflux system. The ability 

of bacteria to cause disease also depends on their capacity to resist antibiotics, 

antimicrobial compounds of host as bile acids, fatty acids and components of the 

immune system such as antimicrobial peptide (Beceiro et al., 2013). The AcrAB-TolC 
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system is a participant of the resistance-nodulation-division (RND) family. This efflux 

system confers innate resistance to toxic substances, including antibiotics, dyes, 

disinfectants and detergents and substances made by the host (such as bile, hormones 

and host defense molecules). (Buckley et al., 2006), previously demonstrated that AcrB 

and TolC are required for S.enterica serovar Typhimurium SL1344 to colonize in 

poultry. Webber et al., 2009 generated mutants lacking acrA, acrB and tolC in which 

they observed a different expression of major operons and proteins involved in 

pathogenesis. In mutants, the lack of AcrB or TolC caused suppression of chemotaxis 

and motility genes, while to mutants lacking acrA or acrB gene, the nap and nir 

operons were repressed and mutants grew poorly. Thus, the consequence of the 

attenuation of Salmonella Typhimurium by creating mutant lacking AcrB or TolC 

decreased the expression of genes implicated in pathogenic process, particularly SPI-1 

(Salmonella Pathogenicity Island). Therefore, the RND efflux pumps (antibiotic 

resistance) and the AcrAB-TolC system (virulence) are essential to the biology of 

Salmonella (Webber et al., 2009). 

Persister cells. Persisters are microbial populations that are tolerant to antimicrobials 

(dormant variants that are really not resistant). Also, persisters cells are frequently 

found in biofilm, described in species such as P.aeruginosa, Candida albicans, S.aureus 

and E.coli (Mulcahy, Burns, Lory, & Lewis, 2010), (LaFleur, Qi, & Lewis, 2010), (Lechner, 

Lewis, & Bertram, 2012).  So far, it is known that in E.coli: the SOS stress response 

activates persister formation, for example fluoroquinolone antibiotics induce the SOS 

response, turning the expression of the TisB toxin and causing dormancy by  

decreasing the proton motive force and ATP levels (Lewis, 2010). Therefore, the 

persistent populations have evolved to adapt, survive and persist in the environment 
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and this tolerance to antimicrobials is closely linked to the expression of different 

virulence factors (Beceiro et al., 2013). 

Alarmone Guanosine Tetraphosphate. The molecule alarmone guanosine 3’, 5’-bis-

(diphosphate) (ppGpp) has intracellular signaling, levels are correlated with the 

expression of virulence characteristics such as survival of stress in Campylobacter 

jejuni, biofilm formation in E.coli and S.mutans, antibiotic resistance in E.coli  

(Greenway & England, 1999) and Brucella abortus and infection persistence in 

M.tuberculosis (Beceiro et al., 2013). Bacteria such as E.coli, when experiencing 

nutrient limitation, decrease their growth and make adjustments in metabolism, the 

response mediated by the accumulation of 5’-diphosphate 3’-diphosphate (ppGpp), 

which in turn is the product of the relA gene (Greenway & England, 1999), (Pomares, 

Vincent, Farías, & Salomón, 2008). Also, in E.coli the relationship between (p)ppGpp 

levels and antibiotic resistance has been observed (Wu, Long, & Xie, 2010), where the 

increased levels of (p)ppGpp intensifies the β-lactam tolerance and mutants lacking 

RelA are more susceptible to β-lactams (Pomares et al., 2008). (p)ppGpp has been 

linked with growth, stress, starvation and survival that affect pathogenicity. 

Consequently; when (p)ppGpp is absent the pathogenicity is compromised. In S. 

typhimurium the accumulation of (p)ppGpp in stationary phase induce hilA (master 

regulator of pathogenicity island 1 (SPI 1) and SPI 2 virulence genes), while that in 

enterohemorrhagic E.coli (EHEC), its adherence capacity, expression in the enterocyte 

effacement pathogenicity island locus depends of the expression of relA, spoT and 

dskA genes (Potrykus & Cashel, 2008). 
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1.4. The cross roads of virulence and antibiotic resistance 
 

Virulence and epidemicity (capacity to produce epidemics) are essential to cause 

disease, a phenomenon that does not produce non-virulent bacteria. Many pathogenic 

bacteria are under antibiotic pressure because they cause infection, therefore; 

pathogens can be not merely virulent and epidemic but also antibiotic resistant 

(Martínez & Baquero, 2002); because in a disease the pathogens are present and 

antibiotic therapy is administered, but in absence of infection the probability of 

development resistance is lower (Beceiro et al., 2013). 

Resistance may have a “direct” cost in bacterial fitness and an “indirect” cost due to 

the presence of antibiotic resistance factors in mobile elements such as plasmids, 

transposons and integrons. Antibiotic resistance may have a fitness cost which may 

diminish bacterial virulence (Gillespie & McHugh, 1997). An increase in virulence in an 

antibiotic resistant bacterium is unlikely because susceptible revertants may take over 

in the absence of antibiotic (Martínez & Baquero, 2002). 

The successful spread of resistant bacteria clones has increased resistance levels 

globally (Martínez & Baquero, 2002). The emergence of resistance occurs mainly in 

hospitals where antibiotic use is common (Levy & Marshall, 2004). Nosocomial 

transmission of bacteria many times is the result of lack of sterility or hygiene; non-

sterile devices or procedures, hospital food, hands of staff (Palmer, 1980) (Livermore, 

2003). Therefore, the spread of resistant clones is successful when the two major 

components are combined: the antibiotic and genetic resistance factor in an 

environment or host (Levy & Marshall, 2004). 

The superbugs, microbes with enhanced morbidity, mortality and high levels of 

resistance to the antibiotic classes for their treatment are super resistant strains have 
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acquired increased virulence and enhanced transmissibility (Davies, J, & Davies, D., 

2010), for example Mycobacterium tuberculosis strains resistant to four or more of the 

front-line treatment. Other superbug is the Gram-positive organism methicillin-

resistant S.aureus (MRSA), a multidrug-resistant strain with enhanced virulence and 

transmissibility. Community acquired-MRSA has different mec gene clusters which 

include new pathogenicity genes, as the gene encoding the cytotoxic Panton-Valentine 

leukocidin. Consequently, the use of antibiotics can select for more virulent strains 

(Wilkinson, 1999).  

On the other hand, pathogens such as N.meningitidis, Bordetella pertussis, Brucella 

melitensis, Salmonella enterica serovar Typhi are infrequently resistant to antibiotics 

(Martínez & Baquero, 2002), by factors such as: i) the cost in the fitness of the bacteria 

by antibiotic resistance should be tolerable (Andersson & Hughes, 1996), ii) highly 

virulent organisms have evolved in environments protected from the action of natural 

antibiotics and less open to competition,  iii) the number of commensal bacteria is 

greater than pathogenic bacteria, therefore; the ability to generate resistance is low 

(e.g., capacity to develop mutational resistance to penicillins in S.pyogenes versus 

viridans group streptococci) (Baquero, 1997) and iv) the particular niche of a 

pathogenic bacteria can limit your exposure antibiotic agents and selective pressure 

for the same. 

Finally, the relationship between virulence and resistance in a pathogen depends on 

four factors: First is the bacterial species, becasuse many microorganisms can evolve in 

reaction to antibiotic pressure. For example P.aeruginosa evolve in response to 

antibiotic pressure and other microorganisms as S.pyogenes continue fully susceptible 

for treatment of choice, such as penicillin (Beceiro et al., 2013). The second factors 
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specific virulence and resistance mechanisms. There are mechanisms that are 

implicated in the two processes (virulence and resistance), such as AcrAB-TolC efflux 

pump of E.coli that exports fatty acids, bile salts and antibiotics; the inactivation of 

acrAB leads to reduced ability to colonize the intestinal tract (Zgurskaya & Nikaido, 

1999), PhoP regulates resistance to colistin in P.aeruginosa, the change in LPS 

produces decrease in virulence by low production of biofilm (Gooderham et al., 2009). 

The third factor is the environment or ecological niche, determined by the 

development of infection and present stimuli: the presence or absence of some factors 

(e.g., depletion of iron), the antibiotic concentration and NaCl concentration (e.g., in 

A.baumannii augments the resistance to several antibiotics by upregulation of efflux 

pumps) (Beceiro et al., 2013) (Hood, Jacobs, Sayood, Dunman, & Skaar, 2010). The 

fourth factor is the host (immune system); because the coselection process occurs 

within the host. The nosocomial environment, resistant and/or virulent bacteria are 

selected by antibiotic pressure, but in environments with small concentrations of 

antibiotics (community environment) common mechanism of resistance and virulence 

can be selected against (Beceiro et al., 2013). 

Therefore, a Darwinian model would be present in the relationship between resistance 

and virulence, where the traits that confer a benefit will be selected and fixed with a 

positive effect increased resistance plus augmented virulence or a negative effect, 

augmented resistance with reduced virulence. However, it may also occur, that 

increased virulence leading to decrease of resistance (Beceiro et al., 2013). 
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B., Lodinová-Žádnıḱová, R., … Kokešová, A. (2004). Commensal bacteria (normal 
microflora), mucosal immunity and chronic inflammatory and autoimmune 
diseases. Immunology Letters, 93(2-3), 97–108. 
http://doi.org/10.1016/j.imlet.2004.02.005 

44. Vokes, S. a, Reeves, S. a, Torres,  a G., & Payne, S. M. (1999). The aerobactin 
iron transport system genes in Shigella flexneri are present within a 
pathogenicity island. Molecular Microbiology, 33(1), 63–73. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10411724 

45. Webber, M. A., Bailey, A. M., Blair, J. M. A., Morgan, E., Stevens, M. P., Hinton, 
J. C. D., … Piddock, L. J. V. (2009). The Global Consequence of Disruption of the 
AcrAB-TolC Efflux Pump in Salmonella enterica Includes Reduced Expression of 
SPI-1 and Other Attributes Required To Infect the Host. Journal of Bacteriology, 
191(13), 4276–4285. http://doi.org/10.1128/JB.00363-09 

46. Wilkinson, D. M. (1999). Bacterial ecology, antibiotics and selection for 
virulence. Ecology Letters, 2(4), 207–209. http://doi.org/10.1046/j.1461-
0248.1999.00079.x 

47. Wu, J., Long, Q., & Xie, J. (2010). (p)ppGpp and drug resistance. Journal of 
Cellular Physiology, 224(2), 300–304. http://doi.org/10.1002/jcp.22158 

48. Zgurskaya, H. I., & Nikaido, H. (1999). AcrA is a highly asymmetric protein 
capable of spanning the periplasm. J Mol Biol, 285(1), 409–420. 
http://doi.org/10.1006/jmbi.1998.2313 

49. Zhang, L., Levy, K., Trueba, G., Cevallos, W., Trostle, J., Foxman, B., … Eisenberg, 
J. N. S. (2015). The effects of selection pressure and genetic association on the 
relationship between antibiotic resistance and virulence in Escherichia coli. 
Antimicrobial Agents and Chemotherapy, (AUGUST). 
http://doi.org/10.1128/AAC.01094-15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 

PART II 

 

SCIENTIFIC PAPER 

Escherichia coli pathotypes from Ecuador: association to 

diarrhea and antibiotic resistance 

 
AUTHORS 

1Lorena Montero, 1Gabriel Trueba, 2Pablo Endara, 3William Cevallos, 3Xavier Sánchez, 

3Edison Puebla and 4Karen Levy 

 

1Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; 2College 

of Health Sciences-Medicine School, Universidad San Francisco de Quito, Quito, 

Ecuador; 3Biomedical Center-School of Medicine, Universidad Central del Ecuador, 

Quito, Ecuador; 4Department of Environmental Health, Rollins School of Public Health, 

Emory University, Atlanta 

 
 

 
Key words: diarrhea, virulence, antibiotic resistance, pathotype E.coli, multidrug 
resistance. 
 
 
 
#Address correspondence Karen Levy, Emory University, USA, Karen.levy@emory.edu 
 



30 
 

 

INTRODUCTION 

Diarrhea is the second leading cause of death in children under five years and each 

year produces around 760,000 deaths (1). Among microorganisms causing diarrhea are 

viruses, bacteria and parasites (2). Pathogenic Escherichia coli is one of the primary 

bacteria that causes diarrheal disease in developing countries (3). Six main pathotypes 

of diarrheagenic E.coli have been associated with disease on the basis of 

epidemiological and clinical features and specific virulence determinants: 

enteropathogenic E.coli (EPEC), enterohemorrhagic E.coli (EHEC), enterotoxigenic E.coli 

(ETEC), enteroaggregative E.coli (EAEC), enteroinvasive E.coli (EIEC) and diffusely 

adherent Escherichia coli (DAEC) (4). 

Antimicrobial resistance is more common among pathogens than among commensal 

bacteria due to the more intense and repeated exposure of pathogens to antimicrobial 

agents (5). Clonal expansion and  horizontal gene transfer associated with mobile 

genetic elements such as plasmids, phages and transposons are the most important 

mechanisms that contribute to the dispersal of antibiotic resistance (6). One intriguing 

observation is antibiotic resistance genes are linked to virulence genes in pathogens 

(7). The evolutionary mechanisms that lead to this kind of association could contribute 

to the emergence of super-pathogens which is a growing problem in nosocomial 

infections caused by multidrug resistant Enterobacteriaceae. The dispersion of 

successful clones that combine multidrug resistance and virulence may be fueled by 

excessive use of antibiotic  in medicine and agriculture and increased human 

movement (8). More studies are needed to understand all the aspects related to the 

genetic connection between antibiotic resistance and virulence (9)(10).  
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We investigated the prevalence, association with diarrhea symptoms, and patterns of 

antibiotic resistance of six pathotypes of E.coli isolated from stool from subjects in a 

low-income urban community of Ecuador. 

 

MATERIALS AND METHODS 

Study population. Samples (diarrheal cases and controls) were collected from Enrique 

Garces hospital and a Chimbacalle local health center in a low income neighborhood in 

Quito. We initially started recuiting subjects the hospital site, but because recruitment 

of children at that site proved difficult, we transferred our study to the local health 

center, in order to obtain samples from the population most at risk of diarrheal illness. 

Study design. We conducted a case-control study from April to September 2014. Cases 

were defined as individuals with three or more loose stools in 24 hours. Controls were 

individuals who came to the health center or hospital for another reason, and did not 

have diarrheal symptoms during the past seven days. Subjects were excluded if they 

reported having taken antibiotics anytime in the prior week, or if they had not lived in 

Quito for at least six months. Individuals of all ages were eligible to participate in the 

study, and cases were age-matched with controls using the following age categories: 0-

24 months:  6 months; 25-60 months: 12 months; 61-180 months: 24 months; 

>180 months: any age above 180 months. Surveys were carried out using electronic 

Android devices, using Open Data Kit program (http://opendatakit.org). All the 

protocols were approved by the Ethics Committees of Emory University and 

Universidad San Francisco de Quito.  

Bacterial culture. Cary-Blair transport media was inoculated with each of the fecal 

samples using a swab and maintained at 4°C for 48 hours; the rest of the fecal sample 
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was preserved in nitrogen in crioconservation tubes. Swabs were cultured on 

MacConkey’s agar media (MKL) for 24 hours, and from these plates 5 lactose positive 

isolates were randomly selected and non-lactose-fermenting colonies were cultured in 

Chromocult agar media (Merck, Darmsladt, Germany) (CC) to test for β–glucoronidase 

activity. Non-lactose-fermenting colonies were identified by biochemical tests as 

Shigellae or E.coli using API 20E (BioMérieux, Marcy l’Etoile, France).  The 5 isolates 

were also transferred and cultured in nutrient agar and colonies from the 5 isolates (1 

colony per isolate) were pooled together in a tube containing 300 µl of sterile distilled 

water and boiled for 10 min to release the DNA. The resulting supernatant was used 

for PCR testing. 

Diarrheagenic E.coli identification. Identification of E.coli pathotypes was performed 

with primers designed to detect the presence of specific virulence genes (bfp, lt, sta, 

ipaH, aggR, afa and eaeA genes) in lactose fermenting colonies with modifications to 

the protocols described in Table 1. Pools positive for eaeA gen were tested for stx1 and 

stx2 genes and lactose negative E.coli was also tested for the presence of ipaH and afa 

gene. For each pool that tested positive for one of the 8 virulence factors, each isolate 

was retested individually, to identify the isolate responsible for the positive result. 

Antibiotic susceptibility testing. All isolates identified as E. coli pathotypes were 

analyzed for their antimicrobial susceptibility by disk diffusion according to the Clinical 

Laboratory Standards Institute (CLSI) guidelines (clsi.org) on Mueller-Hinton agar. The 

antibiotics analyzed were: ampicillin(AM,10ug disk ), amoxicillin-clavulanic acid (AmC, 

20/10mcg disk), cefotaxime(CTX, 30ug disk), ciprofloxacin (CIP, 5ug disk), 

sulfamethoxazole-trimethoprim (SXT, 1.25/23.75ug disk), gentamicin(CN, 10ug disk), 

tetracycline (Te, 30 ug disk), imipenem (IPM,10ug disk), chloramphenicol (C, 30ug 
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disk), sulfisoxazole(G, 250ug disk), streptomycin (S, 10ug disk) and cephalothin (CF, 

30ug disk). 

Statistical analysis. Chi-square tests and Fisher’s exact test were used for group 

comparisons and multivariate logistic regression was used to calculate odds ratios, 

adjusting for confounding variables (age and home water treatment). All data were 

analyzed with Stata 14.0 (StataCorp. LP, College Station, TX). 

 

RESULTS 

We collected 118 stool samples from diarrhea cases and 115 from control samples. No 

statistical differences were observed between cases and controls for age, sex, access 

to sanitation, recent contact with animals, or travel within the last year. However, 

cases were significantly more likely to report having treated their drinking water at 

home (Table 2). 

A total of 233 E.coli strains were evaluated by PCR. Sixty E.coli strains were classified as 

diarrheagenic Escherichia coli (DEC), 36 from cases (17 children and 19 adults) and 24 

from controls (19 children and 5 adults). Shigella spp. was found in the diarrhea group 

but no STEC and EHEC strains were isolated. 

The prevalence of E.coli pathotypes was higher in cases (30.5%) than in controls 

(20.2%) (p=0.06). In cases the most prevalent pathotype was DAEC, followed by ETEC, 

while in the controls EPEC was the most prevalent pathotype, followed by DAEC. 

Regarding EPEC, only one isolate (from a case) was typical EPEC (bfp+), the rest of the 

isolates obtained in both cases and controls were atypical EPEC ( eaeA+, bfp-, stx1-, 

stx2- genes) (Table 3b). The only pathotype that was associated with diarrhea case 

status was DAEC (OR 2.78, CI 95% 1.11-6.96, p=0.03). 
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Antibiotic susceptibility results indicated high rates of resistance of pathotypes to 

ampicillin (62%), sulfamethoxazole-trimethoprim (68%) and sulfisoxazole (70%). All 

strains were fully susceptible to imipenem, and only 1 isolate (ETEC) was resistant to 

ciprofloxacin. There were no statistically significant associations between any specific 

pathotype with any specific antibiotic resistance (Table 4b). 

For all antibiotics, a higher frequency of resistance was found in cases versus controls 

and this difference was higher in magnitude and statistically significant for ampicillin 

(OR 3.07, CI 95% 1.04-9.09), sulfamethoxazole-trimethoprim (OR 4.14, CI 95% 1.31-

13.08) and sulfisoxazole (OR 3.50, CI 95% 1.10-11.09) (Table 5b). The rate of resistance 

to any antibiotic was also significantly higher in cases versus controls (OR 4.80, CI 95% 

1.27-18.11), as was multidrug resistance, defined as resistance to three or more 

antibiotics (OR 3.51, CI 95% 1.10-11.08). 

There were 16 different antibiotic resistance patterns among the diarrheagenic E.coli 

(diarrhea and control strains grouped together). The most common resistance patterns 

were AM-SXT-G (66.7%), followed by SXT-Te-G (44.4%) and the pattern AM-SXT-Te-G 

(36.1%). One isolate from a diarrhea case, showed resistance to 9 antibiotics. 

For multidrug resistance, results of the multivariate logistic regression, was used 

adjusting for age and home water treatment, suggest that E.coli pathotypes isolated 

from cases have 7.32 higher odds of being multidrug resistant compared to E.coli 

pathotypes isolated from controls. 

 

DISCUSSION 

Our report shows high prevalence of DAEC (15.3% in cases vs. 6.1% in control) and 

association of this pathotype with diarrhea in low income communities of Ecuador (OR 
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2.78, CI 95% 1.11-6.96, p=0.03). We did not find significant associations between 

diarrhea and other pathotypes (ETEC, EPEC, EIEC, EAEC and Shigellae), although this 

could have been a result of an insufficient sample size. EIEC and Shigellae were only 

found in cases. EPEC and EAEC were higher in controls compared to cases (Table 3b). 

These trends held when considering the more limited sample set associated when we 

excluded the hospital samples from the analysis, although this subset analysis limited 

the power of our results. 

In other similar communities in Ecuador, previous reports found EIEC, ETEC, EPEC 

associated with diarrhea (11)(12)(13)(14), but these studies did not test for DAEC. 

Factors (such as virulence) related to the pathogen or host factors (such as immunity, 

gut microbiome, nutritional status) may determine whether an infection causes 

diarrhea or not (15). 

In this study, we also found that antibiotic resistance was more associated with E.coli 

pathotypes causing diarrhea than in those from controls, especially to ampicillin, 

sulfamethoxazole-trimethoprim and sulfisoxazole. E.coli pathotypes from cases were 

also 3.5 times more likely to have multidrug resistance compared with pathotypes 

from controls and this association doubled when controlling for age and household 

water treatment. Our results are in agreement with studies in Peru and Mexico 

(16)(17), which also found high rates of resistance to ampicillin and sulfamethoxazole-

trimethoprim in E.coli. Also, these results are similar to those of previous reports 

carried out in E.coli from urinary tract in Ecuador (18). In Ecuador, this E.coli resistance 

profile (trimethoprim-sulfamethoxazole and ampicillin) was similar to that found 

previously in E.coli from urinary infections (19); and was the most frequently found in 

infectious E.coli from fecal samples in rural communities of Ecuador (20)(21). A recent 
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report indicates high resistance to these antibiotics: ampicillin (78%), trimethoprim-

sulfamethozaxole (63%) and cefepime (63%) in E.coli from urinary infections in 

Ecuador (22). We did not find any significant difference in antibiotic resistance among 

pathotypes nor did we find differences in isolates from different ages or from people 

treating water. 

Our results are in alignment with previous findings which showed that resistance to 

multiple antibiotics was significantly higher in pathogenic E.coli compared to 

commensal E.coli (23)(24)(9)(25), however we showed that pathotypes associated with 

cases of diarrhea had higher rates of resistance than pathotypes obtained from healthy 

individuals. These data may indicate that pathotypes with higher resistance may 

belong to different genetic lineages associated with more virulence(7). This variation in 

virulence may also explain why we were unable to link some pathotypes with diarrhea 

in the present study while this association was observed previously in similar 

communities in Ecuador. Also, despite exclude people who took antibiotics to 

participate in the study may have included participants not reporting abuse. 

In summary, our results corroborate previous studies which suggest that virulence may 

be linked to antibiotic resistance. Based on our results we postulate that the different 

lineages of E.coli belonging to the same pathotype but which have difference in 

virulence; the most virulent lineages will be more likely to cause disease and patients 

carrying these bacteria will be more likely to receive antibiotics which may provide the 

selective pressure to accumulate antibiotic resistance genes (26).  

Finally, to our knowledge EAEC and DAEC were investigated for the first time in 

Ecuador and DAEC was the pathotype most frequently isolated in this community and 

associated with diarrhea. 
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Table 1. Primers for conventional PCR for diarrheagenic E.coli genes 

E.coli Gene Primer sequence 5 – 3’ Size (bp) Reference 

EAEC aggR 5’GTATACACAAAAGAAGGAAGC3’ 254  (27) 

5’ACAGAATCGTCAGCATCAGC3’ 

ETEC lt 5’GCGACAAATTATACCGTGCT3’ 708 (28) 

5’CCGAATTCTGTTATATATGT3’ 

sta 5’CTGTATTGTCTTTTTCACCT3’ 182 (28) 

5’GCACCCGGTACAAGCAGGAT3’ 

EPEC bfp 5’CAATGGTGCTTGCGCTTGCT3’ 324 (28) 

5’GCCGCTTTATCCAACCTGGT3’ 

eaeA 5’GACCCGGCACAAGCATAAGC3’ 384 (29) 

5’CCACCTGCAGCAACAAGAGG3’ 

EIEC ipaH 5’GCTGGAAAAACTCAGTGCCT3’ 424 (28) 

5’CCAGTCCGTAAATTCATTCT3’ 

DAEC afa 5’GCTGGGCAGCAAACTGATAACTCTC3’ 750 (30) 

5’CATCAAGCTCTTTGTTCGTCCGCCG3’ 

STEC stx1 5’ATAAATCGCCATTCGTTGACTAC3’ 180 (29) 

5’AGAACGCCCACTGAGATCATC3’ 

stx2 5’GGCACTGTCTGAAACTGCTCC3’ 255 (29) 

5’TCGCCAGTTATCTGACATTCTG3’ 

 
 

Table 2 

Demographic data of patients included in the study 

 Health center Health center+hospital 

Parameter Case(N=96) Control(N=102) p-value Case(N=118) Control(N=115) p-value 

Age(year)       

Mean(SD) 16.9(21) 15.7(19.9) 0.60 18.9(21.3) 18.6(21.7) 0.32 

Age categories       

<1year 29(30.2%) 29(28.4%)  31(26.3%) 30(26.1%)  

1-15year 31(32.3%) 38(37.3%)  35(30%) 39(33.9%)  

16-30year 14(14.6%) 15(14.7%)  21(17.8%) 16(13.9%)  

>30year 22(22.9%) 20(19.6%) 0.88 31(26.3%) 30(26.1%) 0.83 

Sex       

Male 51(53.1%) 46(45.1%)  55(46.6%) 51(44.4%)  

Female 45(46.9%) 56(54.9%) 0.26 63(53.4%) 64(55.7%) 0.73 

Sanitation       

Flush toilet 74(77.1%) 78(76.5%)  94(80%) 90(78.3%)  

Diaper 18(18.8%) 16(15.7%)  20(17%) 17(14.8%)  

Latrine* 3(3.1%) 7(6.9%)  3(2.5%) 7(6.1%)  

Open field 0(0%) 1(0.98%)  0(0%) 1(0.9%)  

Cesspool 1(1.0%) 0(0%) 0.46 1(0.85%) 0(0%) 0.42 

Reported home water treatment       

No  45(46.9%) 29(28.4%)  54(45.8%) 33(28.7%)  

Si 51(53.1%) 73(71.6%) 0.007 64(54.2%) 82(71.3%) 0.007 

Reported recent contact with animals       
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No  47(49%) 44(43.1%)  58(49.2%) 50(43.5%)  

Si 49(51%) 58(56.9%) 0.41 60(50.9%) 65(56.5%) 0.39 

Reported travel in the last year       

No  47(49%) 42(41.2%)  62(52.5%) 50(43.5%)  

Si 49(51%) 60(58.8%) 0.27 56(47.5%) 65(56.5%) 0.17 

*Latrine (space for defecation, without the connection to a sewage system and subsequent treatment) 

**Chi square test was used to the comparison between cases and controls (p≤0.05) 

 
Table 3a 

Prevalence of diarrheagenic E.coli and Odds ratio in health center  

 Cases 
(N=96) 

Controls 
(N=102) 

OR(95%CI) p-
value 

Cases(n=25
),% 

Control 
(n=22),% 

All pathotypes 26.0% 21.6% 1.35(0.70-
2.63) 

0.36   

Enterotoxigenic Escherichia 
coli 

1.0% 3.9% 0.26(0.03-
2.35) 

0.23 1(4%) 4(18.9%) 

Diffusely adherent 
Escherichia coli 

15.6% 6.9% 2.51(0.98-
6.47) 

0.06 15(60%) 7(31.8%) 

Enteroaggregative 
Escherichia coli 

1.0% 3.9% 0.26(0.03-
2.35) 

0.23 1(4%) 4(18.2%) 

Enteroinvasive Escherichia 
coli 

4.2% 0.0% NA NA 4(16%) 0(0%) 

Enteropathogenic 
Escherichia coli* 

4.2% 6.9% 0.69(0.19-
2.55) 

0.58 4(16%) 7(31.8%) 

Shigellae 0.0% 0.0% NA NA 0(0%) 0(0%) 

* A single isolation was typical EPEC (bfp+ gene) 

 
Table 3b 

Prevalence diarrheagenic E.coli and Odds ratio in health center+hospital 

 Cases 
(N=118) 

Controls 
(N=115) 

OR(95%CI) p-
value 

Cases(n=36
),% 

Control 
(n=24),% 

All pathotypes  30.5% 20.2% 1.76(0.96-
3.20) 

0.06   

Enterotoxigenic Escherichia 
coli 

5.1% 3.5% 1.49(0.41-
5.41) 

0.55 6(16.7%) 4(16.7%) 

Diffusely adherent 
Escherichia coli 

15.3% 6.1% 2.78(1.11-
6.93) 

0.03 18(50%) 7(29.2%) 

Enteroaggregative 
Escherichia coli 

0.8% 3.5% 0.24(0.03-
2.15) 

0.20 1(2.8%) 4(16.7%) 

Enteroinvasive Escherichia 
coli 

3.4% 0.0% NA NA 4(11.1%) 0(0%) 

Enteropathogenic 
Escherichia coli* 

3.4% 7.6% 0.47(0.14-
1.30) 

0.23 4(11.1%) 9(37.5%) 

Shigellae 2.5% 0.0% NA NA 3(8.3%) 0(0%) 

* A single isolation was typical EPEC (bfp+ gene) 
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Table 4a 

Antibiotic resistance among the different diarrheagenic E.coli pathotypes in isolates from diarrhea (n=25) and control (n=22) in 
health center. No statistically significant differences were detected between cases and controls for any of the antibiotics and 

pathotypes tested, by Fisher exact test 
 DAEC, n(%) EPEC*, n(%) ETEC, n(%) EAEC, n(%) 
ANTIBIOTICS CASE(n=15) CONTROL(n=

7) 
CASE(n=4) CONTROL(n=

7) 
CASE(n=1) CONTROL(n=

4) 
CASE(n=1) CONTROL(n=

4) 
AM 13(86.7) 6(85.7) 2(50) 1(14.3) 1(25) 1(25) 1(100) 2(50) 
AmC 0(0) 0(0) 1(25) 0(0) 0(0) 0(0) 0(0) 0(0) 
CTX 1(6.7) 1(14.3) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
CF 4(26.7) 2(28.6) 2(50) 2(28.6) 1(100) 2(50) 0(0) 1(25) 
C 0(0) 0(0) 0(0) 1(17.3) 0(0) 0(0) 0(0) 1(25) 
CIP 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
SXT 15(100) 7(100) 1(25) 1(14.3) 1(100) 1(25) 1(100) 3(75) 
CN 4(26.7) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
S 1(6.7) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Te 9(60) 4(57.1) 3(75) 3(42.9) 0(0) 0(0) 0(0) 3(75) 
IPM 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

G 14(93.3) 6(85.7) 2(50) 2(28.6) 1(100) 1(25) 1(100) 3(75) 
Any 
antibiotic 

15(100) 6(85.7) 3(75) 3(42.9) 1(100) 2(50) 1(100) 3(75) 

*Isolates of Typical EPEC and atypical EPEC 

**Data on EIEC and Shigellae are not presented; due to small number of samples 
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Table 4b 

Antibiotic resistance among the different diarrheagenic E.coli pathotypes in isolates from diarrhea (n=36) and control (n=24) in 
health center+hospital. No statistically significant differences were detected between cases and controls for any of the antibiotics 

and pathotypes tested, by Fisher exact test 
 DAEC, n(%) EPEC*, n(%) ETEC, n(%) EAEC, n(%) 
ANTIBIOTICS CASE(n=18) CONTROL(n=

7) 
CASE(n=4) CONTROL(n=

9) 
CASE(n=6) CONTROL(n=

4) 
CASE(n=1) CONTROL(n=

4) 
AM 14(77.8) 9(85.7) 2(50) 2(22.2) 4(66.7) 1(25) 1(100) 2(50) 
AmC 0(0) 0(0) 1(25) 0(0) 1(16.7) 0(0) 0(0) 0(0) 
CTX 1(5.6) 1(14.3) 0(0) 0(0) 1(16.7) 0(0) 0(0) 0(0) 
CF 5(27.8) 2(28.6) 2(50) 2(22.2) 4(66.7) 2(50) 0(0) 1(25) 
C 0(0) 0(0) 0(0) 1(11.1) 0(0) 0(0) 0(0) 1(25) 
CIP 0(0) 0(0) 0(0) 0(0) 1(16.7) 0(0) 0(0) 0(0) 
SXT 17(94.4) 6(85.7) 1(25) 2(22.2) 4(66.7) 1(25) 1(100) 3(75) 
CN 4(22.2) 0(0) 0(0) 0(0) 1(16.7) 0(0) 0(0) 0(0) 
S 2(11.1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Te 11(61.1) 4(57.1) 3(75) 4(44.4) 1(16.7) 0(0) 0(0) 3(75) 
IPM 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

G 15(83.3) 6(85.7) 2(50) 3(33.3) 4(66.7) 1(25) 1(100) 3(75) 
Any 
antibiotic 

17(94.4) 6(85.7) 3(75) 4(44.4) 4(66.7) 2(50) 1(100) 4(100) 

*Isolates of Typical EPEC and atypical EPEC 

**Data on EIEC and Shigellae are not presented; due to small number of samples 
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Table 5a 

Antibiotic resistance among all diarrheagenic E.coli pathotypes in isolates from diarrhea case (n=25) and 
control (n=22) samples from health center 

ANTIBIOTICS Case n(%) Control n(%) p-value* OR(95%CI) p-value 

Ampicillin 19(76) 10(45.5) 0.03 3.8(1.09-13.17) 0.04 

Amoxicillin-clavulanic acid 1(4) 0(0) NA NA NA 

Cefotaxime 1(4) 1(4.6) 0.93 0.88(0.05-14.87) 0.93 

Cephalothin 8(32) 7(31.8) 0.99 1.0(0.29-3.45) 0.99 

Chloramphenicol 0(0) 2(9.1) NA NA NA 

Ciprofloxacin 0(0) 0(0) NA NA NA 

Sulfamethoxazole-
trimethroprim 

21(84) 11(50) 0.01 5.3(1.35-20.4) 0.02 

Gentamicin 4(16) 0(0) NA NA NA 

Streptomycin 1(4) 0(0) NA NA NA 

Tetracycline 13(52) 10(45.5) 0.65 1.3(0.41-4.10) 0.65 

Imipenem 0(0) 0(0) NA NA NA 

Sulfisoxazole 22(88) 12(54.6) 0.01 6.1(1.41-26.56) 0.02 

Any antibiotic 
Multidrug resistance 

24(96) 
22(88) 

14(63.6) 
12(54.6) 

0.0032 
0.01 

13.7(1.55-121.42) 
6.11(1.23-30.30) 

0.02 
0.01 

*Chi square test was used to the comparison between cases and controls (p≤0.05) 

 
Table 5b 

Antibiotic resistance among all diarrheagenic E.coli pathotypes in isolates from diarrhea case (n=36) and 
control (n=24) samples from health center+hospital 

ANTIBIOTICS Case n(%) Control n(%) p-value* OR(95%CI) p-value 

Ampicillin 26(72.2) 11(45.8) 0.04 3.07(1.04-9.09) 0.04 

Amoxicillin-clavulanic acid 3(8.3) 0(0) NA NA NA 

Cefotaxime 2(5.6) 1(4.2) 0.81 1.35(0.12-15.81) 0.81 

Cephalothin 13(36.11) 7(29.2) 0.57 1.37(0.45-4.17) 0.58 

Chloramphenicol 3(8.3) 2(8.3) 1.0 1.0(0.15-6.48) 1.0 

Ciprofloxacin 1(2.8) 0(0) NA NA NA 

Sulfamethoxazole-
trimethroprim 

29(80.56) 12(50) 0.01 4.14(1.31-13.08) 0.02 

Gentamicin 5(13.9) 0(0) NA NA NA 

Streptomycin 2(6) 0(0) NA NA NA 

Tetracycline 19(52.8) 11(45.8) 0.60 1.32(0.47-3.72) 0.60 

Imipenem 0(0) 0(0) NA NA NA 

Sulfisoxazole 29(80.6) 13(54.2) 0.03 3.5(1.10-11.09) 0.03 

Any antibiotic  
Multidrug resistance 

32(88.9) 
29(80.6) 

15(62.5) 
13(54.2) 

0.02 
0.02 

4.8(1.27-18.11) 
3.5(1.10-11.08) 

0.02 
0.03 

*Chi square test was used to the comparison between cases and controls (p≤0.05) 
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Table 6 

Risk factors associated with the presence of pathogens in the health center +hospital 

Factors OR, CI 95% p-value 

Age 1.04(1.00-1.08) 0.02 

Sex 2.47(0.86-7.14) 0.09 

Medical use 1.6(0.54-4.68) 0.39 

Trip in the last year 0.7(0.23-2.05) 0.52 

Trip in the last week 1(0.25-3.99) 1.00 

Use flush toilet 1.32(0.36-4.92) 0.68 

Use diaper 1.77(0.32-9.99) 0.52 

Use latrine 0.2(0.02-2.05) 0.18 

Use of water purchased 3.14(0.61-16.31) 0.17 

Internal water supply at home 1.07(0.34-3.36) 0.91 

Water purchased and internal water 0.14(0.01-1.37) 0.09 

Water treatment before consumption 0.24(0.07-0.77) 0.02 

Boil the water 0.24(0.07-0.77) 0.02 

Contact with animals 0.54(0.19-1.54) 0.25 

 

 


