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Resumen

Se realiza un estudio teórico del acople entre la resonancia plasmónica de un nano-cascarón
de plata y la emisión de un material activo dentro del nano-cascarón bombeado externamente.
Para estudiar los campos eléctrico y de densidad de polarización se utilizó la aproximación
quasiestática (válido para partículas de radio menor a∼ 15 [nm]). Con el formalismo de optical-
Bloch se hizo la descripción de la interacción del momento dipolar de los elementos activos y
el campo eléctrico externo, al igual que la inversión de población de los elementos activos. El
problema electromagnético para el nanocascarón acoplado con la dinámica de elementos ac-
tivos fue resuelto en varios regímenes dinámicos y de estado estable. Una inestabilidad tipo
spaser se observó luego de una cantidad umbral de material activo (ε′′h(ω21) = −0.526) tanto
con un campo eléctrico externo aplicado y sin él. Esta inestabilidad resultó en una amplificación
extremadamente fuerte para el campo eléctrico fuera del nano-cacarón que decae con la distan-
cia como r−6. La marcada localización del campo fuera del nano-cascarón, y la naturaleza de la
evolución temporal de la intensidad de amplificación y de la inversión de población justifican
llamar a este efecto un spaser.
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Abstract
A theoretical study of the coupling between the plasmon resonance of a silver nanoshell

and the emission of an externally pumped active medium inside the nanoshell is made. In or-
der to study the system’s electric and polarization density fields, the quasistatic approximation
was used (valid for particles with radius ∼ 15 [nm]). The optical-Bloch formalism was used to
describe the gain elements’ dipole moment interaction with the electric field and their popu-
lation inversion. The electromagnetic problem for the filled nanoshell particle coupled to the
gain population dynamics was solved in several dynamic and steady-state regimes. A spaser
instability is observed after a threshold amount of gain (ε′′h(ω21) = −0.526) both with an im-
pinging external electric field, and in its absence. These instabilities translate to an extremely
strong amplification of the outer field intensity, that decays with the distance as r−6. The strong
spatial localization of the field, and the temporal evolution of the intensity amplification and
the population density justify calling this effect a spaser.
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Chapter 1

General Introduction

1.1 The Rise of Nanotechnology

In 1959 Richard P. Feynman planted the conceptual seed that resulted in the beginning of nan-
otechnology1 during his renowned talk "There is Plenty of Room at the Bottom". After his ideas of
storing huge amounts of information in a very small scale became stilled in the minds of scien-
tists, important achievements in nanotechnology emerged. Such as the invention of the scan-
ning tunneling microscope (STM) in 1981 (that earned its creators the Nobel Prize in Physis in
1986), or the discovery of fullerenes around 1985 (Nobel Prize in Chemistry in 1996) [2–4]. This
resulted in even more attention paid towards the field, and since the 2000’s nanotechnology
obtained scientific, commercial, and even political awareness.

Research on nanotechnology has managed to find its way into many different areas, includ-
ing commercial applications. Consumer products such as straighter-flying golf balls, stiffer ten-
nis rackets, antibacterial socks with silver nano-particles are now in the market [5]. Examples
of nanotechnology in research include medical applications that are under study or in use such
as extremely localized drug delivery systems [6], cancer detection through nano-carriers [7],
and blood purification with magnetic nano-particles [8]. Highly symmetrical nano-tubes with
high electron mobility (around 10 [nm]), have been used to create transistors of the MOSFET
type [9, 10], thus improving the field of nano-electronics [11]. The possibility for optical quan-
tum computing, that would allow exponentially faster calculations, is another field of research
at the moment [12]. By making use of quantum dots (semiconductor nanoparticles), consider-
able reduction in size for spectrometers has been theorized by MIT scientists [13].

Yet another of the applications of nanotechnology lies within the field of computers. Prob-
ably the first achievement of nanotechnology in this field was a considerable improvement on
the storage capacity on hard drives. The 2007 Nobel Prize in Physics was given to Albert Fert
and Peter Grünberg for the discovery of Giant Magnetoresistance, which, when applied to the
read heads of hard disks, lead to larger memory in hard drives [14]. Nano-optical computing
promises considerable improvements to speed and memory. At the moment, transfer of in-
formation from one storage device to another is managed with both light and electrons. The
premise of nano-optical computing lies in implementing photons throughout all the process.
This would allow for considerable improvements in speed and a reduction in energy consump-
tion [15]. This is considered to be achievable through nanophotonic technology in the transistor
level [16].

1The National Nanotechnology Initiative (founded in 2000) provided a general description for nanotechnology:
"science, engineering, and technology conducted at the nanoscale, around 1 to 100 nanometers" [1].
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1.2 Plasmonics

The study of interactions between free electrons in metal and electromagnetic fields at the
nanoscale is known as Plasmonics. Branching out from the broader field of nanophotonics, plas-
monics is a "rapidly growing field of nanoscience concerned with the control of optical radiation
on the subwavelength scale" [17]. The rapid expansion of this field has been driven mainly by
the wide range of applications that it promises - "solar cells, high-resolution microscopy, drug
design and many more" [16]. Recently, improved photovoltaic devices have been achieved
through the use of plasmonics, thus permitting a reduction in the thickness of the cells [18].
Additionally, superlenses have been created via the excitation of surface plasmons, allowing
for sub-diffraction limit observations [19, 20].

Although the main advances in plasmonics and its applications have occurred during the
21st century, its fundamental elements - surface plasmons2 and localized surface plasmons3

- were described around the 1900s [16, 23]. Furthermore, we can trace the use of localized
surface plasmons back to Roman times. One of the finest examples of this is the Lycurgus cup,
fig. 1.1, that is characterized by a special type of glass (often called "ruby glass") [24]. This glass
exhibits a peculiar characteristic: when a source of light is outside the cup, the glass is seen in
a yellowish olive green tone. On the other hand, when the light is inside the cup, it displays a
crimson red tone.

Studies of the Lycurgus cup discovered nanometric impurities made of gold, silver, and
other elements inside the glass. The gold and silver nanoparticles were found to be the main
elements for the behaviour described [25]. Golden nanoparticles are also the reason for some of
the coloring of tainted glass windows, as was shown in 1904 by Maxwell-Garnett, fig. 1.2 [23].

FIGURE 1.1: Lycurgus cup (4th century).

1.3 Spaser

An additional application of plasmonics was suggested in 2003 by Bergman and Stockman, who
theorized the spaser: a quantum amplifier of surface plasmons through the use of stimulated
emission of radiation. The spaser is an equivalent of a laser, but with SPs rather than pho-
tons [26]. It has been theorized that using a nanodevice of metal/dielectric composite medium

2Surface Plasmons (SPs) are coherent resonant oscillations of conduction electrons present in the interface between
a metal and a dielectric in response to an incident optical field [21, 22].

3Localized Surface Plasmons (LSPs) are SPs confined in a nanoparticle [21].
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FIGURE 1.2: Troyes Cathedral Stained Glass, France (14th century)

a strong, coherent, field appears in a region smaller than the exciting wavelength [27]. In or-
der to obtain a spaser-like response, compensation on the losses due to the metal need to be
made. This is usually done with the use of pumped gain material (quantum dots, fluorescent
molecules, dye of different lanthanids).

Spasers are proposed to be sources of optical fields from a nanometrical scale, but their
applications are so vast that could potentially represent for the 2020′s a technological revolution
comparable, if not superior, to what the invention of the laser meant for the 1970′s. Some of
these applications would include advances in nanotechnology such as nanoscale lithography,
probing and microscopy [28].

1.4 Aim

The aim of this work is to theoretically study the plasmonic response of a metallic nanoshell
with an externally pumped active gain material (dye, quantum dots, fluorescent molecules)
able to couple with the plasmon resonance (LSP). Exciting the nanoshell with an external probe
field, and the gain material with a pump external field at a different frequency, a rich variety of
regimes arise for different amounts of gain.

By studying the stimulated emission of radiation of the active medium, modeling the metal
as a Drude metal, and considering a multipolar model for the polarization and the electric
fields, three time dynamical equations are obtained and solved numerically. The results show
a considerable amplification in the external field, as well as a stable, oscillatory, nature of the
intensity amplification of the field outside the nanoshell. This response could be interpreted as
a stable spaser emission on the outer surface of the metallic nanoparticle.
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Chapter 2

Plasmonics

2.1 Overcoming the Diffraction Limit

In 1873, Ernst Abbe noticed a fundamental limit in the resolution of optical imaging instruments
given by the diffraction of light [29]. Abbe found that it was only possible to observe objects
smaller than roughly one half of the wavelength of the light used. Setting λ as the wavelength
of the incident light, η the index of refraction of the medium used, and θ the angle of incidence,
Abbe approximated the diffraction limit of a microscope as:

d =
λ

2η sin θ

Formally, a resemblance between the diffraction limit and Heisenberg’s uncertainty prin-
ciple exists. Since the wave-vector of the incident light gives the momentum, px = ~kx, and
the wave-vector is inversely proportional to the wavelength, it is possible to obtain a relation
between the uncertainty in position to the wavelength. In fact, in the unidimensional case this
is expressed as eqn. 2.1. From this it follows that eqn. 2.21 (where ∆x is the uncertainty in
the position of an object under observation, and λ is the wavelength of the light used) sets a
diffraction limit that is similar in magnitude to that found by Abbe [17].

~∆kx ∆x ≥ ~
2
, where ∆kx =

2π

λ
is the maximum spread of kx. (2.1)

∆x ≥ λ

4π
(2.2)

Abbe’s constraint means that for visible light (λ ∼ 500 [nm]) the diffraction limit does not
allow for anything smaller than roughly 200 [nm] to be observed. If this uncertainty is on the
same order of the object’s size, then an optical instrument cannot observe it, regardless of the
instrument’s quality. "Recently, however, several new exciting approaches in imaging have
emerged that can break this rule under certain circumstances" [30].

In 1999, Thomas A. Klar and Stefan W. Hall achieved focusing below the diffraction limit
through STED microscopy (stimulated emission depletion), which uses two laser fields, Fig. 2.1.
A near-UV pulse excites fluorophores and a spatially offset pulse quenches all fluorescent re-
sponse excluding a nanometric volume through stimulated emission [31,32]. Hall was awarded,

1For real lenses a correction based on the numerical aperture must be made.
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together with Eric Betzig and William Moerner (who created a method to obtain a layered
imaging scheme through detection of single fluorescent molecules), the 2014 Nobel Prize in
Chemistry for the use of fluorescent molecules to surpass the diffraction limit. Other methods
for either "shrinking" (confocal microscopy) or overcoming (near-field microscopy) the diffrac-
tion limit have been developed [33]. Using these, nano-optics attempts to work beyond the
diffraction limit due to mayor technological applications such as "super-resolution microscopy
or ultra-high-density data storage" [17].

FIGURE 2.1: A figure showing the resolution improvement between traditional
confocal microscopy and stimulated emission depletion (STED) microscopy.
Cells were stained with 647-phalloidin to show actin filaments and the images
were taken on a Leica SP5 2P STED microscope. Howard Vindin (2013), Wiki-

media Commons

As is shown in eqn. 2.1, the spatial confinement of an object is given exclusively by the
spread of the wave-vector in a given direction. This means that by increasing the spread of the
wave-vector the spatial confinement of the object is lowered. This can be done by consider-
ing a tridimensional wave-vector, and increasing one of the perpendicular components of the
wave-vector, e.g. x̂ and ẑ, to a value larger than 2π/λ (e.g. kx ≥ 2π/λ), and at the same
time making the other perpendicular component of the wave-vector to be purely imaginary
(e.g. kz ∈ =). This also maintains the requirement that the total length of the wave-vector,
k =

√
k2
x + k2

y + k2
z is equal to 2π/λ. By increasing the wave-vector in x̂, the spread in said

direction is also increased, thus overcoming eqn. 2.2. However, this mathematical trick that
cleverly allows the diffraction limit to be surpassed has a physical consequence. By introduc-
ing this imaginary component to the equation for a plane wave, eqn. 2.3 will describe the wave
in the z direction. For positive z this means an exponentially decaying field, an evanescent
wave, and for negative z it means an exponentially increasing wave - which has no physical
meaning, hence it can be discarded [17].

ei kz z = e−|kz| z (2.3)
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This is the theoretical foundation that lays in the core of nano-optics, and the previously de-
scribed evanescent wave will prove to be key for technologies such as near-field spectroscopy,
or sub-diffraction limited superlenses [19,34,35]. Additionally, confocal fluorescence microscopy
is a fundamental tool in biomedical research, and it also stretches Abbe’s diffraction limit [17].
Slowly replacing it, is multiphoton microscopy, that was put forth by advances in nonlinear
optics [36].

Another method for focusing below the diffraction limit of light is the use of surface plas-
mons, since they too fulfill the mathematical trick that was described. This is because sur-
face plasmons are waves that show an evanescent decay on a metal-dielectric interface. From
Maxwell’s macroscopic equations it can be shown that the wave-vector components of an SPP2

wave are described as eqns. 2.4a (x̂ direction in the metal-dielectric interface) and 2.4b (ẑ di-
rection in metal j = 1 and in the dielectric j = 2), where ε1(ω) is the (frequency dependent)
relative electric permittivity of metal, ε2 is that of a dielectric, and k0 = ω/c.

k2
x = k2

0

ε1(ω) ε2

ε1(ω) + ε2
(2.4a) k2

j,z = k2
0

ε2
j

ε1(ω) + ε2
(2.4b)

FIGURE 2.2: Sketch of a surface plasmon polariton wave propagating along a
metallic surface. Wikimedia Commons, 2013

For metals, the real part of the relative permittivity is negative for certain frequencies. And,
if a conductor without attenuation is considered, the conditions that provide a purely real kx
and a purely imaginary kj,z are [16]:

ε1(ω) . ε2 < 0 (2.5a) ε1(ω) + ε2 < 0 (2.5b)

2.2 Surface Plasmons

The conditions of eqn. set. 2.5 are fulfilled for frequencies lower than the characteristic surface
plasmon frequency ωSP . Even when considering a conductor with attenuation, regions that
have imaginary components of the wave-vector appear below a certain frequency, i.e. surface
plasmons will appear. The meaning and physical interpretation of these waves is discussed in
this section.

2Surface plasmon polaritons (SPPs) are surface plasmons when produced in the interface between dielectric and
metal [16].
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Surface plasmons are "collective charge oscillations that occur at the interface between con-
ductors and dielectrics" [37]. The unique properties of surface plasmons allow multiple appli-
cations. Including, but not limited to, single molecule detection, high resolution imaging at
optical frequencies under the diffraction limit [37].

As it was mentioned in chapter 1, the history of plasmonics starts well before any scientific
study of the optical properties of metallic nanostructures was made. However, it was not until
almost half a century later, 1953− 1956, that David Pines described the energy losses related to
electrons moving in the surface of a metal and coined the term plasmon [38–40], which refers to
a quasiparticle resulting from the quantization of plasma oscillations [37].

The following year, 1957, sees the first theoretical description of surface plasmons, SPs. Rufus
Richtie shows that near the surface of metals, plasmon modes can exist while studying energy
losses for electrons in metallic thin films [37, 41]. By introducing a dielectric above the metallic
surface, a new quasiparticle emerges - the surface plasmon-polariton, where the polariton is the
quantum of polarization in the dielectric material. The SPP refers to both the charge motion in
the metal (SP) as well as the electromagnetic wave in the dielectric (polariton) [34,42]. These SPP
waves were, at the time, produced by impinging an electron beam into a metal surface. SPPs, or
SPs for that matter, cannot be directly excited by light incident on the metallic surface [37, 43].
This is due to a "mismatch in wavelength of the SPP wave and the plane wave in the bulk
dielectric partnering material prevents excitation of the SPP wave by direct coupling to a beam
of light" [34].

Nevertheless, this constraint will be removed by 1968, when Andreas Otto and Erich Kretsch-
mann with Heinz Raether developed methods for optically exciting plasmon resonances through
the use of a prism with high refractive index near the metal vacuum interface - a surface plas-
mon is excited by an evanescent wave resulting from frustrated total reflection in the prism, as
shown in fig. 2.3 [44–46]. This allowed experimentation on surface plasmons to become easily
accessible to many scientists, and lead the field of SPs to shift perspectives from a fundamental
study to an application driven research.

FIGURE 2.3: Scheme for exciting SPPs on a prism with the (a) Turbadar-
Kretschmann-Raether and (b) Turbadar-Otto configurations [34].

A significant turning point for plasmonic related research was in 1998, when an extraordi-
nary transmission of light due to light-plasmon coupling was observed through a sub-wavelength
aperture in a thick metal film [47]. This arose interest in the use of plasmons for the fabrication
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of waveguides as well as other photonic devices with sizes significantly smaller than the diffrac-
tion limit. This field of study became known as plasmonics, and it now encompasses all research
related to surface plasmons in metallic films and plasmon resonances in metal nanoparticles
(commonly referred to as localized surface plasmons) [43]. Shortly thereafter, Sir John Pendry
proposes that a perfect lens can be achieved through negative refractive index materials, which
can be obtained with plasmonic responses in a thin film of metal [48].

2.3 Localized Surface Plasmons

A few years later, a description for the optical properties of metallic nanoparticles in terms of
surface plasmons is done by Uwe Kreibig and Peter Zacharias, where they compare the opti-
cal and electronic responses of gold and siver nanoparticles [49]. They were actually studying
localized surface plasmons - the second fundamental excitation of plasmonics. LSPs, unlike sur-
face plasmon polaritons, are "non-propagating excitations of the conduction electrons of metallic
nanostructures coupled to an electromagnetic field" [16]. An effective restoring force on the
conduction electrons, due to the curved nature of the nanoparticle, is responsible for the non-
propagating resonance (propagation occurs in flat metallic-dielectric interfaces). This resonance
is usually referred to as localized surface plasmon resonance (LSPR). LSPs can be directly excited
by light unlike SPPs, that need to have a prism arrangement like the one shown in fig. 2.3 [16].

In order to study LSPs, the response of a metallic nanosphere (with frequency dependent
relative electric permittivity εm(ω)) interacting with an electromagnetic wave propagating in
a dielectric medium (with εd) will be considered. This will lead to a resonance condition -
apparent by the polarizability (α) of the particle.

FIGURE 2.4: Metallic nanoparticle, εm(ω), in a host dielectric medium, εd, where
a constant electric field is present [50].

The interaction between a metallic particle of size a with an electromagnetic field can be
described through the quasi-static approximation as long as a << λ (λ being the wavelength of
the electromagnetic field). This particle is small enough, a < 15 [nm], to describe the problem
through a constant electric field, E0 = E0ẑ [16].

From an electrostatic approach (∇×E = 0), solutions for the Laplace equation,∇2 φ = 0,
appear in the form of the multipolar expansion of eqn. 2.6, where P`(cos θ) are the Legendre
polynomials of `th order, and θ is the polar angle in spherical coordinates [50]. From these, an
expression for the electric field can be obtained from E = −∇φ.

φ(r, θ) =

∞∑
`=0

[
A` r

` +
B`
r`+1

]
P`(cos θ) (2.6)
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Since the electric potential must be finite, and reconnect with E0’s potential when r ap-
proaches infinity, eqn. 2.7a is obtained. The electric potential also has to be finite in the center
of the sphere, i.e. r = 0, so eqn. 2.7b is written.

φin(r, θ) =

∞∑
`=0

p̃
(in)
` r` P`(cos θ) (2.7a)

φout(r, θ) =

∞∑
`=0

[
p

(out)
`

r`+1
− r E0δ`,1

]
P`(cos θ) (2.7b)

Continuity in the normal and tangential components of the displacement field and electric
field, respectively, in the surface where metal and dielectric meet (r = a) provide eqn. set 2.8.

−εm(ω)
∂φin
∂r

∣∣∣∣
r=a

= −εd
∂φout
∂r

∣∣∣∣
r=a

(2.8a)

−1

a

∂φin
∂θ

∣∣∣∣
r=a

= −1

a

∂φout
∂θ

∣∣∣∣
r=a

(2.8b)

When the expressions of the electric potentials, eqn. set 2.7, are substituted into these bound-
ary conditions of eqn. set 2.8, the following expressions are obtained (and can be traced back
to [50, 51]).

φin(r, θ) = − 3 εd
εm(ω) + 2εd

E0 r cos θ (2.9a)

φout(r, θ) = −E0 r cos θ +
εm(ω)− εd
εm(ω) + 2εd

E0 a
3 cos θ

r2
(2.9b)

The physical interpretation of eqn. 2.9b is a superposition of two electric potentials - the
external potential (−E0 r cos θ) and the potential of an electric dipole. To put this in perspective,
the equation of a dipole (situated in r = 0) in a dielectric medium of relative electric permittivity
εd is defined as eqn. 2.10, where p is the dipole moment [51].

φdip =
p · r̂

4πε0εd r2
=

p cos θ

4πε0εd r2
(2.10)

This observation results in an expression of φout in terms of the dipole moment p of the
nanoparticle, eqn. 2.11. And of a corresponding expression for the dipole moment, eqn. 2.12.

φout = −E0 r cos θ +
p · r̂

4πε0εd r2
(2.11)

p = 4πε0εd a
3 εm(ω)− εd
εm(ω) + 2εd

E0 (2.12)

With the polarizability of the particle as α, described as p = αE0, then eqn. 2.13 defines it,
and it shows the same form of the Clausius-Mossotti relation [50].

α(ω) = 4πε0 a
3 εd

εm(ω)− εd
εm(ω) + 2εd

(2.13)
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This is the central result of this derivation, and it is an important one since the polarizability
can provide coefficients related to scattering, absorption, extinction, heating, etc [52]. It should
be noted that α depends on the radius of the particle, which must be smaller than 100 [nm]

due to the quasi-static approximation. For larger particles, the polarizability must be obtained
through Mie theory [53]. This is a complex and frequency dependent polarizability because the
relative electric permittivity of the metal depends on the frequency of the incident electromag-
netic wave, eqn. 2.14 (Drude model).

εm(ω) = 1 −
ω2
p

ω(ω + i γ)
= ε′m + i ε′′m (2.14)

Figure 2.5 shows the complex polarizability of silver as a function of the frequency, E = ~ω,
of the incident EM wave [16].

FIGURE 2.5: Polarizability of a silver nanoparticle vs. EM wave energy.

However, when considering a conductor without attenuation (or in the high-frequency do-
main), i.e. γ << ω in eqn. 2.14 (where ωp is the plasmon frequency), the metal permittivity
is predominantly real. From this it follows that a singularity for the polarizability exists when
εm(ω0) = −2εd (Fröhlich condition).

There is a problem here. Real metals have non-negligible damping, and thus display losses.
These losses are related to the positive, imaginary component of the relative electric permittiv-
ity of the metal (ε′′m). This positive ε′′m is the only responsible of the positive imaginary part of
the polarizability of fig. 2.5. It follows from this that a =[α] > 0 has a physical representation
of dispersion of energy within the medium. This means that in order to obtain the same be-
haviour of LSP resonance, but without the losses, some loss compensation must be done. The
most promising method to achieve this is to couple the particle with "active compounds which
are able to transfer energy from a pump and therefore amplify the desired response" [54].

Similar studies can be made for other types of nanoparticles, since different geometries have
unique properties. Out of these different geometries, we choose to describe a metallic nanoshell
because, how it will be thoroughly explained later, this design provides interesting physical
properties and it is easier both to synthesize and to model.
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2.4 Loss-Compensation

In order to fight the losses related to the imaginary component of the electric permittivity of the
metal, the use of optical gain material is commonly used [17, 55–59]. Examples of optical gain
material are polymers with dye, quantum dots, fluorescent molecules, or rare-earth ions [52,
56, 60–62]. Gain materials are commonly used in lasers in order to obtain optical gain, which
results from a transition from a high energy state to a low energy state. This is achieved by
obtaining a majority of quantum elements in the higher energy state than in the lower energy
state, i.e. a population inversion.

If losses in a material are related to a positive, imaginary component of the electric permit-
tivity, then the opposite of this can be interpreted as gain in a material. That is, if a certain
material has =[ε] < 0, one can say that it is a gain material [63]. For this work, a gain material
with a frequency dependent permittivity, εg(ω), will be considered. In the steady state, the gain
medium can be defined with a "single Lorentzian emission line shape" [54] centered at the gain
frequency (ωg), and in the steady state can be described as eqn. 2.15.

εg(ω) = −
ε′′g (ωg) ∆

2(ω − ωg) + i∆
(2.15)

This equation for the permittivity of the gain material is added to that of a linear dielectric
and the host permittivity is obtained: εh(ω) = εd + εg(ω). This leads to a frequency dependent
host permittivity (εh(ω) = ε′h(ω) + iε′′h(ω)), that for the case of ε′′g (ωg) = −2.33 is represented by
fig. 2.6.

FIGURE 2.6: Permittivity of host medium (linear dielectric and optical gain ma-
terial).

The negative imaginary permittivity in fig. 2.6 is exactly what is needed to compensate for
losses in the metal. Part of the aim of this work is to figure out the value of ε′′g (ωg) that would
allow for a high-intensity LSP in a nanoshell geometry.
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2.5 Surface Plasmon Amplification by Stimulated Emission of

Radiation (SPASER)

Through a quantization of the surface plasmon fields and their stimulated emission, the exis-
tence of "temporally coherent high-intensity fields of selected surface plasmon modes that can
be strongly localized on the nanoscale" were demonstrated by Bergman and Stockman in their
seminal paper that introduced the spaser [26]. However, since noble metals experience strong
losses when optical frequency fields are impinged upon them, gain material is used to mitigate
this. Stockman describes the gain through the optical-Bloch formalism (Appendix A) and cop-
ules them to a second-quantization of the plasmonic field in a box. This results in a hamiltonian
with ladder operators relating to the creation and destruction of surface plasmon modes, a term
related to the energy of the gain medium, and a term for the coupling of the electric field with
the dipolar moment of each gain element (eqn. 2.16).

H = ~
∑
n

ωna
†
nan +Hg −

∑
p

E(rd) · d(p) (2.16)

In the following chapter a thorough description of the nanoshell geometry will be made.
This will include the classical model to obtain the steady state polarizability, time-dynamical
equations for the materials and the fields, numerical linear and non-linear solutions for these
equations, and an eigenvalues description for them. The metal is considered to follow a Drude-
Sommerfeld model, which provides a description of the polarization and electric field inside
the metal. The gain material will be approximated as an atomic two-level system with optical-
Bloch equations (see Appendix A).
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Chapter 3

Theory

3.1 Doped Metallic Nanoshell

Here is where we really start. A theoretical/numerical study of a silver nanoshell with exter-
nally pumped optical gain material on its core excited by an external electric field is done. The
geometry that is being considered is portrayed by fig. 3.1. This nanoshell has an inner radius
a1 and outer radius a2.

FIGURE 3.1: Nanoshell geometry.

Region 1 is a sphere of radius a1, and it has two components that create its permittivity
ε1. The first component is a background dielectric that is constant in the frequency region of
interest, εb. Then, optical gain material is added. The permittivity that the gain contributes is
dependent on the frequency of the external field, E0, and has real and imaginary components,
εg(ω).

Region 2 represents a metal shell of inner radius a1 and outer radius a2, that has complex
frequency dependent permittivity, ε2(ω). We define the relation between the radii as ρ = a1/a2.

Finally, region 3 is the linear dielectric of constant electric permittivity ε3 of the solvent used,
and it can be ethanol, water, silica, etc.

3.1.1 Gain Material

The gain material is described with a two-level system and the optical-Bloch formalism (de-
scribed in Appendix A). Two equations are retrieved from this - one that describes the time
dynamical population inversion of the system, 3.1a, and one that describes the time dependent
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coherence of the gain molecules between excited |2〉 and ground |1〉 states, ρ12, 3.1b. This co-
herence is related to the dipole moment of the gain molecules (µ) which in turn is related to the
density of dipole moments of the gain material, P1,g

d ρ12

d t
−
(
iω21 −

1

τ2

)
ρ12 = − iH12N

~
=

iN µ ·E1

~
(3.1a)

dN

d t
+
N −N0

τ1
=

2i(ρ12 − ρ21)µ ·E1

~
(3.1b)

By defining a tensor that accounts for the dipole moment of the gain molecules as was done
in eqn. A.15, the polarization density of the gain elements can be defined asP1,g = ng〈µ̂〉, where
ng is the density of gain molecules. The average over the dipole moments of the molecules is
done in the following way: (i) the density matrix is used to average for the quantum states
of the system and (ii) a solid angle integration averages over the direction of all the gain
molecules, which are randomly oriented to begin with. This provides a relation between ρ12

and the macroscopic density of dipole moments of gain, given by eqn. 3.2, where Ω is the solid
angle.

P1,g =
ng
4π

∫ 4π

0

(ρ12 + ρ21)µdΩ (3.2)

Now, defining the field Π =
ng
4π

∫
Ω

ρ12µdΩ, and knowing that the density matrix is hermi-

tian, ρmn = ρ∗nm, eqn. 3.2 can be rewritten.

P1,g =
ng
4π

∫ 4π

0

(ρ12 + ρ∗12)µdΩ = Π + Π∗ (3.3)

Taking into account the background dielectric, which has electric susceptibility χb, the po-
larization of region 1 is defined by eqn. 3.4.

P1 = ε0χbE1 + Π + Π∗ (3.4)

This means that eqn. set 3.1 can be recast into the following equations, using the field Π,

and knowing that
∫ 4π

0

(µ ·E1)µdΩ =
4π

3
µ2E1:

dΠ

d t
−
(
iω21 −

1

τ2

)
Π =

ingNµ
2

3~
E1 (3.5a)

dN

d t
+
N −N0

τ1
=

2i

n~
(Π−Π∗) ·E1 (3.5b)

Now, the rotating wave approximation (eqn. set 3.6) is used to simplify the system. Assuming
that the frequency of the probe electric field E0 is near resonant (ω ∼ ω21) and considering a
harmonic form for all time dependent variables, e−iωt, the equations for the time envelopes of
Π̃, Ẽ1, and P̃1 [64]:
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Π = Π̃(t) eiωt (3.6a)

E1 =
1

2

[
Ẽ1(t) e−iωt + Ẽ∗

1(t)eiωt
]

(3.6b)

P1 =
1

2

[
P̃1(t) e−iωt + P̃ ∗

1 (t)eiωt
]

(3.6c)

Inserting this into eqn. 3.4 and eqn. set 3.5 results in:

dΠ

d t
+

[
i(ω − ω21) +

1

τ2

]
Π =

inNµ2

6~
E∗

1 (3.7a)

dN

d t
+
N −N0

τ1
=

i

n~
(E1 ·Π−E∗

1 ·Π∗) (3.7b)

P1 = ε0χbE1 + 2Π∗ (3.7c)

From now on, tildes will be omitted and all fields will be assumed to be represented by their
time envelope, which are the physically relevant quantities.

3.1.2 Metal

The electric field E2 acts on the electrons in the metal. This interaction can be described using
the free electron model, eqn. 3.8.

d2r

dt2
+ 2γ

dr

dt
=

e

me
E2 (3.8)

Where r is the displacement of the electron from it’s equilibrium position, e is the elemen-
tary charge, me is the electron’s mass, and γ is a collision frequency [65]. If ne is the density
of electrons in the metal, then the polarization density is defined as P2 = ne e r. This means
that the time evolution of P2 can be written as eqn. 3.9, by defining the plasma frequency as

ω2
p =

ne e
2

meε0
.

d2P2

dt2
+ 2γ

dP2

dt
= ε0 ωpE2 (3.9)

Considering the rotating wave approximation one more time, but this time with eqn. set 3.10,
will simplify eqn. 3.9.

E2 =
1

2

[
Ẽ2(t)e−iωt + Ẽ∗

2(t)eiωt
]

(3.10a)

P2 =
1

2

[
P̃2(t)e−iωt + P̃ ∗

2 (t)eiωt
]

(3.10b)

Applying these considerations, aking the second time derivative of the slowly varying
polarization densities (P̃2(t) and P̃ ∗

2 (t)) to be negligible, and omitting the tildes once more,
eqn. 3.9 transforms to:

dP2

dt
− ω2 + 2iγω

2(γ − iω)
P2 =

ε0 ω
2
p

2(γ − iω)
E2 (3.11)
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From this equation it is possible to determine the steady state permittivity of the metal εm(ω)

using the relation P2 = ε0(εm − 1)E2 and dP2/dt = 0. This results in eqn. 3.12, which is the
classical Drude model [52, 66].

εm(ω) = 1 −
ω2
p

ω(ω + iγ)
(3.12)

3.2 Nanoshell and Gain Polarizability

A classical formulation of the polarizability is presented in Appendix B. This calculation is only
valid for the nanoshell with no active molecules in region 1. In order to account for these, the
fields that where obtained in the previous sections will be considered.

Now that gain material has been added to the system, it is not possible to say that ∇ ·E = 0.
Instead, and assuming there are no free charges, the divergence of the displacement field,
D = ε0E + P , where P is the polarization, ought to be zero.

Since the size of the nanoshell is small enough to consider the quasi-static approximation,
we can say that the electric field is irrotational, i.e. E = −∇φ. From here, the rotational of D
can be expressed as: ∇×D = ∇×P . This means ifP is irrotational, then the displacement field
is also irrotational, which leads to D = −∇ξ. Additionally, and considering no free charges,
the divergence of D is zero. Consequently, the field related to D follows Laplace’s equation,
∇2ξ = 0. Since the polarization is considered to be irrotational, then it is possible to write:
Π = −∇ψ1 and P2 = −∇ψ2. This leads to the following expressions for the displacement field
in all three regions (eqn. set 3.13).

D1 = ε0E1 + ε0χbE1 + 2Π∗ = ε0εbE1 + 2Π∗ = ε0εb (−∇φ1) + 2 (−∇ψ1)
∗ (3.13a)

D2 = ε0E2 + ε0χmP2 = ε0 (−∇φ2) + ε0χm (−∇ψ2) (3.13b)

D3 = ε0ε3E3 = ε0ε3 (−∇φ3) (3.13c)

From the fact that in all these regions there are no free charges and thus the divergence of the
displacement field is zero, it is clear that one solution for these equations is Laplace’s equation
for φ1,2,3 and for ψ1,2. This means that the solutions for the polarization potentials in a system
with azimuthal symmetry can be expressed as eqn. 3.14.

ψ1,2(r, θ, t) =

∞∑
`=0

[
q

(1,2)
` +

σ
(1,2)
`

r`+1

]
P`(cos θ) (3.14)

Additionally, the electric potentials can be expressed as it was done in Appendix A (eqn.
set 3.15), where as the gain is in a uniform electric field, ` = 1 is the only allowed mode - even
in the non-linear regime.
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φ1(r, θ, t) =

[
p(2)

ρ3a3
2

+
p(3) − p(2)

a3
2

− E0

]
r cos θ (3.15a)

φ2(r, θ, t) =

[
p(3) − p(2)

a3
2

− E0

]
r cos θ + p(2) cos θ

r2
(3.15b)

φ3(r, θ, t) = −E0 r cos θ + p(3) cos θ

r2
(3.15c)

Applying regularity conditions for eqns. 3.14 when r = 0, and setting σ(2)
1 = σ, the following

equations are obtained:

ψ1 = q(1) r cos θ

ψ2 = q(2) r +
σ

r2
cos θ

Determining the radial derivatives of these potentials, and the tangential derivatives of φ1

and ψ1 gives:

Er1 =

[
E0 −

p(2)

ρ3a3
2

− p(3) − p(2)

a3
2

]
cos θ (3.16a)

Er2 =

[
E0 −

p(3) − p(2)

a3
2

]
cos θ + 2p(2) cos θ

r3
(3.16b)

Er3 = E0 cos θ + 2p(3) cos θ

r3
(3.16c)

Πr = −q(1) cos θ (3.16d)

P r2 = −q(2) cos θ + 2σ
cos θ

r3
(3.16e)

Eθ1 = −
[
E0 −

p(2)

ρ3a3
2

− p(3) − p(2)

a3
2

]
sin θ (3.16f)

Πθ = q(1) sin θ (3.16g)

From here, E1 ·Π−E1 ·Π∗ = −2=[E1 ·Π] is necessary to recast eqn. 3.7b. In terms of the
multipolar expansion it can be defined as:

−2=[E1 ·Π] = 2q(1)

[
E0 −

p(2)

ρ3a3
2

− p(3) − p(2)

a3
2

]
Substituting this equation and eqns. 3.16a- 3.16e into eqns. 3.7a and 3.11, the following four

equations are obtained.
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dq(1)

dt
+

[
i(ω − ω21) +

1

τ2

]
q(1) = − inNµ

2

6~

[
E∗0 −

p(2)∗

ρ3a3
2

− p(3)∗ − p(2)∗

ρ3a3
2

]
(3.17a)

dN

dt
+
N −N0

τ1
=

2

n~
=
{
q(1)

[
E0 −

p(2)

ρ3a3
2

− p(3) − p(2)

a3
2

]}
(3.17b)

dq(2)

dt
− ω2 + 2iγω

2(γ − iω)
q(2) = −

ε0ω
2
p

2(γ − iω)

[
E0 −

p(3) − p(2)

a3
2

]
(3.17c)

dσ

dt
− ω2 + 2iγω

2(γ − iω)
σ =

ε0ω
2
p

2(γ − iω)
p(2) (3.17d)

3.2.1 Boundary Conditions

The boundary conditions on the radial components of the electric and polarization fields in
a1 = ρa2 and in a2 are:

[ε0εbE
r
1 + 2Πr∗]r=ρa2 = [ε0E

r
2 + P r2 ]r=ρa2

[Er2 + P r2 ]r=a2 = ε3E
r
3 |r=a2

These boundary conditions and the equations that describe the electric and polarization
density fields (eqn. set 3.17) result in equations for p(2,3):

p(2) = − ρ3(εb − 1)

εb + 2− ρ3(εb − 1)
p(3) + ρ3a3

2

(εb − 1)

εb + 2− ρ3(εb − 1)
E0+

+
ρ2a3

2

ε0

q
(2) − 2q(1)∗ − 2σ

ρ3a3
2

εb + 2− ρ3(εb − 1)



p(3) = a3
2

(1− ε3)(εb + 2) + ρ3(εb − 1)(ε3 + 2)

(εb + 2)(1 + 2ε3) + 2ρ2(εb − 1)(1− ε3)
E0 +

− a3
2

ε0

6ρ3q(1)∗ + (1− ρ3)
[
(εb + 2)q(2) − (εb − 1) 2σ

a32

]
(εb + 2)(1 + 2ε3) + 2ρ2(εb − 1)(1− ε3)

3.3 Time Dynamical System of Equations

At this point, the metal’s electric permittivity (eqn. 3.12) along with the linear gain permittivity
(obtained in Appendix A) are used to simplify eqn. set 3.17 as described below.

ε′′h(ω21) = −nµ
2τ2

3~ε0
(3.18)
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dq(1)

dt
+

[
i(ω − ω21) +

1

τ2

]
q(1) =

iNε0ε
′′
h(ω21)

2τ2

[
E∗0 −

p(2)∗

ρ3a3
2

− p(3)∗ − p(2)∗

ρ3a3
2

]
(3.19a)

dN

dt
+
N −N0

τ1
=

2

n~
=
{
q(1)

[
E0 −

p(2)

ρ3a3
2

− p(3) − p(2)

a3
2

]}
(3.19b)

dq(2)

dt
−

iωω2
p

ω2(1− εm) + ω2
p

q(2) = −ε0

iωω2
p(1− εm)

ω2(1− εm) + ω2
p

[
E0 −

p(3) − p(2)

a3
2

]
(3.19c)

dσ

dt
−

iωω2
p

ω2(1− εm) + ω2
p

σ = −ε0

iωω2
p(1− εm)

ω2(1− εm) + ω2
p

p(2) (3.19d)

For the numerical solutions all quantities are made to be dimensionless. To do so, the fol-
lowing variable changes are made: σ → σ

ε0ρ3a3
2

, t→ ωpt, and ω → ω/ωp. Additionally, defining

p2 =
p(2)

ρ3a3
2

, p3 =
p(3)

a3
2

, q1 =
q(1)

ε0
, and q2 =

q(2)

ε0
lead to:

dq1

dt
+

[
i(ω − ω21) +

1

τ2

]
q1 =

iNε′′h(ω21)

2τ2N0

[
E∗0 − p∗3 − (1− ρ3)p∗2

]
(3.20a)

dq2

dt
− iω

ω2(1− εm) + 1
q2 = − iω(1− εm)

ω2(1− εm) + 1

[
E0 − p3 + ρ2p2

]
(3.20b)

dσ

dt
− iω

ω2(1− εm) + 1
σ = − iω(1− εm)

ω2(1− εm) + 1
p(2) (3.20c)

3.3.1 Recovering the Classical Polarizability

If the linear (N = N0) case is considered, eqn. 3.19b becomes irrelevant, since the popula-
tion inversion would have no time dependency. Moreover, taking steady state solutions for
eqn. set 3.19 would lead to:

[
i(ω − ω21) +

1

τ2

]
q(1) =

iε0ε
′′
h(ω21)N0

2τ2

[
E∗0 −

p
(2)∗
ss

ρ3a3
2

− p
(3)∗
ss − p(2)∗

ss

ρ3a3
2

]
(3.21a)

iωω2
p

ω2(1− εm) + ω2
p

q(2) = ε0

iωω2
p(1− εm)

ω2(1− εm) + ω2
p

[
E0 −

p
(3)
ss − p(2)

ss

a3
2

]
(3.21b)

iωω2
p

ω2(1− εm) + ω2
p

σ = ε0

iωω2
p(1− εm)

ω2(1− εm) + ω2
p

p(2)
ss (3.21c)

After lengthy calculations, one can solve these equations for p(3)
ss and p(2)

ss . The model would
appear to be correct since the resulting expressions for these terms are exactly the ones obtained
for the classical case (Appendix B), with the steady state definition for the gain permittivity:

εh = εb −
ε′′h(ω21)N∆

2(ω − ω21) + i∆



30

After assigning this value to the host permittivity, eqn. set 3.22 describe the values of p(3)
ss and

p
(2)
ss . These values match exactly with those of eqns. B.18 and B.19, respectively, since εh → ε1

and εm → ε2.

p(3)
ss = a3

2

(εm − ε3)(εh + 2εm) + ρ3(εh − εm)(ε3 + 2εm)

(εm + 2ε3)(εh + 2εm) + 2ρ3(εm − ε3)(εh − εm)
E0 (3.22a)

p(2)
ss =

ρ3a3
2(εh − εm)E0 − ρ3(εh − εm)p(3)

(εh + 2εm)− ρ3(εh − εm)
(3.22b)
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Chapter 4

Results

In order to achieve a thorough understanding of the nanoshell system, the equations that define
its temporal evolution (eqn. set 4.1) will be studied with a series of numerical tools. The first test
that was made was checking if the steady state solutions (d/dt = 0) for p2,3 result in the formula
for the classical nanoshell that was obtained in Appendix B. As it was mentioned in 3.3.1, this
was analytically obtained. If the system is not dominated by the response of the quantum
emitters, then the numerically obtained time-dynamical expressions for p2,3 converge to the
steady state.

dq1

dt
+

[
i(ω − ω21) +

1

τ2

]
q1 =

iNε′′h(ω21)

2τ2

[
E∗0 − p∗3 − (1− ρ3)p∗2

]
(4.1a)

dN

dt
+
N −N0

τ1
=

1

τ1
=
{
q1[E0 − p3 − (1− ρ3)p2]

}
(4.1b)

dq2

dt
− iω

ω2(1− εm) + 1
q2 = − iω(1− εm)

ω2(1− εm) + 1

[
E0 − p3 + ρ3p2

]
(4.1c)

dσ

dt
− iω

ω2(1− εm) + 1
σ = − iω(1− εm)

ω2(1− εm) + 1
p2 (4.1d)

p2 =
(εb − 1)(E0 − ρ3p3) + q2 − 2(q∗1 + σ)

εb + 2− ρ3(εb − 1)
(4.1e)

p3 =
(1− ε3)(εb + 2) + ρ3(εb − 1)(ε3 + 2)

(εb + 2)(1 + 2ε3) + 2ρ3(εb − 1)(1− ε3)
E0+ (4.1f)

−
6ρ3q∗1 + (1− ρ3)

[
(εb + 2)q2 − 2ρ3(εb − 1)σ

]
(εb + 2)(1 + 2ε3) + 2ρ3(εb − 1)(1− ε3)

(4.1g)

4.1 An Experimentalist’s Dream or: Fewer Gain for Thinner

Shells

After showing that the steady state polarizability (α) in regions 2 and 3 is retrieved from the
time-dynamical equations above, the dependency of α3 = 4πε0ε3a

3
2 p3(t)/E0 on the thickness

of the shell is studied. A plot of the polarizability in the outer region for three different values
of ρ = r1/r2 and four different values of gain ε′′h(ω21) is shown in fig. 4.1.

The first observation that can be drawn is that the center of the plasmon in blue-shifted as ρ
is increased. Furthermore, it is interesting to note that the morphology of the polarizability of
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FIGURE 4.1: Metal Thickness dependency for different ε′′h(ω21).

shells of increasing thickness remains essentially the same if values of gain are increased (e.g.
fig. 4.1[(b),(f ),(l)]).

However, the most remarkable observation that can be drawn from fig. 4.1 is that the amount
of gain required to obtain a singularity in the polarizability is less as ρ is increased (fig. 4.1[(c),(g),
(m)]). Several experimental works report the production of metallic nanoshells with radii rela-
tionships of as high as ρ = 0.9 [67–70]. This means that a thinner nanoshell will be experimen-
tally more feasible. Nonetheless, the next sections will consider a radii relationship ρ = 0.5, as
no changes in morphology are present as ρ varies.

The results of the time-dynamical model of eqn. set 4.1 are presented as follows. The first
step is to find if an instability exists for a zero external driving field (E0 = 0), complete popu-
lation inversion (N = N0 = 1), and different gain values for active elements. If said instability
appears then a spasing region is said to exist. Then, turning on the driving field, and still con-
sidering a complete population inversion, time-dynamical equations 4.1a, 4.1c, and 4.1d are
solved numerically with a Runge-Kutta 4 algorithm. However, these solutions are only mean-
ingful for small values of gain, since an "infinite" amplification will be seen for ε′′h(ω21) larger
than the threshold amount of gain. Finally, in order to obtain the real picture, the depletion of
the population inversion is considered (i.e. eqn. 4.1b is considered). To study this, a modifica-
tion of the previous code is written.
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4.2 Instabilities for Zero External Field and Spasing Threshold

Classical lasing is usually described as electromagnetic cavities that have negative dielectric
loss (damping) due to population inversion in the molecules of the dielectric medium. Transi-
tion from a higher to a lower energy occurs in the form of stimulated emission. Electromagnetic
oscillations in the cavity feed energy to the dielectric medium even when no external field is
present, i.e. no external driving force is applied. This means that the system is described by
"self-oscillations"1 [72].

In the same way as self-oscillations are a characteristic of classical lasing, if a spasing region
exists one would expect a self-oscillation in the absence of the external driving field (E0 = 0),
given that the amount of gain surpasses a given threshold. This situation is studied in a numer-
ical way after assuming a complete population inversion (N0 = 1) for the quantum emitters.

Due to the fact that no external field is applied, no fields are expected to be strong enough
to deplete gain elements. This means that the right hand side of eqn. 4.1b will be negligible,
and it is possible to state that N = N0.

dq1

dt
+

[
i(ω − ω21) +

1

τ2

]
q1 = − iN0ε

′′
h(ω21)

2τ2

[
p∗3 + (1− ρ3)p∗2

]
(4.2a)

dq2

dt
− iω

ω2(1− εm) + 1
q2 =

iω(1− εm)

ω2(1− εm) + 1

[
p3 − ρ3p2

]
(4.2b)

dσ

dt
− iω

ω2(1− εm) + 1
σ = − iω(1− εm)

ω2(1− εm) + 1
p2 (4.2c)

Since we are assuming a linear system, i.e. N is not time dependent, and no external field is
applied, the coupled differential equations of eqn. set 4.2 will have exponential solutions of the
form eλt. These solutions are expressed with three eigenvalues λi and three eigenvectors ci as
follows:

q
∗H
1

q H
2

σ H

 =

c
(1)
1

c
(2)
1

c
(3)
1

 eλ1t +

c
(1)
2

c
(2)
2

c
(3)
2

 eλ2t +

c
(1)
3

c
(2)
3

c
(3)
3

 eλ3t

These eigenvalues are obtained numerically, and they were all found to be frequency depen-
dent and also depend on the amount of gain that is present in the inner region of the nanoshell
(eqn. 4.1a). The amount of gain will be defined through the quantity ε′′h(ω21), and more gain is
represented by a more negative value of ε′′h(ω21). The real part of the three eigenvalues (<[λi])
for different gain values are plotted for the frequency range [2.7 eV : 3.2 eV ] in fig. 4.2. The spas-
ing instability will arise if at least one of the three eigenvalues have a positive real component.
This will occur after a threshold amount of gain is reached.

For these calculations, and all subsequent ones, the solvent used (outer region) is water of
εw = 1.7689, the background dielectric for the gain medium is silica of εb = 2.1316, and silver
was modeled with an interpolation of experimental data of Johnson and Christy [73].

It is clear from fig. 4.2 that the spasing instability that was mentioned appears for the first
time somewhere in the range−ε′′h(ω21) = [0.5 : 0.55], as the real part of one eigenvalue becomes

1Self-oscillation is a "property of certain dynamical systems that gives rise to a variety of vibrations, both useful and
destructive" [71].
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FIGURE 4.2: Eigenvalues for different ε′′h(ω21).

positive in a small region. This is observed in fig. 4.2(f). As the amount of gain is increased,
the range over which <[λ3] is positive is broader, as shown in fig. 4.2(f, g, h).

In order to look for the threshold value of gain a plot of the amount of gain and the real part
of the eigenvalues is made. The frequency chosen to do this study is the plasmon frequency for
silver ~ωp = 3.01296 [eV ], where<[λ3] is close to the maximum. In fig. 4.3 the threshold amount
of gain is ε′′h(ω21) = −0.532. However, since the positive eigenvalue appears at a slightly smaller
energy than ~ωp, the overall gain threshold is found to be ε′′h(ω21) = −0.526.

FIGURE 4.3: Eigenvalues as gain increases for ~ω = 3.0128[eV ].

Emphasizing on the fact that a shell with radii relationship of ρ = 0.75 will have a lower
gain threshold than one of ρ = 0.5, it was calculated that the gain threshold for the nanoshell
of ρ = 0.75 is ε′′h(ω21) = −0.211. The shape of the real part of the eigenvalues is the same for
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different values of ρ, but looking in the plasmon frequency for the respective radii relationship,
for ρ = 0.75: ~ωp = 2.425 [eV ].

The range where the real part of λ3 has a positive sign is represented as an exponentially
increasing function in time. As two eigenvalues have negative real components, after enough
time, eλ1,2t will reach zero. This means that q∗H1 , q H2 , and σ H after enough time will depend
exclusively on eλ3t, and they will have values that approach infinity.

4.3 External Field Amplification - Linear Regime

Now the case for a non-zero external field E0 6= 0 being incident on the nanoshell will be con-
sidered. We start assuming that the amount of gain is below the gain threshold where the
spasing instability appears. Since the amplification regime due to spasing has not appeared
yet, no fields are expected to be strong enough, so we consider that the right hand side term
(E1 ·Π−E∗

1 ·Π∗) = 2=[E1 ·Π] from eqn. 3.7b, which measures the depletion of the popula-
tion inversion is negligible, meaning that N = N0 at all times. A simplified system of equations
arises as eqn. 4.1a becomes linear. The equations that govern the system in this "linear regime"
are defined by eqn. set 4.3:

dq1

dt
+

[
i(ω − ω21) +

1

τ2

]
q1 =

iN0ε
′′
h(ω21)

2τ2

[
E∗0 − p∗3 − (1− ρ3)p∗2

]
(4.3a)

dq2

dt
− iω

ω2(1− εm) + 1
q2 = − iω(1− εm)

ω2(1− εm) + 1

[
E0 − p3 + ρ3p2

]
(4.3b)

dσ

dt
− iω

ω2(1− εm) + 1
σ = − iω(1− εm)

ω2(1− εm) + 1
p2 (4.3c)

After these considerations are made, a numerical code to solve the system in the linear
regime is written. The solutions that are obtained through the numerical model are concisely
summarized with the polarizability in the outer region after a relaxation time has passed:

α3 = 4πε0a
3
2 p3(t)/E0 (4.4)

FIGURE 4.4: Position where E3’s intensity is maximized.

The intensity I = |E3|2 of the outer field in the edge of the nanoshell (fig. 4.4) is obtained
with eqn. set 3.16 and calculated with eqn. 4.5 for values of gain below and above the threshold
gain for spasing instability. For values above the gain threshold this can be achieved with a
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"perfect" pump, i.e. has infinite pumping rate (τ1 → 0 in eqn. 4.1b). For values larger than the
gain threshold, linear instabilities will arise. They are represented by an exponentially growing,
infinite amplification (fig. 4.5(f,g,h)). Since a pump’s rate cannot be infinite, when the amount
of gain is larger than the threshold, the linear scenario lacks in physical meaning.

I(r, θ) ∼ E0E
∗
0

[
|α3|2

1 + 3 cos2 θ

r6
− 2<[α3]

1− 3 cos2 θ

r3

]
(4.5)

I(r = a2, θ = 0 or π)

I0
=

Imax
I0

∼ 1 +
4|α3|2

a6
2

− 4<[α3]

a3
2

(4.6)

FIGURE 4.5: Temporal image of the maximum intensity amplification for differ-
ent ε′′h(ω21) in the linear regime.

The results of the simulation for the linear regime are shown in fig. 4.6, where three things
are being plotted. The red curve represents the real component of the eigenvalue λ3. As
it was shown before, <[λ3] turns positive for a given frequency range if the gain threshold
(ε′′h(ω21) = −0.526) is reached. Additionally, the steady state maximum intensity amplification
is plotted with a filled light-green curve. That is, the intensity amplification in r = a2, θ = 0 or
π corresponding to the steady state polarizability:

αss3 = 4πε3a
3
2

(εm − ε3)(εh + 2εm) + ρ3(εh − εm)(ε3 + 2εm)

(εm + 2ε3)(εh + 2εm) + 2ρ3(εm − ε3)(εh − εm)

I(r = a2, θ = 0 orπ) ∼ 1 +
4|αss3 |2

a6
2

− 4<[αss3 ]

a3
2

Finally, fig. 4.6 plots the maximum intensity amplification of the outer field for the linear
case (r = a2, θ = 0 orπ) with dark-green dots. It is clear that exactly for the values of gain where
positive, real, eigenvalues exist, a linear instability appears (fig. 4.5(f,g,h) and fig. 4.6(f,g,h)).

The regions where a linear instability exists do not have their calculated value for Imax/I0
because said value is characterized by non-stop growth (i.e. their values approach infinity -
fig. 4.5(f,g,h)). Instead of that, their values are substituted with a yellow line.



37

We refer to the gain values that display no amplification in the form of a spasing instability
(i.e. no yellow line exists) as the "linear amplification regime". In this regime, despite not having
a spasing instability, partial loss compensation takes place, e.g. fig. 4.6(a-e).

FIGURE 4.6: Maximum intensity amplification for different ε′′h(ω21) in the linear
regime.

In order to understand the real behaviour of the system, the depletion of gain elements
must be considered: dropping the assumption that the r.h.s. term of eqn. 4.1b is negligible
leads to a time dependent population inversion, i.e. N 6= N0. We call this the non-linear regime
because eqn. 4.1a becomes non-linear. As a result, the linear amplification regime will remain
unchanged (except for values of gain close to ε′′h(ω21) = −0.526, where the r.h.s term of eqn. 4.1b
starts to become non-negligible), while for gain values larger than the gain threshold, the linear
instabilities will make way to convergent values for the intensity amplification of the outer
field.

4.4 Gain Depletion - Non-Linear Regime

This section looks at the full system of equations, eqn. set 4.7, which includes the time depen-
dent population inversion. In this analysis, no assumptions are made regarding the amount of
gain of the system. As a result, eqn. 4.7b, which takes into consideration the depletion of gain
elements, will stabilize the intensity amplification to finite values. This will happen after a cer-
tain (frequency dependent) relaxation time, which is related to <[λ3]−1, and it will be described
in detail in section 4.5.
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dq1

dt
+

[
i(ω − ω21) +

1

τ2

]
q1 =

iNε′′h(ω21)

2τ2

[
E∗0 − p∗3 − (1− ρ3)p∗2

]
(4.7a)

dN

dt
+
N −N0

τ1
=

1

τ1
=
{
q1[E0 − p3 − (1− ρ3)p2]

}
(4.7b)

dq2

dt
− iω

ω2(1− εm) + 1
q2 = − iω(1− εm)

ω2(1− εm) + 1

[
E0 − p3 + ρ3p2

]
(4.7c)

dσ

dt
− iω

ω2(1− εm) + 1
σ = − iω(1− εm)

ω2(1− εm) + 1
p2 (4.7d)

As it was done in the previous section, the results of numerically solving the differential
equations are summarized with the maximum intensity amplification for the field outside the
nanoshell. The resultant intensity amplification, the steady state amplification, and <[λ3] for
different values of gain are shown in fig. 4.7 with the same color codes as it was done for
fig. 4.6.

FIGURE 4.7: Maximum intensity amplification for different ε′′h(ω21) in the non-
linear regime.

An important statement can be made regarding the pump that excites the gain elements.
Its pumping rate, related to τ1 in eqn. 4.7b, is that of a real pump - one that cannot create a
complete population inversion regardless of the amount of gain; unlike the one that would be
needed for the linear scenario outside the linear amplification regime.

The first observation that can be drawn from fig. 4.7 is that in the region where the real part
of λ3 becomes positive there is a very strong amplification of the field outside the nanoshell.
This means that the strong intensity amplification appears exactly where the spasing instability
occurs. In other words, a spaser appears! This confirms our claim that given a region where the
real part of at least one eigenvalues becomes positive a spaser appears.

Another interesting feature of this system is that it decays extremely fast as we get farther
away from the outer edge of the nanoshell. In fact, according to eqn. 4.5 the intensity amplifi-
cation decays as r−6. This strong localization of the external field is evidence that what is being
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observed is a surface effect. However, due to the spasing nature of the amplification, there is
also a strong far-field emission - "nanolasing".

FIGURE 4.8: Two peaks of maximum intensity amplification for different ε′′h(ω21)
in the non-linear regime.

A closer look at the transient regime where the amount of gain is just enough to obtain
an instability shows two intensity peaks. One of these corresponds to the linear steady state
peak and the other one is a "non-linear" peak. The latter "eats" the steady state peak when the
amount of gain is increased. This can be observed in fig. 4.8, and in fig. 4.7(e, f, g, h) where the
"non-linear" peak has completely overshadowed the linear steady state peak.

4.5 Temporal Evolution: Non-Linear Regime

The non-linear instabilities that have been observed show a very strong field amplification out-
side the nanoshell in a very narrow emission bandwidth (∆λ ∼ 7 [nm]) above a threshold
amount of gain. This section is interested in their time dependency. This will help shed a
light on the physical meaning of this amplification, that we have labeled as a spaser. The time
evolution of the population inversion (purple line) and the maximum intensity amplification
(dark-green line) in the plasmon frequency for silver (~ω = 3.013 [eV ]) for different values of
gain is shown in fig. 4.9 and fig. 4.10. The latter corresponds to the end of the "two peak"
region, and clearly displays the rapid intensity growth that is also observed in fig. 4.8.

The temporal curves of figs. 4.9 and 4.10 display typical relaxation times which depend on
both the amount of gain and the frequency that is being considered. Since the growth of the
intensity amplification is dominated by the linear regime, and limited by the depletion of gain
elements, we should expect the relaxation times to be governed by τlin = <[λ3]−1 for values of
gain above the threshold in the frequency region where the real part of λ3 is positive2.

Figures 4.9 and 4.10 show the gain-dependent stabilization times at the plasmon frequency.
These stabilization times are extremely low at first (below the threshold amount of gain in the

2The inverse of the real part of λ3 will only have positive values (and physical meaning as a relaxation time) in the
range where <[λ3] > 0, i.e. the spasing instability.
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FIGURE 4.9: Temporal profile of the population inversion and maximum inten-
sity amplification for different values of ε′′h(ω21).

FIGURE 4.10: Temporal profile of the population inversion and maximum inten-
sity amplification for different values of ε′′h(ω21) very close to the gain threshold.

plasmon frequency: ε′′h(ω21) = −0.532), i.e. fast stabilization. Exactly for ε′′h(ω21) = −0.532 the
stabilization time is extremely long, as τlin = <[λ3]−1 approaches infinity.

On the other hand, for energies higher than ~ωp the stabilization times will become con-
stantly slower when the gain is equal ε′′h(ω21) = −0.532 (spasing instability gain threshold for
the plasmon frequency). In the same way, the time required for stabilization in the plasmon
frequency becomes smaller as more gain is added, as shown in fig. 4.10. It is interesting to note
that after the plasmon frequency threshold amount of gain has been reached the maximum
intensity amplification in ωp is described by oscillations with the same period (∼ 20 [nm]).

The temporal profile for the intensity, together with the frequency profile that were shown
in figs. 4.8 and 4.10 are considerably similar to those presented in experimental papers that
describe a spaser response. [74, 75] A theoretical work by Stockman and an experimental work
show the same temporal profile for the population inversion of fig. 4.10 as well. [76, 77] These
similarities between the calculated response of the nanoshell and previous experimental and
theoretical work suggest that the amplification that is being observed is in fact that of a spaser.
Further work on this nanoshell could be to obtain the relation between the pump intensity and
the maximum intensity amplification. If this shows a linear growth followed by a stable region,
it could be vigorously stated that the response that is being observed is in fact a spaser. [74, 78,
79]
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4.6 Conclusions

A silver nanoshell, illuminated by an external probe field, was filled with dielectric and gain,
excited with a pump field was studied. Classically modeling the metal (Drude model) and the
gain elements in a quantum mechanical way (optical-Bloch), a set of equations describing the
system was obtained (eqn. set 4.1). Finally, these equations were solved with a numerical model
and their results expressed via the maximum intensity amplification of the resultant field just
outside the nanoshell (r = a2, θ = 0 or π).

When looking at the eigenvalues of eqn. set 4.1 for zero external field, a positive real eigen-
value can be observed after a sufficiently high amount of gain (fig. 4.2). This means that an
exponential growth in time will occur, and, if the depletion of the gain elements is not consid-
ered, the maximum intensity amplification will grow forever, as fig. 4.6 suggests. Moreover,
even when the depletion of gain elements (eqn. 4.1b) is considered, the steady-state intensity
amplification is surprisingly large in the region where a real eigenvalue is positive.

It is worth noting that the linewidths observed after the threshold amount of gain are con-
siderably thin, however becoming larger as more gain is added. Thus in order to obtain a sharp
emission line and a strong amplification, an amount of gain corresponding to ε′′h(ω21) ∼ −0.543

would be adequate as it would have ∆λ ∼ 6 [nm] and Imax/I0 ∼ 109.
Furthermore, as it was explained in the previous section, the results obtained for ε′′h(ω21) =

−0.543 are extremely encouraging as they can be compared to those of [74–79], where spasers
have been accounted for (both theoretically and experimentally). From this, it is stated that the
nanoshell geometry that is under study presents a spaser response when the dielectric inside
the shell is doped with enough gain material.

The experimental realization of this device would mean a wide range of applications. For
example, if the silver nanoshell spaser amplifies enough it could destroy malign cells in the
same way that has been done in [75, 80]. Potentially, as it was shown this device offers loss-
compensation that could be used in applications such as metamaterials or super-lenses by tun-
ing the responses through the radii relationship ρ, the amount of gain ε′′h(ω21), and the pumping
rateW . Furthermore, is is possible that the nanoshell could become an alternative for an optical
nano-transistor, as it has been theorized that spasers can act as "an ultra-fast nanoamplifier - the
optical counterpart of the MOSFET" [76].
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Appendix A

Density Matrix and Optical-Bloch
Equations

Consider a quantum system that is defined by an arbitrary vector, |ψ〉, which is a function of the
generalized coordinates qk. This system’s evolution is described by a hamiltonian, H(qk, pk, t),
function of the generalized coordinates, generalized momenta (pk), and time.
From this, Schrödinger’s equation is described by eqn. A.1.

H|ψ〉 = i~
∂

∂t
|ψ〉 (A.1)

The state of the system can be written as a linear combination of the stationary solutions
of the hamiltonian, |φi〉, each related to a certain energy, Ei, satisfying eqn. A.2 This linear
combination can be written as eqn. A.3.

H|φi〉 = Ei|φi〉 (A.2)

|ψ(qk, t)〉 =
∑
i

ci(t) |φi(qk)〉 (A.3)

Since the basis that was chosen is a complete orthonormal one, eqn. A.4 must be fulfilled.
The abreviation Hji = 〈φj |H|φi〉 will be used. This, along with eqns. A.2 and A.4 provides
Hji = Eiδji.

〈φj |φi〉 = δij (A.4)

Each eigenstate, φi, comes with a particular probability of occupation, pi, given by |ci|2.
Since the basis of eigenvectors that has been chosen must make a complete orthonormal basis,
then the sum of probabilities must be 1. By multiplying eqn. A.3 in both sides by 〈φj |, the
following expression is obtained:

〈φj |ψ〉 =
∑
i

ci(t)〈φj |φi〉 =
∑
i

ci(t)δij

From this expression it is possible to determine the value of each coefficient, cj(t):

cj = 〈φj |ψ〉
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Now, substituting the expression for ψ in eqn. A.3 in Schrödinger’s equation:

i~
∑
i

dci
dt
|φi〉 = H

∑
i

ci|φi〉

Multiplying this expression by 〈φj |, and applying eqn. A.4:

i~
dcj
dt

=
∑
i

Hjici

From here, two equations are obtained:

dci
dt

=
1

i~
∑
k

Hikck (A.5)

dc∗j
dt

= − 1

i~
∑
k

H∗jkc
∗
k (A.6)

A.1 The Density Matrix (in the flesh)

The following formalism is particularly useful when dealing with quantum states in a mixed
state, like a three-level system laser. The density matrix is defined as ρij = cic

∗
j , and it is a

hermitian matrix. The diagonal elements of the density matrix, ρii, determine the probability
that the system is in the ith state. This means that the trace of the density matrix is 1. The
elements of the density matrix that lay outside the diagonal, ρij , i 6= j, represent the probability
amplitude of the system transitioning from state i to state j. Using A.5 and A.6 it is possible to
determine how the density matrix depends on time.

dρij
dt

=
dci
dt

c∗j + ci
dc∗j
dt

dρij
dt

=
1

i~
∑
k

(
Hikckc

∗
j − H∗jkcic

∗
k

)
(A.7)

Since the hamiltonian is a hermitian operator, H∗jk = Hkj , and A.7 can be rewritten as:

dρij
dt

=
1

i~
∑
k

(Hikρkj − ρikHkj)

dρ

dt
= − i

~
[H, ρ] (A.8)

This is perfectly well formulated except in the particular case when the density matrix de-
pends explicitly on time. [81] For this analysis the time dependent wave function |ψ(t)〉 is con-
sidered. In terms of the time evolution operator, U(t, t0), the time dependent wave function can
be expressed as the evolution of its state in t = t0:
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|ψ(t)〉 = U(t, t0) |ψ(t0)〉, where : U(t = t0, t0) = 1 (A.9)

Including this in Schrödinger’s equation shows how the time evolution operator relates
with the system’s hamiltonian:

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉

i~
[
∂U(t, t0)

∂t
|ψ(t0)〉 + U(t, t0)

∂

∂t
|ψ(t0)〉

]
= H U(t, t0) |ψ(t0)〉

Since the initial state of the particle is independent of time:

i~
∂U(t, t0)

∂t
|ψ(t0)〉 = H U(t, t0)|ψ(t0)〉 (A.10)

Preforming a simple integration the relationship between the time evolution operator and the
hamiltonian is obtained to be:

U(t, t0) = e
1
i~H (t−t0)

(A.11)

Now an arbitrary operator, D, is considered. It evolves when the time dependent wave
function, |ψ(t)〉, evolves as is described in eqn. A.9:

〈ψ(t)|D|ψ(t)〉 = 〈ψ(t0)|U†DU |ψ(t0)〉

= 〈ψ(t0)|D0|ψ(t0)〉

D0 = U†DU

Since the time evolution operator is unitary (U†U = 1), D can be expressed in terms of the
evolution operator and D0:

D = U D0 U
† (A.12)

Differentiating this in time, applying eqn. A.10 and its conjugate:

dD

dt
=

∂ U

∂t
D0 U

† + U D0
∂ U†

∂t
+ U

∂D0

∂t
U†

=
1

i~
[
H U D0 U

† + U D0

(
−U†H

)]
+
∂D

∂t

=
1

i~
[HD − DH] +

∂D

∂t

=
1

i~
[H,D] +

∂D

∂t

Considering the density matrix the equation that is obtained is usually referred to as Liou-
ville’s equation:

dρ

dt
=

1

i~
[H, ρ] +

(
∂ρ

∂t

)
(A.13)
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A.2 Optical Bloch

This appendix shows the particular case of the interaction of an electric field with gain elements,
modeled as a two-level system, in a thermal bath with the optical-Bloch formalism. For the case
of a two-level system alone, the hamiltonian can be written as eqn. A.14, where the eigenstates
correspond to the ground state and the first excited state, |g〉 and |e〉 respectively. Each of this
states has an associated eigenenergy, Eg and Ee, Fig. A.1.. These can be expressed as ~ωg and
~ωe.

FIGURE A.1: Two-Level System.

H0 = ~ωg|g〉〈g| + ~ωe|e〉〈e| (A.14)

Next, the hamiltonian of the electric field is expressed in the basis of the unperturbed hamil-
tonian, H0. The hamiltonian of an atom with dipole moment µ̂ (eqn. A.15) in an electric
field Ê = ~E Î is defined as H1 = −µ̂ Ê.1 Considering a linearly polarized electric field and
µ = µ12(|g〉〈e|+ |e〉〈g|), [82] the interaction hamiltonian can be rewritten as eqn. A.16.

µ̂ =

 0 µ12

µ21 0

 = ~µ

0 1

1 0

 (A.15)

H1 = − (|g〉〈e| + |e〉〈g|) ~µ · ~E (A.16)

Considering H = H0 +H1 as the complete hamiltonian for the system, Liouville’s equation
(A.13) is expressed as:

ρmn
dt

=
1

i~
[H, ρ]mn +

(
∂ρ

∂t

)
mn

(A.17)

For a system with quantum gain elements in the presence of a time dependent electric field
and a phenomenological pump with a rate of W that drives population in the ground state to
the first excited state. This system is represented as existing in a thermal bath and has energy
and phase relaxation times of τ̃1 and τ2 due to interaction with the thermostat. This means that
the last term in Liouville’s equation can be written as:

(
∂ρ

∂t

)
mn

= −ρmn − ρ
(th)
mn

Tmn

1

Tmn
=

[
1

τmn
+Wδmn

]
1Î is the identity matrix; Î = δij .
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Here, the elements ρ(th)
mn correspond to the thermal equilibrium value of the density matrix,

and it is constant. The off diagonal elements of Tmn are equal between each other, Teg = Tge = τ2,
and τnn = τmm = τ̃1. The commutator between the complete hamiltonian, H , and the density
matrix is calculated. This leads to the following equation:


dρgg
dt

dρge
dt

dρeg
dt

dρee
dt

 =
1

i~

 (ρge − ρeg)µ ·E −~ωegρge − (ρee − ρgg)µ ·E

~ωegρeg + (ρee − ρgg)µ ·E −(ρge − ρeg)µ ·E

 +

+

−
(
ρgg − ρ(th)

gg

) [
1
τ̃1

+W
]

−ρge
τ2

−ρeg
τ2

−
(
ρee − ρ(th)

ee

) [
1
τ̃1

+W
]


(A.18)

In the previous equation, ωeg is the difference in frequency of the excited state and the
ground state, ~ωeg = Ee − Eg . To make things less cumbersome the variable τ1 is introduced,
where:

1

τ1
=

1

τ̃1
+W

This leads to equations of motion for the matrix elements of the density matrix:

dρge
dt
−
(
iωeg −

1

τ2

)
ρge =

iNµ ·E
~

(A.19)

dρee
dt

+
ρee − ρ(th)

ee

τ1
=

i(ρge − ρeg)µ ·E
~

dρgg
dt

+
ρgg − ρ(th)

gg

τ1
= − i(ρge − ρeg)µ ·E

~

Now the population inversion is defined as N = ρee − ρgg , and its equation of motion
is obtained. Defining N0 = ρ

(th)
ee − ρ

(th)
gg as the population inversion at thermal equilibrium,

eqn. A.20 arises:

dN

dt
+
N −N0

τ1
=

2i(ρge − ρeg)µ ·E
~

(A.20)

Further explanations on the density matrix and optical-Bloch equations can be found in [82].
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A.3 Gain Permittivity

Starting from eqn. set A.21 (obtained from chapter 3) it is possible to obtain the electric per-
mittivity of the gain material that is being modeled through the two-level system optical-Bloch
equations.

dΠ

dt
+

[
i(ω − ω21)− 1

τ2

]
Π =

inN E∗
1

6~
(A.21a)

dN

dt
+
N −N0

τ1
= −2=[E1 ·Π]

n~
(A.21b)

dP2

dt
− ω2 + 2iγω

2(γ − iω)
P2 =

ε0ω
2
p

2(γ − iω)
E2 (A.21c)

The polarization density in the nanoshell’s inner region is: P1 = ε0χbE1 + 2Π∗. Consid-

ering the steady state regime for the polarization density of the gain elements
(
dΠ

dt
= 0

)
and

defining ∆/2 = 1/τ leads to:

Π =
inµ2NE∗

1

6~
[
i(ω − ω21) + ∆

2

] =
nµ2NE∗

1

3~ [2(ω − ω21)− i∆]
(A.22)

Taking the complex conjugate:

Π∗ =
nµ2NE1

3~ [2(ω − ω21) + i∆]

Using this into the equation for the polarization density in region 1 of the nanoshell provides
the following equation:

P1 = ε0

{
χb +

2nµ2N

3~ε0[2(ω − ω21) + i∆]

}
E1

This gives the relative electric permittivity of the host medium (background and gain) since
εh = 1 + χh.

εh(ω) = εb +
2nµ2N

3~ε0[2(ω − ω21) + i∆]
(A.23)

When considering the linear case, the population inversion of the system goes to the popula-
tion inversion imposed by the thermal bath, i.e. N → N0. We look at the imaginary component
of εh when ω = ω21.

ε′′h(ω21) = −2nN0µ
2

3~ε0∆
(A.24)
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Now, eqn. A.23 is rewritten for the linear case with the use of eqn. A.24:

εh(ω) = εb −
ε′′h(ω21)∆

2(ω − ω21) + i∆
(A.25)

For the non-linear steady state solution where N 6= N0 a similar approach can be made.
Equation A.21b becomes:

N = N0 −
2τ1=[E1 ·Π]

n~

From eqn. A.22 this results in:

N = N0 −
2τ1µ

2E2
1∆

3~2[4(ω − ω21)2 + ∆2]
N

After some algebra this results in the following expression for the population inversion:

N =
4(ω − ω21)2 + ∆2

4(ω − ω21)2 + ∆2

[
1 +

τ1τ2µ
2E2

1

3~2

]N0 (A.26)

Now, a saturation field is defined as E2
sat =

3~2

τ1τ2µ2
, which allows for eqn. A.26 to be recast

as:

N =
4(ω − ω21)2 + ∆2

4(ω − ω21)2 + ∆2

[
1 +

(
E1

Esat

)2
]N0

Replacing this N in the equation for the host relative electric permittivity, eqn. A.23, leads
to:

εh(ω) = εb −
2nµ2N0

3~ε0

2(ω − ω21)− i∆

4(ω − ω21)2 + ∆2

[
1 +

(
E1

Esat

)2
]

Which finally leads to the non linear steady state relative electric permittivity for the host:

εh(ω) = εb + ε′′h(ω21)∆
2(ω − ω21)− i∆

4(ω − ω21)2 + ∆2

[
1 +

(
E1

Esat

)2
] (A.27)

Where the saturation effect, when the external field becomes too large is included for the
gain elements.
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Appendix B

Classical (Steady State)
Polarizability

B.1 Nanoshell Multipolar Model

Considering a curl-less electric field in each region, i.e. no time dependent magnetic field, the
electric field can be written in terms of the electric potential, eqn. B.1.

Ei = −∇φi (B.1)

FIGURE B.1: Nanoshell Geometry without gain.

Using the quasistatic approximation (a2 << λ, where λ ≈ 500 [nm] is the wavelength of the
external exciting field), Laplace’s equation is met in all three regions. Since eqns. B.2, where φi is
the electric potential in the ith region, are met, and a uniform external field Eext = E0 ẑ would
provide axial symmetry, it is possible to write φi through the Legendre polynomials. [50]

∇2φi = 0 (B.2)

φ(i)(r, θ) =

∞∑
`=0

[
p̃

(i)
` r` +

p
(i)
`

r`+1

]
P`(cos θ) (B.3)

Over these solutions for the electric potential certain boundary conditions need to be made,
as well as regularity conditions. In order for φ1 to be finite in r = 0, p(1)

l needs to be 0 for every
l (B.4). The electric field when r →∞ has to connect with the uniform external field, |E0|, (B.5).
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Additionally, the electric potential must be continuous while crossing the interface between
two media. In other words, eqns. B.6. These last conditions of eqns. B.7 result in eqns.B.8.

φ1 (r, θ) =

∞∑
`=0

p̃
(1)
` r` P`(cos θ) (B.4)

φ3 (r, θ) =

∞∑
`=0

[
p

(3)
`

r`+1
− r E0 δ`,1

]
P`(cos θ) (B.5)

φ1(a1, θ) = φ2(a1, θ) φ2(a2, θ) = φ3(a2, θ) (B.6)

p̃
(1)
` =

p
(2)
`

a2`+1
1

+ p̃
(2)
` (B.7)

p̃
(2)
` =

p
(3)
` − p

(2)
`

a2`+1
2

− E0 δ`,1 (B.8)

The relation between the smaller radius and the larger radius, ρ = a1/a2, allows for a very
concise way to write the electric potential in each zone, (B.9-B.11).

φ1(r, θ) =

∞∑
`=0

 p(2)
` + ρ2`+1

(
p

(3)
` − p

(2)
`

)
a2`+1

1

r` − r E0 δ`,1

 P`(cos θ) (B.9)

φ2(r, θ) =

∞∑
`=0

[
p

(3)
` − p

(2)
`

a2`+1
2

r` +
p

(2)
`

r`+1
− r E0 δ`,1

]
Pl(cos θ) (B.10)

φ3(r, θ) =

∞∑
`=0

[
p

(3)
`

r`+1
− r E0 δ`,1

]
P`(cos θ) (B.11)

Combining these equations with eqn. B.1 provides the radial electric field in each region,
Eri (r, θ). The radial continuity in the interface of r = a1,2 leads to eqn. B.16, where εi is the
electric permittivity of the ith medium.

Eri (r, θ) = −∂φi(r, θ)
∂r

(B.12)

Er1(r, θ) =

∞∑
`=0

− p
(2)
` + ρ2l+1

(
p

(3)
` − p

(2)
`

)
a2`+1

1

` r`−1 + E0δ`,1

 P`(cos θ) (B.13)

Er2(r, θ) =

∞∑
`=0

[
−
p

(3)
` − p

(2)
`

a2`+1
2

` r`−1 +
p

(2)
`

r`+2
(` + 1) + E0δ`,1

]
P`(cos θ) (B.14)

Er3(r, θ) =

∞∑
`=0

[
p

(3)
`

r`+2
(` + 1) + E0δ`,1

]
P`(cos θ) (B.15)

ε1E
r
1 |r=a1 = ε2E

r
2 |r=a1 (B.16)

ε2E
r
2 |r=a2 = ε3E

r
3 |r=a2 (B.17)
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So, substituting eqns. B.14, B.15 for the radial component of the electric field in each region
into the field’s radial continuity equation, eqn. B.17, resulted in eqn. B.18. Additionally, using
eqns. B.13, B.14 with eqn. B.16 provides eqn. B.19.

p
(3)
` = a`+2

2

(ε2 − ε3)[`ε1 + (`+ 1)ε2] + ρ2`+1(ε1 − ε2)[`ε3 + (`+ 1)ε2]

[`ε2 + (`+ 1)ε3][`ε1 − (`+ 1)ε2] − `(`+ 1)ρ2`+1(ε1 − ε2)(ε3 − ε2)
E0δ`,1 (B.18)

p
(2)
` =

a`+2
1 (ε1 − ε2)E0δ`,1 − `ρ2`+1(ε1 − ε2)p

(3)
`

`ε1 − `ρ2`+1(ε1 − ε2) + (`+ 1)ε2
(B.19)

In both equations it becomes clear that the only ` modes that will be non-zero will be ` = 1

(dipolar mode), since δ`,1 (the Kronecker Delta) appears multiplying every factor. Since there
is only a dipolar term in the electric potential of region 3, eqn. B.20, and the electric potential
of a dipole in vaccum can be written as eqn. B.21, [51] , when the dipole moment points in the
z direction, it becomes clear that p(3)

1 is directly proportional to the polarizability of region 3.
This condition provides the equation for the polarizability of the outer region, α3, eqn. B.22.
This equation for the polarizability has a real and an imaginary component, since the electric
permittivity of the metal and that of the outer medium have real and imaginary parts.

φ3(r, θ) =

(
p

(3)
1

r2
− r E0

)
cos θ (B.20)

φdip(r, θ) =
r̂ · p

4πε0ε3 r2
=

p cos θ

4πε0ε3 r2
(B.21)

αSS3 =
p

(3)
1

E0
= 4πε0 a

3
2 ε3

(ε2 − ε3) (ε1 + 2 ε2) + ρ3 (ε1 − ε2) (ε3 + 2 ε2)

(ε2 + 2ε3) (ε1 + 2ε2) + 2ρ3 (ε1 − ε2)(ε3 − ε2)
(B.22)

An interesting property has risen from the fact that for p(2,3)
` the only mode that survives is

the dipolar mode (` = 1), as shown in fig. B.2. By applying this to the equation for the electric
potential inside the nanoshell, region 1, eqn. B.23 is obtained. With it, and eqn. B.1, the electric
field in the inner region of the nanoshell is defined by eqn. B.24. Since p(2,3)

1 are constants, it
becomes clear that the field in said region is uniform! As a result of this, the active medium
will not undergo the mode cascade that was the main concern in the nano-sphere model. [54]

φ1(r, θ) =
p

(2)
1 + ρ3(p

(3)
1 − p

(2)
1 )

a3
1

r cos θ − r E0 cos θ (B.23)

E1(r, θ) = −∂φ1

∂r
r̂ − 1

r

∂φ1

∂θ
θ̂ =

(
E0 −

p
(2)
1 + ρ3(p

(3)
1 − p

(2)
1 )

a3
1

)
ẑ (B.24)

Now! This is all very nice and accurate. However, this is the classical case and the steady
state solution for a time dynamical system. Therefore, if the real, dynamical, system is to be
solved, additional equations are needed, and quantum mechanics needs to be considered. The
active molecules in the solution of region 1 will undergo excitation and, with it, spontaneous
emission of radiation due to instabilities in the system as well as stimulated emission due to an
external pump for the gain medium alone (not to be confused with the external driving field
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FIGURE B.2: Dipolar Mode for Nanoshell Geometry.

E0). In order to consider the quantum mechanical side of this story, a two-level system will be
considered.
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