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Detection of Spin Wave Beam in Magnetostatic Forward Volume Waves

Nicolás Agenor Loayza Romero

Calificación:

Nombre del profesor: Vincent Vlaminck Ph.D.

Firma del profesor:

Quito, 9 de diciembre de 2016



3

DERECHOS DE AUTOR

Por medio del presente documento certifico que he leı́do todas las Polı́ticas y Manuales de

la Universidad San Francisco de Quito USFQ, incluyendo la Polı́tica de Propiedad Intelectual

USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual

del presente trabajo quedan sujetos a lo dispuesto en esas Polı́ticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este tra-

bajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica

de Educación Superior.

Firma del estudiante:

Nombres y apellidos: Nicolás Agenor Loayza Romero
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Resumen

Magnónica es un campo de investigación reciente el cual empezó en la última década. Re-
cientes desarrollos de nuevos materiales y técnicas experimentales abren oportunidades para
dispositivos basados en ondas de espı́n. En analogı́a con la importancia de el láser en el campo
de la fotónica, la excitación de un haz de ondas de espı́n en pelı́culas magnéticas continuas
está aún por evidenciarse. En este trabajo se presenta el estudio experimental de distintas ge-
ometrı́as de antenas de tamaño micrométrico para evidenciar por primera vez la emisión de
un haz de ondas de espı́n. Se procedió a un mapeo discreto de la amplitud de las ondas de
espı́n en pelı́culas continuas del material ferromagnético YIG (Y3Fe2(FeO4)3), usando varios
pares de guı́as de onda coplanares con pequeñas constricciones, vı́a espectroscopı́a de ondas
de espı́n. Usando el espectro de las ondas de espı́n, observamos que la propagación de ondas
magntostáticas volumétricas hacia adelante están relativamente confinadas en un haz de tamaño
comparabable al de la constricción.

Palabras clave: Haz de Ondas de Espı́n, YIG, Resonancia Ferromagnética, Ondas Magne-
tostáicas.
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Abstract

Magnonics is a new field of research which started in the last decade. Recent development
of new materials and experimental techniques opened up opportunities for devices based on
spin waves. In analogy with the importance of a laser in the field of photonics, the excitation of
a spin wave beam in continuous magnetic layers is yet to be evidence. This work presents the
experimental study of different geometries of sub-micrometer size antennae to evidence for the
first time the emission of a spin wave beam in a continuous layer. We proceed to a discrete map-
ping of the spin wave amplitude in thin films of YIG (Yttrium-Iron Garnet, (Y3Fe2(FeO4)3)
using several pairs of coplanar wave guides with small constrictions via spin wave spectroscopy.
Using the spin wave spectra, we observed that the propagation of magnetostatic forward volume
waves are relatively confined within a beam of size comparable to the constriction.

Key words: Spin Wave Beam, YIG, Ferromagnetic Resonance, Magnetostaic Waves.
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1 Introduction

Magnonics is a recent field of research, which developed in the last 10 years, and uses magnetic
excitations (e.g. spin waves) for the transmission of information. Several investigations have
shown the potential of the use of spin waves, in particular with magnonics based logic gates[14,
15] and magnonic crystals [4]. Spin waves are the precession of the magnetization vector (M) in
ferromagnetic materials which propagates away from the excitation device. Magnonic devices
present functionalities, which are not currently available in electronics or photonics devices.
For example, spin wave dispersion relation is external field dependent, which means the device
is easily manipulated by applied magnetic field[12]. Another advantage respect to electronics
is that a magnonic devices reduce power consumption, as it is one of the biggest problems of
high integrated circuits, because the heating of circuits damage and diminished the lifetime of
batteries[4]. Finally, magnonic devices are expected to perform larger number of operations per
unit area, than CMOS technology. [13] This is comparing the minimum length feature, gate
length for CMOS technology and wavelengths for spin waves, even though current fabrication
technology set a limit of hundreds of nanometer for spin waves.

Figure 1: a) plot of phase of the spin wave vs. current I b) Geometry of the setup b) Signal
outputs for the given inputs. [15]

Logic gates are devices that can perform logical operations. A logic gate receives two or
more logical inputs, 0 or 1, and produces one logical output, 0 or 1, depending on the type
of gate. Currently, logic gates are devices based on electronics, but several groups have been
working on the implementation of logic gates using spin waves. The realization of XNOR logic
gate using magnetic excitations was studied by Schneider et. al [15]. In their experiment (see
figure 1) they used two strips of ferromagnetic materials, each arm corresponding to the logical
inputs, conductive wire over the strip to create a field which control the dispersion of the spin
wave, and a microwave source and detector at each side of the strip. They found that the phase
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accumulated φ and the current I on each arm have a linear relation. They set that a spin wave
with φ = 0 corresponds to the logic value 0, and the spin wave with φ = π corresponds to the
logic value 1. Using the conductive wires next to the spin wave strips, they can set the value of
the current I = 0 that produces φ = 0, and the current Iπ that produces φ = π, which allows
to perform logic operations as shown in figure (1.b)). As the limits of fabrication of logic gates
using electronics are reaching their maximum, this work allows possible uses of magnonics for
better computational systems.

Figure 2: a) Geometry of the CPW that excites spin waves and the two media determined by
the thickness. b) Refraction of the spin wave when it passes from one media to another. [10]

More recently, Snell’s law in spin waves was studied by Stigloher et.al [10]. They fabricated
ferromagnetic films with different thickness, which alters the dispersion relation of spin waves
in each region, see figure (2), measured the angle of reflection and refraction for waves that go
from one media to another, see figure (3). They found that for angles of incidence greater than
25◦ the refraction angle deviates from optics Snell’s law, due to the anisotropic nature of the
dispersion relation for spin waves. This work shows the variety of phenomena that spin waves
presents and can be useful for future developments in this area.

Figure 3: Deviation of spin wave snell’s law from opctical snell’s law a) in refraction b) in
reflection.[10]
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The main motivation for this work came from the micromagnetic simulations done by
Gruszecki et.al [8]. They found that a Coplanar wave guide (CPW) with a constriction will
excite a spin wave beam of a size slightly bigger than the width of the constriction. This is
satisfied by the condition that all the resonant peaks from the emission spectrum of the CPW
are wellseparated. In figure (4) we can see that for the given geometry the magnetization vector
propagates inside a column determined by the constriction.

Figure 4: a) Geometry of the CPW to excite spin wave beam. b) Mapping of the magnetization
in the x-y plane, with out of plane external field. c) mapping of the excitation field showing the
constriction in the center of the CPW. [8]

In a similar manner as the importance of the laser for the advance of photonics, the realiza-
tion of a spin wave beam in a continuous layer could play a key role for the future of magnonic
devices. In this work, we present an experimental study of different geometries for antennae to
observe the degree of dispersion of a spin wave beam excited by a constricted CPW in contin-
uous layer of ferromagnetic thin films of YIG. The present thesis is organized as follows. In
the second section we present the basics of magnetostatics needed to understand the concept of
effective field. In the third section, we present the formalism for uniform excitation in ferro-
magnetic thin films. In the fourth section, we present the formalism of non-uniform excitations
in thin films, e.g. spin waves. In the fifth section, we present experimental techniques used
to study magnetization dynamics, and we present results of ferromagnetic resonance, both via
diode detection and also via Vector Network Analyzer detection, in YIG thin flims. In this sec-
tion, we also introduce the technique to excite and detect spin waves called Propagating Spin
Wave spectroscopy. In the sixth section, we present spin wave Fresnel diffraction, and the de-
sign elements for antennae. In the seventh section, we present the micro-fabrication techniques
implemented on the conception of the antennae. In the eighth section, we present spectra of
the spin wave transduction that demonstrate the focusing of the spin wave beam. Finally, we
summarize all the important results, and an outlook for possible future developments that will
bring insightful results.
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2 Magnetostatics

Magnetism in materials is from a purely quantum mechanical origin, where the electrons are
the one responsible for the macroscopic magnetic order. In a first approach we can think on
classical magnetic dipoles in a crystalline structure, each dipole generates a magnetic field.
The following expression is the field in r′ produced by a magnetic dipole m, located at r:

B(r′) =
µo
4π

[
3(m · (r′ − r)(r′ − r))

|r′ − r|5
− m

|r′ − r|3

]
(1)

If we consider another magnetic dipole at position r′ this experiences a Torque due to m,
given by the following expression:

Figure 5: Magnetic dipole showing the field lines of the magnetic field.

τ = m′ ×B(r′) (2)

Then we can write the energy of interaction between two magnetic dipoles:

U = −B ·m′ = µo
4π

[
3(m · (r′ − r))((r′ − r) ·m′)

|r′ − r|5
− m ·m′

|r′ − r|3

]
(3)

To obtain the magnetic energy of this material, we sum over all the magnetic dipoles. The
dipolar interaction tends to align neighboring dipoles antiparallel, due to the torque, therefore
this interaction cannot be the responsible for the magnetic order in ferromagnetic materials.

In the framework of Quantum Mechanics, dynamic variables, like magnetic moments, are
considered as operators that acts on wave functions, representing particles. The values that take
functions when the operators acts on them are the observables. We define the operator Spin,
denoted by Ŝ, which is the operator for intrinsic angular momenta of each particle. We consider
in particular two operators, the projection of Ŝ on z-axis Ŝz, and the magnitude square Ŝ2. The
quantum number s is intrinsic for each particle. The operator (Ŝz) takes the values:

{Ŝz} = s, s− 1, . . . , (−s) (4)
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in particular for the electron is s = 1/2, then we have {Ŝz} = ±1/2, identified as spin-up and
spin down. We set arbitrary to take the projection on the z-axis of Ŝ, in this case projections on
x-axis and y-axis are not representative, but the magnitude square is. S2 takes the values:

{Ŝ2} = s(s+ 1) (5)

Considering as well the orbital of the electron an orbital angular momentum is defined L̂ with
the same representation as Ŝ. L̂ is not an intrinsic property an it depends on the orbital position.
We define a total angular momentum Ĵ = Ŝ + L̂. In this sense we define a magnetic moment
effecto of the crystal field:

m̂ = −γs~Ŝ (6)

where ~ is the reduced planck’s constant, and γs is the gyromagnetic ratio which is characteristic
for each material. More precisely γs can be expressed as:

γs =
g|e|
2me

(7)

where g is known as the Landé g-factor, for a free electron is g ≈ 2, e is the charge of the
electron, me is the mass of the electron. The measured gyromagnetic ratio of a free electron is
γs = 28.023 GHz/T . If the electron is in orbit, we have to add the orbital angular momentum
the magnetic dipole is

m̂ = −γ~Ĵ (8)

Now γ is a characteristic of the crystal and can be used as characterization parameter. Using
Quantum mechanics [3] can be proved that g-factor of an electron in a single atom with the
quantum numbers S, L and J is:

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(9)

In the rest of the section we will present the variety of magnetic materials and how to char-
acterize them. In magnetism we work with Magnetization, M, which is just the degree at what
a body can be magnetized, and its defined as the volume density of magnetic moments:

M =

∑
∆V m

∆V
(10)

the units of magnetization are A/m in SI units. Magnetization is also the important quantity
that will allow us to understand the dynamics of magnetic materials [3]. We, also, define H as
the external field, while B as the field of induction or in matter. We can write the following
expression to relate them:

B = µo(H + M) (11)
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In free space induction field and H-field are related by the simple equation B = µoH [2]. The
magnetic response (response of M) to an external field H can be characterized by the magnetic
susceptibility, defined as follows

M = χH (12)

susceptibility χij can be a symmetric second-rank tensor. Linear magnetic materials presents
permeability related with B and H fields, as B = µH, using equation (11), we can show that
B = µo(1 + χ)H, where we identified µr = 1 + χ as the relative permeability [2].

2.1 Types of Magnetic Materials

We describe here all the types of magnetic materials and its particularities.

• Diamagnetic Materials: The magnetic moments of individual atoms and ions, in the ab-
sence of field, are randomly distributed, and no net magnetization is present. When a
external field is applied, ions organize in direction opposed to external field, suscepti-
bility is negative. The susceptibility is often very-small ≈ 10−6 [7]. The origin of this
effect is due to the electrons in the outer orbitals of the atoms. When an external magnetic
field is applied the electrons create a opposite magnetic field, in correspondence with lenz
law. This theory is known as Langevin diamagnetism[2]. Diamagnetism is present in all
elements, but it is a very small effect.

• Paramagnetic Materials: The magnetic moments of individual atoms and ions, in the
absence of field, are randomly distributed, and no net magnetization is present. When
an external field is applied, ions organize in direction to external field, susceptibility is
positive. The susceptibility is often very-small ≈ 10−5 or 10−3 [7]. For some conductors,
when a field is applied, the electrons of the Fermi level split into spin-down and spin-up,
see figure (6). This phenomena is known as Pauli Paramagnetism it is almost independent
of Temperature.

• Ferromagnetic Materials: This materials, in the absences of magnetic field, present a
spontaneous magnetization below a critical temperature Tc. This means that all magnetic
moments, inside a magnetic domain, are aligned to some particular direction. Magnetic
domains have an interface between them called domain walls. For temperatures above Tc,
a material goes into paramagnetic state. The transition between this two states is a second
order phase transition. Ferromagnetic materials are the ones we work with to propagate
spin waves.

• Antiferromagnetic Materials: Magnetic moments are aligned anti parallel respect neigh-
bors, causing no net magnetization. When a magnetic field is applied, neighbors decrease
its angle slightly, causing small and positive susceptibility.
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Figure 6: Sketch of Paulli paramagnetism a) When Hext = 0 the spins up and down coexist
with the same fermi energy. b) and c) When Hext 6= 0 the fermi level splits into two sides with
an increase of energy (spin up) and the other with a decrease of energy (spin down).

• Ferrimagnetic Materials: Magnetic domains organized in anti ferromagnetic way, but
some discrepancy of direction between domains, produce a net magnetization. Macro-
scopically is like a ferromagnet, with large and positive susceptibility, but microscopically
is like an antiferromagnet.

In this terms, we will focus on Ferromagnets, and its dynamics. We will discuss the origin
of ferromagnetism using a phenomenological approach, discussing later all the interactions that
allow the magnetic moments to order themselves.

2.2 Ferromagnetism

We will follow a phenomenological approach to understand ferromagnetism, known as Landau
theory of ferromagnetism. Assuming there is a magnetic interaction between magnetic mo-
ments, that we will discuss further in this section. We suppose that M is aligned to the internal
total field H∗, to be defined later. We can expand the free energy G(M) in even powers of M ,
because there is no preferred direction in the absence of external field.

G(M) = AM2 +BM4 + · · · − µoHM (13)

where coefficients A and B are temperature dependent. Here G is the energy of the state when
is forced to adopt some value. The value adopted by M should be that it minimizes G, the
preferred state. For example, in the ferromagnetic state,M should beM = ±Ms (Ms saturation
magnetization), magnetic moments are oriented in some particular way, there is two minimum
in G, therefore A < 0 and B > 0. If the temperatures rises, and the order is broken, energy
minimum is at M = 0, so A < 0 and B > 0. We can see that A should change its sign when
temperature pass through some critical value Tc. A is of the form a(T − Tc), where a is a
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positive constant. The equilibrium magnetization G minimizes, ∂G/∂M = 0, which implies:

2AM + 4BM3 = µoH (14)

close to Tc in zero field, there is a net magnetization Ms, Ms = −A/2B, therefore:

Ms ≈
√
a/2B(Tc− T )1/2 (15)

and given by equation (13) we can solve for the susceptibility M/H in the paramagnetic state:

χ ≈ (µo/2a)(T − Tc)−1 (16)

This explanation is called mean field theory for ferromagnetism, as they have validity for T near
Tc. Weiss molecular field theory, also, obtains the same results. This relations are in general for
any second order phase transition [2].
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Figure 7: Free energy close to the critical temperature. For T < Tc there is minimum value at
(±Ms), for T > Tc minimum is at M = 0 paramagnetic state

2.3 Magnetic Interactions and magnetic energies

We present here the different magnetic interactions occurring in a crystal, which are responsible
for the complexity of magnetic behavior.

2.3.1 Exchange Interaction

This interaction is due to quantum mechanics effect, or exclusion due to the symmetric parts of
the two body wave function between two electrons. Mathematically can be expressed as:

Jab = 〈φa(~ri)φb(~rj)|Hij|φb(~ri)φa(~rj) (17)
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where ~ri and ~rj are the position of the two electrons, φa and φb are the wave functions. Hij is the
repulsive Hamiltonian for the two atoms. Given that a system prefers minimum energy states,
Jab is positive for ferromagnetic, that means parallel disposition between spins is preferred.
This interaction is the one responsible for ferromagnetic phenomena. The exchange interaction
can be reformulated as Heisenberg proposed:

Ĥ = 2J Ŝ1 · Ŝ2 (18)

Where J is the exchange integral of equation 20, which decays rapidly with distance, and can
be treated as constant, and Ŝ1 and Ŝ2 are dimensionless spin operators [2, 7]. In a lattice, to
obtain the total exchange energy we sum over all the electrons:

Ĥ = 2
∑
i 6=j

JijŜi · Ŝj (19)

At a mesoscopic level, assuming the length scale considered is much bigger that interatomic
space. The exchange energy can be considered as follows:

εexc =
A

V

∫
(∇|m|)2dV (20)

where m = M/Ms is the normalized magnetization, and A is the exchange stiffnes, which is
related with the exchange constant and the lattice constant. Exchange interaction is minimum
for M uniform[1]. The exchange field is given by:

Hex =
2A

M2
s

∇2M (21)

2.3.2 Zeeman Energy

Zeeman energy is the interaction of the magnetization, or each magnetic dipole, with an external
magnetic field, Hext.

εZ =
µo
V

∫
M ·Hext (22)

The energy is minimized when M and Hext are aligned parallel [7].

2.3.3 Demagnetizing energy

This energy is due to the dipolar interaction between magnetic dipoles of the lattice, which is
very long ranged compared to other interactions. This interaction gives rise the demagnetized
field, which favor the closure of the magnetic flux inside the material. The energy of demagne-
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tization can be written as follows:

εdem = − µo
2V

∫
sample

M ·Hdem (23)

Where Hdem is the demagnetizing field, which is due to the shape of the sample. The calcula-
tion of Hdem can be cumbersome for a complex shape, but can be easily represented for some
geometries which have uniform response, such as the case of an ellipsoid:

Hdem = −NM (24)

where N is the demanatizing tensor, which can be diagonalized in the base which is parallel to
the symmetry axis. In the general case for an ellipsoid we can write

N =

 Nx 0 0

0 Ny 0

0 0 Nz

 (25)

the trace of the demagnetizing tensor shloud be dimensionless and normalized, Nx+Ny+Nz =

1 [1].

2.3.4 Cubic Anisotropy Energy

In general the crystal lattice, arrange electrons such that there is a preferred direction for M.
This anisotropy energy is related with the direction of the magnetization respect to the crystal
axes. This interaction can be written as follows:

εCA = K1(cos2 α cos2 β + cos2 α cos2 γ + cos2 β cos2 γ) +K2(cos2 α cos2 β cos2 γ) (26)

Where K1, K2 are anisotropy constants, and α, β, γ are the angles between the magnetization
and the crystal axes. Depending on the signs of the constants, easy and hard axes of magnetiza-
tion can be identified [7].

2.3.5 Uniaxial Anisotropy Energy

Similar to the cubic anisotropy energy, uniaxial anisotropy is related to magnetocrystalline
anisotropies, when there is a known easy axis of magnetization.

εu = Ku sin2 α (27)
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Where Ku is a constant, and α is the angle between magnetization vector and the easy axis [7].
The anisotropy field is written as follows:

Hk = ∇Mεu(M) (28)

Figure 8: Skecth of magnetic interactions, a) Exchange interaction b) Demagnetizing field c)
Anisotropy field

2.4 Effective Fiedl Heff

All the interactions previously introduced generates an effective field Heff , which is the field
felt locally by an magnetic moment in matter. If we find what is the configuration, or magne-
tization, of the system that minimizes the energy, we will find the static state for M . In this
context, the effective field can be expressed as follow:

Heff = − 1

µo
∇Mεtot = − 1

µo

(
∂εtot
∂Mx

M̂x +
∂εtot
∂My

M̂y +
∂εtot
∂Mz

M̂z

)
(29)

where εtot is the sum of all the interaction energy terms. We can write the the effective field for
all the interactions as follows:

Heff = Hext + Hdem + Hex −Hk (30)

where Hext is the external field, Hdem demagnetizing field, Hk the anisotropy field, and Hex

the exchange field.
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3 Magnetization Dynamics: Uniform excitation

3.1 Landau - Lifshitz equation

Dynamics of magnetic domains can be expressed as the movement of a top produced by an
external force. The angular momentum changes due to an “external force” or torque. In this
context is the magnetization that changes due to a magnetic field (Heff ), being Heff the “force”
and M “position”. We can write the following equation:

dM

dt
= −γµoM×Heff (31)

This equation says that the Magnetization vector precess around the effective field vector, see
figure (9). This equation does not take into account any decaying process, which will be ad-
dressed later. An important feature of is that it states the conservation of the norm of M, this
can be shown if we take the inner product of equation (31), we obtain:

dM2

dt
= 0 (32)

This equation states that M moves in the surface of an sphere.

3.2 Linearization of Lifshitz-Landau equation

Now we will assume that the effective field and the magnetization are made of a static (Mo,
Ho) and oscillating components (m, h).

M = m + Mo , H = h + Ho (33)

with the property that |Mo| � |m| and |Ho| � |h|. Replacing (33) in (31), and taking the
approximation to zero order in |m| and |h|. We obtain the zero approximation equation, which
simply states in absence of oscillating fields the magnetization vector will take the parallel
direction to the effective field [3].

Mo ×Ho = 0 (34)

Using the method of successive approximations, lets take the first order approximation for equa-
tion (31). Leaving the terms of first order in |m| and |h|, and using (34), we obtain:

dm

dt
+ γm×Ho = γh×Mo (35)

this is called the linearized equation of motion.
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Figure 9: Sketch of a) the precession of M around Heff . b) Sketch shows the additional term
that points toward Heff [1]

3.3 Gilbert Damping

Equation (31) does not take into account any dissipation process. We will adopt the common
phenomenological approach. In figure (9), we see that a dissipation term should points toward
the effective field vector, such that the amplitude decreases with time. This term is perpendicular
to M and −M × Heff . To take into account dissipation we add a term, using normalized
magnetization to preserve the norm of M, to equation (31) [1, 3].

dM

dt
= −γµoM×Heff −

γλ

M2
s

M× (M×Heff ) (36)

Now replacing equation (31), in the second term of equation (36), we obtain the Landau-
Lifshitz-Gilbert equation:

dM

dt
= −γµoM×Heff −

α

Ms

M× dM

dt
(37)

where α is the phenomenological Gilbert damping, which is a parameter to determine. This
is a simplistic way to describe damping, which can be addressed from various relaxations pro-
cesses such as spin-lattice scattering and spin-spin [6]. Constants of equation (37) are related
with constants of equation (36) as follows:

γ → γ

1 + α2
λ→ αµoMs

1 + α2
(38)

3.4 Dynamic Susceptibility Tensor for Thin film with out of plane Exter-
nal field

Solve LLG equation is not always easy for any geometry. We give the solution of LLG equation
for a thin ferromagnetic film magnetized perpendicular to the plane with uniaxial anisotropy, as
it is of interest for our project. The assumptions about the nature of the problem and also the
geometry of the chosen sample are listed below:
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• We will consider an infinite thin plane of ferromagnetic material, thin film, such that
Nx = Ny = 0 and Nz = 1.

• Uniaxial Anisotropy, along the z-axis with constant Kp, which favor a little bit the out of
plane direction for the magnetization.

• External static field is applied along z-axis.

• A weak microwave h field points along y-axis

This considerations allow us to say that M precess around Msẑ (magnetization vector moves in
the x − y plane, while the z component keeps constant as it is saturated along this axis), such
that mx �Mz, my �Mz. Lets write the the normalized magnetization vector

M = mxx̂+myŷ +Msẑ (39)

Now we can write the total magnetic energy for the system

εtot = −µoM · (Hext + h) +
µo
2
M2

z −
Kp

d
cos2 α

= −µoM · (Hext + h) +
µo
2

(M · ẑ)2 − Kp

M2
s d

(M · ẑ)2
(40)

Now we use equation (29) to calculate Heff resulting:

Heff = Hext + h− (M · ẑ)ẑ +
2Kp

µoM2
s d

(M · ẑ)ẑ

= hŷ −
(
Ms −

Hext

Mz

− 2Kp

µoMsd

)
Mz

Ms

ẑ

(41)

We define the effective magnetization asMeff = Ms−Hk whereHk is the anisotropy field, and
given that the sample is saturated along z-axis, Mz = Ms, we obtain the following equations,
given by (31):

dmx

dt
= −γµomy(Hext −Meff ) + γµoMsh− α

dmy

dt
dmy

dt
= −γµomx(Hext −Meff ) + α

dmx

dt

0 = −γµomxh+mx
dmy

dt
−my

dmx

dt

(42)

As we did for the linearization of the equation in (35), we only take fist order approximation
of the small quantities, as h,mx,my. Now we will assume the equation goes to an steady state
where all the terms oscillates with the same frequency as the h field. We will assume solutions
of the form:

mx = m̃xe
iωt my = m̃ye

iωt h = h̃eiωt (43)
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We obtain the following two equations, because third equation is not relevant in the first order
approximation.

iωm̃x = −γµom̃y(Hext −Meff ) + γµoMsh̃− αiωm̃y

iωm̃y = −γµom̃x(Hext −Meff ) + αiωm̃x

(44)

Introducing ωH = γµo(Hext −Meff ) and ωM = γµoMs. We can write the system as a matrix:(
ωH + iαω −iω

iω ωH + iαω

)(
m̃x

m̃y

)
= ωM

(
0

h̃

)
(45)

We can solve this system for M simply inverting the matrix, which gives the Polder susceptibil-
ity tensor (←→χ ), that information of the amplitude and phase of the oscillation of M in response
to an escitation h.

←→χ =
ωM

ω2
H − ω2 + 2αωHωi

(
ωH + iαω −iω

iω ωH + iαω

)
(46)

We assume α to be smaller such that 1 ≈ 1+α2. from equation (46), we see that as we expect the
oscillating field h is parallel to the y component of M . Lets analyze the term χyy of the tensor
that will give us the amplitude of the oscillation. Lets break it in two terms χyy = χ′yy − iχ′′yy, a
real and a imaginary part.

χ′yy = − ωMωH(ω2
H − ω2)

(ω2
H − ω2)2 + (2αωHω)2

χ′′yy = − αωωM(ω2
H + ω2)

(ω2
H − ω2)2 + (2αωHω)2

(47)

We can see that for ω = ωH the real part vanish, and the imaginary part has its maximum value,
this is called the resonance frequency, which is given by ωres = γµo(Hext − Meff ) for this
special case of a thin film with perpendicular to the plane external field. Also, we can see that
the real part of h is in phase with the magnetization y-component, but the imaginary part are
π/2 out of phase. Replacing ω = ωH in (47), we obtain the maximum value of χ′′yy

Max(χ′′yy) =
ωM

2αωH
(48)

Also we can relate the width of χ′′yy at half height, which is related directly with the damping
coefficient as follows.

∆ω ≈ 2αωres (49)

which stands for any geometry. The resonance frequency obtained here is special case of a well
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known formula, called Kittel formula[1], which is derived assuming a geometry of an ellipsoid:

ω2
res = (ωH + (Nx −Nz)ωM)(ωH + (Ny −Nz)ωM) (50)

Figure 10: Real and imaginary part of the term χyy of the susceptibility tensor. Imaginary part
has a Lorentzian lineshape, and is the responsible of the damping of the precession. Real part
is the derivative of a Lorentzian.



30

4 Spin Waves: Non-Uniform excitation

4.1 Electromagnetic waves in Anisotropic Media

Electromagnetism is governed by Maxwell’s equations, we can write them for anisotropic linear
materials as follows:

∇×H =
∂D

∂t
+ J ∇× E = −∂B

∂t

∇ ·D = ρ ∇ ·B = 0
(51)

where J is the free current density, ρ is he free charge density, and:

D = εoE + P

B = µo(H + M)
(52)

P is the density of electric dipoles, or polarization, and M is the magnetization. For linear
medium there is a linear relation between the polarization and electric field, and the magnetiza-
tion and external field.

P(ω) = εo
←→χe (ω) · E(ω)

M(ω) =←→χm(ω) ·H(ω)
(53)

where for steady state solutions, as we state before, depends only on the the frequency of oscil-
lation ω, for field that varies as ∝ exp(iωt). Here we identify←→χe as the electric susceptibility,
and←→χm as the magnetic susceptibility. We can define the following relations:

D =←→ε · E

B =←→µ ·H
(54)

where
←→ε = εo(

←→
I +←→χe )

←→µ = µo(
←→
I +←→χm)

(55)

where
←→
I is the identity tensor. These are called respectively, the permittivity and permeability

tensors, which are hermitian tensors in order to satisfy Complex Poynting’s theorem[4]. So far
we have consider static oscillations and uniform excitations, now we will consider waves in
magnetic media, as ferrites. For that we take plane wave solutions of the form exp[i(k ·r−ωt)],
where k is the wave vector that represents the direction of propagation of the wave. Making the
EM fields being plane waves, Maxwell’s equations transforms as follows:

ik×H = −iωD + J k× E = ωB

ik ·D = ρ k ·B = 0
(56)
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Lets consider source-free nonconductive media, such that, ρ = 0 and J = 0, and using relations
(55), we obtain:

k×H = −ω←→ε · E

k · E = ω←→µ ·H
(57)

4.2 Magnetostatic Approximation

Lets consider a field composed of a small oscillating field h and a strong static field H, so we
can write equations (56) in the case of an isotrope linear magnetic material, as:

k× h = −ωεe

k · e = ωµo(h + m)
(58)

taking the cross product of equation (1.58) with k, we obtain:

k(k · h)− k2h = −ω2εµo(h + m) (59)

Since k ·b = 0, we have k ·h = −k ·m replacing this and solving for h we have, and replacing
ko =

√
ω2εµo. k is the wave vector of the magnetic excitation, e.g. spin wave, while ko is the

wave vector of the EM wave that produces the excitation, e.g. microwave signal:

h =
k2
om− k(k ·m)

k2 − k2
o

(60)

doing the same for equation (2.58), and solving for e, we obtain:

e = −ωµok×m

k2
o − k2

(61)

and using the relation between h and e, we obtain:

∇× h = −k
2
ok×m

k2
o − k2

(62)

In general for frequencies that produces ferromagnetic occurs in the microwave frequency range
for which the electromagnetic wave vector is of the order ko ∼ cm−1. While, spin wave vector
is tipically of the order k ∼ µm−1 in our project, then we have k � ko. We can approximate
the rotational of h as:

∇× h = 0 (63)

which is called the magnetostaic approximation, from which we can define a scalar potential
ψ(r, t) such that h = −∇ψ.
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4.3 Walker’s Equation

The equations of magnetoquaistatics derived in the last section are:

∇× h = 0 (64)

∇ · b = 0 (65)

∇× e = iωb (66)

Now we have to determine the dispersion relation of the media, which we consider to be a
ferromagnetic material,

b =←→µ · h (67)

where
←→µ = µo(

←→
I +←→χ ) (68)

where χ is the susceptibility tensor as defined in section 1.5.3, with α = 0. Now, given that
h is irrotational we can define a magnetostatic scalar potential such that h = −∇ψ, we obtain
Walker’s equation:

∇ · (←→µ · ∇ψ) = 0 (69)

if we consider the susceptibility tensor without damping, and neglecting exchange interaction
as:

←→µ = µo

 1 + χ −iκ 0

iκ 1 + χ 0

0 0 1

 (70)

where
χ =

ωMωH
ω2
H − ω2

(71)

κ =
ωMω

ω2
H − ω2

(72)

This can be expanded to:

(1 + χ)

[
∂2ψ

∂x
+
∂2ψ

∂y

]
+
∂2ψ

∂z
= 0 (73)

for which the plane wave solution ψ ∝ exp(ik · r) gives:

(1 + χ)(k2
x + k2

y) + k2
z = 0 (74)

This equation gives a frequency band for which the magnetostatic volume waves solution
exists[6]:

ωH ≤ ω ≤
√
ω2
H + ωHωM (75)
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4.4 Normally magnetized film

Figure 11: Thin film of ferromagnetic material magnetized along z-axis. A wave in the film can
be analyzed as planes waves bouncing between the surfaces of the film, which can be seen as
standing waves along the thickness.

Lets suppose we have a film of ferromagnetic material of thickness d, which is magnetized
along the z-axis. The wave vector is decomposed in transversal wave vector kt and the perpen-
dicular wave vector kz ẑ, where k = kt + kz ẑ, and for the reflected wave k = kt − kz ẑ. If we
wait long enough, system will go to steady state, which can be seen as plane waves bouncing
back and forth between the boundaries of the film. We can set as a trial solution for region II of
the scalar function, a superposition of bouncing plane waves:

ψII(r) = ψoe
ik·r
[
eikzz + e−ikzz

2

]
= ψoe

ik·r cos(kzz) (76)

For regions I and III, χ = 0, Walker’s equation reduces to Laplace’s equation (∇2ψ = 0). This
leads to kz,d = ±ikt,d, where the subscript d refers to the dielectric regions (χ = 0). For regions
I and III waves should vanish as z = ±∞, we can write the following trial solutions:

ψI = Ceikt,d·r−kt,dz (77)

ψIII = Deikt,d·r+kt,dz (78)

Now we must use boundary conditions of electromagnetism. This boundary conditions are
easily derived from Maxwell’s equations. These conditions are:

• tangential component of h is continuous.

• normal component of b is continuous.

First condition follows from the fact that there is no surface currents in the film, which is an
electric insulator. Tangential component of h comes from ht = ∇tψ. Requiring ht to be
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continuous at z = ±d/2:

− ikt,dψI(z = d/2) = −iktψII(z = d/2) (79)

− ikt,dψIII(z = −d/2) = −iktψII(z = −d/2) (80)

These equalities are valid for all x, y only for kt,d = kt, Equations (79) y (80) transform into:

Ce−ktd/2 = ψocos(kzd/2) (81)

De−ktd/2 = ψocos(kzd/2) (82)

from which we can conclude that C = D. Now making that normal component of b must be
continuous, we have:

ktCe
−ktd/2 = ψokzsin(kzd/2) (83)

− ktDe−ktd/2 = −ψosin(kzd/2) (84)

with C = D, this two equations are not independent, so we only have two independent equa-
tions, which can be combined to obtain:

tan(kzd/2) =
kt
kz

(85)

kt and kz are related by (74), so we obtain the following implicit dispersion relation

tan

[
ktd

2

√
−(1 + χ)

]
=

1√
−(1 + χ)

(86)

which can be solved graphically, considering the crossing of the functions at both sides of
the equation. This means that there exist multiple modes of the waves, as the tangent has a
periodicity, this solutions are for even scalar functions, taking into account odd modes we can
write a single dispersion relation, for any mode:

tan

[
ktd

2

√
−(1 + χ)− nπ

2

]
=

1√
−(1 + χ)

(87)

Kalinikos [5] obtained a useful approximation of the dispersion relation, for the lowest mode
n = 0:

ω2 = ωH

[
ωH + ωM

(
1− 1− e−ktd

ktd

)]
(88)

for this mode, the group velocity which represents the velocity of the spin wave is:

vg =
ωHωM
2ωktd

[
1

kt
−
(

1

kt
+ d

)
e−ktd

]
(89)
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Now we can summarize the results for this mode:

• This wave modes have all the same cutoff frequency, which means there is no range of
frequencies where only a single mode propagates, for low enough k vectors such that we
can neglect exchange interaction. This range is given by equation (75).

• The group and phase velocity have both the same direction, this is the characteristic of
Forward waves.

• the wave amplitude is distributed through all the volume of the film.

Therefore this mode is called magnetostatic forward volume waves(MFVW’s)[5].

4.5 Tangentially magnetized film: Backward Volume Waves

When external field is applied in plane, and parallel to the k vector as figure (12) shows, doing
the same considerations as the last section we obtain the following implicit dispersion relation:

tan

[
kzd

2
√
−(1 + χ)

− (n− 1)π

2

]
=
√
−(1 + χ) (90)

Kalinikos[5] obtained an approximation to equation (90), that can be solved explicitly for ω:

ω2 = ωH

[
ωH + ωM

(
1− e−ktd

ktd

)]
(91)

and the group velocity is:

vg = −ωHωM
2ωktd

[
1

kt
−
(

1

kt
+ d

)
e−ktd

]
(92)

Summarizing this mode has the following characteristics:

• This wave modes have all the same cutoff frequency, which means there is no range of
frequencies where only a single mode propagates. This range is given by equation (75).

• The group and phase velocity points in opposite directions, this is the characteristic of
backward waves.

• the wave amplitude is distributed through all the volume of the film.

Therefore this mode is called magnetostatic backward volume waves(MBVW’s)[5].
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Figure 12: Thin film of ferromagnetic material magnetized along x-axis. Wave modes depend
od the relative direction of the k vector. a) Hext ‖ k the mode is Backward volume waves. b)
Hext⊥k the mode is Surface waves

4.6 Tangentially magnetized film: Surface Waves

When external field is applied in plane, and perpendicular to the k vector as figure(12) shows,
doing the same considerations as the last section we obtain the following dispersion relation:

e−2kd =
(χ+ 2)2 − κ2

χ2 − κ2
(93)

Solving explicitly for ω2:

ω2 = ωH(ωH + ωM) +
ω2
M

4

[
1− e−2kd

]
(94)

and the group velocity is:

vg =
ω2
Md

4ω
e−2ktd (95)

This mode has the property that when the direction of the k is switched, the mode energy is
shifted to the opposite surface. This phenomenon is called field displacement non-reciprocity,
and also the amplitude of the wave vanishes at the interior of the film. Summarizing this mode
has the following characteristics:

• There is only a single propagating mode for a given frequency, in opposition to forward
and backward volume modes. The range of frequencies is above than for volume modes,√
ωH(ωH + ωM) ≤ ω(k) ≤ ω(k =∞) [6].

• The group and phase velocity points in the same direction. It is a forward wave.

• the wave amplitude decays exponentially from the surface of the film.

Therefore this mode is called magnetostatic Surface Waves(MSW’s)[5].
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5 Experimental Techniques

In this section we will present the experimental techniques we used to characterize ferromag-
netic materials. Ferromagnetic resonance in thin films using diode detection with lock-in am-
plification, and a Vector Network Analyzer(VNA) . We also introduce technique to excite and
detect spin waves via the Propagating Spin Wave Spectroscopy(PSWS).

5.1 Ferromagnetic Resonance

Ferromagnetic Resonance (FMR) is a technique vastly used and studied to characterize the
magnetic properties of ferromagnetic materials. In general the technique consists in the use of
an external static magnetic field, produce by an electromagnet, and an small oscillating field,
created by a waveguide that supports transmission of high frequency microwave current. When
frequency of the oscillating field matches with the resonance condition the reflected wave has
an increase in power. In this thesis we use a VNA for FMR characterization and spin wave prop-
agation. We also developed a FMR set up that uses diode detection with lock-in amplification.
We will now present in more detail these techniques.

Coplanar Wave Guide

Ferromagnetic resonance on thin films is widely done with coplanar wave guides (CPW).
As the name shows this wave guides are coplanar and in general is divided in one central line,
and two ground lines at each side of the central one, see figure (13). CPW support Transverse
Electric Magnetic modes for the range of frequencies used in ferromagnetic resonance, for
higher frequencies is no longer the case.

It is possible to show that the inductance and capacitance of a CPW is [1]:

L =
µo
4
f(s, w) C = 4ε̄

1

f(s, w)
(96)

where f(s, w) is a conformal function of the dimensions of the CPW, and ε̄ is the effective
permittivity of the substrate. We define the phase velocity and the characteristic impedance of
the line as follow (for more details see Appendix A):

vph =
1√
µoε̄

Zc =
1

4

√
µo
ε̄
f(s, w) (97)

The important dimensions in a CPW, are the width of the signal linew, and the distance between
signal and ground lines s. Ground lines have both width w/2, so that the net current density is
zero through a cross section of the CPW. For millimteric size of S and G lines, the excitation
will be almost uniform, while for micrometric size CPW will create non-uniform excitation
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Figure 13: a) Coplanar Waveguide, the current trough creates the small oscillating field neces-
sary to induce Resonance. b) Normalized Fourier transform of the current density in a single
CPW line with w = 400nm and s = 200nm

with k vector as the Fourier transform in figure (13) shows. The fabrication process should aim
to obtain a characteristic impedance Zc = 50 Ω of the CPW to avoid reflection of signal, and
therefore lose of it. Some CPW are built over an spacer of insulating material, because most
of ferromagnetic material is a conductor an having the CPW in contact with the ferromagnetic
material will short the circuit. In our case, we use YIG thin films with thickness t = 29nm, that
were grown at Argonne National Laboratory. On Gadolinium Gallium Garnet (GGG) substrate
bears the YIG film. In this case, it is not necessary to use an spacer because YIG is an insulating
material.

5.1.1 Lock in Amplification with Amplitude Modulation

This work started with the setup of a FMR station for the characterization of ferromagnetic thin
films. This experiment was built in the solid state physics laboratory at the USFQ. The setup is
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equipped with a 175W Power supply (25V , 7A), a large resistive electromagnet (gap size 5cm,
pole diameter 20 cm), a DTM-151 Teslameter Group 3 with a Hall probe, a Wiltron 10MHz -
40GHz microwave sweep generator, 7265 DSP lock-in amplifier and Anritsu RF detector Model
75AV50 10MHz - 50GHz, see figure (14). Apparatus are controlled by programme interface
via GPIB connection.

Figure 14: a) Set up of the FMR station using diode detection, lock-in amplification and ampli-
tude modulation of the microwave signal. b) Picture of the CPW with a thin film of permalloy.
c) Picture, showing the electromagnet and the rack for the generator and lock-in amplifier, of
FMR set up in the Laboratory of Solid State Physics at USFQ.

We use SMA cables to propagate microwave signal through the CPW which is detected by
the microwave diode. The ferromagnetic thin film is place face down on the CPW. Microwave
input power is kept low (−12 dBm) in order to stay in linear regime. The voltage drop due to the
power absorption at resonance is of the order of µV . To obtain a better signal to noise ratio, we
use modulation of the microwave signal with the low frequency internal oscillator of the lock-
in amplifier. The lock-in amplifier detection is a technique useful to measure low amplitude
signals. The lock in detector use a reference signal Vref , created by an internal oscillator.

Vref = Vref sin(ωrt+ θref ) (98)
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and the diode signal Vsig has a phase θsig

Vsig = Vsig sin(ωst+ θsig) (99)

The phase of the reference signal ,θref , is known. These two signals are mixed, we obtain:

Vpsd = VrefVsig sin(ωrt+ θref ) sin(ωst+ θsig)

=
1

2
VsigVref [cos((ωr − ωs)t+ θref − θsig) cos((ωr + ωs)t+ θref + θsig)]

(100)

Vpsd passes trough a low pass filter, this will remove the AC component. If the frequency of
the reference and the diode signal is equal, we obtain:

Vpsd =
1

2
VrefVsig (101)

We programmed a labview interface that performs series of field sweeps spectrum for vari-
ous frequencies In figure (15), we show two typical spectra at frequency of 3.25 GHz and of

Figure 15: Spectra of power absorption of microwave signal due to ferromagnetic resonance of
YIG thin films. a) fres = 3.25GHz b) fres = 5.75GHz

5.75 GHz, which show a decrease of the diode voltage of the order of 30 µV due to power
absorbed at resonance. With the power supply we have, we are able to measure FMR of YIG up
to 7GHz. We summarize the peak position and linewidth of the FMR peaks in figure (16). The
magnitude of the power absorbed is related to the external h field, which has a linear relation
with amplitude of the precession through the susceptibility tensor diagonal term (χ). For this
setup, the field is applied in the plane of the film, the resonance condition assuming there is not
in plane magnetocrystalline anisotropy, is given by Kittel formula (50):

ωres = γµo

√
Hext(Hext +Meff ) (102)
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Figure 16: Spectra of power absorption of microwave signal due to ferromagnetic resonance. a)
Fitting of Kittel’s formula for in plane field in thin films FMR. b) Determination of the damping
coefficient(α) from the linewidth of the resonance curve.

where ωres is the resonance frequency, Hext is the applied external field andMeff = Ms−Hk is
the effective saturation magnetization of the film andHk is the anisotropy field. We use equation
(102) to fit the fres(Hext) data, from which we found an effective magnetization µoMeff =

µo(Ms−Hk) = 0.14T , and a gyromagnetic ratio γ = 28.18GHz/T . Using a linear regression
to fit the linewidth ∆H(fred) gives us, which according to equation (52), the Gilbert damping
coefficient α = 1.67 × 10−3. We also observed a non-negligible inhomogeneous broadening
(the interception of the line with the frequency axis) of µo∆Ho = 4.36× 103 T . This additional
broadening is due to the magnetic inhomogeneities in the film.

5.1.2 Ferromagnetic Resonance in thin films via Vector Network Analyzer detection

5.1.3 Vector Network Analyzer

Vector Network Analyzer is an apparatus that generates and also detects microwave signal using
detection lock in phase with an internal oscillator. When the transmitted wave is not a TEM
mode, then it is not possible to define a voltage or current in the lines. In this case we work with
the scattering matrix, which relates the transmitted and received signal of 2 ports. The device
under test (DUT) is connected tot he 2 ports of the VNA.

The complex normalized amplitudes at each port are:

ai =
Vi + ZciIi

2
√
Zci

bi =
Vi − ZciIi

2
√
Zci

(103)

Solving for Vi and Ii, we obtain:
Vi =

√
Zci(ai + bi) (104)
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Figure 17: Schemme of a DUT showing the ongoing and outgoing waves in each port, credits:
[1].

Ii =
ai − bi√
Zci

(105)

Introducing equations (132) and (133) for Vi and Ii, see appendix A:

ai =
V +
i

Zci
e−γx bi =

V −i
Zci

eγx (106)

Which clearly show that ai and bi are out-going and out-coming waves. Now these waves for a
2 port DUT are related as follows:(

b1

a1

)
= S̄

(
a1

a2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(107)

This relation satisfies that the off diagonal terms of the S-matrix are the same unless there is
a specific nonreciprocal phenomena such as the one exhibited by magnetostatic surface waves.
The microwave signal is in phase locked with an internal oscillator. When the microwaves pass
trough the DUT, some of it is reflected, which then goes through a coupler. this signal is mixed
with the internal oscillator signal to extract the phase and the amplitude of the reflected signal
(S11). Similarly, the transmitted signal is also mixed with internal oscillator signal to extract
the phase and the amplitude(S21). Finally, the variation of the S parameters allow to extract the
change in impedance and inductance. The relation between the S-parameters and the Impedance
Z matriz components Zij is given by[1, 6]:

Zii = Zc
(1 + Sii)(1− Sjj + SijSji)

(1− Sii)(1− Sjj)− SijSji
(108)

.
Zij = Zc

2Sij
(1− Sii)(1− Sjj)− SijSji

(109)

. This elements define the matrix of Impedance which relates:(
V1

V1

)
=

(
Z11 Z12

Z21 Z22

)(
I1

I2

)
(110)
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5.1.4 FMR characterization via VNA detection

Figure 18: Picture of FMR setup in Laboratory of Magnetic Susceptibilities at IPCMS.

FMR characterization via VNA detection was performed at the laboratory of magnetic sus-
ceptibilities of Dr. Matthieu Bailleul at Institute of physics and chemistry of materials of Stras-
bourg(IPCMS), see figure 18. The setup consists in a 2 port VNA Agilent E8362B 10MHz-
20GHz, SMA cables to transmit microwaves, picoprobes, a power supply Brüker B-AFPA 40 :
±5A 200W, a homemade resistive electromagnet (gap size 2,4 mm, pole diameter 6 mm).

We adopt the following measurement procedure. First, the coil current is set to it maximum
value and then to a setpoint value, above the saturation field. This is done to ensure we follow
the same hysteresis path of the electromagnet for every scan. Due to the confinment of the
electromagnet gap, we cannot measure the field during the scan, therefore we proceeded to a
calibarion of this electromagnet prior to study (for more details see Appendix C). Secondly,
The microwave signal has an input power of −15 dBm, Bandwidth = 50 Hz, electric delay =
0.0055 ns. We use low power signal to stay in linear regime response. Thirdly, we acquire data
spectra by sweeping in frequency at a fixed value of field, here we perform sorth single scan (no
averaging) in order to limit the possible temperature drift. As shown in figure (18), the sample
lies on the pole of the electromagnet and it is thermalize with the Joule heating of the coil.

The signal in reflection is of inductive nature, an it is related with the susceptibility tensor
diagonal term that we derived in section §(3.4). We measure the change of impedance between
a reference field value (out of resonance) and one at resonance which gives the change of in-
ductance defined as follows [9]:.

∆Lnm =
1

iω
[Zmn(ω,Hres)− Zmn(ω,Href )] (111)

Vlaminck and Bailleul [9] proposed a model of spin wave transduction that reproduce accurately
the spectra in reflection and transmission. The change in the self-inductance is given by:
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L11 =
wµo
2π

∫ +∞

0

dk
1

k

∣∣∣∣ j̃ε(k, ω)

I

∣∣∣∣2 1
1

µs(k, ω, e+)
− 1

µs(k, ω, e−)

(112)

where w is the width of the strip, or the antenna, and µs is the surface permeability which
relates the inductive field, perpendicular to the CPW, and the pumping field responsible for the
dynamics:

µs(k, ω, zo) = lim
z←zo
−i b̃z(k, z, ω)

µoh̃x(k, zω)
(113)

Figure 19: a) Top view of film with CPW used to perform FMR for uniform excitation. Spectra
in reflection ∆L11 b) µoHext = 0, 3507 T b) µoHext = 0, 4073 T . c) µoHext = 0, 6934 T

The spectra showed in figure (19) shows the real and imaginary part of the change of in-
duction in reflection of the port 1 in the CPW (∆L11). First, we observe that the spectra has its
imaginary and real components to have a a lorentzian and derivative of a lorentzian line shape
respectively. In section §(3.4), we found the susceptibility tensor, whose diagonal term deter-
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mines the amplitude of precession shows the same characteristic. We can say that the change
of inductance is related to the susceptibility tensor diagonal term. Secondly we observe that
spectra for uniform excitation presents several peaks. This is due to inhomogeneities in the
film, which comes from the difficulty to grow homogeneous thin films of YIG. The linewidth of
the imaginary part is due to three main causes. First contribution, intrinsic damping of the film,
∆f ∝ 2αf , which is clearly observed in figure (19) that the linewidth increases with frequency.
Second contribution, the inhomogeneous broadening of the emission spectra, ∆f ∝ vg∆k, con-
sidering vg to decrease slightly with frequency makes this contribution constant. Third contri-
bution, the inhomogeneous broadening from magnetic inhomogeneities, ∆f ∝ ∆Ho, which is
frequency independent. Unfortunately, we cannot analyze damping directly from the linewidth
of resonance peaks, as they tend to merge for higher values of field, and the information is
not accurate. Rather we extract the value of the damping, from the attenuation length of the
propagation of the spin waves, which will be explained in detail in the next section.

FMR characterization with non-uniform excitation is done using a CPW with constriction,
as shown in figure (20). The CPW excites MsFVW with wave vector k = 5.9 µm−1 . We can
observe that there is also several peaks, however these peaks correspond to different sections of
the CPW, which according to the dispersion relation (91) higher frequency peaks correspond to
higher wave vector. The width of the peak at higher frequency is larger than the two contribu-
tions of damping and inhomogeneous broadening of the emission spectra, ∆k. This anomalous
linewidth is probably due to the merging of multipeaks with magnetic inhomogeneities origin
shown in uniform excitation spectra.

We summarize our spectra in figure (21), where we plotted the frequency at resonance
against external field for k = 0 and k2 = 5.9 µm−1. We fit the data with a simplified ver-
sion of equation (91), where we take a first approximation for the term kt� 1 (k = 5.9 µm−1,
t = 0.029µm, kt = 0.171), we obtain the following expression:

ω2 = γ2µoHeff (µoHeff + µoMs
kt

2
) (114)

where Heff = Hext − Meff , Ms saturation magnetization, k is the wave vector determined
by the width of the CPW, t = 29nm is the thickness of the film, which was determined via
x-ray reflectivity. The values we found are gyromagnetic ratio of µoγ = 27.71 GHz/T and
effective magnetization µoMeff = 0.1291 T , for k = 0. Also, for k = 5.9µm−1 we obtained
µoγ = 27.83 GHz/T and µoMeff = 0.1236 T . Now if we take the difference between the
square of the resonance frequency for distinct k vector, as shown in figure (21) we can separate
Ms from Hk:

|ω2(k = 0)− ω2(k = ko)| = γ2µ2
o(Hext −Meff )Ms

kot

2
(115)

From this equation the saturation magnetization Ms appears as an independent parameter. This
cannot done with just FMR measurement for one k vector. We found, Ms = 0.153 T and the
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Figure 20: Spectra in reflection ∆L11. This spectra correspond for non-uniform excitation
for a CPW with k2 = 5.9µm−1. a) µoHext = 0.3507 [T ]. b) µoHext = 0.4073 [T ] c)
µoHext = 0.6123 [T ]
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Figure 21: Fitting of Kittel formula to extractHk, γ andMs. a) Resonance frequency as function
of external field, for k = 0 and k2 = 5.9µm−1. b) Difference of the square of the frequency of
resonance.

uniaxial anisotropy field µoHk = µo(Ms −Meffs) = 0.029 T .

5.2 Propagating Spin Wave Spectroscopy (PSWS)

The Propagating Spin Wave Spectroscopy is a technique used to excite and detect spin waves
using two pair of antennae. The first antennae works as an emitter, that generates nonuniform
excitation. The propagated spin wave underneath the second antennae induces a voltage, as
figure (22) shows. The second antenna is at a distance D from the first one. The VNA measures
the S-parameters from which we can extract the mutual inductance between antennae ∆L12.
Lets consider the magnetization vector, in the case of absence of damping (α = 0). In this case
the spin wave takes the form of a plane wave m(x, t) = moe

i(ωt−ktx), where ω is the microwave
frequency. Assuming the antenna to be pointlike, e.g. the dimension of the antenna along the
propagation direction is zero. The delay of the wave, or phase accumulation, when is detected
by the other one is φ = −kD (where D is the distance between antennae), see figure (22).
As the VNA sweeps the frequency a continuous range of k vectors, which cause a continuous
variation of the phase for each k vector (cf. (23.c) TF [j]). This produce an oscillation in the
envelope of the resonance peak, such as the mutual inductance spectra of figure (23.b)) shows.
We also realize that the line shape of the envelop is lorentzian, and in fact has the same width as
the reflection signal (Im(∆L11)). The spectra in transmission have two distinct characteristics
that are measure: the amplitude and the period of oscillation, see figure (23(b)). From the period
of oscillation fosc we can estimate the group velocity of the wave vg, which for a full period of
phase accumulation, δφ = 2π = δkD, assuming group velocity to be the same for all k vector
within the main peak of the Fourier transform. we have δk = 2πfosc/vg, so the group velocity
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Figure 22: Pair of antennae for PSWS technique. a) Optical picture showing the direction of
the current in th signal and ground lines. b) SEM picture of pair of antenna showing the dimen-
sions of importance for the characterization of the spectra. c) Amplitude square of the current
normalized Fourier Transform of the current density for the antenna, just the constriction.

is:
vg = fosc ·D (116)

Considering now the effect of damping, attenuation causes a decrease in the amplitude of
the spin wave as it travels across the film. The magnetization vector considering the damping
is m(x, t) = ex/Lattei(ωt−ktx), where Latt is the length at which the angle of precession has
decreased a factor 1/e. Latt is defined from the characteristic time of decay τ = 2/α∆f which
is defined from the inverse of half of the linewidth in the resonance peak, according to equation
41:

Latt = τvg =
vg
αω

(117)

We can relate the amplitude in reflection and transmission as follows:

∆L12 =
1

2
∆L11e

−D
Latt (118)

the factor 1/2 is due to the fact we only measure waves in one direction k > 0. Evidently this
approximation of pointlike antenna is not enough to understand spectra when D and Latt are
comparable to the extension of the antenna. Vlaminck and Bailleul [9] proposed an electromag-
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Figure 23: a) spectra in reflection and transmission, ∆L11 and ∆L12. b) Spectra in trans-
mission, the fosc is the frequency difference of two adjacent peaks. c) dispersion relation
for MFVW’s with µoHeff = 0.2T and µoMs = 0.15T , d) Fourier transform of a CPW for
λ = 1µm

netic model that describes the transduction of spin waves between antennae. They obtained the
following expression for the mutual inductance:

L12 =
wµo
2π

∫ +∞

0

dk
e−ikD

k

∣∣∣∣ j̃ε(k, ω)

I

∣∣∣∣2 1
1

µs(k, ω, e+)
− 1

µs(k, ω, e−)

(119)

where w is the width of the strip, or the antenna, and µs is the surface permeability which
relates the inductive field, perpendicular to the CPW, and the pumping filed responsible of the
dynamics:

µs(k, ω, zo) = lim
z←zo
−i b̃z(k, z, ω)

µoh̃x(k, z, ω)
(120)
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6 Antennae Design

6.1 Fresnel Diffraction

Figure 24: Geometry of an antennae emitting spherical waves to measure the intensity at a
perpendicular plane to the antenna at distance D.

In this section we propose to describe the spin wave generation of a finite element of a CPW
in terms of Fresnel near-field Diffraction phenomena. First we have to do the assumption, that
each point of the antenna is a source of circular waves, in all directions. Also, that the distance
is larger than the width of the line, ∼ 1µm. This problem can be seen as diffraction of plane
waves by a slit of size w. We can write the differential element of the wave as follows:

dS =
So√
rλ

cos(kr − ωt) (121)

where S is the amplitude of the wave, r the distance from the source to the point where measure
the amplitude, k = 2π/λ the wave vector[11]. Spin waves have properties that EM waves in
vacuum does not have, in particular the magnetostatic surface waves has an anisotropic disper-
sion relation, However, in the case of out of plane magnetostatic forward volume waves does not
have any anisotropy. Also, spin waves present an exponential attenuation. Averaging over time,
and taking the square of the amplitude to measure the intensity of wave in the perpendicular
plane at distance D we obtain the following expression:

I(s) =

(
Io
2λ

)2

[

∫ w/2+s

−w/2+s

1√
r
e−r/Latteikrdy

−
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−w/2+s

1
√
r−
e−r−/Latteikr−dy

−
∫ w/2+s

−w/2+s

1
√
r+

e−r+/Latteikr+dy]2
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with Io the intensity of the incident wave at the slit, in this case the signal in reflection, Latt
the attenuation length, r =

√
D2 + y2, r− =

√
(D − λ/2)2 + y2, r+ =

√
(D + λ/2)2 + y2

[11]. The three integrals represent the central line, signal line, and the two ground lines with a
minus sign. Each point of amplitude is an integral to solve, to obtain all the points we move the
slit, being the same as shifting the point of measurement. We performed simulations obtaining
the following amplitude profiles.

Figure 25: Amplitude profile of an spin wave measured at distinct distances, a) λ = 1µm,
Latt = 7 µm and w = 5µm b) λ = 1µm, Latt = 7 µm and w = 5µm, averaging with the probe
size w = 2 µm

Figure 26: Amplitude profile of an spin wave measured at distinct distances, a) λ = 1µm,
Latt = 7 µm and w = 10µm b) λ = 1µm, Latt = 7 µm and w = 10µm, averaging with the
probe size w = 2 µm

From figure (25) we can see that the amplitude of the wave decrease to almost zero at shifts
greater that the width of the antennae. The intensity show oscillations in its value which is
characteristic of diffraction patterns. The introduction of attenuation factor introduce a decrease
of the intensity and increases number of oscillations. The simulations show that an antennae
with a finite width does not excite a beam but is the diffraction that produce it. We only need
finite length antennae, with k vector large enough to separate from the rest CPW, the peaks of
the Fourier transform should be well separated.
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Figure 27: a) Optical image of developed film after lithography of antenna with continuous
constriction, Geometry No. 1. w = 5µm, λ = 1µm, D = 4µm b) SEM image of device
of antenna with sudden extreme bend and end shorted, Geometry No. 2. w5µm, λ = 1µm,
D = 4µm, Mapping device shift s = −4µm

Figure 28: a) SEM image of antenna with sudden constriction, Geometry No. 3. w = 5µm,
λ = 1µm, D = 4µm b) SEM image of the device of antenna with sudden constriction and end
shorted, Geometry No. 4. w = 10µm, λ = 1.2µm, D = 8µm

6.2 Fabricated Antennae

Various Geometries were designed to explore distinct aspects of the spin waves, such as: atten-
uation lengths, velocity, focusing of the beam and mapping of amplitude of the spin wave. The
different geometries explored are listed below:

• Antennae with continuous constriction, Geometry No. 1, figure (27).

• Antennae with sudden ”extreme” bend and end shorted, Geometry No. 2, figure (27).

• Antennae with sudden constriction, Geometry No. 3, figure (28).

• Antennae with sudden constriction and end shorted, Geometry No. 4, figure (28).

• Antennae for Ferromagnetic Resonance, figure (29).

Different antennae were fabricated to explore the spectra of transmission. In the case of
mapping devices, figures (27,30), we designed a pair of antennae, with a receiver smaller than
the emitter. Each mapping device is fabricated with the receiver at distinct shifts and distances
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Figure 29: FMR device. SEM image of the device, w = 20µm, λ = 1µm

Figure 30: a) Optical image of developed film after lithography of antenna with continuous
constriction, Geometry No. 1. Mapping device, Receiver shifted 5 = µm. , constriction length
of emitter 10µm, width of receiver w = 2µm, λ = 1.2µm, D = 5µm b) Optical image of
developed film after lithography of Antenna with continuous constriction, Geometry No. 1.
same length constriction, shifted one respect to other. Receiver shifted 5 = µm, constriction
width 5µm, λ = 1µm, D = 4µm

respect to the emitter, in order to have a discrete mapping of the spin wave amplitude in x − y
plane. We fabricated mapping devices only for geometries No. 1 and No. 2. We also fabricated
identical antennae to measure focusing of the beam, antennae are shifted. We fabricated equal
size antennae with shift for Geometry No. 1, see figure (30). For all geometries, we fabricated
pair identical of antennae with different and width to estimate attenuation lengths, see figure
(27). We summarize all devices fabricated with their dimensions in the following table:
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Figure 31: Summary of all devices fabricated, working devices (X), no working devices (x)
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7 Fabrication Process

The devices used to excite the spin wave beam, discussed in section §(7.2), were fabricated
using electron beam lithography and gold deposition over the same films of YIG(Yttrium Iron
Garnet). In this section we will present the fabrication process of the antennae used to detect a
spin wave beam.

7.1 Electron Beam Lithography

Electron beam lithography uses a beam of high energy electrons (20 kV ) to draw nanometric
size pattern on to polymer resin film Polymethyl methacrylate (PMMA). However, one cannot
pattern directly via e-beam lithography on an insulating substrate using only PMMA resin, as
the charge of the e-beam would accumulate in a wide region of the sample. To circumvent
this problem we spin coated on top of the PMMA layer, a layer of conductive resin (SXAR-
PL5000/90.2) which allows for the charge to be evacuated (See appendix D for the details of
the sample preparation). However, the success rate using this conductive resin compared with
PMMA on Si wafer are much lower, making it very difficult to achieve fine line of 100 nm

width.

7.1.1 Mask Pattern

The devices were designed using Layout editor CAD software to create masks with nanometric
precision. Each Mask has two parts, the contact pads to land the probes, and the antenna which
correspond to the small feature size. The size of the contacts fits in a square of 1000µm with
spacing of the probe pitch of 150µm. The antennae fits in a square of 100µm, See figure (32).

7.1.2 Lithography

The lithography process was done at the Institute of Physics and Chemistry of the materials
in Strasbourg (IPCMS), and ST-NANO facilities. We use an electron beam microscope Zeiss
Supra 40, with nanolithography Raith electronics, figure (33).

Given that the device needs different magnification for the outer and inner parts lithography
process was done in two steps. At the higher magnification we exposed the antennae, which
corresponds to the smallest feature size (figure (32(b))), and at the lower magnification we
exposed the probes contact pads (figure (32(a))). When we change magnification, the aperture
of the beam is also changed, therefore a deflection of the beam occurs. A compensation between
each step in implemented to compensate the deflection of the beam. Parameters were chosen
after doing a dose test on Silica wafers and YIG films. A dose test is the exposition of different
patterns with increasing dose to control the dose which fits the best with the desired pattern, see
table (1).
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(a) Device showing probes contacts (b) Antenna

Figure 32: Mask for antenna, Distance 4µm, Width of antenna 1.2µm, length of antenna 5µm.

Figure 33: Zeiss Supra 40 electron beam microscope at IPCMS.

The next step after exposition is to remove the conductive resin and develop the PMMA, that
was exposed in the lithography process, with a commercial solvent. The film has the pattern
dug in the PMMA resin, after which sample is ready to transfer the pattern with a gold lift-off.

7.2 Metal Deposition

We transferred the pattern on to the film with gold lift-off. We use an electron beam evaporator
chamber, Plassys MEB550S, at the clear room of the IPCMS, see figure (34. a)). Electron
beam evaporation use a beam of thermal electrons, which are focused with a magnetic field to
evaporate the metal in way we obtain a focus source of atoms to be deposited on the film, see
figure (34. b)). We deposited successively adhesive layer of Titanium , ∼ 5nm, followed by
80 nm of Gold. This technique has the advantage to produce a punctual source of evaporation
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Stage Magnification Aperture of Gun (µm) Current (nA) Dose (µC/cm2)
1 60 10 0.02506 175 ± 10
2 600 120 3.9155 250 ± 30

Table 1: Setting parameters for the lithography process.

which is critical for the quality of the lift off. Later, we introduce the film, for several hours, in
acetone to then proceed to lift the excess of gold.

Figure 34: a) Plassys MEB550S electron beam evaporator at IPCMS. b) E-beam evaporation
process. A beam of electrons is guided with a magnetic field, the beam hits the metal source
and evaporates metal which ascends and is deposited on the film. The rate of deposition is
controlled with a quartz detector.



58

8 Results

We present here three different tests to determine the degree of focusing of the spin wave emitted
from a constriction. In a first batch of antennae we vary the distance between D, to determine
attenuation lengths. In a second batch, we varies the shift of identical antennae of Geometry No.
1, and in a third batch, we measure a series of mapping devices varying distances and shifts.

8.1 Attenuation Length

First, we start focussing the attenuation length and the group velocity for YIG for several res-
onance frequencies. We followed the measurement procedure explained in section §(5.1.2).
We use low power input to stay in linear regime. We use bandwidth = 50 Hz, to have an
optimal ratio between low noise and fast measurements. We mention already, the most im-
portant source of drift is the joule heating of the electromagnet, which heats the sample as it
is placed on the pole. To limit this issue, we performed single scans, with no averaging and
1601 points. The averaging allos to reduce the signal to noise ratio to see satellite peaks, but
it does not show reproducible scans. We measured a set of devices of Geometry No. 1, see
figure (35), with λ = 1µm, w = 5µm D = {4, 6, 8, 10, 12, 14}µm, and λ = 2µm, w = 10µm

D = {5, 7.5, 10, 12.5, 15, 17.5}µm, where λ is the wavelength, w is the width of the antennae
and D the distance between them. We present typical spectra in transmission in figure (36).

We summarize our analysis for each field values by plotting respectively, see figure (37),
ln |∆12|(D) and 1/fosc(D), after which a linear regression gives us direclty the attenuation
lengths Latt and the group velocity, according to equations (117) and (115). We find in par-
ticular for antennae with wave length of λ = 1 µm, an attenuation length ranging Latt =

{20.7...4.1}µm and a group velocity ranging vg = {227...257}m/s for frequencies between
f = {1.5...11}GHz. We also found for antennae with wave length of λ = 2 µm, an atten-
uation length ranging Latt = {11.4...3.9}µm and a group velocity vg = {185...205}m/s for
the range of frequencies f = {1.7...7.8}GHz. Finally, we can estimate the effective damping
that accounts for the inhomogeneous broadening ∆k, according to equation (118). We plot-
ted vg/Latt(f), see figure (37), where we observe a clear linear dependence whose slope gives
us the effective damping. We obtain a value of effective damping α = (8.5 ± 0.2) × 10−4

for wave length of λ = 1 µm, and for wave lenght of λ = 2 µm an effective damping of
α = (1.04± 0.06)× 10−3. This value of damping confirms a sufficient homogeneity within the
length scale of the constriction for a discrete mapping, which allows to compare the amplitude
at distinct parts of the film.
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Figure 35: Optical image of developed film after lithography of antenna with continuous con-
striction, Geometry No. 1. w = 5µm, λ = 1µm, D = 14µm.

Figure 36: Spectra in transmission |∆L12|, real and imaginary part, Geometry No. 1 w = 5µm,
λ = 1µm and D = 4µm. a) µoHext = 0, 2427T . b) µoHext = 0, 3082T . c) µoHext = 0, 4073T
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Figure 37: Antennae with λ = 1µm a) ln |∆L12| vs. D, to obtain Latt b) f−1
osc vs. D, to obtain

vg. c) frequency vs. vg/Latt, to obtain effective Damping.
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Figure 38: Antennae with λ = 2µm a) ln |∆L12| vs. D, to obtain Latt b) f−1
osc vs. D, to obtain

vg. c) frequency vs. vg/Latt, to obtain effective Damping.
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8.2 Focusing: same size shifted antennae

Figure 39: Antennae with λ = 1µm, w = 5µm and D = 4µm a) s=0w b) s=0.5w c) s=1w d)
s=1.5w

We studied a series of devices with same size antennae shifted with respect to the other,
figure (39). The shifts are measured in terms of the size of the antenna, s = {0, 0.5, 1, 1.5}w,
for two distinct distances, D = {4, 10}µm. The amplitude in transmission is compared for the
same external field and different shifts. The value of the frequency was normalized to compare
the spectra, because inhomogeneities in the film produces distinct resonance frequencies (with
a dispersion of maximum 300 MHz) for different devices, without affecting significantly the
integrity and the amplitude of the spectra. In figure (40) and (41), we plotted the amplitude
of the mutual inductance ∆L12 for all 4 devices for three distinct values of field, respectively
for distances D = 4 µm and D = 10 µm. The spectra shows a decrease of amplitude with
shift. Namely, the amplitude is almost reduced by a factor 2 with the antennae shifted by a
factor 1/2, and goes to practically to 0 for antennae completely shift. The residual signal in the
case of completely shifted antennae can be understood as a crosstalk between the constricted
region and the continuously enlarging section (e.g. overlap of the |j̃ε/I|2 between each section).
Furthermore, one notice that the peak is shifted toward lower frequency corresponding to a
transmission of lower wave vector.

Even though the amplitude does no decrease in a factor proportional to the shift, this can
be caused by the continuous constriction that certainly excite spin waves with k vectors small
enough to be detected by the secondary antenna. This also explains that the transmission signal
for s = 1 and s = 1.5 has its peak for lower frequency than s = 0, the continuous constriction
has k vector greater than the antenna which excites spin waves with lower frequency.
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Figure 40: Amplitude in transmission |∆L12| vs. normalized frequency, for same size antennae
shifted, D = 4µm. a) µoHext = 0.2427T b) µoHext = 0.3082T c) µoHext = 0.3741T

Figure 41: Amplitude in transmission |∆L12| vs. normalized frequency, for same size antennae
shifted, D = 10µm. a) µoHext = 0.2427T b) µoHext = 0.3082T c) µoHext = 0.3741T

8.3 Mapping

We then study the amplitude profile of the spin wave with mapping devices for which the probe
(receiver antenna) than the emitter antenna have widths of wreceiver = 2 µm wemitter = 10 µm.
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Mapping devices are fabricated with receiver a different distances and shifts respect to the emit-
ter. This test has two purposes, first, determine the focusing of the beam and secondly measure
amplitude at different points within the constriction to compare with diffraction pattern given
by Fresnel near-field diffraction theory discussed in the section §(7.1). We fabricated mapping
devices for Geometry No. 1 and No. 2. In figure (43), we show spectra for two mapping
devices with shifts s = 0 : µm and s = 6 µm respectively. We first observe that the self-
inductance ∆L11 of the emitter stronger than the one of the receiver by a factor proportional to
the ratio wr/we as expected. For geometry No. 1, we measured amplitude with the receiver at
D = 5µm and s = {0, 1, 2, 3, 4, 6}µm, given that the antenna is symmetric we only mapped in
one direction, figure (44).

Figure 42: Mapping devices. Emitter w = 10µm and Receiver w = 2µm, both with λ = 1µm
a) s = 2µm b) s = 3µm

We summarize the amplitude of the mutual inductance ∆L12 in figure (44). Firstly, we
observe a decrease of the amplitude as the probe is outside of the region of the constriction,
although is not zero. This suggest a relatively well focused beam of size comparable to the
constriction, with small residual transmission. This can be seen in the spectra for antennae
shifted by s = 6µm in figure (43), which shows that the transmission signal has lower frequency
of resonance and also less oscillations than s = 0, which is expected for excitations produced by
the continuous constrictions which has k vector smaller than constriction. Second Observation
we can make is that the amplitude profile in figure (44) shows some oscillations inside the region
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Figure 43: Spectra in Reflection both ports, and in transmission ∆L12 for mapping device with
µoHext = 0.3741T a) s = 0µm b) s = 6µm

Figure 44: Mapping of amplitude for Geometry No. 1. black line shows the edge of the
constriction.

of the constriction, which may show correspond to som Fresnel diffraction pattern obtained in
section §(7.1).

For Geometry No. 2, we fabricated 27 mapping devices to measure amplitude of spin waves.
The reason of this geometry is to have as much as possible a single CPW emitting spin waves,
in a similar manner as the Fresnel simulation. The emitter has a width of w = 10µm and the
receiver w = 2µm. Emitter is placed at D = {4, 8, 12} µm and s = {0,±2,±4,±6,±8} µm.
In this case antenna is non-symmetrical we need to map in both directions, see figure (45). We
measured the amplitude in transmission for each device, figure (46).

Figure (46) shows that the amplitude of spin wave decays at points outside the region of the
constriction. The amplitude towards the end, positive shifts, decays to values of the order of the
noise level. While points towards the bend (negative shifts) do not go to zero. This is caused
by emission of the ”elbow” which radiates in this 90 degree region spanned. Secondly, we also
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Figure 45: Mapping grid for Geometry No. 2.

Figure 46: Mapping for Geometry No. 2. Black lines show edges of the constriction.
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observed oscillations in the amplitude when the receiver is within the width of the emitter, very
similar to the results of the simulations of near-field diffraction pattern we obtained in section
§(7.1). Finer mapping with an smaller probe, should be done in order to confirm such a pattern.
A useful technique to measure the amplitude profile of spin waves is Brillouin Light Scattering
(BLS), which with the use of a laser is possible to map the amplitude of the magnetization at
each point of the film. The advantages that presents this technique are that they excite single
modes at a constant frequency and field, and there is no need of a pair of antennae, just one is
enough.

8.4 Sudden constriction geometries

We measure the spectra in transmission for the few devices we fabricated for geometries No.
3 and No. 4 which are characterized by the perpendicular constriction. The purpose of having
this type of geometries is to minimise the cross talk between the continuous constriction and
the antennae as observed for geometries No. 1 and No. 2. From spectra shown in figure (47)
. Geometry No. 3 shows a clear separation between the transmission between the constriction
of each antenna, at larger frequency, and the larger portion of the device (peak to the left of the
spectra). This assures that there is no cross talk between portion of the antenna with distinct k
vector. From figure (48), the spectra corresponding to geometry No. 4 does not show cross talk,
since the bigger sections of the antennae are shifted by the width of the constriction.

Unfortunately, due to some equipment breakdown toward the end of our term at IPCMS,
we were not able to further study of spin wave mapping with this geometry. It appears as a
geometry of choice, additional devices should be prepared to study the spin wave emission
from this constriction
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Figure 47: Spectra in transmission and reflection for Geometry No. 3 a)µoHext = 0.2427T b)
µoHext = 0.3741T c) µoHext = 0.6123T d) SEM picture of device with λ = 1µm, w = 5µm,
D = 8µm

Figure 48: Spectra in transmission and reflection for Geometry No. 4 a)µoHext = 0.2427T b)
µoHext = 0.3741T c) µoHext = 0.6123T d) SEM picture of device with λ = 1µm, w = 5µm,
D = 8µm
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9 Conclusions

Broadband Ferromagnetic resonance (FMR) in thin films is a powerful technique to character-
ize static and dynamic properties. When this technique is further improved combining wave
guides of different size, the spectroscopic information resolved form the different k-vector al-
lows, in particular, to distinguish the saturation magnetization (Ms) form the anisotropic field
(Hk). In the present thesis, we first developed a broadband FMR setup at the USFQ implement-
ing frequency modulation of the microwave signal, detected via diode and lock-in amplification.
Using this technique we characterized thin films of YIG, 29 nm thickness, that were grown at
Argonne National Laboratory. We found an effective magnetization of µoMeff = 0, 1405T ,
gyromagnetic ratio γ = 28, 28GHz/T , and intrinsic damping of α = 1.657× 10−3 with inho-
mogeneous broadening ∆Ho = 4, 36× 10−4T . Currently, this setup allows to perform FMR in
a field range up to 0, 170[T ] which restricted the frequency range, to typically 7GHz for YIG
with Ms = 0, 15T . The addition of a robust, 1.5kW power supply would allow with the avail-
able microwave source to perform FMR for YIG, in a frequency ranging up to 20GHz. Also,
field modulating the static field instead of the microwave signal could improve the sensitivity of
our lock-in detection.

Then, we used these YIG films to study emission of a spin wave beam in a continuous layer.
Based on a simple study of the Fresnel near field diffraction pattern, we identified four different
potential geometries for our problem. Using the nanofabrication facility available at the Institut

de Physique et Chimie des Materiaux de Strasbourg (IPCMS), we fabricated several series
of pair of coplanar wave guide (CPW) antennae with a constriction. For two of the selected
geometry, we were able to characterize, using the propagating spin wave spectrometer of the
IPCMS, the attenuation length of the magnetostatic forward volume wave (MSFVW), and also
measure the degree of focusing of the spin wave beam via a discrete mapping of the spin wave
amplitude. For both geometries, when the two antennae were completely shifted, we observed
a drastic decrease of the spin wave amplitude outside of the region of the constriction which
suggests a relatively well focused spin wave beam. However a residual transmission signal still
remained due to crosstalk between the constricted section of the CPW and the rest of the CPW.
In particular, it appears difficult to avoid such a crosstalk with a continuous constriction such
as the one of geometry No.1, which excite a broad range of k-vectors that can be detected by
the smaller section of the second antennae. In order to suppress this cross talk, we found that
a sudden constriction, such as geometry No.3, is a better candidate, since each of the section
of the CPW have well separated resonant peaks. Finally, the spectra of the mapping devices
for shift smaller than the length of the constriction showed some oscillations of the spin wave
amplitude very similar to the Fresnel diffraction pattern obtained in our simulations. Brillouin
light scattering measurements of the four different geometries of antennae for the magnetostatic
surface wave mode are under way at Argonne National Laboratory. This optical technique
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should offer a finer spatial resolution of the confinement of the spin wave beam for each type of
constriction, as well as any possible diffraction pattern.

Further investigations of optimum geometry remain to evidence a sharp focused spin wave
beam. The possibility of generating a spin wave beam in a continuous ferromagnetic layer offers
the perspective to study the interference patterns between two or more interacting spin wave
beams. This will undoubtedly contribute to further insights for potential magnonic applications.
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Appendices
Appendix A: High Frequency Basics: Propagation of EM waves in transmission lines

Transmission lines are studied in order to obtain solutions for the current and voltage in
a transmission line. Normally a line is composed in two conductors that conduct current in
opposite directions, and a dielectric between them, we can think on two wires separated by a
distance or a coaxial line, that we will study later. Special transmission lines are those which
supports the propagation of Transverse Electric Magnetic (TEM) modes, wave guides where the
component of the E and B field are zero in the direction of propagation and orthogonal to each
other. This kind of transmission lines are important because it allows to define the current in the
conductors and voltage between them. A transmission line is characterized by four parameters,
the losses in conduction given by a resistance in series R, the reactive losses in energy given by
an inductance L in series with R. Also, by the conductance of the dielectric G, that represents
the losses due to conduction between conductors, and the reactive losses in energy due to the
capacitance C between conductors. We can see a transmission line as shown in figure (49),
which represents a differential section dx of a line.

Figure 49: Differential section of a transmission line

Writing the fall of potential and current at the end of this differential section of the trans-
mission line we obtain:

dV = −
(
IRdx+ L

∂I

∂t
dx

)
(123)

dI = −
(
GV dx+ C

∂V

∂t
dx

)
(124)

We can rewrite the following equations as a system of coupled equations for I and V :

∂V

∂x
= −IR− L∂I

∂t
(125)

∂I

∂x
= −GV − C∂V

∂t
(126)
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Lets suppose answers of the form

I(x, t) = Re{Ĩ(x)eiωt} V (x, t) = Re{Ṽ (x)eiωt} (127)

we separate spatial and temporal dependence, so we obtain equations just for the spatial depen-
dence:

∂Ṽ

∂x
= −ĨR− iωLĨ (128)

∂Ĩ

∂x
= −GṼ − iωCṼ (129)

We obtain the following equations

∂2Ṽ

∂x2
= γ2Ĩ

∂2Ṽ

∂x2
(130)

where
γ2 = (G+ iωC)(R + iωL) (131)

This two equations has solutions of the form:

Ṽ (x) = V+e
γx + V−e

−γx (132)

Ĩ(x) = I+e
γx + I−e

−γx (133)

Solutions, as expected is a linear combination of travelling waves in both directions. Now, we
can define given these free parameters, the characteristic impedance at any point of the line
given by:

Zc =
V+

I+

= −V−
I−

=

√
R + iωL

G+ iωC
(134)

we find last expression using equations (128) and (129). Both γ and Zc are complex numbers,
therefore we can define γ = σ + iβ, where σ is the attenuation factor and β is the phase factor.
We can write the complete solution for V (x, t):

V (x, t) = Ṽ+e
−σei(ωt−βx) (135)

From this equation we can define the phase velocity of the wave as:

vph =
ω

β
(136)

For low lose transmission lines we have that, R � ωL and G � ωC, we can approximate vph
and Zc as follows:

vph ≈
1√
LC

Zc ≈
√
L

C
(137)
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Historically, transmission lines are built with Zc = 50Ω. This impedance is the balance between
high break voltage and low losses for radiation. In general, transmission lines in any instrument
used on the transmission and detection of microwaves should have impedance of 50Ω in order
to avoid losses of signal due to reflection[1].

Appendix B: Coaxial line

Figure 50: Coaxial transmission line

Coaxial transmission line are two concentric cylindrical conductors, and a dielectric material
between them, as shown in figure 50. This geometry supports the transmission of TEM modes
because, E and B are perpendicular between them and to the propagation direction. Using
Ampere’s law we can calculate the magnetic field.

B = µo
I

2πr
ûθ (138)

the magnetic flux trough a strip of width dz is given by:

φ = µo
Idz

2π

∫ r2

r1

dr

r
= µo

Idz

2π
ln

(
r2

r1

)
(139)

Therefore, the inductance per unit length of the line is:

L =
φ

Idz
=
µo
2π

ln

(
r2

r1

)
(140)

Using Gauss’ law we can calculate the E field between the conductors:

E =
λ

2πεr
ûr (141)
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where λ is the charge per unit length of the conductor, and ε = εrεo is the permittivity of the
dielectric. Now we can calculate voltage between conductors:

V =
λ

2πε

∫ r2

r1

dr

r
=

λ

2πε
ln

(
r2

r1

)
(142)

then the capacitance is:

C =
Q

V
= ε

2π

ln

(
r2

r1

) (143)

With the expressions forL andC, we can calculate the phase velocity and characteristic impedance
of a coaxial cable.

v =
1
√
εµo

Zc =
1

2π

√
µo
ε

ln

(
r2

r1

)
(144)

As mentioned in the last section, the geometry of the wave guide is such it produces a 50Ω

impedance. The use of a waveguide to measure Ferromagnetic resonance lies on the fact that the
phase velocity and characteristic impedance depends on the permeability of the media. When
the frequency of the wave matches with the resonance condition, the permeability changes as
we determined on section §1.5.3, this will induce a change on the phase velocity which is a
measurable parameter[1].

Appendix C: Electromagnet Calibration
We use the homemade electromagnet provided by the laboratory of Dr. Bailleul. We cal-

ibrate this electromagnet using a hall probe, and a Lakeshore Gaussmeter. We measure the
magnetic field value as a function of the coil current. We obtained plot of figure (51), we fit this
data with a third degree polynomial:

Hext(I) = 0.0383 + 0.3582I − 0.00319I2 − 0.00431I3 (145)

We also measure the field inhomogeneities as function of the distance from the center of the
pole. Using the hall probe we measure the field for a fixed value of current, which then was
normalized to the correspondent field value given by prior calibration, at different distances to
the center of the pole. We obtained the plot in figure (52) where we can observe a drop of
3.71% of the field over 2mm from the center. We fit this data with a 6th degree polynomial, we
obtained the following relation

Hext(r)/Hext(r = 0) = 1.00014− 0.00597r2 + 0.00048032r4 − 0.00043276r6 (146)
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Figure 51: Plot of magnetic field in the region between the poles as a function of the coil current.
Hext(I)

We obtain the following expression which relates the magnetic field with the coil current
and the distance to the center of the pole.

Hext(I, r) = (1.00014− 0.00597r2 + 0.00048032r4 − 0.00043276r6)

(0.0383 + 0.3582I − 0.00319I2 − 0.00431I3)
(147)

Appendix D: Spin Coat details
Details to spin coat a YIG thin film with bilayer resin and conductive resin:

• Clean the sample film with ultrasonic bath in Acetone, for 5 min. After, an ultrasonic
bath in Isopropanol. This step eliminate any dust particle from the film.

• Cover the film with resin, ≈ 90nm thickness, using Spin coating. We used Resin PMMA
(Poly methyl methacrylate) ARP 619.04, spin coated at 1000 rpm.

• baked the sample to solidify the resin. Using a precision hot plate, sample was baked at
180◦C, for 1 : 30 min.

• Second layer of resin PMMA ARP-679.02 spin coated at 1000 rpm.

• Bake at 180◦C for 1 : 30 min.



76

Figure 52: Field inhomogeneities of magnetic field as function of the distance to the center of
the pole, for I = 0.5 A
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• Cover film with conductive resin (SX AR-PL 5000/90.2), thickness 35nm, spin coated at
4000 rpm. Conductive resin is used to see under the e-beam microscope, because YIG is
an electrical insulator.

• Bake at 90◦C for 1:30 min.
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