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RESUMEN

En este articulo demostramos el Teorema de Frobenius sobre las algebras asociativas de
division sobre los numeros reales. Este teorema dice que ‘cualquier algebra asociativa de
division de dimension finita sobre los nimeros reales es isomorfa a los nimeros reales, los
numeros complejos o los cuaterniones”. La demostracion de este teorema se ha hecho para
que sea fdacil de entender para los estudiantes avanzados de matemadticas de pregrado.
Consecuentemente, no usamos la teoria de modulos semisimples, el teorema centralizador y
el radical de Jacobson como los libros de posgrado de matematica lo hacen; en vez de eso,
nosotros nos limitamos a usar solamente la teoria de las algebras centrales simples y la
herramienta del producto tensorial de mddulos y K-algebras. Nosotros demostramos este
teorema al trabajar en los casos no conmutativo y conmutativo. Adicionalmente, para
determinar un isomorfismo a los cuaterniones, nosotros demostramos y usamos el cldsico
teorema de Skolem-Noether.

Palabras clave: Teorema de Frobenius, mdédulos, dlgebras, algebras de divisidn, algebras
centrales simples, producto tensorial, K-dlgebras, teorema de Skolem-Noether.



ABSTRACT

In this article we prove the Frobenius' theorem on associative division algebras over the Real
Numbers which says that ““any finite dimensional associative division algebra of finite
dimension over the real numbers is isomorphic to either the real numbers, complex numbers
or quaternions". This proof of Frobenius' theorem is intended to be easy to understand for
advanced undergraduate mathematics students. Thus we don't use the theory of semisimple
modules, the centralizer theorem, and the Jacobson radical as graduate books do; instead, we
limit ourselves to use only the theory of central simple algebras, and the machinery of tensor
product of modules and K-algebras. We prove this theorem by working in the noncommutative
and commutative case. Additionally, to determine an isomorphism to quaternions we prove
and use the classical form of Skolem-Noether theorem.

Key words: Frobenius' theorem, modules, algebras, division algebras, central simple algebras,
tensor product, K-algebras, Skolem-Noether theorem.
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Abstract

In this article we prove the Frobenius’ theorem on associative di-
vision algebras over the Real Numbers which says that “any finite
dimensional associative division algebra of finite dimension over the
real numbers is isomorphic to either the real numbers, complex num-
bers or quaternions”. This proof of Frobenius’ theorem is intended
to be easy to understand for advanced undergraduate mathematics
students. Thus we don’t use the theory of semisimple modules, the
centralizer theorem, and the Jacobson radical as graduate books do;
instead, we limit ourselves to use only the theory of central simple
algebras, and the machinery of tensor product of modules and K-
algebras. We prove this theorem by working in the noncommutative
and commutative case. Additionally, to determine an isomorphism to
quaternions we prove and use the classical form of Skolem-Noether
theorem.
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1 Introduction

Every classification theorem is important in mathematics because it allows
us to know exactly with what we are working. The example, which every
undergraduate learns, is the classification of finite simple groups; a good
review of this classification was done by Ron Solomon in the Notices of the
AMS (Solomon, 1995). In this article we are going to classify the finite-
dimensional associative division algebras over the field of real numbers. In the
preliminaries section we will define the finite-dimensional associative division
algebras over a field and later we will use as a field the real numbers.

The real numbers have been known in mathematics for centuries and many
people were involved in their invention. The complex numbers were discov-
ered by Cartan when he did research in solutions to cubic equations and
later Gauss gave them the form we know today (the complex plane). The
quaternions were invented by Sir William Rowan Hamilton, an Irish mathe-
matician, who lived in the first half of the 19th century. Complex numbers
can be used to represent rotations in the cartesian plane, something that
Hamilton wanted to achieve with R? in order to extend the complex num-
bers. During his research Hamilton first discovered what is now known as
the quaternion group (Jg, which preceeded the discovery of the quaternions.
He published the latter in his book “Lectures on Quaternions: containing
a systematic treatment of A New Mathematical Method” (Hamilton, 1853),
which was communicated to the Royal Irish Academy.

Throughout history there have been many proofs of Frobenius’” Theorem.
The first one was done by Frobenius himself in 1878 at the end of an algebraic
paper that he published (Frobenius, 1878). Another proof was given by
C.S. Pierson in 1881 of which there is a review and explanation by Thomas
McLaughlin in his paper (McLaughlin, 2004). The shortest known proof was
given by L.E. Dickson, who was an U.S. algebraist and number theorist, in
his book(Dickson, 1914). After Dickson, other proofs appeared that used
advanced mathematical machinery and were conceptual in nature.

Up until Dickson’s proof in 1914, all proofs were mostly computational.
This means that they relied more on the explicit construction of the algebras
rather than on their inner structure. The most advanced computational proof
was made by Dickson, where he used the fundamental theorem of algebra to
build extensions of the real numbers isomorphic to the complex numbers, and
then he built the quaternions. As part of his proof, Dickson concluded that
3-dimensional associative division algebras were not possible because of lin-
ear independence of imaginary units and the hypothesis of associativity and
divisibility. Additionally, if one considers the algebras of dimension greater
than 5 then a contradiction arises where any supposedly new imaginary unit
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outside the quaternions must in fact be in the quaternions.

After Dickson’s proof appeared many new proofs that used tools of new
algebraic theories, developed with the aim to generalize the quaternions.
For example the developement of “the theory of semisimple artinian rings
and central simple algebras” (Herstein, 1971). In the twentieth century
“there were other approaches to this theorem but in different classification
contexts” (Lam, 2001) because they used methods from analysis, algebraic
topology and even algebraic geometry. For example we have: “Gel’fand
Mazur theorem for commutative Banach division algebras” (Lam, 2001, p. 208),
“Hopf’s Theorem on commutative nonassociative real division algebras” (Lam,
2001, p. 208), “Kervaire-Milnor Theorem for nonassociative real division
algebra” (Lam, 2001, p. 208), etc.

The proof of Frobenius’ Theorem given in this article is purely algebraic,
done in a classical setting because we limit ourselves to use only the theory of
central simple algebras and the machinery of tensor product of modules and
K-algebras. We do not use the theory of semisimple modules, the centralizer
theorem and the Jacobson radical because they involve too much general-
ization of the mathematical theory we need. For more information on these
theories see the books by Herstein, Farb and Dennis, and T.Y Lam on the
bibliography. The theory of central simple algebras will help us understand
why the quaternions are the only noncommutative algebra in Frobenius’ The-
orem.
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2 Preliminaries

Before we begin the proof of our main theorem we should know what a module
and an algebra are, since they are the main general structures we are going to
use. After that, we are going to define finite-dimensional associative division
algebras, which will help us understand the structure of the real numbers,
complex numbers and quaternions as algebras. Finally, in this section we
will present the algebra of octonions, which is an algebra containing the
quaternions but it is not associative.

2.1 Standard terminology for homomorphisms of groups

We assume that the reader is already familiar with homomorphisms of groups.
Here we give standard terminology for homomorphisms of groups, which the
reader may have not seen before. The next list is taken from the book
Abstract Algebra by Choudhary (Choudhary, 2008):

1. A monomorphism is an injective homomorphism.

2. An epimorphism is a surjective homomorphism.

3. An isomorphism is a bijective homomorphism.

4. An endomorphism is a homomorphism from a group to itself.

5. An automorphism is an isomorphism from a group to itself.

2.2 Ring

It is assumed that the reader is already familiar with rings, specifically with
two-sided ideals (which we will just refer as ideals), left ideals and right
ideals, quotient rings, and isomorphism theorems. However, we present here
the definition of ring, ideal, left ideal, and right ideal.

Definition 2.1. A ring R is an additive abelian group (R, +) with
another binary operation called multiplication (R, -) satisfying the fol-
lowing conditions:

1. The multiplication is associative.

2. The multiplication has the distributive property with respect
to addition. That is, for all x,y, 2z € A we have
(x4y)-z=z-z4+y-zandzx-(y+z)=z-y+x-2
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Note that the multiplication operation is not assumed to be commutative
nor have a multiplicative identity. Let R be a ring and let 1 € R denote the
multiplicative identity with the property r-1 =1-r =r for any r € R. This
multiplicative identity is unique. Also we denote the identity element of the
additive group of the ring by 0. Many objects used in mathematics are rings.
As examples we have:

1. The set of equivalence classes of integers modulo n. The sum is sum
modulo n and multiplication is multiplication modulo n.

2. The integers themselves with usual sum and multiplication.

3. The set of nxn matrices with entries in the real numbers is a ring with
operations of ordinary sum and multiplication of matrices.

For notation purposes we change the multiplication notation from z - y to
xy. Let R be a ring. A subring B is a subset of the ring R that is also a
ring with the same operations as the ring R. A left ideal I is a subgroup
of the additive group of the ring R such that ri € [ for all r € R and 7 € [;
a right ideal and a two sided ideal (which we refer to as an ideal) are
defined in a similar way.

Let X C R be a non-empty subset of R. The set (X) is the minimal
ideal that contains X if (X)) is defined as the set of all finite sums RXR =
{E yzityilzi,y; € R}. An ideal generated by a singleton set is called a
principal ideal. The ring R is called a commutative ring if rt = ¢r for
all r/t € R.

Later on, we will work exclusively with algebras that have the property of
being associative with multiplicative identity, these algebras will be defined
after the module subsection. Books of noncommutative algebra and noncom-
mutative rings such as Farb and Dennis’, and Lam’s even define rings to have
multiplicative identity, because the definition of associative algebras over a
field requires them to also be rings with identity.

For the previous reasons we will also work on the same conditions of non-
commutative algebra and non-commutative rings books. From now on in
this article we always assume that rings have multiplicative identity 1 and
are not necessarily commutative. This convention will also help us to not be
redundant on this condition for rings throughout this article.

Let R be aring. An element a € R is called a unit if it has a multiplicative
inverse a~! with the property aa~' = a~'a = 1. A division ring is a ring
where all non-zero elements are units. A field is a commutative division ring.

Definition 2.2. A non-zero ring R is called a simple ring if R has
no ideals except 0 and R.
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Notice that simple rings could have non-trivial left ideals or right ideals.
Here we present some examples that clarify this issue:

1. Any division ring is a simple ring and has no non-trivial left ideals or
right ideals.

2. An nzn matrix ring over a division ring is a simple ring. It also has
non-trivial left ideals containing all matrices with all columns equal to
0 except one column with entries of the division ring.

We assume the reader is already familiar with the definition of ring iso-
morphism between two rings R and W, we denote this ring isomorphism
by R = W. We finish this section by giving the definition of the center of a
ring.

Definition 2.3. Let R be a ring. The center of the ring R is the
subset of R that contains all x € R such that rz = xr for all r € R.

We remind the reader the following definitions concerning fields, also we
assume familiarity with an extension field of a field F. First we have an
“algebraically closed or algebraically complete field” (Ames, 1969, p. 177)

Definition 2.4. Let F' be a field. F is called algebraically closed
or algebraically complete if every polynomial equation

A" + ap 12" P+ ay =0

where a; € F and not all a; # 0, has all its roots in F.
The following definitions can be found on pages 288-289 of Ames’ book.

Definition 2.5. Let E be an extension field of a field . An element
[ € E is said to be algebraic over F if § is a root of a polynomial
with coefficients in F.

Definition 2.6. Let E be an extension field of a field F. E is called
algebraic over F if every § € E is algebraic over F.

We also give the important definition of “an algebraic closure of a field” (Dummit
& Foote, 2004, p. 543). In Dummit and Foote there is a proof that an alge-
braic closure of a field F' is unique up to isomorphism.

Deﬁnitiorl 2.7. The field F is called an algebraic closure of the
field F if F' is algebraic over F' and F is algebraically closed.
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2.3 Module

Another important structure is a module over a ring R. Modules are a gen-
eralization of vector spaces because vector spaces are modules over a field.

Definition 2.8. A left module M over a ring R or left R-module M
is an abelian group, written additively, together with an operation of
R on M such that for all a,b € R and x,y € M we have:

1. a(z +y) = axr + ay.
2. (a+b)x = ax + bzx.
3. (ab)x = a(bx).

4. 1z = x.

Let M be a left R-module, let « € R and m € M arbitrary. We use for
now the notation Or for the zero scalar and 0, for the zero vector to show
the relation that they have:

1. ORm:OM
2. a0y = 0py.

3. The following property can be proved just like with rings: (—a)m =
—(am) = a(—m).

We can now simply denote Oz to 0 and 0p; to 0 and we will not use
subscripts on the identity of the abelian group when it is clear by the context
that we are using it. Next we have some examples of modules:

1. The real vector space R" is a left R-module.
2. Any left ideal of a ring R is a left R-module.

3. Any ring R is a Z-module where the operation of Z is nr = r+r+r+..+r
the n'" sum of any element r € R. Notice for n < 0 we have (—n)r =
—1(nr) = —r —r —r —...—r and for n = 0 we have Or = 0.

Let R be aring. If M is a left R-module we will denote this module by ,M;
similarly, if M is a right R-module we will denote it by Mg. The ring R
is called the opposite ring of R if it has the same elements and additive
group structure as R but with multiplication defined by a - b = ba for all
a,b € R. From any left R-module we can define a right R°’-module where
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the action is given by mr = rm, and a similar situation happens for right
R-modules.

Any ring R is a left module over itself, where the action of R is the same
as multiplication in R, and R is called a left regular module. From now
on if we say modules then we refer to left modules unless otherwise
specified, without raising confusion.

Definition 2.9. A subset T of an R-module M is called a submodule
of M if it is a subgroup of the additive group of M and rt € T for all
reRandteT.

Let M be an R-module, then, we denote the trivial submodule of M by
{0}. We notice that submodules are closed under scalar multiplication.

Definition 2.10. Let M be an R-module. The set
Ann(M) ={r € Rlrm =0 VYm € M} is called the annihilator of M.

Examples of annihilators:
1. In the R-module R" the annhiliator is Ann(R") = {0}.

2. For a matrix ring M, (D)over a division ring D as a D module we have

Ann(M,(D)) = 0.

3. The Z-module Z;5 with the operation m x [n] = [mn| has annhiliator
157. This operation is well-defined, which we will prove in the next
subsection.

The annhiliator of an R-module M is an ideal of R. To show this, let r €
Ann(M) and b € R arbitrary. We have that Ann(M) is an additive subgroup
of R;furthermore, for any m € M we have (rb)m = r(bm) = 0 and (br)m =
b(rm) = 0 thus Ann(M) is an ideal of R.

Definition 2.11. Let M be a R-module. We say that M is a simple
module if M # {0} and the only submodules of M are the trivial
submodule {0} and M itself.

Let M be an R-module. M is called a faithful module if Ann(M) = 0.
We can easily check that any non-zero module over a division ring be faithful.

2.3.1 Factor theorem and first isomorphism theorem

One way to form a new module from a given module and its submodules is
the quotient module. Let M be a module over R and N any submodule
of M. Since M is an abelian group then all its subgroups N are normal;
consequently, we can form the quotient group M /N in the usual way.
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We define the module operation on M /N by r[y] = [ry| for all r € R and
[y] € M/N. We prove that the module operation is well defined by showing
that it does not depend on the choice of the representative [x] € M/N.
Recall M and N are R-modules. Let [x] € M/N arbitrary and let w,t € [z]
arbitrary, we have w —t € N thus rw —rt € N. We have [rw]| = [rt], thus
r[w] = r[t] for any two representatives of [x]. Therefore the module operation
on M/N is well-defined.

Now we are going to define homomorphisms of modules.

Definition 2.12. Let M and N be any two R-modules. An R-module
homomorphism or an R-linear mapping from M into N is a mapping
f M — N such that for all m € M and r € R we have:

L f(mi+mg) = f(m1) + f(m2)
2. f(rm)=r f(m)

Definition 2.13. Let M and N be any two R-modules and f : M —
N any R-module homomorphism. The R-module homomorphism f is
called an R-module isomorphism if f is a bijective mapping. We
denote an R-module isomorphism of M and N by M = N.

We also have the canonical map ¢ : M — M /N which is an R-module
homomorphism with kernel N. In this article we will only use two isomor-
phism theorems for modules: the factor theorem and the first isomorphism
theorem. Details for the remaining two can be found in Choudhary’s book
(Choudhary, 2008). The proofs of the isomorphism theorems for modules are
carried out the same way for groups, and thus we state them here without
proof.

Theorem 2.14 (Factor Theorem). Let M and W be modules over R.
Let f be any R-module homomorphism f : M — W with kernel
N. For any submodule N’ of the kernel N the module homomorphism
f can be factored through M /N, that is, there is a unique module
homomorphism f : M/N" — W such that f o ¢ = f where ¢ is the
canonical map.

From the factor theorem we prove the first isomorphism theorem of mod-
ules simply by letting N' = N.

Corollary 2.15 (First isomorphism Theorem). Let M and W be mod-
ules over R. Let f be any R-module homomorphism f : M — W with
kernel N. The module homomorphism f can be factored through M/N,
that is, there is a unique module homomorphism f : M/N — W such
that f o p = f where ¢ is the canonical map.
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2.3.2 Endomorphism ring of modules

In this subsection we will show that there is another way to understand these
modules by using the endomorphism ring of their additive abelian structure.
Let M and N be any two R-modules. The set of all R-module homomor-
phisms from M to N is an R-module and it is denoted by Homg(M, N). If
the homomorphism is from the module to itself, instead of writing Homg(M, M)
we write Endr(M). Additionally, we note that Endg(M) is also a ring with
operation of sum, composition of endomorphisms, and multiplicative iden-
tity equal to the identity mapping. We notice that when R is a field we have
the well known definition of an R-linear transformation between two vector
spaces.

Definition 2.16. The endomorphism ring of an R-module M is
the set of all R-module endomorphism of M, denoted Endg(M), with
ring operations of sum of endomorphisms, and multiplication defined
as composition of endomorphisms.

We note that the identity mapping is the multiplicative identity of Endg(M).
We follow the same convention for composition of endomorphisms as non-
commutative algebra books, that is, given arbitrary f,g € H = Endg(M)
instead of writing (f o g)(m) we write (m)gf so M is naturally a right H-
module; the same procedure is applied to right R-modules and their endo-
morphism ring. We follow this convention to avoid the formation of opposite
rings. Now we give some examples of endomorphism rings:

1. Fixing a basis for a vector space V of dimension n over a field K, we
have that Endg (V') = M, (K), which is easily proved using basic linear
algebra.

2. We shall prove later that the endomorphism ring of a ring (with iden-
tity) over itself is isomorphic to the ring itself.

3. The endomorphism ring of any simple R-module M is a division ring.

Now we give another way to look at a left R-module M by using its endo-
morphism ring. Let End(M) be the ring of endomorphisms of the additive
group M with ring operations of sum of mappings and compositions using
our convention. Given any r € R we have the endomorphism , 7" € End(M)
defined by

T M — M

T TI.
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The map

¢: R— End(M)
r—,T

is a ring homomorphism. Hence, we may view an R-module as an additive
abelian group together with the ring homomorphism ¢.

Definition 2.17. An R-D bimodule M is a left R-module and a
right D-module such that for any m € M |, r € R and d € D we have
(rm)d = r(md).

For bimodules we also have homomorphisms.

Definition 2.18. Let M and N be R-D bimodules. An R-D bimod-
ule homomorphism is a mapping f : M — N such that f is a left
R-module homomorphism and a right D-module homomorphism. For
allme M, r € Rand d € D we have:

1. f(m1 -+ m2> = f(ml) + f(mg)
2. f(rmd) =r(f(m))d.

Remark. Every ring R is a R-R bimodule, called a regular bimodule.

2.3.3 Direct product and direct sum

To define the direct product and direct sum of modules we need first their
analogous definitions for groups because modules have the structure of abelian
groups. We remind the reader that we are using definitions found in Lang’s
Algebra book (Lang, 2005).

Definition 2.19. Let G; and Gy be groups. The direct product
of Gy and G5 is the group GGy x G9 consisting of all elements of the
cartesian product of G; and Gy , i.e all the pairs (x,y) where z €
G7 and y € G5 , with group operation defined component-wise by

(1, 91) (22, Y2) = (122, Y1Y2)
We define the direct product of n groups similarly.

Let A and I be two sets. By a family of elements of A,
indexed by the set I, we mean a mapping f : [ —> A. Thus, for
each i € I we are given an element f(i) € A. Although a family
does not differ from a mapping, we think of it as determining a
collection of objects from A, and we write it often as

{f (1) Yier
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or
{ai}ier

writing a; instead of f(i). We call I the indexing set (Lang, 2005,

p. X).

Even more generally, for any indexing set I and any family of groups {G; }icr
we define the direct product G = [[ G; as the set consisting of all families
(x;)ier such that z; € G;, where the group operation is component-wise, that
iS, if (xi)iej y (yi>i€[ < G then (xz‘yi)iej c G.

Definition 2.20. Let (A;);c; be a family of abelian groups. The direct
sum of (4;);e; denoted A = ,.; A; is the subset of [] A; consisting
of all families (a;);e; with z; € A; such that x; = 0 for all but a finite
number of indices 7 € I.

The direct sum of abelian groups has a very useful property called the
universal property of the direct sums. It says that any group homo-
morphisms of the direct summands of a direct sum to another fixed group
can be extended to a unique homomorphism of the whole direct sum to that
fixed group. More precisely we have:

Let I be the indexing set of the direct sum A = @,.; A; and let {v; :
A; — A}ier be a family of homomorphisms of each direct summand A;
to the direct sum A such that v; maps € A; to the i component of the
family (x;);e; and having all other components equal to zero. Hence, each y;
is an injective homomorphism and is called in the literature the canonical
injection of A; into the direct product A .

Proposition 2.21. Let {f; : A; — B};c; be a family of group homo-
morphisms into an abelian group B. Let A = @, ; A; then there exists
a unique group homomorphism

f:A— B
such that fory; = f; foralli € I
Proof. Let
fiA—B
(@i)ier — Y filw:)

el

we notice that this sum is finite by definition of direct sum and that f o
v; = f; for all © € I. Furthermore, f is uniquely determined because its
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values depend on the family of homomorphisms f; : A; — B and any of
these homomorphisms maps 0 in A; to 0 in B. Suppose we have another
homomorphism

h:A— B
(xi)ier — Zfz(%)

i€l

then we have f or; = hov;. We make the sum over any element (x;);c; of
the direct sum A = €., A; to obtain

Z fvi(zi)) = Z h(vi(z:))

but we also have the following equations given by definition of the homomor-
phisms f and h

iel iel
D b)) =D hi(w)
el el
which implies
> filw) = ()
iel icl

Since (x;);e; € A is arbitrary we have f = h. Therefore f exists and is
unique. ]

Now we can define an R-module structure on A = ,_; A; by setting the
scalar multiplication component-wise. Let r € R and (z;);c; € A arbitrary,
then

r(z:)ier = (ri)ier

It is trivial to show that A is indeed an R-module. Also, the universal
property of the direct sum of groups then becomes the universal property for
the direct sum of modules. We also have the canonical projection, which
is a homomorphism of a module onto its quotient by a submodule.

Definition 2.22. Let M be a module over R and N a submodule of M.
The canonical projection of M by N is the homomorphism 7 : M —
M/N given by z +— z + N
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For example, we can project a direct sum of modules onto any module
component of the direct sum by the R-module homomorphism

f A —pa

i€l icl
(1, T2y ooy Ty ooy T) = (0,0, .., 25, ...,0,0)

or onto a direct sum of a subset of module components.

2.3.4 Descending chain condition (left artinian module)

Suppose M is a left module over R and let Ny O Ny O N3 D ... be a de-
scending sequence of submodules of M. We say that the descending sequence
stabilizes if for some n we have M,, = M, .1 = M, .o = M,,3 = ...

Definition 2.23. A left module M over R is called left artinian if
any descending sequence of modules stabilizes.

It is not hard to notice that any descending sequence has a minimal non-
trivial submodule.

Definition 2.24. Let R be a ring. R is called left artinian if it is left
artinian as a module over itself.

2.3.5 Generating set and linear independence

Let S be a subset of a module M over R. A linear combination of elements
of § with coefficients in R is a sum

Doy

yes

where {a,} is a subset of R and all but a finite number of a, are zero.

Definition 2.25. Let S be a subset of a module M over R. S is a
spanning or generating set for M over R, similarly we say that S
spans or generates M over R if each y € M can be written as a linear
combination of elements of S with coefficients in R.

Let M be an R-module and 7" a generating set of M over R. The module
M is said to be finitely-generated, finite type or finite over R if M has
a finite number of generators, i.e T is a finite subset of M. Next we show
some examples of modules over a ring that have no finite generating set and
others that do.
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1. Let M be the additive group of rational numbers. If we make M a Z-
module, then M has no finite generating set. Any finite set of rational
numbers can be transformed to a finite set of integers which is not
linearly dependent over Z.

2. Consider the polynomial ring M in one indeterminate X with rational
coefficients. M is a Q-module. The set of all powers of the indetermi-
nate X generates M as a Q-module.

Definition 2.26. Let T be a subset of a module M over R. T is a
linearly independent set of M over R if for any linear combination
> yer ayy = 0 implies a, = 0 for all y € T'.

We say that a subset T of an R-module M is linearly dependent if it is
not linearly independent. Now we show some examples of linearly dependent
sets and linearly independent sets.

1. Any subset of the Z-module Q is linearly dependent because any linear
combination in Q can be converted to a linear combination in Z, which
itself is linearly dependent because Z is generated by 1 as a Z-module.

2. Let M be a faithful finitely generated R-module with m generators.
The direct product of modules M™ is an R-module generated by mn
elements.

Definition 2.27. Let W be a subset of an R-module M. W is a basis
of M over R if W is a generating set of M over R and W is a linearly
independent set.

A module M over a division ring or over a field with finite basis is called a
finite-dimensional vector space over a division ring or over a field. Next
we give examples of modules with a basis:

1. R3 has a basis.

2. Any polynomial ring over a field has a basis, e.g the set {2°, 2!, 22, ...}.

2.3.6 Free module

Definition 2.28. An R-module M is called free module if M admits
a basis or is the zero module.

Let I be an indexing set, R a ring and let {R; };c; be a family of R-modules
which are all R-module isomorphic to the ring R viewed as a regular module.

The direct sum
F=Pr

el
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admits a basis which consists of the elements e; whose i*" coordinate is the

unit of R; (recall that it is isomorphic to the regular module R) and having
all other components equal to zero.

Definition 2.29. Let M be an R-module. M is called a cyclic mod-
ule if M is generated by some singleton subset of M.

Similarly, if B = {b;};cs is a basis of an R-module M, then we can view M
as the direct sum of cyclic modules {Rb;};,c; where we have the R-module
isomorphism of Rb; and R for all ¢ € I because of the linear independence of
the basis B. Thus we have a nice way of viewing a free module M as a direct
sum of isomorphic copies of the regular module R.

Now we define a free module over a ring A generated by a non-empty
set S, notice S is not necessarily a subset of A. This definition can be found
in (Lang, 2005) on page 137.

Let A < S > be the set of all mappings ¢ : S — A such that
¢(x) = 0 for all but a finite number of x. Let x € S and a € A ,
we denote by ax the map ¢ such that p(z) = a and p(y) = 0 for
x #y. Now given ¢ € A < § > there exists elements x; € S and
a; € A such that

Y = @121 + aZg + ... + apTy

The above expresion is unique because of the linear independence
of the mappings ax. The set A < § > is an additive abelian
group by sum of mappings and is an A-module by the operation
ap = aairy + aasTs + ... + aa,r,. It is immediately verified
that the set of functions {, | z € S} such that 6,(z) = 1 and
0.(y) = 0 for = # y is a basis for A < S > as A-module (Lang,
2005).

Now let N be an A-module, let ¢ : S — N be a mapping of S into the
A-module N and let the map f: S — A < S > be such that f(z) = 1z.
Observe that f is injective. We can define an A-module homomorphism

g A< S>— N

0.(3" ar) = 3 aegla)

€S €S

Furthermore we have g, o f = g and g, is the only homomorphism with this
property because we must have g.(1z) = 1g(x) = g(x).
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2.3.7 Tensor product of modules

Before proceeding with the definition of tensor product of modules it will be
useful to know the motivation for its definition. Tensor product of modules
involves the notion of a multilinear mapping of modules and it is in there
where the motivation of its definition comes from. Thus we should begin
with the definition of a bilinear mapping of modules, which is a special case
of a multilinear mapping of modules.

Definition 2.30. Let R be a commutative ring. Let E, N, F' be R-
modules. Let E x N be the cartesian product of £ and N. A bilinear
map is amap g : £ X N — F' such that

1. For a fixed x, € E the map (z,,y) — g(z,,y) is R-linear in the
indeterminate y.

2. For a fixed y, € N the map (z,y,) — g(z,v,) is R-linear in the
indeterminate x.

A multilinear mapping extends the definition of bilinear mapping to
the mapping of a cartesian product of any finite number of R-modules to
one R-module. The requirement that the base ring be commutative in the
definition of bilinear mapping lies in the following observation: Let E, N, F
be R-modules and ¢ a bilinear map g : E X N — F then for any e € F |
n € N and a,b € A we have

1. g(ae,bn) = a(g(e,bn)) = a(bg(e,n)) = ab(g(e,n)).
2. g(ae,bn) = b(g(ae,n)) = blag(e,n)) = ba(g(e,n)).

The definition of bilinear mapping lets us notice the following three proper-
ties: let g : E x N — F be a bilinear mapping of R-modules, then for any
e,z€ F ,n,he N and a,b € R we have

1. gle+z,h) =g(e,h) + g(z, h)
2. gle,n+h) =gle,n)+ g(e, h)
3. b(g(e,n)) = g(be,n) = g(e,bn)

The definition of bilinear mapping is a special case of a multilinear mapping
of any finite number of R-modules into an R-module.

Definition 2.31. Let R be a commutative ring and I any finite in-
dexing set, hence |I| = n € Z*. Also, let {E;}ic; be any family of
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R-modules indexed by I, F' be any R-module, and E; X Fy X ... X F,
be a cartesian product of the family. The map

fiEiXFEyx...xE, — F

is called a R-multilinear mapping or a multilinear mapping of the
family of R-modules {E;}er if f is a map such that is R-linear in each
component when the other components are fixed.

Let f: Ey X Ey X ... X E,, — F' be a multilinear mapping of R-modules.
For arbitrary i € I, j;,t; € E;, and a,b € R we have the following properties:

L. f(jl? 7]1 + tia 7.]n) = f(jlﬂ "7jia 7]n) + f(jl? "7ti7 7.]71)

2. a(f(jl, ..,ji, ,]n)) = f(jl; ..,ajz», ...,jn)

The previous properties of a multilinear mapping of the family {F;};c; of
R-modules are the key to understand the construction of a tensor product
for a given multilinear mapping.

Definition 2.32. Let Ei, E», ..., E,, be modules over a commutative
ring R. The tensor product of Fy, Fy, ..., E, is the pair (T, 3) where
T is an R-module and (8 is a R-multilinear mapping £ : F; X Ey X
.. X B, — T such that for any R-module X and any R-multilinear
mapping f : By X Ey x ... x E,, — X there exists a unique R-module
homomorphism f, : T"— X for which f, o g = f.

The pair (7T, 8) is “universal for multilinearity of the direct product F; X
Ey X ...x E, where T is the tensor product and 3 is the tensor map” (Roman,
2008). The universality of the tensor product means that “the tensor prod-
uct is unique up to a unique R-module isomorphism which is the universal
property of tensor products” (Roman, 2008), thus we talk about the tensor
product and not a tensor product. Hence, any tensor product T that we
build will be unique in as mentioned, this universal property helps us solve
many problems where there is a multilinear mapping of R-modules. The
tensor product T is denoted by

By @rEr @ .. r B, or Q) E;
j=1

The map [ is the multilinear mapping

b:FEyx Eyx...xFE,—T

B(x1, 22, ..., 2,) = 21 O T2 Qg -+ - QR Ty,
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If the base commutative ring R is clearly understood from the context then
we can simply write the tensor product as Fy ® Fy ® ... ® F,. Also we have
for each index ¢ € {1,2,...,n}

AT RT3 R ... QTR .. QTy) =T1 QT ® ... ®ax; ® ... ® T,

T1RT2R .. @ (T +T)® .. QT = (11 T2 ® ... Q) + (11 DT ® ... QT ®

for all z;,2; € E; and a € R.

Remark: observe that r1 ® o ® ... ® x,, is zero if and only if at least one
x; = 0. It can be proved that the tensor product is associative, a “theorem
that is proved by using the universal property” (Lang, 2005, p. 622). Here we
present that theorem without proof:

Theorem 2.33. Let M;, My, Ms; be R-modules. Then
there exists a unique isomorphism

M ® (M2®M3) — (Ml ®M2) ® M;

such that
(rRyY)R@z— 2 (Y 2)
forall x € My, y € My, z € Mj

Now we will prove the existence and uniqueness of tensor products. First
we prove uniqueness up to a unique R-module isomorphism because “it allows
us to speak about ‘the’ tensor product of two modules N and M” (Pierce,
1982). After that we prove existence “by constructing a specific tensor pro-
duct in the isomorphism class of tensor products” (Lang, 2005).

Uniqueness of tensor products

For the R-modules Ei, E», ..., F,, we suppose that the tensor product T to-
gether with the the multilinear mapping 5 : Fy X Fy x ... x E, — T
exist such that for any R-module X and any multilinear mapping f : F; X
Ey x ... x E, — X there exists a unique R-module homomorphism
fe: T —> X for which f,of = f.

We are going to prove that the tensor product 7' is unique up to a unique
isomorphism. We can represent these homomorphisms of the tensor product
as a commutative diagram of mappings. A commutative diagram is a
collection of mappings such that all mappings’ composition starting from a
fixed set A and finishing in another set B give the same result.

B, X Eyx ... x E, A T

. J(f*

R xy)
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If we replace X by T itself then the unique R-module homomorphism is
the identity, f, = id and consequently f = 3

Ei xEy x...x E,

Now we replace X by another arbitrary tensor product W with multilinear
mapping 1 : E1 X Fy x ... x E,, — W of the modules E, Es, ..., E,; thus,
we get two diagrams with unique homomorphism ¢ and h respectively.

By X EyX .. xE, o T

\

W

Eix Ey x...x E, iU w
\\j

T

When we combine the previous two diagrams we obtain the diagram

<

>

o T

E1><E2X...><En

\
id W
/

T

Since the homomorphisms ¢, h and id are unique we have that g o h = id
and h o g = id, which implies that g and h are isomorphisms and g = h~*.
Therefore the tensor products T and W are isomorphic and we can talk
about “the” tensor product. This ends the proof.

Existence of tensor product

We are going to construct the tensor product of the R-modules F1, Es, ..., E,
by using the construction of a free module over a commutative ring (see the
Free Module subsection) and the factor theorem of modules (see the Factor
Theorem and first Isomorphism theorem subsection). This construction was
obtained from Serge Lang’s book Algebra (Lang, 2005) on page 602. We will
show this construction here because it is the most understandable.
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Recall that F; x Fy x ... x E, is a cartesian product of the family of
R-modules {Ey, Es, ..., E,}. Let M be the free R-module generated by the
cartesian product set E; X Fy X ... X E, according to the section of free
modules, that is, M = R < F; X Fy x ... x E,, >. Let N be the R-submodule
of M generated by all the elements of E; X Fy X ... X E,, of the type:

(s ooy @i+ T ey ) — (X1 e, Ty ey T) — (T4, oy T + Xy oy )

(1 ey QT4 vy ) — (T, ey Ty oy Ty)

for all x; € E;, z, € E;, a € R. In the construction of the free module M we
also obtained the mapping

g:Ey xEyx...xE, — M

(21, T2y oy ) = L2y, 29,y .0y )
We compose g with the canonical map M — M /N to obtain the map
¢ By X By X ... x B, — M/N

We observe that ¢ is an R-multilinear map since its construction was adjusted
to that purpose. Let

fZE1><E2X...XEn—>X

be an R-multilinear map. Recalling the definition of a free module generated
by a set, we have an induced R-linear map M — X which makes the
following diagram commutative.

FEi x By x ... x E, M

T l

X

We notice that since f is multilinear the induced map M — X has value 0
on N, recalling the definition of a multilinear map and evaluating M — X
with any element in N. We observe then that N is a subset of the kernel of
M — X, thus by the factor theorem of modules we obtain the diagram

Ey X FEy x ... X E, ‘ M/N
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where f, : M/N — X is unique for M /N and makes the previous diagram
commutative. The module M/N is denoted by

By ®@rEr®p .. @r B, or Q) E;
j=1

and is called the tensor product T of any multilinear mapping of E; x Ey X
... X E,. The subscript R in the tensor product simply indicates over which
ring the tensor product is; if it is clear to which ring we refer then we can
drop the subscript. The construction of the tensor product also gave us the
mapping ¢, if z; € E;, we have

gO(ZEl,SL’Q, ,l’n) =T ®R i) ®R ®R Tn

By our construction of the tensor product, we notice that the mapping ¢
is in fact a multilinear mapping of E; X Fs X ... X E,,. Hence, the mapping ¢
is our tensor map. Note as well that the image of ¢ generates the tensor
product. Recall the induced linear map of a free module over a set. Also
we have for all index i € {1,2,...,n}

AT RT3 R ... QTR .. VL) =T QT ® ... ®ax; ® ... ¥ T,
T1RT® ... QT +2)® .. QT = (11 Q2R ... Q) + (11 RT2 @ ... QT ®

for all x;,2; € E; and a € R. This ends the proof.

2.3.8 Module homomorphisms of tensor products

This definition was obtained from Serge Lang’s book (Lang, 2005) on page
605. Suppose we have a collection of R-module homomorphisms

fi:El— E; forall i=1,2,3,..,n

We get an induced map on their product

15115 —11&
=1 =1 =1
(I’l,ZEQ, ...,l‘n> — (fl(xl), fQ(ZL'Q), ,fn<l’n))

Now we compose [[;_, fi with the canonical map to the tensor product of
E1 X Eyx...x E,. Thus we obtain an induced R-linear map between the tensor
products B] @ B, ®...@ £, and F; ® F, ®...® E,, denoted by T'(f1, fa, ..., fn)
which makes the following diagram commutative.

e @ Ty)
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E! X By x ... x E! FI®E,®..QF,
H?:l flj lT(flth?"'?fn)
E1XE2X...XEn E1®E2®®En

Figure 1: Commutative diagram of induced linear map of tensor products
(Lang, 2005)

Using the above diagram we can easily observe that the R-linear map
T(f1, f2, ..., fn) has the property

T(f1 @) hl, fQ o h27 ceey fn @) hn) = T(fl, fg, ceey fn) O T(hl, hg, ceey hn)

and

T(id,id, ..., id) = id

We also notice that T'(f1, fa, ..., f) is the unique linear map whose effect on
the generators of the tensor product is 1 ® 23 ® ... @ z,, — f1(21) ® fo(x2) ®

2.3.9 Linear Algebra

Linear Algebra can also be done over division rings, not just fields, but one
has to be careful about the formation of opposite rings. Here we give the
following theorem on the existence of basis of division rings and fields without
proof, details can be found for example in (Lang, 2005) and (Raya, Rider, &
Rubio, 2007).

Theorem 2.34. Any module over a division ring has a basis.

2.4 Algebras

There is an even more general object than rings in mathematics. An algebra
over a commutative ring A has the structure of an A-module and satisfies all
the axioms of a ring with the exception of associativity and the existence of
a multiplicative identity element.

Definition 2.35. An algebra H over a commutative ring A, also called
an A-algebra H, is an A-module H together with a bilinear map g :
HxH— H.

We notice that the bilinear map in the algebra’s definition is the multipli-
cation operation of the algebra. Examples:
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1. Any field extension of a field L is an L-algebra.
2. Any polynomial ring over a field K in one indeterminate is a K-algebra.

3. Any nzn matrix ring with entries in a field K is a K-algebra, then, it
is called a matrix algebra over the field K.

In this article we consider only algebras that are associative and have multi-
plicative identity. This requirement allows us to view our A-algebras as rings
with an A-bilinear mapping that is also the multiplication operation. Also
in this article, when we mention an A-algebra H we mean the following:

Let H be a ring and A a commutative ring. Let f: A — H
be a ring homomorphism such that f(A) is a subset of the center
of H, thus f(a) commutes with every element of H. Hence, H is
an A-module by defining the module operation as

g:AxH—H
(a,b) = f(a)h

Also the multiplication operation on the ring H given by

H x H — H is clearly A-bilinear. This implies that the ring
H with the ring homomorphism f : A — H form an A-algebra
(Lang, 2005, p. 121).

From now on, when we mention a K-algebra we consider the base commu-
tative ring K to be a field unless otherwise specified. If H is a K-algebra
and it is finitely generated over f(K) as a K-module then we say that H
is a finite dimensional over the field K or H is a finite-dimensional
K -algebra.

Definition 2.36. A subalgebra W of the K-algebra H is a subset
of H that is also a K-algebra. Consequently, every subalgebra of H
contains the same multiplicative identity as H.

A division algebra is a K-algebra where all of its non-zero elements have
a multiplicative inverse. Similarly, we define a commutative algebra as a
K-algebra where the multiplication operation is commutative.

Definition 2.37. Let H be a K-algebra and K[z] be the polynomial
ring over K. An element a € H is said to be algebraic over K if there is
a non-zero polynomial g(z) € K[z such that g(a) = 0. The K-algebra
H is called an algebraic algebra over K if every a € H is algebraic
over K.
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It is easily verified that any finite dimensional K-algebra H is algebraic over
K because the set {a"} for each a € H and all n € N is linearly dependent,
hence there exists a minimal non-zero polynomial with a as a root for every
a€ H.

2.4.1 Homomorphisms and ideals of algebras

The mapping preserving the structure of an algebra is called an algebra
homomorphism. Notice that the definition preserves the structure of the
algebra as a ring and as a module simultaneously.

Definition 2.38. Let A and B be K-algebras. A map g: A — B is
called a K-algebra homomorphism if it is a homomorphism of A and B
as rings and as K-modules, that is, for all @ € A and k € K we must
have

If the K-algebra homomorphism is also a bijective map then we say a K-
algebra isomorphism. A subset S of an algebra W is called a left ideal
of the algebra W if it is a subgroup of the additive group of W and ws € S
for all w € W and s € S. We define similarly right ideals and ideals of a
K-algebra.

2.4.2 Central simple algebras

A key observation in the proof of Frobenius’ Theorem is that finite dimen-
sional associative division algebras over the field of real numbers are central
simple. Recall we consider only algebras over a field.

Definition 2.39. A simple algebra is a K-algebra that is also a
simple ring, that is, the algebra does not have ideals except for the
zero ideal and the algebra itself.

It is then easy to show that any division algebra is simple because any
non-trivial left ideal must have 1. We give the definition of centralizer of a
fixed subset of any algebra in general, see page 93 of Farb and Dennis.
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Definition 2.40. Let B be an algebra and S any subset of B. The cen-
tralizer of S in B is the set Cp(S) = {b€ B| sb=bs forallse
S}. One may check that Cg(S) is a subalgebra of B for any subset S
of B.

This allows us to define the center of a K-algebra.

Definition 2.41. Let H be an algebra over K. The center of H is the
set Z(H) =Cyx(H)={r € H|sx =xs foralls € H}. Thatis, Z(H)
is the center of H considered as a ring.

Definition 2.42. Let H be an algebra over K. The algebra H is called
a central algebra if Z(H) is ring isomorphic to the base field K.

A central simple algebra H over the field K is an algebra that is simple
and whose center and base field is K.

2.4.3 Subfields of division algebras

Subfields are very important in our proof of Frobenius’ Theorem, in particular
“a powerful method for studying division rings is to study their maximal
subfields” (Lam, 2001, p. 241). The definition of subfield we give here is
general for any associative K-algebra and can be found for example in R.S.
Pierce’s book Algebra on page 234 (see references).

Definition 2.43. A subfield of a K-algebra H is a subalgebra A of
H such that A is a field.

For division algebras we have a nice way of defining maximal subfields, see
Farb and Dennis book on page 114.

Definition 2.44. Let R be a division ring. A subfield L of R is max-
imal if L is maximal with respect to set inclusion.

For division algebras we have another special way to characterize their
maximal subfields. This happens because a subfield of a division algebra is
a commuting subring. Here we give the following proposition which charac-
terizes maximal subfields of division algebras, as presented in Lam’s book on
page 241.

Proposition 2.45. A subfield L of a division ring R is a maximal
subfield if and only if Cr(L) = L. If this is the case then Z(R) C L.

Remark. For division algebras we use use definition 2.44 to prove proposition
2.45. However, for algebras that are not division algebras, the definition of
a maximal subfield in the sense of definition 2.44 does not always coincide
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with maximal commuting subrings given by proposition 2.45. For more in-
formation and counterexamples on this issue, we recommend the reader Farb
and Dennis’ book on page 114.

2.4.4 Tensor product of algebras

The tensor product of algebras is another way to construct new algebras
from previous ones, say W and T, over the same commutative ring R. We
will make W ® T into an R-algebra. This construction can be found in Serge
Lang’s book Algebra (Lang, 2005, p. 629), although we give here a more
detailed explanation. Consider the bilinear map for a given w,t € W x T.

Bui:WXT —WaT
(W', ') = ww' @ tt’

By the universal property of tensor products, we have the unique induced
R-module homomorphism

ﬁ*(wﬂg) WRXT —WRT
=1 =1

We notice that B, is bilinear for w and ¢. This leads us to consider the
following bilinear map with a fixed )", w; ® t; € W & T in order that our
map becomes well defined.

a:WXxT —WxT
i=1 i=1
From this we get a unique induced R-module homomorphism for a fixed
St wiet, e WRT.
a  WRT —WeT

Z wj ®t; — Z 5*(wj,tj)(z w; ® ;)
j=1 j=1 i=1

Similarly, we can obtain another linear map as «a, but with multiplication
from the right. First we define the bilinear map

ﬂw/7t/2WXT—>W®T
(w,t) — ww' @ tt’
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Now, in a fashion similar to which we got ., now we obtain the R-module
homomorphism o,.

o WRT —WT
Do wi @t Y Bunan (D w; O ;)
i=1 i=1 j=1

From the definition of bilinear map, we have that «, and o, are the two
R-linear maps in the bilinear map

WRT)x (WT) —WT

such that (w @ t)(w' @ t') = (ww' @ tt').
This map is associative, has multiplicative identity 1 ® 1 and we have the
natural ring homomorphism

pR—WT
r=rl=1Qr

Therefore W ®T is an R-algebra, also called the ordinary tensor product.

2.4.5 The real numbers, complex numbers, quaternions and oc-
tonions

The set of real numbers R is a field and is trivially a finite dimensional
associative division algebra over the real numbers. The set of complex
numbers C is a field that has the real numbers as subfield; however, since
C is a field it is not a central algebra over the real numbers. We note that
the complex numbers are “finite dimensional over R with basis {1,i} where
i is the imaginary unit of C with the property i = —1” (Conway & Smith,
2003, p. 1).

The set of quaternions H is a 4-dimensional associative division algebra
over the real numbers. They are “formal expressions xg + 1t + T2j + x3k
where xg, x1, 2, r3 € R. Furthermore, we have that 1, i, j, k are the basis
of the quaternions and satisfy Hamilton’s celebrated equations

17k = —1
==k =-1
We use Hamilton’s equations to multiply any two quaternions and note that

they are not commutative but associative” (Conway & Smith, 2003, p. 11).
We have also that given a quaternion xy+ x1i + x2j + x3k then its inverse is
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$0—$1i—$2j—$3]€
xd + a3 + 23 + 23

The set of octonions O is an 8-dimensional division algebra over the real
numbers but “they are not associative” (Baez, 2001, p. 145). Baez(2001) in
his article on the octonions mentions that “the unit quaternions e; € O for
1 =1,...,7 including 1 are the basis elements of the octonions and their mul-
tiplication with the exception of 1 is given in the following multiplication
table:”

£1 €2 £3 €4 €s €q E7
€1 —1 €4 e7 —Ea €a —Es5 —E3
€2 —E4 —1 €5 €1 —E3 €T —ER/
€3 —Ee7 —E5 —1 €6 €2 —E4 £1
€4 £ —E] —Eg —1 eT €3 —E5
€5 —Eg €3 —Eg —ET —1 €1 £4
Ea €5 —EeT £ —E3 —E] —1 €2
ET7 €3 €6 —E] €5 —E4 —E2 —1

Figure 2: Unit octonion multiplication table (Baez, 2001, p. 150)

Notice that the above multiplication table is non associative, for example
take the units es, e4, and e5; then, we have for one part (eseq)es = eges = —e;
and for other part ez(ese;) = eger = e1. Thus the octonions are clearly non

.o . 7 .
associative. Furthermore “for any octonion zo+ ) ;_, x;e; we have its inverse

7
To = D g Ti€i
2 7 2
Ty + Zi:l Z;

where the denominator of the inverse is the square of the norm of the
octonion” (Baez, 2001, p. 154). The norm of an octonion is the sum of the
square of its coefficients. The reader can verify that the octonions contain a
subalgebra isomorphic to the quaternions and another algebra isomorphic to
the complex numbers.

We have only mentioned the octonions for the sake of completeness, to
know that there exists an algebra that is a finite dimensional division algebra
over the real numbers but not associative that contains the quaternions and
complex numbers. For a lot more information about all the algebras covered
in this chapter including applications, the reader can study the article “The
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octonions” by Baez(2001) and the book “On Quaternions and Octonions:
Their Geometry, Arithmetic and Symmetry” by Conway and Smith(2003).
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3 Preliminary results

The preliminary results are the theorems, propositions, lemmas, etc which
will help us prove our main theorem. Before that, we remind the reader a
convention we adopted when dealing with endomorphism rings of modules.
Our convention for endomorphism rings says the following: Let M be a left
R-module and W = Endg(M), then M is naturally a right W-module and
given arbitrary f,g € Endr(M) instead of writing (fog)(m) we write (m)g f
for the composition of endomorphisms. Similarly, if we begin with a right R-
module M, then M is naturally left W-module where W is the endomorphism
ring of M. These conventions help us avoid the formation of opposite rings.

Let E be a ring and consider it a left regular module E. It turns out that
we can obtain explicitly EndgFE which is equal to the set of endomorphisms
of multiplication by the right by any e € E.

Proposition 3.1. Let E be a ring and ,E the left regular module of
E. Then, EndgE = {T.| e € E} where

.. FE — FE

T — xe

Proof. First we show that {T.| e € E} is indeed an endomorphism of ,FE.
Let T, and €' € E be arbitrary, then we have

T.(x+y) = (r+y)e =xe+ye which implies T.(x+y) =T.(x)+ T.(y)
T.(e'x) = (¢'x)e = €'(xe) which implies T,(e'z) =€ T.(x)

Thus {T.} C EndgE. Now let f € EndgFE be arbitrary, the endomorphism f
is determined according to where f sends the identity of E. We have f(1) = e

thus for any € E we have zf(1) = ze and consequently f(z) = xe, then
f=T.. We then get EndgE C {T.}, therefore EndgE = {T,}. O

To see the usefulness of considering the composition of endomorphisms
f, g of an R-module M as (m)gf instead of (f o g)(m) we show the ring
homomorphism of £ and EndgFE. Example:

The map g : F — EndgFE given by e — T, is an homomorphism, indeed
we have

1. g(x +vy) = Ty = T + T, then g(x +y) = g(x) + g(y).

2. g(zy) = Ty, but T, is the map w +— wzy where w € E. Notice we have
wry = ((wz)y), thus we get Ty (w) = Ty(T,(w)) = (T,0T,)(w). By our
convention on composition of endomorphisms we have (T}, o T} )(w) =
(m)T.T, then g(zy) = g(x)g(y).
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Notice again that for the endomorphism composition we have used our con-
vention. If we had not used it, we would have obtained a ring homomorphism
of R? and EndgFE which is exactly what we want to avoid.

We now prove the following proposition, important for left artinian mod-
ules:

Proposition 3.2. Let M be a left R-module. M is left artinian if and
only if for any submodule N, implies N is left artinian and M /N is left
artinian.

Proof. Let M be a left R-module.

= Suppose M is left artinian. Let N be an arbitrary submodule of M, then
any descending sequence of submodules of N is also a descending sequence
of submodules of M, hence it must stabilize, and thus N is left artinian. Let

WiDWe D W52 --- (1)

be any descending sequence of left modules of M/N. We use the canonical
projection m : M — M/N to get a descending sequence of submodules of
M given by

a (W) Da i (W) D H(W3) D - -

which must stabilize, and thus the descending sequence 1 must stabilize as
well. Hence, M/N is left artinian.

< Suppose any submodule N of M is left artinian and M /N is left artinian.
Let N = {0}, the trivial group, so M/{0} is left artinian by hypothesis. We
notice M = M /{0} as R-modules. Thus, M is left artinian. O
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3.1 Endomorphism ring of infinite dimensional vector
spaces over division rings is not simple

We obtain the endomorphism ring of any finite direct sum of R-modules
E\, Es, ... E,.

Proposition 3.3. Let {E;};c; be any finite family of R-modules, de-
note |I| = n € Z", and let @], E; be their direct sum. Then,
for any f € Endgr(@;_, E;) exists R-module homomorphisms f;; €
Hompg(E;, E;) where i, j € I such that f is the map multiplication by
a matrix given by

I e — DE
i=1 j=1

Jiu fiz2 o fin T
Jor fo2 0 fon T2

(Il,l’g,...,xn)f—) . . . . .

fnl fn2 fnn Tn

Proof. Let {E;}ie; be any finite family of R-modules, denote |I| =n € ZT,

and let E = @, E; be their direct sum. Let f € Endr(@;_, E;) arbitrary

f : @Ez — @EJ
i=1 j=1

Let {v; : A; — A}ics be the family of canonical injections from E; into
E (see the direct sum subsection). By the universal property of direct sum
of modules we have the family of R-module homomorphisms: for all i =
1,2,3,...,n

fi B, — éEj
j=1

which induces a unique R-module homomorphism

i=1 j=1

(21, Ta, ooy ) — Z(fm))
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Define for any j € I the submodule of E given by W; = {x € E |
§™" component of x equal 0}. Define for any j € I the quotient R-module

E/W;, the mapping

pj: E/W; — E;

[(131,372,"' y Ljy e ,I’n)] HSU]

is well defined and is an R-module isomorphism for any j € I. Additionally,
we have the canonical map m; : E — E/W; for any j € I. Define f;; =
pjomjo f; for all 4,5 € I, thus f;; € Homp(E;, E;) for any 4, j € I.

Notice that for any ¢« € I and any x; € E; we have

fz(%) = (flz'(il?i)7 f2¢($i), T 7sz'($¢), T 7fni($i))
We then have

f : @Ez — @EJ
i=1 j=1

(21,32, @) — Y (fri(@s), faslwi), o o), fuili)

=1

Therefore we can represent f € Endg(@D;_, E;) by a map multiplication by
a matrix given by

fEPE— PE;
i=1 j=1

Ju fiz o S T
Jor foo 0 fon )
(71,20, ..., 1) . . . .
fnl fn2 e fnn T
Since f € Endg(EP]_, E;) is arbitrary, the proposition is proved.
]

Now we will consider endomorphism rings of infinite dimensional vector
spaces over a division ring, however we are only interested in them because
they are not simple rings. More information about these endomorphism rings
can be found on pages 415 and 424 from the book Algebra by Hungerford
(Hungerford, 1974). The following proposition is actually an exercise on page
424 from Hungerford’s book.



42

Proposition 3.4. Let V be an infinite dimensional vector space over
a division ring D. If H is the set of all @ € Endp(V) such that a(V)
is finite-dimensional, then H is a proper ideal of Endp (V). Therefore
Endp(V) is not simple.

Proof. Let V be an infinite dimensional vector space over a division ring D.
Let H be the set of all « € Endp(V) such that ia(V) is finite-dimensional.
Clearly, we have H C Endp(V), it is a proper subset because the identity
homomorphism of V' does not have a finite dimensional image. Now we show
that H is an ideal of Endp(V). Let h,w € H, a € Endp(V) arbitrary

1. The zero map is element of H since its image is generated by 0. We
also have (h4+w)(V) = h(V)4+w(V) which is finite dimensional. Thus,
H is a subgroup of the additive group of Endp(V).

2. Now for any a € Endp(V) and h € H we have that (hoa)(V) is finite
dimensional because (hoa) (V) C h(V). Now we consider (aoh)(V), let
{v1, 19, ..., v, } be the basis for h(V'), then the homomorphism (aoh)(V)
is determined by the image of the basis vectors under . We have
that (a o h)(V) has basis of some subset of {a(11),a(11),...,a(v,)};
consequently (a0 h)(V) is a finite dimensional vector space.

Thus, H is a proper ideal of Endp(V'). We conclude that Endp(V) is not a
simple ring. O

3.2 Classification theorem of simple left artinian rings

This theorem was discovered by Wedderburn and Artin first for finite di-
mensional simple algebras and then for simple left artinian rings. Books on
noncommutative rings study these theorems and their applications exten-
sively, such as (Lam, 2001) and (Farb & Dennis, 1993). In this subsection we
are going to prove the classification theorem of simple left artinian rings by
using the double centralizer property. After that, we prove propositions
that use this classification theorem and are important for the proof of our
main theorem.

Theorem 3.5 (Double centralizer property). Let R be a simple ring
and I a non-zero left ideal. Let D = Endg(I), so I is right D-module.
Then the natural map

f:R— End(Ip)
re,T
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where ,T" is defined by

,J :N— N

T =TT
is a ring isomorphism.

Proof. Let R be any simple ring and / a non-zero left ideal. Let D =
Endg(I), so I is right D-module, and denote H = End(Ip). Let . T €
End(Ip) where r € R, which is left multiplication by r. Define the natural
map

f:R— End(Ip)
7=,

we check that it is a ring homomorphism

L f(x+y) =,,,T but T isn+— (r+y)n = wzn+yn which implies
fle+y)=,T+,Tso fx+y)=f(x)+ f(y).
2. f(

. fley) = ,, T but T is given by n — (zy)n = z(yn) thus ,, T =
I o, T. From this we have f(zy) =,T o, T so f(zy) = f(z)f(y).

Hence, f is a ring homomorphism. The kernel of f is the set of annhiliators
of the module ,I which is an ideal of R. Since R is simple and [ is non-zero,
we have that ker(f) = Ann(gzI) = 0. Thus, f is injective. To show that f
is onto we use the fact that I is a non-zero left ideal. First, we note that for
any a € [ the map

go: I — 1
Yy = ya

is R-linear thus {g, |a € I} C End(gzl). We showed f(R) C End(Ip).
We must show f(R) contains End(Ip). Now for any n’ € [ and h € H =
End(Ip) we have

(ho (f()))(n) = h(n
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In this way Ho f(I) C f(I). We notice that I being a left ideal and R having
a multiplicative identity, i.e RI = I, allow us to have the equation

Also we have f(I)o f(R) = f(R), observe IR ={>""  a;r; |a; € [ and r; €
R} is a two sided ideal of R, which equals R because I is non-zero. From
this we obtain

Ho f(I)

C
Ho f(I)o f(R) C
Ho f(R) C f(R)

f()

fI)e f(R) = f(R)

Now we also have that f(R) is an additive subgroup of H, hence f(R) is a
left ideal in H = End(Ip). We notice that the identity of H is f(1) =T,
but f(1) € f(R) which implies End(Ip) C f(R). We get End(Ip) = f(R),

therefore f is a ring isomorphism. O

The classification theorem for simple left artinian rings says that any such
ring is isomorphic to a matrix ring with entries in a division ring. We now
prove this theorem.

Theorem 3.6. Let R be any simple left artinian ring. Then R =
M, (D) for some n and some division ring D, with n unique and D
unique up to isomorphism.

Proof. Let R be a simple left artinian ring. Consider a descending sequence
of left ideals of R, which do not contain the identity. Since R is left artinian,
this sequence has a minimal non-zero submodule which is a minimal non-
zero left ideal I of R. We apply to R and I the previous theorem (double
centralizer property), then

R = Endp(I)

where D = Endg(I), and I is naturally a right D-module.

Since [ is a simple R-module, then it is a cyclic module and every element
of I generates I as a cyclic module. Notice that any non-zero mapping d € D
must have trivial kernel (0) because the kernel of d must be either I or (0) in
I'; additionally, we have d(I) = I because the image is a non-zero submodule
of I, thus d is an isomorphism and consequently has an inverse in D. Hence,
D is a division ring.

We have that I is a vector space space over the division ring D so [ has a
basis over D. This basis is finite because otherwise if [ is infinite dimensional
over D then End(Ip) has a non-trivial proper ideal by proposition 3.4 which
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contradicts the fact that it is a simple ring because R = End(Ip). From this
we have End(Ip) = M, (D). Consequently we get

R = M, (D).

We have that M, (D) has minimal left ideals. A minimal left ideal of
M, (D) consists of the set of matrices whose columns are zero except for one
column. From this we have that M, (D) has n minimal left ideals V; for
t=1,2,...,n, all of them isomorphic as left R-modules and also V; N'V; =0
when ¢ # j. Consequently, we have an R-module isomorphism M, (D) =
@D,_, Vi so R has also this direct sum decomposition as a regular module
into simple R-modules, thus n is uniquely determined (this sum cannot be
further decomposed into simple modules).

Now, for a given minimal left ideal I of R we got D = Endg([). We claim
that the ring D is unique up to isomorphism. Let I’ be any other minimal
left ideal of R and recall that we have an R-module isomorphism [ = [’
Consider the map

g: Endg(I) — Endg(I")
d—hodoh™t

where h is the module isomorphism I = I’
We claim ¢ is a ring isomorphism. Recall both endomorphism rings are
division rings.
1. g(dy+dy) = ho(dy+dy)oh™ = hodyoh ™' +hodyoh™ = g(dy) +g(d>)
2. g(dyody) = hodjodyoh™ = (hodyoh™)o(hodyoh™) = g(dy) o g(ds)

3. Let y=hodoh ! € End(gI') arbitrary then d = h™! o y o h maps to
y; hence, g is onto.

4. The map g is non-zero, also End(zI) is a simple ring because it is a
division ring. Since the kernel is an ideal of End(,I) we have ker(g) =
(0) because End(g1) is a simple ring.

From this we have that D = End(gpI) = End(zI") = D'; thus, the division
ring D is unique up to isomorphism. O

The following proposition gives a “nice characterization of simple left ar-
tinian rings” (Auslander & Buchsbaum, 2014). However, we prove it here in
a different fashion.

Proposition 3.7. Let R be a left artinian ring. R is a simple ring if
and only if R has a faithful simple submodule.
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Proof. Let R be a left artinian ring.

= Suppose R is a simple ring, then it is isomorphic to a matrix ring
over a division ring by the classification theorem of simple left artinian rings
(theorem 3.6). Thus, R contains a faithful simple submodule.

< Suppose R has a faithful simple submodule N. Since N is a faithful
simple submodule of R, we have that N is a unique simple R-module up to
isomorphism. Observe that isomorphic modules have the same annhiliator.
Hence, each minimal left ideal of R obtained from any descending sequence of
modules without identity of the left regular module R is a simple R-module
isomorphic to N. Therefore, the left regular module R has only one isomor-
phism class of simple left ideals, which are isomorphic to N. Let {L;};c; be
the family of all simple left ideals of R, recall that all of them are isomorphic
to N as R-modules, indexed by some indexing set I. Let

W =P L (2)

i€l

be the direct sum of all simple left ideals of R. Notice that there is an em-
bedding of ;¢ 1\ (i, ip.is,...im) Li for each m =1,2,3, ... into the direct sum W
given by the universal property of direct sum of modules with the family of
homomorphisms {; }icn\(i1,i0,s,...im} Where 3; maps each direct summand L;
in ®i61\{i1,i2,i3,...,im} L; into the direct sum W such that 8; maps x € L; to
the i component of the family (z;);c; € W and having all other components
equal to zero.

Since R is left artinian then the descending sequence of W in equation 2
given by

WD @Lig @ L; D @ L;D...D @ L;D...

ie[\{il} iEI\{il,iQ} iEI\{il,iz,iS} ie[\{il,ig,ig,...,im}

stabilizes for some k € Z* and ®iel\{i17i2,i3w~,ik} L; = L; for some j € I. We
observe that I'\ {i1, 2,13, ...,7x} = {j}, thus we rename j = iy =iy, t € ZT,
with £+ 1 =t and we get I = {iy, 9,13, ...,7;}. Consequently, the indexing
set J ={1,2,3,...,t} is the indexing set of the family of all simple left ideals
of R.

Hence, we have

W =P L —@L (3)

ied
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Given the family of R-module homomorphisms { f;};c; where

r+—x

by the universal property of the direct sum of modules we obtain the unique
induced R-module homomorphism

fW—R
(73)ics — Zfz(ifz)

ieJ

We claim that f is a R-module isomorphism. To show f is onto, suppose
that the quotient R-module R/ f (W) is not isomorphic to the trivial module.
By proposition 3.2 we have that R/ f(W) is left artinian, thus R/ f(WV) has a
simple R-module which we denote ¢ and is generated by any non-zero element
[v] € ¥, so for any r € R and representatives [v1] = [vs] we have rv; — rvy €
f(W). However, since [vs] also generates ¢, without loss of generality we
conclude that the set {rvy|r € R} is a simple left ideal in R which is not in
the family of all simple left ideals {L;};cs, hence a contradiction. Thus, we
have the R-module isomorphism R/f(W) = {0} which implies that for any
re Rwegetr—0=r¢c f(W). As aresult, R= f(W) so f is onto.

To show that f is one to one we notice that L, L; = () for any two 7,5 € J.
This shows that f((z;)ics) can only be zero when all components in (z;);cs
are zero which implies ker f = (). Therefore, f is one to one. We proved that
f is a R-module isomorphism.

Finally, we show that R is simple by proving that R is isomorphic to
a matrix ring over a division ring. Recall that we let N be the unique
faithful simple module of R up to isomorphism, so we have the R-module
isomorphism

o @ N —W
ieJ

Let ¢ = f o 0. Define the ring homomorphism map

¢ : Endp(R) — Endp(EH N)
ieJ

h— 1y tohot

It is easy to verify that ¢ is a ring isomorphism. Recall that we have the ring
isomorphisms R = Endgr(R) by our convention on endomorphism rings and
Endr(@,c; N) = My(D) where t = |J| and D = Endg(N) by proposition
3.3. Since M;(D) is a simple ring then R is a simple ring. O
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Corollary 3.8. Let R be a simple ring and M a left R-module. If M is
left artinian then there exists an R-module isomorphism M = @ W,
where W is a unique up to isomorphism faithful simple R-submodule of
M and n is the number of faithful simple submodules of M isomorphic

to W.

Proof. Let R be a simple ring and M a left R-module. Suppose M is left
artinian. Then M has a non-trivial simple R-submodule H, furthermore
H is a faithful simple R-module because it is non-trivial and R is a simple
ring. In the proof of proposition 3.7, replace the left artinian R-module
R with our left artinian R-module M and the replace the faithful simple
module P of R with our H. Next, employ the same reasoning that was used
to show that if R has a faithful simple R-submodule then R is simple but
only until we proved the R-module isomorphism R = @ | P where n is
the number of faithful simple submodules of R. Instead, we obtain the R-
module isomorphism M = @ | H where n is the number of faithful simple
R-submodules of M and H is unique up isomorphism. O

We also prove here “Burnside’s proposition” (Farb & Dennis, 1993, p. 45)
by using the first isomorphism theorem of rings and proposition 3.7.

Proposition 3.9 (Burnside). Let R be a an algebra over the field K
and M a simple left R-module with dimg (M) finite. If Endr(M) = K

then the map

f:R— Endg(M)
r—,T

where Endg (M) is the endomorphism ring of M as a right K-module
and . T is multiplication on the left by r € R, is onto.

Proof. Let R be a an algebra over the field K and M a simple R-module
with dimy (M) finite. Suppose Endg(M) = K, then M is naturally a right
K-module. Define the map

f:R— Endg(M)
r—,T

of R into the endomorphism ring of M as a right K-module, where T is
multiplication on the left by » € R. We use the first isomorphism theorem
of rings to get the ring isomorphism

n:R/Ann(M) — f(R) (4)
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The ring f(R) is a subring of the ring Endy (M) which is finite dimensional
over K, thus f(R) is also finite dimensional over K and hence left artinian.
Since the ring R/Ann(M) is isomorphic to f(R) it follows that R/Ann(M) is
left artinian. Furthermore, we notice that M is a faithful simple R/Ann(M )-
module.

We use proposition 3.7 on the ring R/Ann(M) to conclude that R/Ann(M)
is a simple left artinian ring. Now by theorem 3.6 applied to the ring
R/Ann(M) together with Endgr(M) = K, by hypothesis, we conclude that
R/Ann(M) is ring isomorphic to Endg (M ). It follows that f(R) = Endx (M)
which implies that f is onto. O

3.3 Tensor product distributes over finite direct sum
of modules

This following proposition is very useful when dealing with tensor products
and finite direct sums.

Lemma 3.10. Let F; and Z be modules over R for i = 1,2,...,n. If
E =@, , E; then we have the R-module isomorphism

Z®Eg@(Z®Ei)

=1

Proof. For E and each i = 1,2, 3,...,n we have the canonical projections to
a single component of the direct sum

pi BB — FE

(1, T2y oy gy ooy ) = (0, oy 4, ..., 0)

We notice that p; o p; = 0 when ¢ # j. R-module homomorphism between
tensors are done component wise by definition, from this we define the R-
module homomorphism for each i =1,2,3,...,n

Ti(idz, pi) : Z® E — E(Z ® pi(E))
i=1

ZZJ'@.%‘]'I—) (0, ,O,ZZJ'@,Oi(Ij),O,"' ,0)

j=1 j=1

We notice that T;(idz, p;) o T;(idz, pj) = T (idz oidyz, p;o p;) thus T;(idyz, p;) o
T;(idz,p;) = T(idz,0) = 0 for i # j and 0 is the zero homomorphism.
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We observe then that each T; is a canonical injections on ) _,(Z ® p;(E)).
Therefore their sum )" | 7; is an isomorphism of Z®E and @_,(Z®p;(E)).

Observe that for all : = 1,2,...,n we have R-module isomorphisms Z ®
pi(E) 2 Z ® E;. By the universal property of direct sum of modules and
the R-module isomorphisms Z ® p;(F) = Z ® E; for alli =1,2,3,...,n we
obtain the unique R-module isomorphism B}  (Z®p;(E)) = @ ,(ZRE;).
Therefore we have shown the R-module isomorphism Z ® E = @) (Z ®
E;). O

3.4 Properties of K-algebra tensor products

As we said earlier, we consider only algebras over a field that are associative
and have multiplicative identity. Let A and B be K-algebras and form the
tensor product of algebras A ® B, we have the K-algebra maps

p:A— ARk B
a—a®l

nB—>A®KB
b—1®5b

We can view the algebra A ®x B as a free A-module by using the map p
and observing that B itself is a free K-module, i.e B = @jGJK with the
isomorphism
A®KB:A®K®KQ®A®KK
jeJ jet

thus if {e;} is a basis for B then {1®e;} is a basis for A®x B as an A-module.
We can view in the same way the algebra A®x B as a free B-module by using
the n map. Any element of a free module is zero only when all coefficients are
zero, this implies that the maps p and 7 are injective so they are canonical
inclusions; hence, there is a K-algebra isomorphism of A and B in A ®; B.

We also note that (a®1)(1®b) = (1®b)(a®1) for any a € A and b € B.
Thus A and B are commuting subalgebras of A ® B. Now we will prove a
universal mapping property of A ®x B as a K-algebra.

Theorem 3.11. Given any K-algebra 7T, and any pair of K-algebra
homomorphisms f : R — T and g : S — T such that f(R) and
g(S) commute and f|x = g|k, then there exists a unique K-algebra
homomorphism A : R® S — T such that hoT = f and hof =g
where 7 is the canonical injection of R in R ® S and 6 is the canonical
injection of Sin R® S.
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Proof. Let T be an arbitrary K-algebra, and any pair of K-algebra homo-
morphisms f: R — T and g : S — T such that f(R) and ¢(S) commute
and f|r = g|g. Since f(R) and g(S) commute and f|x = g|x we can define
the K-bilinear map

V:RxS—T
(r,s) = f(r)g(s)

Indeed we have that (kr,t) = (r, kt) for any k € K and W is K-linear when
r or t are fixed. However, since f and ¢ are K-algebra homomorphism, we
actually have K-algebra homomorphisms when r and ¢ are fixed. Thus by
the universal property of tensor products we have a unique induced R-linear
map

h:R®S—T

m

Z r; QS = Z f(ri)g(si)

i=1
we show that is also a K-algebra homomorphism

m n

WO ri@s) (D rj®s;)) = h(z ZW‘J' ® 5:8;)

i=1 j=1 i=1 j=1

= h((z T ® Si))h((z rj ® s;))

i=1 j=1

we also show that h maps the multiplicative identity in R ® S to the multi-
plicative identity in T, we have

h(1®1) = f(1)g(1) =1
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Thus A is indeed a K-algebra homomorphism. We also have the tensor map

w:RxS—R®S
(r,s) »r®s.

We can identify R with (R,1) and S with (1,S5). We have the canonical
inclusions ; : R — R x S and 15 : S — R x S. Now we compose the
previous canonical inclusions with the tensor map to get 7 = ¢ o1y, which is
the canonical inclusion of R in R® S, and § = ¢ o1y, which is the canonical

inclusion of S in R® S. Therefore h is the unique K-algebra homomorphism
such that hor = f and ho 6 = g. O

3.5 Tensor product of a simple algebra and a central
simple algebra is a simple algebra

The following theorem will be an important technical step in proving a the-
orem involving maximal subfields of finite dimensional associative division
algebras. This theorem can be found in Herstein’s book Noncommutative
Rings (Herstein, 1971) on page 90.

From there we will use the key idea that there exist elements in the tensor
product of a simple algebra B and a central simple algebra A over the same
base field K with the least number of non-zero summands in their linear
combination. We mean if n is such number of non-zero summands then any
element x of the tensor product with number of non-zero summands less than
n imply x = 0. Now we give the proof of the theorem.

Theorem 3.12. If A is a central simple algebra over K and B is a
simple algebra containing K in its center then A ®x B is a simple
algebra.

Proof. Let A be a central simple algebra over K and B a simple algebra
containing K in its center. Let I be a non zero ideal of A ®x B, clearly
I C A®g B. Pick x € I with the least number of non-zero summands of its
linear combination, say x = 22:1 a; ® b;; thus, if 2’ has a number of non-zero
summands n < r then 2/ = 0.

We have that A®1 = {a®1 |V € A} is a subalgebra of A®y B. From the
element x in A®k B that we picked before, we have that (A®1)z(A®1) € 1.
Thus 22:1 ha;t ® b; with h,t € A arbitrary is element of I.

We recall that A is a simple algebra, thus AaA = A for any a € A, from
this we can write the multiplicative identity of A as 1 = > | s;at;. Next,
we choose elements in the set {};_, hait @ b; | h,t € A} C I and sum them
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such that we obtain y =1 ®b; +a), ® by + ... +a. ® b, € I and note that y
has same number of non-zero summands has our picked z.

Now we notice that (a ® 1)y — y(a ® 1) € I for arbitrary a® 1 € A® 1,
consequently ¢’ = (a—a)®by + (aa), —aba) @by + ...+ (aal. —al.a) @by € I. We
observe that the first term of 3 is zero, thus ¢’ has less number of non-zero
summands than z, which implies y = 0. We know that B has a basis {e;}
over K, with j an element of some index set J, and we can make A ®x B an
A module by the ring homomorphism

n:A— A®g B
a—a®l

From this we have that A ® B is free over A with basis {1 ®e¢; |j € J}.
Since y' = 0 this implies aa), —aba = 0 which can only happen if a, € C(A) =
K (recall A is central, thus its center is its base field). We observe also that
since K is in the center of B, we have that y can be written in the following
way

1 +ay®@by+ ... +a, @b, =10, +1 RV, +...+ 1@,

From this we have that 1 ® (b + b5, + ... +b,) = 1 ® b € I. Consequently,
(1eB)(1eV)(1®B)=1®B € I. Since 1® B € I, then (A®1)(1®B) € 1.
We have A ® B C I, thus A® B = [. Therefore, A ®x B is a simple
algebra. O]

We also give the following proposition that says that the tensor product of
two central simple algebras (CSA) is a central simple algebra. This proposi-
tion will help us define later the Brauer group of a field in the applications
section.

Proposition 3.13. Let K be a field. If A and B are CSA over K then
A®g B is a CSA over K.

Proof. Suppose K is a field. Let A and B be any CSA over K. We form the
algebra A® k B (which we know is simple by Theorem 3.12) thus, we just have
to prove that the center of A®g Bis K. Let x =3 " a; ®b; € Z(A®k B)
be arbitrary (recall Z(S) is the center of an algebra S). We have for any

y= Z?:l a; ®b; € A®gk B the property

Z Z a;a; & blb] = Z Z a;ja; @ b]bz

j=1 i=1 j=1 i=1
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We observe that a;a; = aja; and bb; = bjb; for any ¢« = 1,2,...,n and
7 = 1,2,....m, thus a;,b; € K; from this, it follows * € K ®x K = K.
Consequently Z(A®g B) C K @k K. Now if z € K ®f K is arbitrary then
clearly z € Z(A®g B). From this we have K @ x K C Z(A®xk B). Therefore
Z(A®k B) = Z(A)®@k Z(B) = K. We have shown that the center of A®x B
is K, thus is a CSA over K. n
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4 Proof of main theorem

The main theorem states that “any finite dimensional associative division
algebra of finite dimension over the real numbers is isomorphic to either the
real numbers, complex numbers or quaternions” (Palais, 1968). We are going
to see the fundamental role that maximal subfields play in this classification
theorem. They are the reason that there are not associative division algebras
of dimension 3 over the real numbers, and also that quaternions are the only
noncommutative associative division algebra of dimension 4 over the real
numbers.

Let D be any finite-dimensional associative division algebra over the real
numbers. This proof will be done by cases considering D as either non-
commutative or commutative. First, we consider the noncommutative case
to deduce the properties and dimension of D as R-algebra, and after that
the commutative case, which is basically to consider the field extensions of
R. The classical form of Noether-Skolem theorem is the key to prove an
isomorphism to quaternions in the noncommutative case.

4.1 Dimension over center is a perfect square

An algebra can be either commutative or noncommutative. We work in this
subsection in the noncommutative case. Let D be a noncommutative finite-
dimensional associative division algebra over R. We observe that for the
noncommutative case we get Cp(D) = R, thus Z(D) = R. Consequently, D
is finite dimensional over its center.

We prove the following theorem that gives us the surprising result that “the
dimension of D over its center is a perfect square” (Herstein, 1971, p. 91). We
give here a more detailed proof of this theorem.

The following proposition (Herstein, 1971, p. 50) is a key step to prove the
mentioned theorem.

Proposition 4.1. Let F' be an algebraically closed field. If B is a
division algebra that is also algebraic over F' then B = F.

Proof. Let F be an algebraically closed field and B a division algebra alge-
braic over F. First, we have by definition of algebra that F© C B. Further-
more, we have that F' splits every polynomial in f(x) € F[x] because F is
algebraically closed. Let h € B arbitrary, since B is algebraic over F' then
there exists a polynomial g(z) € F|x] such that g(h) = 0. Since g(x) splits
in F' we have that

0=g(h)=(h—fi) (h—fa2) ..(h — fn)
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However B is a division algebra, thus it does not have zero divisors, which
implies that at least one (h— f;) is zero. Hence, h = f; for some i = 1,2, ..., n.
Since h € B was arbitrary we have B C F. Therefore B = F. O]

Theorem 4.2. If D is a finite-dimensional division algebra over its
center K, then the dimension of D over K is a perfect square.

Proof. Let K be an algebraic closure of K and D be a finite-dimensional
division algebra over its center K. We have that D and K are K-algebras.
We form the K-algebra D = K ®x D. We have that D is finite dimensional
over its center K, and consequently a finite free K-module, thus we get the
following K-module isomorphism

E:F®KD:F®K@KJ%EBF®KK§@F
=1 =1 =1

where we have used the following K-module isomorphism

g?—)?@KK
r—=rQgl

because for any a1, as € K and any k € K we have
Loglar+a) =(m1+a) @1l =a1 ®+as®1 = g(ar1) + g(as)
2. g(ka)=(ka)®@1=k(a®1) =k g(a)
3. g is injective because a @ 1 =0 < a =0

4. We have obviously g(K) C K ®x K. Let v € K ®x K arbitrary, we
observe v = " a; @ k; = Y0 kia; @1 =", a; ® 1; hence, we get

r=a" ® 1. Consequently = € g(K) and g(K) = K ® K. Therefore,
g is surjective.

From the previous K-module isomorphism and by recalling that D as an
algebra is a free K-module with basis {1 ® e;} where {e;} is a basis of D we
have .
D=KeoxD=PK (5)
i=1
Therefore, we conclude that [D : K] =[D: K]
Now by Theorem 3.12 we have that D = K ®x D is a simple algebra and
is also left artinian by the previous isomorphism; hence, by Theorem 3.6 of
the classification of left artinian rings we have the isomorphism

D = M, (D)
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for a unique m and some division ring D’ up to isomorphism. Furthermore,
we observe that D’ is a finite dimensional algebra over K because of iso-
morphism 5 and we recall that D’ = End(V) where V is a unique up to
isomorphism simple module of D and D is a finite free K-module. We apply
proposition 4.1 to D’.

We know that D’ is finite dimensional over K, thus D’ is algebraic over
K. Since K is algebraically closed and D’ is algebraic over K, then by
Proposition 4.1 we obtain I’ = K. From this we have

D = M, (K) (6)
_ Recall that D is a finite free K_—mﬂiule, thus by isomorphism 6 we have
[D : K] = m?, but we also have [D : K] = [D : K|. Therefore [D : K] = m?,
the dimension of D over its center is a perfect square. O]

We apply theorem 4.2 to our noncommutative D, recall if D is noncom-
mutative then D is an associative division algebra that is finite dimensional
over its center R. Therefore, we have that [D : R] = m? for some non-zero
integer m.

4.2 Maximal subfields and the commutative case

The following theorem elucidates the great impact of maximal subfields to
our noncommutative D. Recall that D always has maximal subfields; we
discussed about this fact in the Algebras subsection “Subfields of division
algebras”. The following theorem can be found on page 96 of Farb and
Dennis’ book Noncommutative Algebra(see references), we also give here a
more detailed explanation without using the theory leading to the Centralizer
Theorem (see page 93 of the same book) but instead Burnside’s proposition
which we proved in the section of the classification theorem of simple left
artinian rings.

Theorem 4.3. Let B be a central division algebra over the field K
and [B : K] = n?. If L is any maximal subfield of B then [L : K] = n.

Proof. Let B be a central division algebra over the field K and [B : K] = n?.
We have that B itself is a simple regular module, which is the key to our proof.
Let L be an arbitrary maximal subfield of B. We notice that B is naturally a
B bimodule, thus, we have the following K-algebra homomorphisms from
B and L to the endomorphism ring Endg(B)(observe it does not matter if
we consider B as a right or left K-module because K is in the center of B):

f:B— Endkg(B)
b—,T
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and

g: L — Endg(B)
l— T

Where T is ring multiplication by the left by b € B, and similarly 7; is
multiplication by the right by [ € L. We observe that since B is a B,
regular bimodule then f(B) o g(L) = g(L) o f(B), and furthermore, when
both f and g are evaluated in K, we get f(K) = g(K). This allows us to
apply Theorem 3.11 to obtain a unique K-algebra homomorphism

h:B®x L — Endy(B)

Thus, we view the bimodule zB; as a left B ® g L-module B. Notice that B
is a simple B ® L-module B, also by Theorem 3.12 we have that B ® L is
a simple K-algebra. Therefore, B is a faithful simple left B ® g L-module.

Now we obtain Endpg, .(B), first we observe that Endpg, .(B) C Endg(B)
thus, if ¢ € Endpgr(B) then g = g, i.e ring multiplication by the right for
some b € B

gbZB—>B
T — xb

Furthermore, we must have g,(zl) = gy(x)l for every [ € L. Consequently,
we have

gp(zl) = (x)b

gv(2)!
= (xb)l

We notice that bl = b thus b € Cg(L) = L,so b=1 € L. As a result,
L = Endpg,1(B) (7)

Recall that B is a simple B ®x L-module. B is finite-dimensional over L
because B is finite-dimensional over K by hypothesis (note any descending
sequence of L-modules of B is also a descending sequence of K-modules of
B), and B ®k L is also a L-algebra. Also recall L = Endpg, (B), thus
B is a right L-module. We can apply Burnside’s proposition 3.9 to the L-
algebra B ®y L and the simple B ®g L-module B to obtain the onto ring
homomorphism

0:B® L — Endy(B)

t t
d bl Y ToT,
=1 =1
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We claim that 0 is one to one. Since B is a division algebra, then B has
no zero divisors which implies that either b = 0 or [ = 0 in the § map. We
know by the properties of the tensor product that 0 ® { =b® 0 =0® 0 for
any b € B, [ € L. Hence, kerf = {0 ® 0}. Another way to prove 6 is one
to one is to notice that B ®x L is a simple K-algebra (as a result a simple
ring) and 6 is a non-zero homomorphism. Consequently,  is one to one. We
conclude that 6 is a ring isomorphism.

Since the dimension of B over L is finite, we let [B : L] = m. From this
we obtain the isomorphism
B L=~M,(L) (8)

From isomorphism 8 we have [B ® L : L] = m?, and also since B is central
finite over its center K we have [B : K] = [B ®x L : L]. Consequently, we
have [B : K] = m?. Furthermore, by hypothesis the dimension of B over its

center K is a perfect square, thus, we have [B : K] = n®> = m? so m = n.
But we had [B : L] = m and we also note that [B : L|[L : K| = m?, this
implies [L : K] = n. O

We apply theorem 4.3 to our noncommutative D by noticing that any
maximal subfield L of D must be isomorphic to C because L is an algebraic
closure of R and it is unique up to isomorphism. Hence, [L : R] = 2, by
Theorem 4.3 (which we just proved) we conclude that [D : R] = 4. This
property of the maximal subfields of the noncommutative D is the reason
that there is not associative division algebras of dimension 3 over R.

Commutative case: Suppose that D is commutative. Hence, we have
that D is a field which contains R, also [D : L] = 1 and has the property
[D:R] =[L:R]. It follows that either D = C or D = R.

4.3 Isomorphism to quaternions H

We prove in this subsection that the noncommutative D is isomorphic to the
quaternions H. To do this, we use our previous result that [D : R] = 4 and
the classical form of Noether-Skolem theorem which involves only a central
simple K-algebra and its simple K-subalgebras. The general form of Noether-
Skolem theorem can be found for example in Herstein’s book on page 99 and
Farb and Dennis’ book on page 93. We need the following lemma, found on
page 45 of Farb and Dennis’ book.

Lemma 4.4. Let A be any central simple K-algebra which is finite-
dimensional over the base field K and A° the opposite ring of A. Then,
there exists a K-algebra isomorphism A ® A% = Endg(A).
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Proof. Let A be any central simple K-algebra which is finite dimensional
over the base field K and AP the opposite ring of A. Notice that A is an
A-A-module, that is, a regular bimodule over A itself. Recall that Endy(A)
is the ring of endomorphisms of A as K-module, ,7 € Endg(A) is ring
multiplication on the left by a € A and similarly, T, € Endg(A) is ring
multiplication on the right by a € A. Define the K-algebra homomorphisms

h:A— Endk(A)
a1

and

f AP s Bndg(A)
a Ty

We note that h(a) o f(a') = f(d') o h(a) € End(A) for all a,a’ € A and
h(k) = f(k) for all & € K. We use the K-algebra homomorphisms h and
f with theorem 3.11 to deduce that A has the structure of a left A ® A°-
module. Our previous application of theorem 3.11 also gives us the unique
induced K-algebra homomorphism

g: A@K A% — EndK(A)

Z(ai ® ag) iaiT o Ty
i=1

=1

We claim that g is a K-algebra isomorphism. We use Burnside’s proposition
(proposition 3.9) to prove that g is onto. We first notice that Endag, aor(A) =
{Ty| k € K}, thus, we have the ring isomorphism Endag, aor(A) = K and
this implies that A is naturally a right K-module. Since ;T = T}, for all
k € K the structures of A as a left K-module and a right K-module are the
same, hence, Endg(A) is the same ring for both structures.

Now for any non-zero a” € A, consider the cyclic left A ®x A°P-submodule
{zd"| x € A®k A%} of the left A ®x A’-module A and observe that
{zd"| x € A®K AP} is a non-trivial ideal of A, but A is a simple algebra.
Thus, {za”| =€ A® A%} = A, since a” is arbitrary we conclude that A is
a simple left A ®x A°’-module A.

In summary, we have the K-algebra A®x A, A is a simple left A @y AP-
module, also 4 is finite-dimensional over K by hypothesis, and Endag . aor (A)
K. Thus by Burnside’s proposition the K-algebra homomorphism g is onto.

Finally, we show that ¢ is one to one by recalling that the tensor product
of a central simple K-algebra and a simple algebra which has K in its center

I
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is a simple K-algebra by theorem 3.12. We have by hypothesis that A is a
central simple K-algebra, A° is simple because any ideal of A is an ideal
of A°? and any ideal of A% is an ideal of A, and A° has K in its center.
Consequently, A @y A is a simple K-algebra. Since g is a non-zero K-
algebra homomorphism and A®x A is simple, then the kernel of g is trivial,
then g is one to one. Therefore, g is a K-algebra isomorphism of A ®x A%
and Endg(A). O

Theorem 4.5 (Noether-Skolem). Let A be any central simple K-
algebra which is finite-dimensional over K and let B be any simple
K-subalgebra of A. If f: B — A is any non-zero K-algebra homo-
morphism of B into A, then there exists an invertible element ¢ € A
such that f(b) = tbt~! for all b € B.

Proof. Let A be any central simple K-algebra which is finite-dimensional
over K and let B be any simple K-subalgebra of A. Suppose f: B — A'is
any non-zero K-algebra homomorphism of B into A. This proof of Noether-
Skolem theorem uses Herstein’s idea to consider the use of the K-algebras
B ®gk A and f(B) @k A.

First we use lemma 4.4 on A to get the K-algebra isomorphism

g: A®g AP — Endg(A)
D (m®a)= ) o ToTy
i=1 i=1
In lemma 4.4 we also showed that A is a left A @ A°?-module. Now we

consider the left B ® A’-module A and the left f(B) ®x A’-module A.
Since f: B — A is one to one, notice the K-algebra isomorphism

v :B®g AP — f(B) @k A”

Y biway) =Y (fb) ®aj)

i=1 i=1

Since B ®k A% is a simple K-algebra (notice A% is a central simple K-
algebra) and A is a left artinian B ®j A°’-module because A is finite di-
mensional over K, we use corollary 3.8 to get the B ®j A°?-module iso-
morphism A = @ | W where W is a unique up to isomorphism faithful
simple B ®x A°-submodule of A and n is the number of faithful simple
B ®x A°P-submodules of A.

Notice that both A and W are also left f(B) ®x A°-modules by the
K-algebra isomorphism . Again, by corollary 3.8 we have the f(B)®x A%-
module isomorphism A = @ | V where V is a unique up to isomorphism
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faithful simple f(B) ®k A°’-submodule of A and n is the number of faithful
simple f(B) ®g A°-submodules of A. Notice that n is the same number as
faithful simple B® i A°P-submodules of A. Thus, we have a B®  A°’-module
isomorphism

@:éW—)éV
i=1 i=1

which has the property ¢((b® a)x) = (f(b) ® a)p(zx) for arbitrary (b® a) €
B®g A% and for all z € @), W. Observe that ¢ is also a B&x A%-module
endomorphism of A and a K-module endomorphism of A. By the K-algebra
isomorphism g we have ¢ = > 1", T o Tg.

Since ¢ is an isomorphism, the sum » 7", T o T, must be invertible in
Endg(A). Observe that by the property of ¢ the invertible sum has the form
Yoi1a, T 0Ty where kj € K for i = 1,2,...,n. Thus, by a property of the
tensor product we must have ¢ =,7T" for some invertible ¢ € A.

Recall we had the property ¢((b ® a)z) = (f(b) ® a)e(x). We then have
T ((b®a)r) = (f(b) ® a),T(x) which can be written as tbza = f(b)txa.
Therefore, for arbitrary b € B we have f(b)t = tb, which implies f(b) =
tht~1. O

We apply the classical Noether-Skolem theorem to our noncommutative D
by setting a maximal subfield L C D as our simple K-subalgebra, and using
the K-algebra homomorphism

f:L—D
a+bi— a—bi

where i? = —1 and a,b € R, thus t € D exists such that a —bi = t(a+bi)t~".

Observe that t ¢ L because otherwise it would commute with a + bi and
f would be the identity mapping. Also observe a + bi = t*(a + bi)t~2 which
implies t* € Cp(L) = L or t* € Cp(D) = R. Suppose t? € Cp(L) = L,
consequently there exists € L such that >+ = 0. In this case >+ = 0 has
solutions in L, hence t € L. However, recall ¢t ¢ L, we have a contradiction.
Hence, we must have t> € R. As a result, > +r = 0 for some r € R. If r < 0
then ¢ € R which is a contradiction because we observed that ¢ ¢ L. Hence,

r > 0 which implies t* = —r. Since r > 0 then there exists a positive number
u € R such that r = u?. So we have t? = —u?,
Since (tu')? = —1 we define j = tu~!. Observe that we also have

(t7'u)® = —1 and define ;' = t~'u = —j. We showed that there is an
element j € D\ L with the property j2 = —1.
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Next define k =45 € D. From this we have

k{—k} = (ij){—(ij)}
—k* = i{ji(—j)}
)

—k2 = i(—
K =-1
The inverse of k is k= = —k. We notice that 1, i, j, k are four linearly

independent elements in the noncommutative D and we recall that we got
[D : R] = 4. Also we have i* = j> = k* = —1 and ijk = —1 which are
the multiplication rules for quaternions. Therefore, the noncommutative D
is isomorphic as an R-algebra to the quaternions H. This finishes the proof
of our main theorem.
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5 Application

Before we begin this chapter we make this important assumption: all the
CSA (central simple algebras) and algebras that we work in this chapter
are finite dimensional over their base field K. We use this assumption simply
to avoid the overuse of the phrase “finite dimensional over the base field”,
so that the text is easier to understand. In this chapter we will learn one
application of Frobenius” Theorem.

5.1 Brauer group

First, we show some history of the Brauer group, after that we will learn
its relation to this article, then we show that the Brauer group is indeed
a group, finally we apply Frobenius’” Theorem to the Brauer group of the
real numbers. It is important to indicate that in this subsection we will
only give the statements of the theorems without proof but we will be giving
references to them in the literature, which the reader can understand with
the knowledge acquired in this article.

5.1.1 Definition

The Brauer group of a field K “was defined by R. Brauer in 1929” (Farb &
Dennis, 1993, p. 109). Farb and Dennis (1993) mention that “computing
the Brauer group of a field is a classical problem which has strong ties with
number theory and algebraic geometry”. In essence, we use the Brauer group
of a field K to classify all finite dimensional central division algebras over K.
Recall that all our algebras are associative and have a multiplicative identity.
Recall that by proposition 3.13 we have that the algebra tensor product, also
called ordinary tensor product, of CSA over K is another CSA over K. The
ordinary tensor product of CSA over K is important because it is the group
operation in the Brauer group of K.

The set of all CSA over K is a group under the operation of ordinary tensor
product of CSA over K. The Brauer group of K is the group of equivalence
classes of CSA over K by the similarity relation (which we define later).
Each finite dimensional central division algebra over K belongs exactly to
one of those equivalence classes of the CSA over K. The following definitions,
lemmas and propositions used to define the Brauer group of a field K appear
on the book Noncommutative Algebra by Farb and Dennis on the Brauer
chapter.
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Definition 5.1 (Similarity relation). Let H and W be finite dimen-
sional central simple algebras over the field K. We say that H and W
are similar, written H «~ W if any of the following conditions hold:

1. If H= M,(D) and W = M, (E) then D = E.
2. There exists integers m, n such that H ® M,,(K) = W ® M, (K).
3. There exists integers m, n such that M,,(H) = M,(W).

4. If M is a unique simple H-module up to isomorphism and N is a

~Y

unique simple W-module up to isomorphism then Endy (M) =

It is easy to show that the similarity relation is an equivalence relation
on the group of CSA over K with the group operation of ordinary tensor
product of CSA over K.

Definition 5.2 (Brauer group of a field K). The Brauer group of
a field K, denoted Br(K), is the set of equivalence classes of CSA
over K under the equivalence relation of similarity. The operation in
this group is the ordinary tensor product of CSA over K. The identity
element is the equivalence class of K. We denote the equivalence class
of an arbitrary H, a CSA over K, by [H].

5.1.2 Brauer group is abelian

We have to show that the Brauer group is well defined and is a group. On
pages 111-112 of Farb and Dennis’ book there are the following lemmas to
prove it

Lemma 5.3. Let M,(K) be any full matrix K-algebra and A any
K-algebra. We have the following K-algebra isomorphisms
1. M,(A) =2 A®g M,(K).
2. M, (K) ®p My (K) = My, (K)
The previous lemma is used to prove the following lemma. It shows that
multiplication in the Brauer group of a field K is well-defined.

Lemma 5.4. Let Wy, W5, Hi, Hy be CSA over K. If W; «~ W5 and
H1 “ H2 then W1 R H1 “r W2 R HQ.

The previous two lemmas are used to show that Br(K) is a well-defined
abelian group.
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Proposition 5.5. The set of equivalence classes in Br(K) with the
operation [H] % [W] = [H ®x W] for any two [H|,[W] € Br(K) is a
well-defined abelian group.

5.1.3 Brauer group of the real numbers

Here we obtain the Brauer group of the real numbers. An easy proof of it
requires the use of Frobenius’ Theorem.

Proposition 5.6. The Brauer group of the real numbers Br(R) is iso-
morphic to Z,.

Proof. Let Br(R) be the Brauer group of the real numbers. By definition
of the Brauer group we know that each equivalence class [W] €Br(R) has a
unique up to isomorphism central division algebra finite-dimensional over R.
By Frobenius’ Theorem on associative division algebras over R we have that
the only such algebras that are central over R are R and the quaternions H
up to isomorphism.

We conclude that Br(R) has only two equivalence classes, namely [H] and
[R]. Furthermore, we have [H] % [H] = [H ® H] = [R] by lemma 4.4 and
we notice the R-algebra isomorphism H = H. Thus, [H] generates Br(R).
Therefore, we have the group isomorphism Br(R) = Z,. O
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