
 

 

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ 
 
 

Colegio de Ciencias e Ingenierías 
 
 
 
 

 
 

Characterization and development of a method to quantify 
biodiesel obtained from renewable resources 

Proyecto de Investigación 
 
 
 
 
 
 
 
 

Erika Lissete Ponce Acosta 
 

 

Ingeniería Ambiental 
 
 

 
 

Trabajo de titulación de pregrado presentado como requisito para la obtención de título de 
Ingeniera Ambiental 

 

 

 

Quito, 31 de mayo de 2017 

 

 

 



 

 
 

2 

 

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ 

COLEGIO DE CIENCIAS E INGENIERÍAS 

 
HOJA DE CALIFICACIÓN DE TRABAJO DE TITULACIÓN 

 
 

Characterization and development of a method to quantify biodiesel 
obtained from renewable resources 

 

Erika Lissete Ponce Acosta 

 

Calificación:                                                               
 
Valeria Ochoa-Herrera, Ph.D 

 
 

 
 

Firma del profesor                                                  ________________________________ 
 
 
 
José Ramón Mora, Ph.D,                 

 
 
 
 

Firma del profesor                                                  ________________________________ 
 

 

 

 
Quito, 31 de mayo de 2017 

 
 



 

 
 

3 

Derechos de Autor 

Por medio del presente documento certifico que he leído todas las Políticas y 

Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de 

Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de 

propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas. 

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este 

trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley 

Orgánica de Educación Superior. 

 
 
   
Firma del estudiante:     

   
   
Nombre:   Erika Lissete Ponce Acosta 
   
   
Código de estudiante:  00107141 
   
Cédula de Identidad.:    1714328901 
   
   
Lugar, Fecha Quito, mayo de 2017 
 

 

 

 

 

 

 



 

 
 

4 

 

RESUMEN 

 
Los biocombustibles se presentan como alternativas ambientalmente amigables para 

reemplazar a los combustibles fósiles. Uno de los biocombustibles más estudiados ha sido el 

biodiesel, que se genera a partir de aceites vegetales, grasa animal o lípidos de algas. Sin 

embargo, en muchos lugares producir este tipo de combustible ha sido considerado costoso, 

por lo que es necesario buscar maneras en las que se lo pueda producir, caracterizar y 

cuantificar de manera menos costosa. Este estudio aplicó pruebas sencillas y poco costosas 

para caracterizar y medir parámetros de diferentes muestras de biodiesel producido a partir de 

4 tipos de aceites vegetales: soya, girasol, canola y maíz, a través de un proceso de 

transesterificación utilizando hidróxido de potasio (KOH) como catalizador y metanol 

(CH3OH). La caracterización del biodiesel se realizó con cromatografía de capa fina (TLC) y 

cromatografía de gases espectrometría de masas (GC-MS), mientras que la cuantificación de 

los ésteres se realizó con espectrometría de gases con detector de ionización de llama (GC-

FID). Parámetros físicos como la densidad, la viscosidad y el flash point fueron fácilmente 

medidos y sin un presupuesto elevado. A su vez, fue posible desarrollar un método para 

cuantificar los ésteres en el biodiesel utilizando únicamente un dodecanoato de metilo (12:0) 

como estándar interno y una muestra del biodiesel que se quiera analizar. El método demostró 

que gracias a un factor de respuesta 1:1 entre la razón de las masas y la razón de las áreas de 

los diferentes picos de los ésteres, es posible cuantificar el porcentaje de cada éster 

encontrado en el biodiesel únicamente con los valores de las áreas. También se encontró que 

no se pudieron usar las curvas de calibración de estándares individuales para cuantificar el 

biodiesel debido a un efecto de matriz. Por esto, el método desarrollado, que utiliza 

únicamente un estándar interno y el biodiesel que se quiere analizar, es un método efectivo y 

menos costoso que el utilizado con estándares.  

 

Palabras Clave: biodiesel, transesterificación, estándares, cuantificación, cromatografía, 

ésteres metílicos de ácidos grasos. 
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ABSTRACT 

 
Biofuels are introduced as environmentally friendly alternatives to replace fossil fuels. One of 

the most studied biofuels is biodiesel, which is produced from vegetable oils, animal fat, and 

algae lipids. However, this fuel has been considered very expensive to produce, which is why 

it is necessary to search for ways in which its production, characterization, and quantification 

may be less expensive. This study performed simple tests to characterize and measure 

physical parameters of 4 different types of biodiesels: soy, sunflower, canola, and corn, 

produced through a transesterification reaction using potassium hydroxide (KOH) as a 

catalyst and methanol (CH3OH). Characterization of methyl esters was performed using TLC 

and GC-MS, and GC-FID was used for quantification. Physical parameters such as density, 

viscosity, and flash point were easily measured and without an elevated cost. It was also 

possible to develop a method to quantify biodiesel using only methyl dodecanoate (12:0) as 

internal standard and a sample of the biodiesel that wants to be analyzed. The method shows 

that thanks to a response factor 1:1 between the mass ratio and the peak areas ratio it is 

possible to quantify the percentage of each ester found in biodiesel only by knowing the value 

of the peak areas. It was also found that calibration curves of individual standards could not 

be used to quantify biodiesel because of a matrix effect. This is why the developed method, 

which uses only the internal standard and the sample of biodiesel that wants to be analyzed, is 

a much more effective and less expensive method than the one that uses standards.  

 

Key Words: biodiesel, transesterification, standards, quantification, chromatography, Fatty 

acid Methyl Esters (FAME). 
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1. Introduction 

The energy crisis has affected the entire world due to the reduction of limited natural 

resources, specially oil reserves, and the increase of environmental problems (Barnwal & 

Sharma, 2005); therefore, alternatives such as biofuels have been considered as part of the 

solution to cope with the fuel demand. Biofuels can be found as liquid, solid or gas. Solid 

fuels can be used for space heating through combustion, while liquid and gas fuels can be 

used in transportation and industrial processes. Biofuels that are produced from oils and 

sugars that come from food crops are known as first-generation biofuels, which are produced 

by simple and established technologies. Second-generation, or advanced biofuels are those 

developed from nonfood crops such as grasses or woody materials, as well as nonfood 

portions of food crops. Third-generation biofuels are the ones known for being produced from 

algae and one major form of biofuel is biodiesel (Dahiya, et al., 2015).  

Developed countries have been using modern technologies and efficient bioenergy 

conversion with a variety of biofuels, which are becoming cost-wise competitive with fossil 

fuels (Puhan, Vedaraman, Rambrahamam, & Nagarajan, 2005). In developing countries 

biofuels have also acquired an important role since they have become alternatives equivalent 

to conventional fuels. Because diesel is widely used in transportation, agriculture, and in the 

domestic and industrial sector even a small fraction of total consumption by biodiesel will 

have a significant impact on the economy and the environment of our society (Barnwal & 

Sharma, 2005).  

Biodiesel is derived from vegetable oils or algae; it reduces greenhouse gas emissions on a 

lifecycle basis because the carbon dioxide released during combustion is taken by the plants 

while they grow (National Renewable Energy Laboratory, 2014). It has been tested as a 

substitute for conventional diesel and it can be used alone (B100) or it can be blended in any 
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proportion with diesel instead of using only diesel (Barnwal & Sharma, 2005). Biodiesel 

produces lesser emissions of oxides of sulfur (SOX), carbon dioxide (CO2), particular matter, 

and carbon monoxide (CO) than normal diesel; reduction percentages depend on the amount 

of diesel replaced by biodiesel, if B100 is used then SOX emissions are eliminated completely, 

CO is reduced by 47%, particulate matter by ±2% (García, 2013), and CO2 by 95% (BAA, 

2016). However, some studies have reported that the emissions of oxides of nitrogen (NOx) 

are in the range between ±10% compared to diesel depending on the engine’s combustion 

characteristics (Barnwall, 2015) and also higher emissions of NOx can occur due to the higher 

amount of oxygen present in biodiesel and the rapid breakage of hydrocarbons and a hotter 

combustion process (Palash, 2013). Nevertheless, according to Sun (2010) it is not consistent 

that NOx emissions from biodiesel-fueled engines are higher than those from the petroleum 

diesel ones. This is why many researchers have focused on the development of biodiesel and 

the optimization of the production processes to meet the standards a fuel needs to be used 

commercially without harming engine parts of different machines and reduce their impact in 

the environment (Sharma et al., 2008).  

According to the American Society for Testing and Materials, biodiesel is “a fuel 

comprised of monoalkyl esters of long-chain fatty acids derived from vegetable oils or animal 

fats, for use in compression-ignition (diesel) engines” (National Biodiesel Board, 2007). 

Biodiesel is produced by the transesterification, process in which triglycerides react with 

alcohol in the presence of a catalyst to produce fatty acid alkyl esters. Since the most common 

alcohol used to produce biodiesel is methanol another name for biodiesel is fatty acid methyl 

esters (FAME) (Hoekman et al., 2012).   

There are several parameters that define the quality of biodiesel, and standardization is a 

prerequisite to introduce biodiesel to the market (Mittelbach, 1996). The values obtained from 

the characterization have to be compared with the ones that have already been established by 

fuel standard-setting organizations, such as the ASTM in the U.S., and the European 
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Committee for Standardization (CEN). Some of these parameters include density, kinematic 

viscosity, flash point, total sulfur, carbon residue, total glycerin, oxidation stability, and the 

content of FAME (Hoekman et al., 2012). Quantifying methyl esters present in a sample of 

biodiesel is of great importance because the composition of biodiesel is closely related to its 

properties as a biofuel. Gas chromatography (GC) is the most widely used method to quantify 

FAMEs, specifically talking about Gas Chromatography-Mass Spectrometry (GC-MS) and 

Gas Chromatography-Flame Ionization Detector (GC-FID), because of its generally higher 

accuracy to quantify minor components, and also because they help eliminate any ambiguity 

about the nature of the eluting materials (Knothe, 2001). The American Oil Chemists’ Society 

(AOCS) recommends the use of GC-FID to analyze fatty acid profiles in biodiesel, and 

Carvalho et al. (2012) used in his study GC-FID to analyze the total amounts of fatty acid 

methyl esters, triacylglycerides, diacylglycerides, and monoacylglycerides. Other methods 

have also been employed, such as the reversed-phase high performance liquid 

chromatography (HPLC) equipped with various detectors. Some detection techniques 

associated with HPLC include refractive index, ultraviolet, fluorescence, evaporative light 

scattering, and mass spectrometric detection (Shang et al., 2012). Another well established 

alternative analytical technique that is reliable, direct, and of fast determination of several 

properties is called Infrared Spectroscopy (IR) (Zhang, 2012). Biodiesel can also be 

characterized using Thin Layer Chromatography (TLC) comparing a TLC plate sample we 

know is biodiesel with a new sample, along with the resulting retention factor (Rf). 

Quintanilla (2016), adapted a method of internal standard and GC developed by Moraes 

(2008), to quantify FAME in samples of biodiesel obtained from soy oil and microalgae 

lipids. In his study, he demonstrated there is a respond factor 1:1, which means it is possible 

to quantify the FAMEs present in biodiesel only by knowing the value of the peak area of 

each ester after the GC analysis was performed. In his work he used a relationship between a 

ratio of masses vs. a ratio of areas to obtain the quantities of esters in soy and algae biodiesel.  
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This research is a follow-up of the work done by Quintanilla (2006) to quantify FAME in 

biodiesel. Our objective is to develop a method to quantify esters in biodiesel using only an 

internal standard and the sample of biodiesel. In the previous project, methyl palmitate (16:0) 

and methyl linoleate (18:2) were used as standards and methyl dodecanoate (12:0) was used 

as an internal standard; in the present investigation one extra standard, methyl oleate (18:1), 

was also used to build new calibration curves. Additionally, density, kinematic viscosity, and 

flash point will also be analyzed to determine the quality of biodiesel and to compare it with 

the values established by the ASTM and the CEN. 

The construction of a calibration curve using only soy biodiesel and the internal standard 

will improve and reduce the cost of the analysis to characterize biodiesel and quantify the 

FAMES in it, as well as to determine the efficiency of the transesterification reaction. 

2. Justification 

The complex energy crisis worldwide has brought importance to renewable energy 

sources, looking for ways to substitute the conventional fossil fuels with biofuels. Biodiesel is 

one of the best alternatives to replace fossil fuels in the transportation and industrial sector. 

This is why it is of great value to look for more affordable ways to produce biodiesel as well 

as new methods to characterize it, quantify it, and determine its efficiency. 

In 2016, Quintanilla performed a study, which intended to characterize biodiesel produced 

from native microalgae cultivated in laboratory-controlled conditions. He used GC-FID to 

build two calibration curves using methyl palmitate (16:0) and methyl linoleate (18:2) as 

standards, and methyl dodecanoate (12:0) as an internal standard. He established a 

relationship between the ratios of masses vs. ratios of peak areas and found out that a 

response factor 1:1 exists between them. However, the objective of that project was focused 

on the production and characterization of biodiesel produced from algae rather than looking 

for a method to quantify FAME’s. This investigation uses the method applied by Quintanilla 
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to reaffirm the existence of a response factor 1:1 and is improved by creating several 

calibration curves with the use of an extra standard, methyl oleate (18:1), and biodiesels 

produced from different renewable resources, to look for a more affordable way to quantify 

FAME’s in biodiesel and to obtain the efficiency of the transesterification reaction.  

3. Materials and Methods 

3.1 Materials 

Chloroform [CHCl3], n-hexane [C6H6], potassium hydroxide [KOH], petroleum ether, and 

dietylether [(C2H5)2O] were obtained from Reactivos H.V.O. Methanol [CH3OH] was 

obtained from HR Representaciones. Acetic acid [CH3COOH] and methyl linoleate (18:2) 

was obtained from Merck Chemicals; methyl dodecanoate (12:0) was obtained from Alfa 

Aesar; methyl palmitate (16:0) was obtained from MP Biomedicalrs, LLC; methyl oleate 

(18:1) was obtained from Acros Organics. All reactants were used as received. 

3.2 Biodiesel production  

Canola, sunflower, soy, and corn oil were acquired from supermarket “SANTA MARÍA”.  

Neutral lipids from microalgae Spirulina were extracted at the Environmental Engineering 

Laboratory at Universidad San Francisco de Quito (LIA-USFQ) using a soxhlet equipment 

and hexane as solvent. Transesterification experiments were performed using 250 mL 

Erlenmeyer flasks, potassium hydroxide (KOH) as a catalyst, and methanol (CH3OH).  

3.2.1 Transesterification of commercial oils 

  A solution of 0.5 g of potassium hydroxide dissolved in 14 mL of methanol 

was added to an Erlenmeyer flask containing 50 g of vegetable oil and then the 

mixture was stirred for 3 hours. After the reaction was completed, the mixture was 

transferred to a separatory funnel and the aqueous phase was removed. Next, 10 mL of 

NaCl saturated solution (6M) was added to the funnel and then removed; this 
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procedure was repeated three times. The pH of the aqueous solution was measured 

each time the NaCl saturated solution was added until a neutral value, between 6 and 

8, was obtained. Subsequently, 10 mL of distilled water was added to the funnel and 

dismissed to finish the cleansing. Finally, to eliminate the excess of water in the 

biodiesel, the sample was left in a beaker with 4 g of magnesium sulfate and later it 

was filtrated using paper towel and a funnel.  

3.2.2 Transesterification of neutral lipids 

 Previously extracted lipids from dried biomass, obtained from a volume of 6 L 

of medium with Spirulina microalgae, were added to a solution of 3 mg of potassium 

hydroxide and 3 mL of methanol. The mixture was stirred for 3 hours and later 10 mL 

of hexane was placed in the beaker containing the biodiesel to prevent the sample 

from getting spoiled. 

3.3 Biodiesel Characterization 

3.3.1 Physical properties 

Different physical parameters such as density, kinematic viscosity, and flash point 

were also analyzed.  

a. Density 

25 mL of biodiesel were placed in a beaker of known weight. Afterwards, the 

beaker containing the biodiesel was weighted and to obtain the density the weight of 

the biodiesel was divided by the volume of biodiesel used.  

b. Kinematic Viscosity 

Kinematic viscosity was determined employing an Ostwald Viscometer. This test 

consisted in comparing biodiesel from distilled water because water is a liquid of 

known viscosity. The time that it takes for the liquid to flow through the viscometer is 
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measured and these times, as well as the densities at 40℃, are used in the following 

equation to obtain dynamic viscosity: 

𝜂1 = 𝜂𝐻2𝑂
𝜌𝑡´ 

𝜌𝐻20𝑡
  (1) 

where: 

𝜂1is the viscosity of biodiesel at 40℃, 

𝜂𝐻2𝑂 is the viscosity of distilled water at 40℃, 

𝜌 is the density of biodiesel at 40℃, 

𝑡´ is the time it takes for biodiesel to flow in the viscometer, 

𝜌𝐻20 is the density of distilled water at 40℃, 

𝑡 is the times it takes for water to flow in the viscometer. 

Once the dynamic viscosity was obtained it was divided by the density of the 

biodiesel in order to obtain the kinematic viscosity of each biodiesel. 

c. Flash Point 

A 50 mL beaker containing 30 mL of biodiesel was placed in a hot plate with 

magnetic stirrer until a temperature of 100 ℃  was reached. The temperature of 

biodiesel should be measured and a match should be passed over the biodiesel, two or 

three times, to see if fire appears. Biodiesel should be heated and its temperature 

should be measured until a flame of fire appears when the match is passed over the 

beaker. 

3.3.2 Thin Layer Chromatography (TLC) and Rf values 

TLC silica plates from EMD Millipore Company were used as the stationary phase. 

TLC silica plates were prepared by marking a reference line 0.5 cm from the bottom 

of the plate and a line for the solvent front line in the upper part of the plate, 4.5 cm 

from the bottom of the plate. For the mobile phase, a solvent mixture was prepared 
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using 8 mL of petroleum ether, 1.9 mL of ethyl ether, and 0.1 mL of acetic acid. The 

sample of biodiesel was placed at the reference line of the plate using a capillary tube, 

and afterwards the TCL silica plate was placed in the beaker that held the mobile 

phase. Finally, once the mobile phase reached the solvent front line, the TLC plate was 

revealed in an iodine chamber.  

Rf values were obtained by dividing the distance traveled by the component over the 

distance travelled by the solvent.  

𝑅𝑓 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑏𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
  (2) 

3.3.3 Gas Chromatography – Mass Spectrometry (GC-MS) and Flame Ionization 

Detector (GC-FID) 

Qualitative analyses (GC-MS) for biodiesel samples were performed using a 

Shimadzu GCMS-QP 2010 Ultra Gas Cromatograph with autoinjector AOC-20i for 

liquid samples, and a Thermo Scientific™ TRACE™ TR-WaxMS GC Column. The 

software used was GCMSsolution Version 4.11 SU2 equipped with commercial mass 

spectral libraries. The sample injection volume was 0.2 𝜇L and was configured with 

the injector in split mode 1:10. The temperature at which it was injected was 250 ℃. 

The configuration of the column oven program was the following: initial temperature 

150 ℃, ramp to 250 ℃ at a rate of 25 ℃ min-1; ramp to 253 ℃ at a rate of 1 ℃ min-1; 

ramp to 275 ℃ at 25 ℃ min-1, and held isothermally at 275 ℃ for 2 min. The velocity 

of the carrier gas, helium, was 13 mL min-1 and the pressure was 99.5 kPa.  

3.4 Quantification of FAME in biodiesel 

Based on the previous qualitative analyses, the quantitative analyses for the biodiesel 

samples were carried according to the method EN 14103 (Moraes, 2008) using the same 

chromatograph and the same column described before. The chromatograph was configured 
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with the injector in split ratio: 10 joined to auto-sampler autoinjector AOC-20i for liquid 

samples and the injection volume of the sample was 0.2 𝜇 L. The detector and injector 

temperatures were 300 ℃and 260 ℃, respectively. The configuration of the column oven 

program was the following: the initial temperature was 190 ℃, ramp to 200 ℃ at a rate of 4 ℃ 

min-1; ramp to 225 ℃  at a rate of 2 ℃  min-1; ramp to 260 ℃  at 15 ℃  min-1, and held 

isothermally at 260 ℃ for 2 min. The velocity of the carrier gas, helium, was 15.4 mL min-1 

and the pressure was 142.6 kPa.  

3.4.1. Method Development 

The new method to quantify esters in biodiesel proposes there exists a response factor 1:1 

between the ratio of masses and the ratio of peak areas, which means it is possible to quantify 

esters only by knowing the peak areas of the esters in biodiesel and of the internal standard 

injected, as well as the mass of the internal standard. This means only an internal standard and 

the sample of biodiesel that wants to be analyzed are needed to quantify the esters. To prove 

this method, calibration curves were constructed with three different standards, methyl 

palmitate (16:0), methyl oleate (18:1), and methyl linoleate (18:2), and an internal standard, 

methyl dodecanoate (12:0).  

To prepare the standard solutions hexane was used as a solvent, using 0.1 g of each 

standard and 10 mL of hexane. Eight different mixture solutions of the prepared standards 

were injected in the chromatograph to obtain three calibration curves: 

 

𝑚16:0

𝑚12:0
= 𝑚

𝐴16:0

𝐴12:0
+ 𝑏  (3) 

 

𝑚18:1

𝑚12:0
= 𝑚

𝐴18:1

𝐴12:0
+ 𝑏  (4) 
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𝑚18:2

𝑚12:0
= 𝑚

𝐴18:2

𝐴12:0
+ 𝑏  (5) 

 

where: 

𝑚12:0, is the mass of the methyl dodecanoate (12:0) internal standard. 

𝑚16:0, is the mass of the methyl palmitate standard. 

𝑚18:1, is the mass of the methyl oleate (18:1) standard. 

𝑚18:2, is the mass of the methyl linoleate (18:2) standard. 

𝐴12:0, is the area of the methyl dodecanoate (12:0) internal standard. 

𝐴16:0, is the area of the methyl palmitate standard. 

𝐴18:1, is the area of the methyl oleate (18:1) standard. 

𝐴18:2, is the area of the methyl linoleate (18:2) standard. 

𝑚, is the slop. 

𝑏, is the intercept. 

The solutions for the calibration curves were prepared varying the volumes of each prepared 

standard as follows: 

Table 1. Standard mixtures prepared with different volumes of solution from standard A 

(methyl palmitate 16:0), standard B (methyl oleate 18:1), standard C (methyl linoleate 18:2), 

and internal standard (methyl dodecanoate 12:0) to construct calibration curves. 

Sample Volume A 

(𝝁L) 

Volume B 

(𝝁L) 

Volume C 

(𝝁L) 

Internal standard 

volume (𝝁L) 

Hexane 

volume (𝝁L) 

1 550 550 550 150 400 

2 760 760 760 305 400 

3 610 610 610 305 400 

4 460 460 460 305 400 

5 550 550 550 535 400 

6 460 460 460 690 400 



 

 
 

19 

7 460 460 460 1100 400 

8 460 460 460 1400 400 

 

To prepare the samples of biodiesel the previous dilution was repeated changing the mass of 

standard with 0.2 g of biodiesel in 10 mL of hexane. The amount of biodiesel and internal 

standard used to prepare the samples are shown in Table 2. 

 

Table 2. Samples prepared with biodiesel and internal standard to construct calibration 

curves. 

Sample Biodiesel 

volume (𝝁L) 

Internal standard 

volume (𝝁L) 

Hexane 

volume (𝝁L) 

1 550 150 400 

2 760 305 400 

3 610 305 400 

4 460 305 400 

5 550 535 400 

6 460 690 400 

7 460 1100 400 

8 460 1400 400 

 

Since hexane was the solvent in which biodiesel and all the standard esters were dissolved, to 

convert the previous volumes into mass values they were multiplied by 0.655, which is the 

density of hexane.  

3.4.1. Efficiency of reaction 

To obtain the efficiency of the transesterification reaction three methods were 

applied. To obtain the mass of each methyl ester in the biodiesel, the first method used 

the equations obtained from the calibration curves that used only the standard of the 

methyl esters and the internal standard, and the second method used the equations 
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obtained from the calibration curves that used the samples of biodiesel and the internal 

standard. In this case, the masses of all esters were summed and the result was the mass 

of biodiesel calculated in the sample. After this, the efficiency of the transesterification 

reaction was obtained using equation (6). 

%𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑀𝐵

𝑀𝑊𝐵
∗ 100  (6) 

where, 

MB, is the mass of biodiesel in the sample.  

MWB, is the initial weighted biodiesel. 

 

 The third method used to obtain the exact amount of biodiesel was applying 

equation (7). First, it was necessary to build a lineal regression of the ratio of 

summation of areas over the internal standard area vs. the mass of biodiesel over the 

mass of internal standard. The obtained general equation to identify the exact amount of 

biodiesel is the following: 

𝑀𝐵 = 𝑀𝐼𝑆 ∗ (𝑚 (
Σ𝐴

𝐴𝐼𝑆
) − 𝑏)  (7) 

where, 

MIS, is the mass of internal standard. 

m, is the slope obtained in the lineal regression. 

 Σ𝐴, is the sum of areas of esters in the sample of biodiesel. 

 AIS, is the area of Internal Standard. 

 

Once the mass of biodiesel was calculated, equation (6) was applied to verify the 

efficiency of the transesterification reaction. 
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4. Results and Discussion 

Biodiesel obtained from different vegetable oils were characterized based on physical 

properties and the content of FAME by GC-MS and GC-FID. Algae biodiesel was only 

analyzed through GC-MS and GC-FID because the amount of biodiesel produced was not 

enough to measure the physical parameters.  

4.1 Characterization of biodiesel 

4.1.1 Physical Properties of Biodiesel 

Table 3 shows the densities obtained from the different biodiesels produced in 

this study. The density of soybean biodiesel (870 kg m-3) is very similar to the one 

reported by Barnwall (2005), 883 kg m-3. Sunflower biodiesel has a density of 872 kg 

m-3 and is comparable with the measurements made by Barnwall, which is 885 km m-

3. The rest of the biodiesels show numbers very similar between them and all of them 

comply with the values imposed by the EN 14214. In terms of kinetic viscosity, 

biodiesels obtained from all vegetable oils have around the same values, ranging from 

2.47 mm2 s-1 (Soybean biodiesel) to 2.64 mm2 s-1 (Corn biodiesel). All of these values 

are within the range of values imposed by the ASTM D6751; however, they don´t 

meet the standards given by the EN 14214. This could be attributed to human mistakes 

that can be made when taking the time it takes the liquid to flow from one point to 

another; also small changes in temperature may affect some of the results, and 

although temperature is controlled while doing the experiment, some factors like 

ambient temperature may affect the biodiesel temperature. Despite this, the biodiesel 

produced by this transesterification process complies with the ASTM specifications. 

All values of flash points comply with both the ASTM and the EN norms. According 

to Barnwall (2005), soybean biodiesel has a flash point of 178 ℃, and sunflower 

biodiesel has a flash point a little more elevated, 183 ℃. These are values that are not 
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as different as the ones measured with the method proposed here, where soybean 

biodiesel registered a flash point of 195 ℃ and sunflower biodiesel a flash point of 

185 ℃. The other two samples have values of 190 ℃, which are also closed to the 

ones obtained from the literature. This small variation in the flash point, being a little 

higher than expected, may happen because of the excess of water in the biodiesel that 

is exposed to the environment and stored in a refrigerator.  

 

Table 3. Physical properties measured from biodiesel of soybean oil, sunflower oil, corn oil, 

canola oil, and specifications from EN 14214 and ASTM D6751. 

Physical property Soybean 

oil 

Sunflower 

oil 

Canola 

oil 

Corn 

oil 

EN 

14214 

ASTM 

D6751 

 

Density (kg m-3) 

 

869.92 

 

871.77 

 

865.98 

 

875.15 

 

860-900 

No 

specified 

limit 

Kinematic 

Viscosity (mm2 s-1) 

2.47 2.59 2.66 2.64 3.5-5.0 1.9-6.0 

Flash Point (℃) 195 185 190 190 ≥101 ≥93 

 

4.1.2 Thin Layer Chromatography and Rf values 

The efficiency of the transesterification reaction was evaluated by using TLC 

silica plates. Once the chromatographs of all the biodiesel samples were obtained, it 

was confirmed that the transesterification process did produced methyl esters. The 

retention factor (Rf) values were calculated from all the samples and they are 

presented in Table 4. According to Geris (2007) the relative Rf value of soy biodiesel 

is 0.83, which is similar to all the Rf values obtained in this study, especially for the 

sunflower oil. In the study of Fontana et al. (2009), a value for Rf of the mixture of 

methyl esters in soybean biodiesel is also 0.83. Values of Rf for biodiesel made from 

other sources were not available in the literature.  
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Table 4. Rf values for each biodiesel 

Biodiesel Rf 

Soybean oil 0.813 

Corn oil 0.813 

Canola oil 0.804 

Sunflower oil 0.828 

 

4.1.3 Gas Chromatography – Mass Spectrometry (GC-MS) 

A qualitative analysis was conducted to identify the methyl esters present in 

biodiesels produced from different renewable sources. All five biodiesel samples were 

analyzed by GC-MS. The samples were prepared according to the information 

presented in Table 1. Figure 1 presents an example of the GC-MS chromatograms of a 

sample of soy biodiesel.  This chromatograph shows five peaks that according to the 

library of the equipment were identified as the following compounds: dodecanoic acid 

methyl ester (12:0), methyl palmitate (16:0), methyl stearate (18:0), methyl oleate or 

9-octadecenoate (18:1), methyl linoleate or 9,12-octadecadienoate (18:2), and methyl 

linolenate or 9,12,15-octadecatrienoate (18:3). These components are in accordance 

with the reported composition of soy biodiesel by Hoekman et al. (2012) in a study 

where he summarizes the fatty acid profiles of 12 common biodiesel feedstocks, 

including soy, sunflower, canola, and corn. 
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Figure 1. GC-MS chromatogram of soy biodiesel sample 

The chromatograms of the rest of biodiesels show the same components in their 

samples. In the case of sunflower biodiesel, soy biodiesel and corn biodiesel methyl 

linolenate is present in a very low quantity whereas methyl linoleate is the 

predominant compound. For the canola biodiesel, however, it is shown that methyl 

oleate is the one in higher amount. In the case of the biodiesel from algae, no 

components were shown as if the sample was not biodiesel. It is possible that the 

transesterification reaction for the algae lipids wasn’t effective because of the small 

amount of lipids recovered from Spirulina. This alga only has about 5% of lipids in its 

chemical composition (Borges et al., 2013), which is a very small amount compared to 

Chlorella that has an oil content that varies from 28-32% (Andruleviciute et al., 2014).  

4.2 Quantification of FAME in biodiesel  

4.2.1 Gas Chromatography - Flame Ionization Detector (GC-FID) 

Taking in count the methyl esters found in the qualitative analyses conducted with 

the GC-MS, methyl palmitate, methyl oleate, and methyl linoleate were used as 

standards to confirm the presence of these compounds in the biodiesel samples. 
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Methyl dodecanoate, on the other hand, was used as an internal standard since it’s not 

present in the samples. GC-FID analysis was applied to quantify the amount of esters 

present in the biodiesel samples. Calibration curves for methyl palmitate, methyl 

oleate, and methyl linoleate, with high R2 values of 0.999, 0.999, and 0.998 were 

constructed with the eight different mixture solutions of the standards. Figure 2, 3, and 

4 show the calibration curves for the different mixtures solutions. 

 

 

Figure 2. Calibration curve for methyl palmitate standard. 

Giving the resultant equation: 

𝑚16:0

𝑚12:0
= 0.9713

𝐴16:0

𝐴12:0
+ 0.0377 

 

 

Figure 3. Calibration curve for methyl oleate standard. 
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Giving the resultant equation: 

𝑚18:1

𝑚12:0
= 0.9951

𝐴18:1

𝐴12:0
+ 0.0245 

 

 

Figure 4. Calibration curve for methyl linoleate standard. 

Giving the resultant equation: 

𝑚18:2

𝑚12:0
= 0.9315

𝐴18:2

𝐴12:0
+ 0.0442 

The fatty acid compositional profile of each ester present in the sample of biodiesel 

was calculated based on the area of the peak of each biodiesel obtained with the GC-

FID analyses employing the next equation: 

𝐸𝑠𝑡𝑒𝑟𝑖  % =
𝐴𝑖

𝐴𝑇
∗ 100 

where, 

Ai is the area of a specific ester. 

AT is the sum of all ester areas present in the biodiesel. 

Once the composition of esters in each type of biodiesel was calculated, the 

experimental values were compared with the values reported in literature using linear 

regressions. Figure 5 shows the linear regression between the experimental values and 

the values found in literature of the compositional profiles of ester in soy biodiesel. In 
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this case a linear regression with a slope of 1 was obtained, which indicates that a 1:1 

response factor is obtained. This 1:1 response factor means that the division of areas 

equals the division of masses of each ester.  

Table 5. Compositional profiles of esters in soy biodiesel. Values reported in literature 

(Hoekman, 2012) and experimental values. 

 Percentage (%) 

Ester Literature 

values 

Experimental values 

Methyl palmitate (16:0) 11.6 11.8 

Methyl stearate (18:0) 3.9 4.2 

Methyl oleate (18:1) 23.7 25.3 

Methyl linoleate (18:2) 53.8 53.5 

Methyl linolenate (18:3) 5.9 5.2 

Linear regression 𝑀𝐵

𝑀𝐼𝑆
= 1.0058 ∗ (

ΣAreas

AIS
) 

 

The rest of tables and figures showing the compositional profiles of esters in 

sunflower, canola, and corn biodiesel are found in the Annexes. 

 

Figure 5. Regression line between experimental percentages of esters vs. values reported in 

literature for soy biodiesel. 

With the composition of the esters and the known initial weighted mass of biodiesel it 

was possible to obtain the mass of each ester in the samples of biodiesel.    
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4.2.2 Method Development 

Calibration curves, as the ones constructed with the standards, were 

constructed with all the samples of biodiesel and the internal standard, expecting to get 

similar values between the linear regression of soy biodiesel and the linear regression 

of the rest of biodiesels. However, results were surprising when none of the values 

between the linear regressions were the same. We interpret this response as a 

consequence of a matrix effect, because all the divisions of the slopes of each linear 

equation are different than 1 (Palacios, 2015). This is the principal reason why 

quantification of FAME can’t be completed using exclusively standard calibration 

curves or soy biodiesel calibration curves; it is necessary to use calibration curves 

from the same sample of biodiesel. 

Figure 6 shows the ratio of peak areas vs. the ratio of masses obtained with the values 

of the samples prepared only with standards and the samples prepared with soy 

biodiesel. 

 

a)  

b)  
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c)  

Figure 6. Ratio of peak areas vs. the ratio of masses that include the values of the samples 

prepared only with standards and the samples prepared with soy biodiesel. a) Methyl 

palmitate b) Methyl oleate c) Methyl linoleate. 

These results showed that the quantification of FAME could be performed using 

only the internal standard and a sample of the type of biodiesel that wants to be 

analyzed. Using the calibration curves with the standards overestimate the real values 

of esters found in biodiesel and don’t show real quantities.  

The results for the other types of biodiesel are found in the Annexes. 

 

4.2.3 Efficiency of reaction 

Three methods were employed to obtain the efficiency of the transesterification reaction. The 

percentages obtained for a random sample of each biodiesel are summarized in Table 6. To 

know the exact mass of biodiesel in the sample using method 3 it was necessary to build a 

calibration curve as shown in Figure 7.  
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Figure 7. Calibration curve between the ratios of summation of peak areas over the area of 

internal standard vs. the ratio of the mass of biodiesel over the mass of internal standard. 

Giving the resultant equation: 

𝑀𝐵 = 𝑀𝐼𝑆 ∗ (0.7046 (
Σ𝐴

𝐴𝐼𝑆
) − 0.0414) 

Replacing the values in the previous equation, the result of biodiesel mass gives a total of 

0.36 g, which is the same value as the weighted biodiesel. Applying the equation of efficiency 

percentage it is possible to know the % Yield of the reaction equals 100 %. 

The results for the rest of biodiesel samples are found in the Annexes. 

Table 6. Efficiencies obtained for a simple of biodiesel employing 3 different methods. 

 %Efficiency 

Biodiesel Method 1 Method 2 Method 3 

Soy 134.0 93.0 93.7 

Sunflower 171.5 106.3 106.4 

Canola 168.6 104.5 100.9 

Corn 168.6 106.3 100.9 

 

5. Conclusions 

Biodiesel was successfully produced from vegetable oils by applying a 

transesterification reaction. However, obtaining biodiesel from Spirulina is not 

y = 0,7046x - 0,0414
R² = 0,9917

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0,00 1,00 2,00 3,00 4,00 5,00 6,00

M
B

/
M

IS

ΣAreas/AIS

Soy Biodiesel



 

 
 

31 

practical because this alga has a very small percentage of lipids that do not 

compensate the resources needed to make it grow with the amount of lipids recovered 

to make biodiesel. 

 The biodiesel produced meets the American and European standards of density 

and flash point but not the one for kinematic viscosity. Measuring biodiesel standards 

through conventional and inexpensive methods is valid, although some of these 

measurements imply a lot of time, and even though they give out correct results they 

are not completely exact because experimental and/or human error can occur. 

In the search of a method to characterize biodiesel without using expensive 

resources but an internal standard and a sample of biodiesel, it was possible to observe 

that standard calibration curves or a single type of biodiesel can´t be used to quantify 

the esters in all the other types of biodiesels because it seems that each biodiesel has a 

different matrix that affects the quantification of each ester. However, calibration 

curves were built for each type of biodiesel: soy, sunflower, corn and canola. By 

knowing the areas of each ester and the mass of internal standard it is possible to 

quantify the mass of esters found in each sample of biodiesel. Concluding that this 

method is valid to quantify esters in biodiesel, using only an internal standard and a 

sample of the biodiesel that wants to be analyzed.  

Today it is crucial to find ways to reduce the cost of implementing any type of 

biofuel, this is why more investigation about this method of quantification is needed, 

and so it can be improved and/or corrected in any way.  

  



 

 
 

32 

 

6. References 

Andruleviciute, V., Makareviciene, V., Skorupskaite, V., & Gumbyte, M. (2014). Biomass 

and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and 

Scenedesmus sp. under mixotrophic growth conditions in the presence of technical 

glycerol. Journal of Applied Phycology, 26(1), 83–90. http://doi.org/10.1007/s10811-

013-0048-x 

Barnwall, B. K. & Sharma, M. P. (2005). Prospects of biodiesel production from vegetable 

oils in India. Renewable and Sustainable Energy Reviews 9, 363-378. 

Biofuels Association of Australia (BAA). (2016). Effect of Biodiesel on Emissions. Sitio 

web.  Recuperado desde http://biofuelsassociation.com.au/biofuels/biodiesel/effect-

of-biodiesel-on-emissions/ 

Dahiya, A., Williams, C. & Porter, P. (2015). Introduction to Bioenergy. Bioenergy: Biomass 

to biofuels. Elsevier, 1-4. 

Fontana, J., Zagonel, G., Vechiatto, W., Costa, B., Laurindo, J., Fontana, R., Pelisson, L., 

Jorge, B., y Lanças, F. (2009). Simple TLC-Screening of Acylglycerol Levels in 

Biodiesel as an Alternative to GC Determination. Journal of Chromatographic 

Science. Vol. 47. pp. 844-846 

García, A. (2013). Estimación del potencial de producción de biocombustibles en Costa Rica 
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Annexes 

Table 7. Compositional profiles of esters in sunflower biodiesel. Values reported in literature 

(Hoekman, 2012) and experimental values. 

 Percentage (%) 

Ester Literature 

values 

Experimental values 

Methyl palmitate (16:0) 6,4 5,8 

Methyl stearate (18:0) 3,6 3,4 

Methyl oleate (18:1) 21,7 37,7 

Methyl linoleate (18:2) 66,3 52,5 

Methyl linolenate (18:3) 1,5 0,5 

Linear regression 𝑀𝐵

𝑀𝐼𝑆
= 0.884 ∗ (

ΣAreas

AIS
) 

 

 

Figure 8. Regression line between experimental percentages of esters vs. values reported in 

literature for sunflower biodiesel. 
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Table 8. Compositional profiles of esters in canola biodiesel. Values reported in literature 

(Hoekman, 2012) and experimental values. 

 Percentage (%) 

Ester Literature 

values 

Experimental values 

Methyl palmitate (16:0) 4,2 5,2 

Methyl stearate (18:0) 2 2,1 

Methyl oleate (18:1) 60,4 59,8 

Methyl linoleate (18:2) 21,2 24,2 

Methyl linolenate (18:3) 9,6 8,7 

Linear regression 𝑀𝐵

𝑀𝐼𝑆
= 1.0058 ∗ (

ΣAreas

AIS
) 

 

 

Figure 9. Regression line between experimental percentages of esters vs. values reported in 

literature for canola biodiesel. 

Table 9. Compositional profiles of esters in corn biodiesel. Values reported in literature 

(Hoekman, 2012) and experimental values. 

 Percentage (%) 

Ester Literature 

values 

Experimental values 

Methyl palmitate (16:0) 12,16 11,5 

Methyl stearate (18:0) 1,72 1,9 

Methyl oleate (18:1) 32,15 26,6 

Methyl linoleate (18:2) 52,95 58,7 

Methyl linolenate (18:3) 1,02 0,6 

Linear regression 𝑀𝐵

𝑀𝐼𝑆
= 0.9575 ∗ (

ΣAreas

AIS
) 
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Figure 10. Regression line between experimental percentages of esters vs. values reported in 

literature for corn biodiesel. 
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c)  

 
Figure 11. Ratio of peak areas vs. the ratio of masses that include the values of the samples 

prepared only with standards and the samples prepared with sunflower biodiesel. a) Methyl 

palmitate b) Methyl oleate c) Methyl linoleate. 
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c)  

 
Figure 12. Ratio of peak areas vs. the ratio of masses that include the values of the samples 

prepared only with standards and the samples prepared with canola biodiesel. a) Methyl 

palmitate b) Methyl oleate c) Methyl linoleate. 
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c)  

 
Figure 13. Ratio of peak areas vs. the ratio of masses that include the values of the samples 

prepared only with standards and the samples prepared with corn biodiesel. a) Methyl 

palmitate b) Methyl oleate c) Methyl linoleate. 

 
Figure 14. Calibration curve between the ratios of summation of peak areas over the area of 

internal standard vs. the ratio of the mass of sunflower biodiesel over the mass of internal 

standard. 
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Figure 15. Calibration curve between the ratios of summation of peak areas over the area of 

internal standard vs. the ratio of the mass of canola biodiesel over the mass of internal 

standard. 

 
Figure 16. Calibration curve between the ratios of summation of peak areas over the area of 

internal standard vs. the ratio of the mass of corn biodiesel over the mass of internal standard. 
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