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A two-dimensional lagrangian model

for nonlinear soil-structure

interactions

Juan Martin Cadena Proaño

Ingenieŕıa Civil
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Abstract

We introduce a two-dimensional lagrangian model to determine nonlinear soil-structure in-

teractions (NL-SSI) and behavior of a three-story building when subjected to a seismic

excitation. While most models tackle linear soil-structure interactions (SSI) through finite

element analysis (FEM), here we propose a finite di↵erence method (FDM) to determine

NL-SSI. First, a lagrangian framework is used to derive the equations of motion of the soil-

building system for any given vibrational excitation. Second, the equations of motion are

discretized by means of forward and central finite di↵erence schemes. Third, a classical

Newton - Raphson (NR) approach is carried out in order to solve the non-linear system of

algebraic equations obtained from the FD discretization. Fourth, the equations of motion

were linearized to implement a modal and frequency analysis of the proposed system. Four

benchmark problems are solved in order to test the aforementioned approach. The first

three examples consist of an initial value problem (IVP) were displacements and velocities

are prescribed without an external force. Finally, the last problem includes external forcing

of the same building subjected to a real seismic register.

Keywords: soil-structure interactions; non-linear; finite di↵erence; two-dimensional; seismic

excitation



Resumen

Presentamos un modelo lagrangiano bidimensional para determinar las interacciones no lin-

eales de la estructura junto suelo (ISE-NL) y el comportamiento de un edificio de tres pisos

cuando se somete a una excitacin śısmica y un registro real. Si bien la mayora de los modelos

abordan las interacciones lineales suelo-estructura (SSI) a través del análisis de elementos

finitos (MEF), se propone un método de diferencias finitas (FDM) para determinar ISE-NL.

Primero, se usa un marco de mecánica lagrangiana para derivar las ecuaciones de movimiento

del sistema de suelo y estructura para cualquier excitacin vibratoria dada. En segundo lu-

gar, las ecuaciones de movimiento se discretizan mediante diferencias finitas delanteras y

centrales. En tercer lugar, se lleva a cabo un Newton - Raphson (NR) clásico para resolver el

sistema no lineal de ecuaciones algebraicas obtenidas a partir de la discretización de diferen-

cias finitas. En cuarto lugar, las ecuaciones de movimiento se linealizaron para implementar

un análisis modal y de frecuencia del sistema propuesto. Se resuelven cuatro problemas

para probar el enfoque mencionado anteriormente. Los primeros tres ejemplos consisten en

problemas de valor inicial (IVP) donde los desplazamientos y las velocidades se prescriben

sin forzamiento externo. Finalmente, el último problema incluye el forzamiento externo del

mismo edificio sometido a un registro śısmico real.

Palabras clave: interaccion suelo estructura; no lineal; diferencias finitas; dos dimensiones;

registro śısmico
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1 Introduction

Seismic numerical modeling is a recent field where the increasing computational power of the last

decades has been crucial for the development of structural-dynamic analysis [1, 2]. One-dimensional

analyses, so-called ’stick-models’, have fallen short in the adequate prediction of structural behavior

to seismic excitation [3]. In fact, the main drawback is that the structural bases are considered as

infinitely rigid plates, i.e., the e↵ects of the SSI are completely omitted, which in many cases might

be inappropriate.

It is at the end of the decade of the 70s when scientists began to put greater emphasis in SSI.

Supported mainly by the appearance of the first computers, authors like Chopra [4] and Richart[5]

began to develop numerical methods to model the seismic behavior of the structures [6–8].

These methods, used even today, subdivide the structure and the soil, which leads to a separate

analysis of their behavior. The soil is modeled as a continuous medium and is therefore analyzed

by means of finite elements, while the structure is modeled by classic methods, for instance, ’stick-

models’. [9].

On the other hand, an early SSI model through the use of FDM was developed by Agabein

[10]. Dashpots were used in order to model the structure, as well as the soil. However, although

powerful, this method was displaced by the FEM methods previously specified, mainly, because of

geometry and constituve models limitations [9].

Even if previously proposed models have been able to capture quite well the e↵ects of nonlinear

deformations produced by SSI in the soil by means of finite element or finite di↵erence methods,

these are usually not able to describe the nonlinear movement of the structure. The proposed

∗Corresponding author. E-mail: ajerves@usfq.edu.ec (Alex X. Jerves)



model beyond its numerical solution form, i.e. by means of FEM or FDM, proposes to study the

nonlinear physical motion of a structure caused by a seismic excitation.

This is possible through the use of Lagrangian mechanics, which allow to overcome the limi-

tations of Newtonian mechanics when studying nonlinear dynamic behaviors [11]. After obtaining

the ordinary di↵erential equations of the movement of the structure, a numerical approach was

used to solve them. First, by discretizing the system of ordinary di↵erential equations (ODE) via

finite di↵erence and then by solving the resulting nonlinear system of algebraic equations with a

classical local Newton-Raphson method.

2 Soil-structure system and constitutive assumptions

The system proposed to model the behavior and interaction of the three-story structure with the

soil is located in a two-dimensional space. The structure consists of a two story building seated on

a mat foundation, which is subjected to a seismic excitation, as described in Figure 1. The seismic

response is approached as an IVP, in which both the speed and the initial position are prescribed

in order to mimic the e↵ect of ground acceleration.

Figure 1: Steel building structure in two-dimensions undergoing a seismic event.

Soil behavior was modeled taking into consideration previous research, especially by authors

such as Gazetas, Dorby, Roesset, and Wolf, who proposed to model the behavior of the foundations

as a system of a single degree of freedom idealized by means of a spring and a dashpot [12–16]. As
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depicted in Figure 2, the proposed model takes into account the physical response of the surface

mat foundation, that is in direct contact with the ground, which constitutes a substructure by

itself, i.e., the soil is represented by a mass-spring-dashpot model. [17].

Figure 2: Soil constitutive model consisting of linear springs and dashpots.

Furthermore, to simulate the dissipative capacity of the structure itself, two dashpots were used,

in the same manner as we modeled the behavior of the soil. It is important to note that the mass

of each of the floors was concentrated in a single point as presented in Figure 3.
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Figure 3: Two-dimensional soil-structure model.
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3 Lagrangian model

Due to the complexity of the proposed model, in which the use of dashpots and springs to model the

dissipation of energy is present in all the elements of the system, the formulation of the behavior

of the structure through Newtonian mechanics can become extremely tedious [18]. Therefore,

the energy-based framework of lagrangian mechanics was used in order to obtain the equations

describing the position of the structure [19].

Let us introduce the lagrangian, L = T � V , where T represents the total kinetic energy of the

system, while V stands for the potential energy of the system [20]. Therefore, by the Principle of

Stationary Action that takes by argument the lagrangian [11],

S[q] =

Z tf

ti

L(q, q̇; t) dt

where q(t) represents the path of action from instant ti to tf . From which, we can formulate

the Euler-Lagrange equations by means of variational calculus. In our model, these will form a

system of three equations regarding each degree of freedom (DOF) of the structure [20],
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Hence, we arrive to the following system nonlinear di↵erential equations:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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As discussed earlier, this is an IVP, where for t = 0 both the position and speed of the system

are given [21]. However, we deal with a system of highly nonlinear ordinary di↵erential equations

(see, Equations (3), (4) and (5)), which can not be solved simply as in a linear system. The pro-

posed method for solving the system of di↵erential equations is a combination of a finite di↵erence

discretization scheme and the NR method. [22, 23].

4 Finite di↵erence discretization

The finite di↵erence scheme to be used is forward Euler for the first derivatives and a second order

central finite di↵erence for the higher order derivatives, which is a simple yet powerful approach

for the solution of IVPs [23, 24]. It is a multi-step explicit method in which the system state x
n+1

is given by previous values x
nand x

n�1.

D+x =
x
n+1 � x

n�1

2�t
, n = 0, 1, 2... (6)

D
2
x =

x
n+1 � 2x

n + x
n�1

�t
2 , n = 0, 1, 2... (7)
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However, as expected, the discretization of the ODEs results in a nonlinear algebraic equation

system, which is impossible to solve by classical methods for linear equations such as Gaussian

Elimination or LU factorization [25]. Refer to Appendix for a glimpse at how Equation (3), (4)

and (5) look once discretized.

Taking into account that this is a multi-step explicit finite di↵erence scheme and an IVP, the

initial conditions are given in t = 0, i.e., when n = 0. To calculate the state of the system when

n = 1 we use a forward Euler approximation as detailed above [26].

5 Solution of the discretized model

To attack the equations we used a multivariable local NR to find numerical approximations of the

roots of a system of equations [27]. The iterative process is given by [28],

xk+1 = xk � J(xk)
�
f(xk)

where Jij =
@fi

@xj
represents the Jacobian of the system of nonlinear equations.

The NR used is locally convergent, meaning that the initial iteration x
0 has to be close to the

actual solution in order to find convergence [28, 29]. That is why within the solution scheme it is

proposed that for time x
n the initial iteration is given by the roots, x

n+1, found approximated in

the previous iteration of the time discretization . It is in this way that we ensure a correct and

reasonable convergence of the method [24, 28].

As mentioned in [28] the convergence of the local NR is given by,

||Rk+1||  c ||Rk||2 (8)

for c > 0.

The convergence described in 8 is quadratic, therefore, the residue of the present iteration

doubles that of the next iteration.

6



5.1 Proposed algorithm

function lagrangianmodeling(J, f, x
0
, tol, �t)

Evaluate x
1 using forward Euler finite di↵erence, see, Equation (6).

for n : 1 to T do

k = 1

while ||R|| > tol do

x
n+1
k  x

n
k � Jk(xn)�fk(xn)

R = fk/f1

k  k + 1

end while

end for

end function

6 Linearized model and modal analysis

Now we are going to linearize the proposed model, in other words to assume small displacements for

the response of the building due to the seismic excitation. Therefore, sin(✓1) = ✓1 and cos(✓1) = 1,

while ✓̇
2
1 ⇡ 0 as we expect infinitesimal changes for the angular displacements in time. The same

assumptions were made for ✓2.

Also, we assumed the same longitudes and masses for the whole system, the same sti↵ness for

the stories of the building (K1), and a general sti↵ness for the soil (K2). The dissipation constants

were canceled, as modal analysis is made only in function of the geometry and materials of the

system. Finally, we arrive to the following system of linear di↵erential equations.
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Where in order to find the vibrational modes of the linearized soil-structure system the following

eigenvalue problem has to be tackled.

�
K � !

2
M

�
⌘e

i!t = 0 =) det(K � w
2
M) = 0

which for the proposed model yields three modes (⌘1, ⌘2, ⌘3), complying with the three degrees

of freedom that govern system movement.

7 Numerical examples

In this section, we solved four benchmark problems based on a three story steel moment frame build-

ing seated on a surface mat foundation. The soil-structure system and its constitutive parameters

are shown by Figure 4,

l2 = 13 [ft]

l1 = 13 [ft]

l3 = 26 [ft]

w3 = 50000 [lb]

w2 = 50000 [lb]

w1 = 50000 [lb]

ks = 3.79⇥106[lb/ft]

kr = 0.2⇥ks

kr = 0.2⇥ks

Figure 4: Three story steel moment frame building seated on a surface mat foundation, and its

corresponding constitutive parameters, used to solve the four benchmark problems herein proposed.
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The dissipation constants for soil and structure (cs,cr,ch) were obtained as percentages of the

critical dumping of each section of the model. For instance, for the structure

cs = 2⇠cm1

r
k

m

where, ⇠s represents a percentage of dissipation with respect the critical dumping. Thus, for

the steel moment frame structure we used ⇠s = 2%, while for the soil rotational and horizontal

dissipations we assumed ⇠ = 10%.

For the constitutive values of the springs, they were computed taking into consideration equiv-

alent displacement sti↵ness for two fixed columns, that is

ks =
24EsIs

l3

where for calculating the inertia of the section, it was considered to have typical values for a

steel rectangular hollow column, of Is = 0.085 ft
4. On the other hand, the sti↵ness of the soil was

estimated to be a 20% of one of the structure.

The acceleration and velocity records shown by Figure 5 were obtained from the Pedernales

station located at latitud 0.068, longitude -80.057, 2016 N-S component, Muisne earthquake in

Ecuador [30]. The magnitude of the event was of 7.8 on the moment magnitud scale at 27 Km

depth [31]. The raw data of the acceleration record was processed using PRISM, which is a software

for analyzing acceleration time series to produce compatible velocity and displacement records. The

signal of the acceleration record was corrected and integrated in order to obtain the velocity record

[32], shown in Figure 5.
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Figure 5: Acceleration and velocity registers form 2016 Muisne, Ecuador, earthquake, M 7.8 at 27

Km depth.

We proposed three IVP’s, where the position and velocity at t = 0 s were prescribed. These

conditions were obtained by using the seismic record depicted by Figure 5, from which the maximum

velocity and displacement values (see, Table 1) were computed and then used as initial conditions

for the proposed problems.

Problem x(0) v(0)

1 3.27 ft 0

2 0 1.84 ft/s

3 3.27 ft 1.84 ft/s

Table 1: Initial conditions for the first three benchmark problems proposed.

7.1 Benchmark problem No. 1

In this first IVP we prescribe a position of x(0) = 3.27ft, as can be seen from Table 1. Figures 6

and 7 show the response of the system.
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Figure 6: Evolution of ✓1 and ✓2 for benchmark problem No. 1.
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Figure 7: Evolution of x for benchmark problem No. 1.

Since damping is a natural feature of multistory structures and soil, and also present in our

model, the energy pumped into the system once the initial conditions are applied is dissipated. As

expected, the decay rate shown by Figures 6 and 7, resembles the one of a positive undercritically-

damped system undergoing free vibrations, mainly because damping values where picked taking

into consideration the fact that common buildings behave in this way. Recall that we used damping

values as a percentage of the critical damping of the model, that is, 2% for the steel structure and

10% for the soil. The system stops completely after 8 seconds of free vibrations for all its DOF.

On the other hand, the DOF of the structure, ✓1 and ✓2 (see, Figure 6), yield almost 3°, which

in terms of deformational analysis it can be considered high enough to induce nonlinear behavior
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in the system. Thus, from Figures 6 and 7, it is worth noticing that these angular displacements

are directly influenced by the inclusion of the soil as a part of the model. Contrary to classic

“stick-models” where the interaction with the soil is neglected by assuming it to be infinitely rigid,

our model, that considers soil deformation, takes into account the “softening” of the structure’s

behavior. Hence, the importance of including the soil as a fundamental part of the analysis, which,

in turn, can induce the structure into nonlinear behavior. Therefore the relevance as well as

usefulness, for these type of problems, of considering nonlinearity coming either from the geometry

or the constituve behavior of the system.

Finally, since nonlinear deformations have been considered as part of the model (see, Section 3),

a NR method has to be used in order to solve the discretized nonlinear system given by Equations

(3), (4) and (5). The convergence of the NR used to solve the aforementioned system of equations

is depicted by Figure 8 at di↵erent time steps. It is important to mention that tolerance is reached

at the first iteration, mainly because of the quality of the first guess given to initialize the NR, the

small size of the time steps, as well as the high sti↵ness given to the structure and soil that keep

the system’s behavior close to linearity. For the first three benchmark problems we used a time

step �t = 1⇥ 10�5.

1 2

Iterations (i)
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

lo
g
(

R
i

R
0

)

n = 1s
n = 4s
n = 8s
tol = 10−10

Figure 8: NR convergence at di↵erent time steps: n =1 s, 4 s and 8 s, for a tolerance of 1⇥ 10�10,

and for benchmark problem No. 1.
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7.2 Benchmark problem No. 2

In this second benchmark problem we prescribe a velocity of v(0) = 1.84ft/s, as can be seen from

Table 1. In this case, Figures 9 and 10 show the response of the system.

0 1 2 3 4 5 6 7 8

t [s]

-0.1

-0.05

0

0.05

0.1

θ
(t
)
[◦
]

θ1(t)
θ2(t)

Figure 9: Evolution of ✓1 and ✓2 for benchmark problem No. 2.
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t [s]

-0.1

-0.05

0

0.05

0.1

x
(t
)
[f
t]

x(t)

Figure 10: Evolution of x for benchmark problem No. 2.

The behavior of the model shown in Figures 9 and 10 resembles the one analyzed for benchmark

problem No. 1. Once again, the structure stops around 8 seconds of free motion and the decay

rate is exponential as expected. However, in this example, the behavior of the system is much more

linear than for benchmark problem No. 1. In this case, ✓1 and ✓2 (see, Figure 9), yield less than

0.15°, which in terms of deformational analysis, it can be considered small enough to be linear.
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Since linearity is predominant for this benchmark problem a one iteration convergence is also

expected for the NR method (see, Figure 11).

1 2

Iterations (i)
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

lo
g
(

R
i

R
0

)

n = 1s
n = 4s
n = 8s
tol = 10−10

Figure 11: NR convergence at di↵erent time steps: n =1 s, 4 s and 8 s, for a tolerance of 1⇥10�10,

and for benchmark problem No. 2.

7.3 Benchmark problem No. 3

For our third IVP we prescribe a velocity of v(0) = 1.84ft/s and a position of x(0) = 3.27ft (a

combination of two the former benchmark problems), as can be seen from Table 1. Figures 12 and

13 illustrate the response of the system.
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Figure 12: Evolution of ✓1 and ✓2 for benchmark problem No. 3.
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Figure 13: Evolution of x for benchmark problem No. 3.

For this IVP the behavior shown by Figures 12 and 13 resembles the one analyzed for the

first and second benchmark problems. The structure reaches stop at around 8 seconds of free

vibrations and the decay rate is exponential as expected. Furthermore, from this combination of

benchmark problem No. 1 and No. 2, it can be seen that the predominant behavior is dictated by

the prescribed initial displacement rather than the prescribed initial velocity whose e↵ect, in this

case, can be considered as structural noise, and therefore negligible.

Provided that the prescribed initial displacement governs the physics of the entire problem, the

NR once again is expected to converge at the first iteration (see, Figure 14).
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Figure 14: NR convergence at di↵erent time steps: n =1 s, 4 s and 8 s, for a tolerance of 1⇥10�10,

and for benchmark problem No. 3.

7.4 Real seismic excitation response

In this last example, the system undergoes external forcing given by a real seismic acceleration

record (see, Figure 5). The acceleration is applied at the base of the structure, i.e., the bottom

mass that in our model represents the surface mat foundation of the building. In order to properly

add the seismic record to the motion equations, the acceleration time series is multiplied by the

total mass of the building (Mt = m0 + m1 + m2; see, Figure 4) and then added to the right hand

side of Equation (5), from where we arrive to

c1ẋ + k1x + m1

h
l1

⇣
✓̈1 cos (✓1)� ✓̇1

2 sin (✓1)
⌘

+ ẍ

i
+ m2

h
l1

⇣
2✓̈1 cos (✓1)� 2✓̇1

2 sin (✓1)
⌘

+ l2

⇣
✓̈2 cos (✓2)� ✓̇2

2 sin (✓2)
⌘

+ ẍ

i
+ m0ẍ = MTa(t)

On the other hand, Equations (3) and (4) stay the same, as forcing caused by the acceleration

record is only applied to the base of the structure. Finally, the behavior of the soil-structure system
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when undergoing a real seismic excitation is shown by Figures 15 and 16.
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Figure 15: Evolution of ✓1 and ✓2 for a real seismic excitation.
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Figure 16: Evolution of x for a real seismic excitation.

Table 2 summarizes the average and maximum values corresponding to the angular and hor-

izontal displacements of the system. As can be inferred from the table in mention, the structure

behaves in a much linear way than the former cases with angles of less than 0.35°. In contrast with

this, the displacements for the base of the structure is the most nonlinear among the three DOF

with values of less than 0.3 ft.
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DOF Average Maximum

✓1 0.0519° 0.3208°

✓2 0.0354° 0.2463°

x 0.0492 ft 0.2930 ft

Table 2: Average and maximum angular and horizontal displacements for a real seismic excitation.

These results correspond to the acceleration record shown in Figure 5 as well as the values of

sti↵ness and damping previously assigned to the soil in our benchmark problem. Furthermore,

these values do not correspond to the actual soil constituve properties for the place (Pedernales

station located at latitud 0.068, longitude -80.057). More experimental testing is needed in order

to find the real values of sti↵ness and damping of the soil at the aforementioned place, which in

turn, may have a significant impact on the final behavior of the structure. Bear in mind that the

current analysis was done for a seismic event of magnitud Mw = 7.8 and that this might be much

greater, for instance, the seismic event in Chile, 2010 with a magnitude on the moment scale of

8.8 [33]. While for the structural and soil features used in this case the nonlinear analysis could

not be as relevant since the angular displacements are considerably small. It might not be the case

when geometry, seismic intensity and soil properties are di↵erent, not to mention the quality of the

materials and construction of the structure itself.

As already mentioned in the last paragraph, the physical behavior of the current benchmark

problem tends to linearity. Thus, the NR is expected, once again, to converge at the first iteration,

as shown by Figure 17.
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Figure 17: NR convergence at di↵erent time steps: n =1 s, 30 s and 60 s, for a tolerance of

1⇥ 10�10 for a real seismic excitation.

7.5 Modal analysis

For the linearized problem given by expression (9), the corresponding vibrational modes that were

obtained by solving the inherent eigenvalue problem are

⌘1 =

8
>>>><

>>>>:

�0.9156

�0.3995

�0.0449

9
>>>>=

>>>>;

, ⌘2 =

8
>>>><

>>>>:

0.1718

�0.9547

0.2429

9
>>>>=

>>>>;

, ⌘3 =

8
>>>><

>>>>:

0.9903

�0.1375

�0.0180

9
>>>>=

>>>>;

(10)

Figure 18 represents the vibrational mode shapes of the soil-structure system. The first mode

corresponds to the lowest frequency (f1 = 2.6755 [Hz]) and is, in terms of deformational energy,

the “least expensive” of all the modes. In the same way, the second mode is also the second

less “expensive” energetically speaking (f2 = 6.2832 [Hz]). Finally, the third mode is the most

“expensive”, with a frequency of f = 18.9162 [Hz].
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Mode 1 Mode 2 Mode 3

Figure 18: Vibrational modes representation of the proposed model.

In other words, if the soil-structure system fails it would more likely happen for the lowest

frequency (f1 = 2.6755 [Hz]) and corresponding modal shape (Mode 1) (see, Figure 18). On the

other hand, the system would not be likely to fail for the highest frequency (f3 = 18.9162 [Hz],

Mode 3).

Typical natural fundamental frequencies of two/three story buildings rank between 5 [Hz] and

5.25 [Hz]. Notice that for this case the soil has been included into the model giving a fundamental

frequency (f1) of 2.6755 [Hz], from which we have a drop of near the 35% with respect to the

typical average values of this type of buildings (5.25 [Hz]). Hence, the key importance of taking

into account soil-structure interactions when it comes to dynamic analysis (even linear) of buildings.

Recall, the period of vibration as the inverse of the frequency, therefore as the frequency decreases

the period of vibration increases. This is exactly what occurs, as expected, including the e↵ect of

soil deformability clearly ”softens” the structure increasing the period of vibration, this is not a

matter of surprise as previous authors have already noticed this fact [34, 35].

8 Conclusion

We have introduced a finite di↵erence integration of the equations of motion derived for a two-

dimensional lagrangian-based model of nonlinear soil-structure interactions, i.e., large displacements

and rotations. This model describes the sliding and vibrational movements of the structure when

subjected to external excitations [12, 15, 36], allowing us to numerically compute the nonlinear

interactions between the soil and the structure by means of a “semi-explicit” finite di↵erence scheme.
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The aforementioned approach introduces a simple but powerful tool for the study and interpre-

tation of the vibrational/seismic behavior of civil engineering structures. Its main strength relies on

the lagrangian mechanics theoretical framework used for its development, enabling us to capture

the highly nonlinear (large) displacements and rotations related to both: soil and structure, as

well as their interactions. Hence, we can describe not only qualitatively but also quantitatively

the maximum real deformations that, in turn, lend us equivalent static forces for a suitable vibra-

tional/seismic resistant design. It is also worth commenting on the generality of using a lagrangian

framework since these kind of approaches are usually broader and less limited than their Newtonian

counterparts when it comes to mathematically modelling and capturing all the physics involved in

a given mechanical phenomenon.

In the same way, it is important to mention that the introduced approach can be extended

to multiple degrees of freedom (MDOF), (e.g., several floors and three dimensions). However,

in its current state (i.e., two dimensions), it can be used for three dimensional modelling and

corresponding analysis by uncoupling the main inertial directions of the structure under study.

The aim of the present work is to introduce this model and show some of its key features as well

as basic ideas. However, further research is needed in order to fully understand and exploit all the

novelties and aspects of the model.

Finally, four benchmark examples were tackled with this method. Here, the nonlinear motions

(large deformations) of the structure were clearly “visualized” for a case in which the structure

(three-story bulding) is subjected to initial conditions (“seismic excitation”), while for the example

using the real acceleration record the corresponding angular rotations behave in a much linear way.

A very important remark to be made is that by linearizing the proposed system and performing

the modal analysis of the benchmark problems, we determined that by including the soil-structure

interactions into the structural system, the fundamental natural frequency of the building is 35%

lower than typical values of fundamental frequencies in buildings of similar height that have been

computed without taking into account soil-structure interactions.
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A Appendix

Equations (3),(4) and (5) respectively discretized. As mentioned before, the system of equations is

highly nonlinear.

Discretized Euler-Lagrange equation for ✓1,

f✓1 =
1

2

h
�t

2 sin(2✓1,i+1)k3L
2
1 + 2�t

2 sin(2✓1,i+1)k2L
2
3 � 2�t

2 sin(✓1,i+1)gL1m1

� 2g�t
2 sin(✓1,i+1)L1m2��tc3xi + cos(✓1,i+1)L1m1xi + 4 cos(✓1,i+1)L1m2xi

� 4 cos(✓1,i+1)L1m1xi+1 � 8 cos(✓1,i+1)L1m2x1+1 + �tc3xi+2 + 2 cos(✓1,i+1)L1m1xi+2

+ 4 cos(✓1,i+1)L1m2xi+2 ��t cos(✓1,i+1)c3L1✓1,i � 2�t cos(✓1,i+1)c2L3✓1,i + 2L
2
1m1✓1,i

+ 8L
2
1m2✓1,i � 4L

2
1m1✓1,i+1 � 16L

2
1m2✓1,i+1 + �t cos(✓1,i+1)c3L1✓1,i+2

+ 2�t cos(✓1,i+1)c2L3✓1,i+2 + 2L
2
1m1✓1,2+1 + 8L

2
1m2✓1,i+2 + 4 cos(✓1,i+1)L1L2m2✓2,i

+ sin(✓1,i+1 � ✓2,i+1)L1L2m2✓
2
2,i � 8 cos(✓1,i+1 � ✓2,i+1 � ✓2,i+1)L1L2m2✓2,i+1

+ 4 cos(✓1,i+1 � ✓2,i+1)L1L2m2✓2,i+2 � 2 sin(✓1,i+1 � ✓2,i+1)L1L2m2✓2,i✓2,i+2

+ sin(✓1,i+1 � ✓2,i+1)L1L2m2✓
2
2,i+2

i
= 0

for ✓2

f✓2 =
1

2

h
�t

2 sin(2✓2,i+1)k4L
2
2 + �tc4(�xi + xi+2 + 2 cos(✓1,i+1)[L1(�✓1,i + ✓1,i+2)])

� L2(m2(2g�t
2 sin(✓2,i+1)� 2 cos(✓2,1+i)xi + 4 cos(✓2,i+1)xi+1 � 2 cos(✓2,i+1)xi+2

� 4 cos[✓1,i+1 � ✓2,i+1)L1✓1,i + sin(✓1,i+1 � ✓2,i+1)L1✓
2
1,i + 8 cos(✓1,i+1 � ✓2,i+1)

+ L1✓1,i+1 � 4 cos(✓1,i+1 � ✓2,i+1) + L1✓1,i+2 � 2 sin(✓1,i+1 � ✓2,i+1)L1✓1,i✓1,i+2

+ sin(✓1,i+1 � ✓2,i+1)L1✓
2
1,i+2) + �t cos(✓2,i+1)c4(✓2,i � ✓2,i+2)
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2
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i
= 0

and for x,
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fx =
1
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2
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2
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