UNIVERSIDAD SAN FRANCISCO DE QUITO

Diseño e Implementación de un Sistema de Detección de Fallas de Cortocircuitos en los Bobinados Estatóricos en Motores de Inducción Utilizando Algoritmos de Análisis Espectral de Corrientes (MCSA).

Rafael Ángel Barreto Jijón

Proyecto final previo a la obtención del título de Ingeniero Eléctrico/Electrónico

Quito Diciembre de 2006

Universidad San Francisco de Quito Colegio Politécnico

HOJA DE APROBACIÓN DE TESIS

Diseño e Implementación de un Sistema de Detección de Fallas por Cortocircuitos en los Bobinados Estatóricos en Motores de Inducción Utilizando Algoritmos de Análisis Espectral de Corrientes (MCSA).

Rafael Ángel Barreto Jijón

Alberto Sánchez, Ph.D. Director de Tesis	
Bruce Hoeneisen, Ph.D. Miembro del Comité de Tesis	
Lourent Case Dh D	
Laurent Sass, Ph.D. Miembro del Comité de Tesis	
Alberto Sánchez, Ph.D. Miembro del Comité de Tesis	
Santiago Navarro, Ph.D. Director de Ingeniería Electrónica	
Fernando Romo, Ph.D. Decano del Colegio Politécnico	

Quito, diciembre 2006.

© Derechos de autor.

Rafael Ángel Barreto Jijón.

2006

AGRADECIMIENTO

Un infinito agradecimiento fraterno a todos quienes contribuyeron con la culminación de este trabajo: A mi madre, por absolutamente todo lo que ha hecho en mí, a mi hermana Náthali, pilar fundamental de mi fuerza de autosuperación, a Alberto Sánchez por la guía certera, a Nelson Herrera por la orientación y su infinita voluntad de ayudar desinteresadamente, a Bruce Hoeneisen por la formación impartida, a Laurent Sass por el consejo oportuno, a Diego Benítez por las puertas abiertas y a todos mis amigos y amigas, en especial a Luís Miguel, por el acolite.

A mí madre, como síempre, por el amor, el apoyo incondicional, la amistad y la dedicación.

A mí hermana Náthalí, por la complicídad, el caríño y las fuerzas (lo logramos!).

RESUMEN

Se ha diseñado e implementado un sistema que detecta espiras cortocircuitadas en los bobinados del estator de motores de inducción monofásicos y trifásicos, aplicando la teoría de Análisis Espectral de Corrientes (MCSA). Éste sistema utiliza un computador, donde se obtienen señales de corriente y de voltaje de alimentación del motor con una pinza amperimétrica y un transformador respectivamente. Estas señales se filtran para evitar aliasing en la digitalización con una DAQ para luego ser enviadas al computador a través de USB 2.0. Éstas son analizadas con un programa en LabVIEW que, filtrando ruido digitalmente y calculando la Transformada Rápida de Fourier de las señales adquiridas, detecta picos en frecuencias de interés y arroja como resultado un diagnóstico y una recomendación. El sistema incluye un exhaustivo estudio de las mejores opciones para la elección de sistemas basados en computadores, transductores, sistemas de adquisición de datos, filtraje analógico y digital y eliminación de ruido. Todos los datos adquiridos y calculados pueden ser almacenados en hojas de cálculo compatibles con MS EXCEL o bases de datos como MS Access y MySQL. Con el resultado del proceso se puede generar reportes automáticamente en formato de documento portátil (*.pdf). El sistema fue probado en un motor de inducción monofásico con cortocircuitos controlados.

ABSTRACT

A system for detecting shorted turns in stator windings of induction motors has been designed and developed where Motor Current Signature Analysis (MCSA) theory is applied. This system is PC-based, where voltage fed signal is sensed with a transformer and the current fed signal is sensed with a clamp-on current probe. These signals are filtered analogically for avoiding Aliasing and then digitalized with a DAQ. Furthermore, they are sent to a computer trough USB 2.0 for them to be analyzed in a LabVIEW program. They are filtered digitally for noise-rejection and then their Fast Fourier Transforms are calculated. The program detects peak frequencies and then shows a diagnostic and a recommendation. The system includes an exhaustive study of the best options for choosing computer-based systems, transducers, data acquisition systems, analog and digital filtering and noiserejection. All acquired and calculated data can be saved to spreadsheets MS EXCELcompatibles and to databases like MS Access and MySQL. An automatic report can be generated in portable-document-format (*.pdf) with the results of the whole process. The system was tested in an induction single-phase motor with controlled shorted-turns.

TABLA DE CONTENIDO

CAPITULO I	1
1.1 Introducción	1
1.2 Métodos de Monitoreo	5
1.3 Análisis espectral de corriente de motor	9
1.4 MCSA para detección cortocircuitos	14
CAPÍTULO II Arquitectura	27
2.1 Motor	29
2.2 Transductor	37
2.3 Adquisición de señales	47
2.4 Procesamiento digital de señales	63
2.5 Detección de falla	80
2.6 Almacenamiento de datos	81
2.7 Reportes	83
CAPÍTULO III. DISEÑO E IMPLEMENTACIÓN	84
3.1 Requerimientos generales	84
3.2 Software a utilizar	85
3.3 Motor	86
3.4 Transductor	86

3.5 Adquisición de datos	89
3.6 Procesamiento digital de señales	100
3.7 Algoritmo de MCSA	104
3.8 Detección de la falla	106
3.9 Almacenamiento de datos	108
3.10 Generación de reportes	. 109
3.11 Visión general del sistema	. 113
CAPÍTULO IV PRUEBAS Y RESULTADOS	125
4.1 Objetivos esperados	125
4.2 Configuración de las pruebas y resultados	127
4.3 Resumen de las pruebas y resultados	139
CAPITULO V. CONCLUSIONES Y RECOMENDACIONES	140
5.1 Conclusiones	140
5.2 Recomendaciones	142
REFERENCIAS BIBLIOGRÁFICAS	143
SÍMBOLOS, ABREVIATURAS Y TÉRMINOS IMPORTANTES	146
ANEXO A. Reporte generado por el programa de un motor con b	oobinas
cortocircuitadas	149
ANEXO B. Reporte generado por el programa de un motor en buen estado	151

ANEXO C. L	Lista de	motores	trifásicos	У	monofásico	de	inducción	
comerciales								153
ANEXO D. Esp	oecificacior	nes del car	mbiador de	vol	taje 70ls07			155
ANEXO E. Esp	ecificacion	nes de la F	inza Ampe	rimo	étrica 80i-600)A		159
ANEXO F. Mar	nual de usı	uario						161
ANEXO G. Car	ra principa	del softwa	are					169
ANEXO H. Map	pas circuita	ales de pla	icas eléctrio	cas.				172
ANEXO I. Mapa	a circuital	completo						175

LISTA DE FIGURAS

Figura 1.1. Porcentajes de Fallas en Motores de Inducción de acuerdo al	
componente constitutivo en el que ocurren	3
Figura 1.2. Esquema global para el uso de MCSA	13
Figura 1.3. Motores con daño	15
Figura 1.4. Representación de la asimetría por cortocircuitado en espiras	18
Figura 1.5. Distribución espacial del campo magnético en un motor de	
inducción. a) Distribución espacial, b) disposición angular	19
Figura 1.6. Distribución de un campo magnético debido a espiras	
cortocircuitadas	20
Figura 1.7. Transformación de marco de referencia	21
Figura 1.8. Espectros de corriente de dos motores ideales	23
Figura 1.9. Diagrama de flujo del algoritmo de MCSA	24
Figura 2.1. Diagrama de bloques del sistema	28
Figura 2.2. Estator y Rotor de un motor de Inducción	30
Figura 2.3. a) Jaula de Ardilla b) Rotor tipo Jaula de Ardilla	31
Figura 2.4. Partes Constitutivas de un Motor de Inducción	31
Figura 2.5. Esquema de implementación de la Resistencia Sensora	38
Figura 2.6. Pinzas amperimétricas	39
Figura 2.7. Esquema de Medición de Corriente usando TC	40
Figura 2.8. Medición de Corriente usando pinzas amperimétricas	37
Figura 2.9. Sensor de Efecto Hall	41

Figura 2.10. Principio de funcionamiento del sensor de Efecto Hall	42
Figura 2.11. Esquema de un Divisor de Corriente	44
Figura 2.12. Fuentes, medios y transmisión de Ruido	58
Figura 2.13. Equivalente circuital del Ruido Capacitivo	59
Figura 2.14. Representación Circuital de Ruido Inductivo	60
Figura 2.15. Respuestas en frecuencia típicas de filtros tipo: a) Butterworth,	
b) Chebyshev I, c) Chebyshev II, d) Elíptico	69
Figura 2.16. Respuesta en frecuencia típicas de filtros tipo Bessel	69
Figura 3.1. Pinza con Resistencia de acondicionamiento	87
Figura 3.2. Transformador de voltaje	88
Figura 3.3. Respuesta en frecuencia del filtro Anti-Aliansing	89
Figura 3.4. Esquemático del Filtro Anti-Aliasing	90
Figura 3.5. Primera etapa filtro anti-aliasing, a) esquema, b) función de	
transferencia	91
Figura 3.6. Primera etapa filtro anti-aliasing	91
Figura 3.7. Respuesta en frecuencia de cada etapa del filtro anti-aliasing	92
Figura 3.8. Respuesta en frecuencia del filtro anti-aliasing	93
Figura 3.9. DAQ USB-6009	94
Figura 3.10. Configuración de la DAQ	96
Figura 3.11 Implementación de tarea Voltaje	97
Figura 3.12. Conexión de entradas en la DAQ	98
Figura 3.13. Implementación de adquisición de datos	99
Figura 3.14. Configuración del filtro digital	100

Figura 3.15.	Implementación del filtro digital en LabVIEW	101
Figura 3.16.	Configuración de análisis espectral	102
Figura 3.17.	Implementación de FFT de corriente y voltaje	102
Figura 3.18.	DSP y MCSA	103
Figura 3.19.	Implementación MCSA	105
Figura 3.20.	Implementación de Detección de falla	106
Figura 3.21.	Implementación de almacenamiento en Excel	109
Figura 3.22.	Administrado de orígenes de datos configurado para el sistema	110
Figura 3.23.	Implementación de almacenamiento de datos en MS Access	111
Figura 3.24.	Implementación de almacenamiento de datos en MySQL	112
Figura 3.25.	Plantilla de reportes	114
Figura 3.26.	Implementación de generación de reportes	114
Figura 3.27.	Función Reporte	115
Figura 3.28.	Pantalla "Configuración"	116
Figura 3.29.	Pantalla "Procesamiento y señales en tiempo"	118
Figura 3.30.	Pantalla "Señales en frecuencia y diagnóstico"	119
Figura 3.31.	Pantalla "Tablas"	120
Figura 3.32.	Función Paro de Emergencia	120
Figura 3.33.	Esquema general de Hardware	123
Figura 4.1. F	orma de onda de transductor de corriente	127
Figura 4.2. F	orma de onda de transductor de corriente	127
Figura 4.3. R	despuesta en frecuencia práctica del filtro Anti-Aliasing	128
Figura 4.4. a) Pantalla inicial del configuración, b) Segunda pantalla con	

"lectura de datos" titilando, c) Segunda pantalla enviando datos	
a BDD, d) Diagnóstico	129
Figura 4.5. Señales adquiridas	130
Figura 4.6. Espectros de frecuencia, diagnóstico y recomendación mostradas	
por el programa	130
Figura 4.7. Espectro de frecuencias	132
Figura 4.8. Paletas de diagnóstico y recomendación	133
Figura 4.9. Proceso de detección	133
Figura 4.10. Señales adquiridas	134
Figura 4.11. Espectros de corriente	135
Figura 4.12. Espectro de corriente desarrollada en Excel	137
Figura 4.13. Datos almacenados en MS Access	137
Figura 4.14. Datos almacenados en MySQL	138

LISTA DE TABLAS

Tabla 1.1 Comparación de los métodos de diagnóstico	8
Tabla 1.2 Consideraciones administrativas de la implementación de los	
métodos	9
Tabla 2.1 Voltajes nominales de redes trifásicas de Bajo Voltaje	34
Tabla 2.2 Características de los sensores de corriente	42
Tabla 2.3 Características de los sensores de voltaje	46
Tabla 2.4 Características de tipos de Sistemas de adquisición de datos basados	s
en PC	49
Tabla 2.5. Características y aplicaciones de Ventanas para FFT	78
Tabla 3.1. Comparación de requerimientos de sistema y pinza	87
Tabla 3.2. Comparación de requerimientos de sistema y transformador de	
voltaje	88
Tabla 3.3. Parámetros de las etapas del filtro	92
Tabla 3.4. Comparación entre requerimientos de sistema y características del	
equipo a utilizar	95
Tabla 3.5. Criterio de selección de falla	107
Tabla 3.6. Diagnósticos y recomendaciones que muestra el equipo	107
Tabla 3.7. Elementos utilizados en la implementación	124
Tabla 4.1 Tablas generadas en Excel	136
Tabla 4.2 Resumen de pruebas y resultados	137