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Resumen 

En este estudio se llevan a cabo simulaciones por computadora del comportamiento 
hidrodinámico de un reactor de lecho fluidizado acústico. Mediante el uso del programa 
Comsol Multiphysics se implementó un modelo computacional en dos dimensiones (2D) del 
reactor en el cual se determinaron los efectos de la frecuencia y el nivel de presión de 
sonido en las características hidrodinámicas del lecho fluidizado. El correcto acoplamiento 
de los módulos de Acústica y CFD de Comsol, permitieron validar el modelo computacional 
con previos resultados experimentales. Las simulaciones se llevaron a cabo en un modelo de 
un reactor de lecho fluidizado de 10.2 cm de diámetro lleno de cáscara de nuez molida, con 
una densidad de material de 1440 kg/m3, y rangos de partículas entre 80 y 212 µm. La 
frecuencia; utilizada como fuente acústica se fijó en 200 Hz con un nivel de presión de 
sonido de 110 dB para la cáscara de nuez molida. Los resultados finales de las simulaciones 
muestran que el lecho fluidizado bajo la presencia de un campo acústico proporciona una 
fluidización más uniforme. Así, la intervención acústica afecta al comportamiento 
hidrodinámico local del lecho fluidizado.  
 

Palabras clave: Simulación, CFD, Acústica, Lecho fluidizado, Hidrodinámica. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Abstract  

In this study, computer simulations are performed to study the hydrodynamic behavior of 
an acoustic fluidized bed reactor. By using Comsol Multiphysics software, a two-dimensional 
(2D) computational model of the reactor was implemented in which the effects of 
frequency and sound pressure level on the hydrodynamic characteristics of the fluidized bed 
were determined. The correct coupling of Comsol's Acoustics and CFD modules allowed to 
validate the computational model with previous experimental results. The simulations were 
carried out in a 10.2 cm diameter fluidized bed model filled with ground walnut shell, with a 
material density of 1440 kg/m3, and particle ranges between 80 and 212 μm. The 
frequency, used as an acoustic source, was set at 200 Hz with a sound pressure level of 110 
dB for ground walnut shell. The final results of the simulations showed that the fluidized bed 
under the presence of an acoustic field provides a more uniform fluidization. Thus, the 
acoustic intervention affects the local hydrodynamic behavior of the fluidized bed.    
 

 

Key Words: Simulation, CFD, Acoustics, Fluidized bed, Hydrodynamics.  
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Abbreviations  

Nomenclature 

D bed diameter, m 

d particle diameter, m 

g gravity acceleration, m/s2 

H static bed height, m 

𝑰 intensity vector, W/m2 

P pressure, Pa 

t time, s 

𝑈𝑚𝑓 minimum fluidization velocity, m/s  

𝐮 velocity field, m/s 

𝐮slip slip velocity, m/s  

∇𝑝𝑠 solid pressure, Pa 

 

Greek letters 

𝜇 dynamic viscosity, Pa∙s 

𝜏 viscous stress tensor, Pa   

𝜌 density, kg/m3 

∅ phase volume fraction  

𝛽 drag force coefficient, kg/m3s 

𝛾 ratio between specific heats 

 

Subscripts 

c continuous phase  

d dispersed phase 

max maximum  

mf minimum fluidization  
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Introduction 

Fluidized bed reactors are devices in which a fluidization process takes place. In this 

process, a vertical upward current of fluid (liquid, gas or a mixture of both) is used to 

suspend solids in the form of particles. Commonly, these solid particles are referred to 

as the solid or dispersed phase and during fluidization they behave like a fluid. These 

reactors are used in a wide variety of industrial, chemical and pharmaceutical 

processes mainly because they allow high heat and mass transfer rates, uniform 

temperature distributions and low pressure drops. The complex gas-solid flow 

behavior in fluidized beds makes flow modeling a challenging task. Several assisted 

fluidization techniques have been proposed in order to overcome the limitations and 

to improve their intrinsic performance such as mechanical vibration, gas injection, 

pulsating flow, electric field, magnetic field and acoustic excitation (Khosravi Bizhaem 

& Basirat Tabrizi, 2017). 

Sound-assisted fluidized beds have been studied for different Geldart type particles 

(Geldart type A - C) to understand the effects produced by the acoustic field on the 

fluidization behavior. This is an alternative and important option because it is a 

noninvasive technique that could influence and improve the bed hydrodynamic 

structure without affecting the properties of the bed material (Escudero & Heindel, 

2013). The fluidization of cohesive, fine-grained powders can be enhanced by applying 

low-frequency and high-intensity sonic energy. Shuai et al. (2011) reported this 

improvement experimentally since homogeneous fluidization of fine particles has been 

achieved when operated in an acoustic field with appropriate combinations of bed 

weight and sound intensity and frequency.  
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When characterizing the hydrodynamic structure of a multiphase flow system, two 

main parameters are used; gas holdup or void fraction and the minimum fluidization 

velocity. In a fluidized bed, the gas holdup is defined as the volumetric gas fraction 

within the bed material (Escudero & Heindel, 2014). On the other hand, the minimum 

fluidization velocity is the superficial gas velocity at which the solid particles are just 

suspended in the fluidizing medium, and is a parameter that depends on the fluid 

properties, material properties and bed geometry (D. Escudero & Heindel, 2013). The 

presence of an acoustic field in a fluidized bed reactor produces a better fluidization 

quality which means an enhancement in the gas-solid mixing and a reduction in the 

minimum fluidization velocity.  

Theoretical and numerical studies using computer simulations have allowed to analyze 

and better understand the hydrodynamic characteristics present in fluidized bed 

reactors. Computational Fluid Dynamics (CFD) approaches for modeling fluidized beds 

have been developed to a good level of maturity over the past three decades, primarily 

based on the kinetic theory of granular flows (Cloete, Johansen, & Amini, 2014). With 

the development of better technologies and the increase in the computing capacity of 

current systems, new theories and numerical approaches have emerged when 

modeling and simulating fluidized bed reactors. A few simulation researches have been 

carried out for studying slugging fluidized beds, mainly based on the Eulerian-Eulerian 

or two fluid model (TFM). The Lagrangian-Eulerian or discrete element model (DEM) 

has also become a useful tool to study the hydrodynamic behavior of gas-solid 

fluidized bed reactors (Wu, Ouyang, Yang, Li, & Wang, 2012). 

In general, the hydrodynamics of multiphase flow systems can be described by two 

classes of models, namely the Euler-Lagrange and Euler-Euler models. In the Euler-
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Lagrange models, the fluid phase is treated as a continuum, while the solid particles 

are tracked individually by solving Newton’s second law of motion (Wu et al., 2012). 

On the other hand, Euler-Euler models assume the gas and solid phase as continuous 

and interpenetrating phases, which means that the equations used are the 

generalization of the Navier Stokes equations for interacting continua (Fan, 2006). 

Although both approaches are used in theoretical and numerical studies of these gas-

solid systems, the Euler-Lagrange model is computationally more expensive and is not 

recommended when the concentrations of the solid phase are high. It is for this reason 

that the Euler-Euler model is widely used because is computationally more efficient 

and allows the simulation of large scale reactors and with the possibility of having high 

concentrations of solids.  

More recent studies have concentrated on the simulation and analysis of acoustic 

fluidized bed reactors, which has allowed to compare and validate these numerical 

models with experimental results. Bizhaem and Tabrizi (2017) investigated the gas-

solid flow behavior in a pulsed fluidized bed using the Eulerian-Eulerian two fluid 

model approach in conjunction with the kinetic theory of granular flow using particle 

sizes of Geldart A/B group. In this investigation the effect of various pulsation 

frequencies on the bed expansion ratio, solid volume fraction and solid axial velocity 

was discussed. Previous studies have also investigated the effect of gas pulsation on 

the flow pattern in 2D fluidized bed reactors. It has been found that pulsating flow 

with either a sinusoidal or square pattern improves the quality of fluidization inside a 

gas-solid fluidized bed reactor. A pulsating airflow improved the mixing of fine 

cohesive particles and reduced the minimum fluidization velocity using a wide range of 

pulsation amplitudes and frequencies (Shah, Utikar, & Pareek, 2017).  
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Most of the simulations of the hydrodynamic characteristics in an acoustic fluidized 

bed have been carried out using one dimensional (1D) models, some in two 

dimensions (2D), and using commercial software packages such as Ansys Fluent and 

The Multiphase Flow with Interphase eXchanges (MFIX) code. Comsol Multiphysics is a 

software package based on the finite element method that has been recently used for 

simulations of fluidized bed reactors assisted by pulsating flow, magnetic field, electric 

field, and very few with acoustic excitation in the form of acoustic vibrations.  The goal 

of this study is to investigate the hydrodynamic behavior of an acoustic fluidized bed 

by carrying out 2D modeling with Comsol Multiphysics.   

Multiphase fluid research studies have developed models using the computational 

fluid dynamics method in order to investigate the hydrodynamics of acoustic fluidized 

beds. The challenge of this project is to determine the effects of frequency and sound 

pressure level in the hydrodynamics of a fluidized bed. The coupling of the CFD module 

with the acoustics one will allow the modeling of the acoustic fluidized bed reactor 

using solid particles of Geldart type A and B, the solution of the governing equations 

and obtaining results of the hydrodynamic behavior of the system, including solid 

concentration profiles inside the bed, which will be validated with experimental results 

obtained by Escudero (2014).  
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Methodology 

CFD and Acoustics modules in Comsol Multiphysics 

CFD Module 

Computational fluid dynamics is an integral part of a large number of processes that 

occur in all branches of engineering. Its range of application is so diverse and wide that 

it would be almost impossible not to use this tool when modeling and simulating any 

of these processes. The CFD module in Comsol enables the user to model laminar and 

turbulent single-or multiphase flow along with solvers and meshes that are optimized 

for fluid-flow applications and have built-in stabilization methods (Comsol, 2015). 

This module offers a large number of options that allow the modeling of complex 

systems and processes in which, in addition to the flow of some type of fluid, 

phenomena that involve heat transfer or chemical reactions are present. With the 

physics interfaces, it is possible to simulate laminar and turbulent flow, isothermal and 

non-isothermal flow, Newtonian and non-Newtonian flow, multiphase flow and also 

flow in porous media (Comsol, 2015). The user interface in each of the existing 

submodules of the CFD module has a large number of tools and settings that include 

predetermined shapes and figures for the design of the system that is being modeled, 

to a series of different domains, boundary conditions, parameters of the model and 

properties of the fluid, which facilitate a close approximation to the real model to be 

simulated.  

Acoustics Module 

The acoustics module of Comsol enables you to model sound waves in any type of 

medium, either under the presence of a liquid or gas and even solid materials that can 
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be represented as porous materials if the application requires it. The capabilities and 

functionality of this module solves problems in the general areas of acoustics such as, 

vibrations, pressure and elastic waves, acoustic-structure interaction, thermoacoustics 

and aeroacoustics (Comsol, 2015). Many of the current engineering systems involve 

the presence of acoustic phenomena that influence their performance. Understanding 

the way in which these acoustic effects influence these systems and processes is of 

great interest since they are present in simple elements such as an exhaust pipe to 

very complex devices such as aircraft turbines.  

When it is necessary to model and analyze the propagation, emission, radiation and 

diffraction of sound in any type of geometry, the acoustics module offers a wide 

variety of options and together with the possibility of coupling several physics in the 

same study, it becomes a very powerful tool to carry out simulations. This module 

supports frequency domain, modal and transient studies for fluid flow as well as 

frequency, eigenfrequency, transient and static analyses when the problem to be 

solved involves structures (Comsol, 2015).  

 

Hydrodynamic and Acoustic Model  

Fluidized bed reactors are multiphase flow systems in which the principles of 

conservation of mass, momentum and energy are applied; this approach is based on 

the basis of the local average technique (Zhang, Zhang, & Zhang, 2003). In the present 

simulations, the Euler-Euler two fluid model was used to simulate the hydrodynamic 

behavior of the fluidized bed. In the Eulerian-Eulerian approach, both phases are 

treated as interpenetrating continua where the governing equations for both phases 

are solved, and the additional equations (which arise due to the dispersed phase), are 
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modelled using the kinetic theory of granular flow (KTGF) (Patro, 2014). At the time of 

modelling the fluidized bed with the Euler-Euler model, it is necessary to define a 

volume fraction or solids concentration.  

In order to make a comparison of the experimental data with the results obtained 

through the simulations, the complete system of the fluidized bed was modeled, that 

is, the acoustic source was added to the original system, which for this specific case 

used a loudspeaker located in the upper part of the reactor, as shown in figure 1. 

 

Figure 1. Acoustic fluidized bed reactor used experimentally (Escudero, 2014) 

 

In the simulations carried out in this study, two physics interfaces available in Comsol 

Multiphysics were used: The Euler-Euler model (described previously) which belongs to 

the multiphase flow branch of the CFD module and the Linearized Euler model, which 
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can be found in the aeroacoustics branch of the acoustics module. The linearized Euler 

model is used to compute the acoustic variations in density, pressure and velocity in 

the presence of a background mean-flow that is well approximated by an ideal gas 

flow. The linearized Euler equations used by this physics interface are the linearized 

continuity, momentum, and energy equations, which are solved in the time domain 

(Comsol, 2015).  

In this study, a 2D computational model of a gas-solid acoustic fluidized bed is 

implemented in Comsol Multiphysics. The fluidizing material is ground walnut shell 

(ρwalnut shell = 1440 kg/m3) with three different particle diameters (80 µm, 150 µm 

and 212 µm). The hydrodynamic and acoustic model of the reactor (figure 2) is 

simulated with an acoustic source, in which a frequency of 200 Hz with a sound 

pressure level of 110 dB are used for the ground walnut shells.    

 

Figure 2. Fluidized bed reactor model implemented in Comsol Multiphysics 
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Numerical Method and Simulation 

Numerical Method 

In order to simulate de hydrodynamic behavior of the fluidized bed, the governing 

equations of the Euler-Euler two fluid model are solved. In Comsol Multiphysics, the 

Euler-Euler model, laminar flow interface solves two sets of Navier-Stokes equations, 

one for each phase (continuous phase and dispersed phase), in order to calculate the 

velocity field for each phase (Comsol, 2015). The interchange of momentum between 

the phases is described by a drag model, a transport equation is used to track the 

volume fraction of the solid phase and the pressure is computed from a mixture-

averaged continuity equation (Comsol, 2015).  

Assuming no mass transfer between the phases, the following continuity equations 

stand for the continuous and dispersed phases: 

∂

∂t
(ρc∅c) + ∇ ∙ (ρc∅c𝐮c) = 0  (1) 

∂

∂t
(ρd∅d) + ∇ ∙ (ρd∅d𝐮d) = 0 (2) 

 

Where the following relation accounting for the phases volume fractions has to be 

fulfilled:  

∅c = 1 − ∅d  (3) 

 

The momentum equations are written having in consideration one continuous phase 

and one dispersed phase (Comsol, 2015): 

ρc∅c [
∂

∂t
(𝐮c) + 𝐮c∇ ∙ (𝐮c)] = −∅c∇p + ∇ ∙ (∅cτc) + ∅cρc𝐠 + 𝐅m,c + ∅c𝐅c (4) 

ρd∅d [
∂

∂t
(𝐮d) + 𝐮d∇ ∙ (𝐮d)] = −∅d∇p + ∇ ∙ (∅dτd) + ∅dρd𝐠 + 𝐅m,d + ∅d𝐅d (5) 
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Where the viscous stress tensors for both phases are as follows: 

τc = μc (∇𝐮c + (∇𝐮c)T −
2

3
(∇ ∙ 𝐮c)𝐈) (6) 

τd = μd (∇𝐮d + (∇𝐮d)T −
2

3
(∇ ∙ 𝐮d)𝐈) (7) 

 

The dynamic viscosities of the two interpenetrating phases have default values which 

are equal to a simple mixture viscosity (Krieger type model) (Comsol, 2015): 

μc = μd = μmix = μc (1 −
∅d

∅d,max
)

−2.5∅d,max

  (8) 

 

In the Euler-Euler model, the drag force is represented by the following relation 

(Comsol, 2015): 

𝐅drag,c = −𝐅drag,d = β𝐮slip  (9) 

 

Where the slip velocity is defined as: 

𝐮slip = 𝐮d − 𝐮c      (10) 

 

When setting up the CFD model, a solid pressure model must be set. In the present 

simulations, the predefined solid pressure model of Gidaspow and Ettehadieh was 

used (Comsol, 2015): 

∇ps = −10−8.76∅c+5.43∇∅c  (11) 

 

The fully coupled multiphysics system of the acoustic fluidized bed reactor was 

achieved by adding the acoustic excitation into the Euler-Euler model. To do so, the 
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governing equations present in the linearized Euler interface are solved in the time 

domain (transient).  

The following linearized Euler equations assume the fluid to be an ideal gas which is 

the common approach in the literature (Comsol, 2015): 

∂ρ

∂t
+ ∇ ∙ (ρ𝐮0 + ρ0𝐮) = Sc  (12) 

∂𝐮

∂t
+ ∇ ∙ (𝐮𝐮0 +

p

ρ0
𝐈) +

ρ

ρ0
(𝐮0 ∙ ∇)𝐮0 − p∇(ρ0

−1) + (∇𝐮0 − (∇ ∙ 𝐮0)𝐈)𝐮 = Sm       (13) 

∂p

∂t
+ ∇ ∙ (γp0𝐮 + p𝐮0) + (1 − γ)(𝐮 ∙ ∇)p0 − (1 − γ)(∇ ∙ 𝐮0)p = Sc  (14) 

 

Where the ratio between the specific heats at constant pressure and constant volume 

is defined as: 

γ =
Cp

Cv
  (15) 

 

Finally, the instantaneous intensity vector is expressed as follows (Comsol, 2015): 

𝐈i = (p0𝐮 + p𝐮0) (
p

ρ0
+ 𝐮0 ∙ 𝐮) +  ρ𝐮0Ts  (16) 

 

Simulation 

In previous investigations, researchers observed some differences between three-

dimensional and two-dimensional axisymmetric calculated void fraction in gas-solid 

flows. Nevertheless, 2D model was recommended to reduce computational time while 

maintaining the accuracy (Khosravi Bizhaem & Basirat Tabrizi, 2017). In this study, a 2D 

model of a fluidized bed reactor was implemented in Comsol Multiphysics. The 

simulations were performed at transient condition with a total time of simulation of 5 
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seconds. The dispersed phase used were solid particles of ground walnut shell with 

particle diameters of 80 μm, 150 μm and 212 μm. Air was used as the continuous 

phase of the model. When simulating the fully coupled system of the acoustic fluidized 

bed, the acoustic field was added represented by a loudspeaker with a frequency of 

200 Hz and a sound pressure level of 110 dB.   

In the present simulations, the following are the initial and boundary conditions used 

in the Euler-Euler model for the CFD analysis: 

- Initially, solid and gas velocity was set at zero. The initial volume fraction of the 

dispersed phase was also specified. 

- At the inlet, a continuous phase inlet type was set. The mixture boundary 

condition at the outlet was specified as pressure normal flow.  

- Along the wall, a no slip condition was set for the continuous phase. For the 

dispersed phase, a slip condition was applied. 

In the case of the acoustic fluidized bed where the acoustic excitation was simulated in 

conjunction with the CFD model, in addition to the previous conditions, the following 

are the initial and boundary conditions used in the Linearized Euler model 

(aeroacoustics): 

- The initial values of density, velocity field and pressure were all set to zero. 

- A rigid wall was used in all the external boundaries of the reactor 

- At the outlet, a pressure boundary condition was applied to represent the 

loudspeaker. 
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In order to apply the acoustic excitation to the fluidized bed, the acoustic field was 

applied at the upper boundary of the model (the outlet). To represent the acoustic 

vibrations of the loudspeaker, a pressure function was implemented in the model 

based on the experimental values of frequency and sound pressure level (Iturralde, 

2016): 

P = Pfscosωt   (17) 

 

Where 𝑃𝑓𝑠 is the source amplitude and it was calculated as follows (Comsol, 2015): 

Pfs = Pref10Lp/20  (18) 

 

And the angular frequency 𝜔 was found with the following expression (Inman, 2014): 

ω = 2πf  (19) 

 

Finally, the following expression was used at the outlet pressure boundary condition in 

the acoustic model of Comsol: 

P = 6.324 cos (1256.6)t  (20) 

 

When both physics were simulated, the Euler-Euler model was first computed in order 

to use some of its variables in the acoustic model. The multiphysics coupling was done 

by adding the absolute pressure and velocity field of the continuous phase calculated 

in the Euler-Euler model, in the background mean flow pressure and background mean 

flow velocity of the Linearized Euler model of aeroacoustics. Likewise, the density of 
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the continuous phase of the CFD model was used in the acoustic model. At the 

moment of computing the complete model, the solvers and variables of each physics 

were fully coupled and solved in the same study (time dependent).  

Table 1 summarizes the computational parameters and conditions applied in the 

current simulations for the three particle diameters analyzed. 

 

Table 1. Parameter values in the numerical simulations 

Parameter Description Value 

𝑈𝑔 (m/s) Superficial gas velocity 0.12 

D (m) Reactor diameter 0.102 

Rh (m) Reactor height 0.91 

H (m) Static bed height 0.102 

𝜌𝑎 (kg/m3) Density, air 1.2 

𝜌𝑔 (kg/m3) Density, ground walnut shell 1440 

𝜇𝑎 (Pa·s) Dynamic viscosity, air 1.8 × 10−5 

d (μm) Particle diameter 80, 150, 212 

∅𝒅 Initial concentration, dispersed phase 0.57 

F (Hz) Frequency 200  

𝐿𝑝 (dB) Sound pressure level 110 

𝑅𝑒𝑝 Particle Reynolds number 0.729 

𝑅𝑒𝑐 Continuous phase Reynolds number 816 

 

The two parameters of frequency and sound pressure level were only used in the 

acoustic fluidized bed model with particle diameter of  212 μm, which is the model 

compared with experimental results. 

The phase properties specified in the Euler-Euler two fluid model of Comsol were the 

following: 
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- Viscosity Model: Krieger type model 

- Drag Model: Gidaspow 

- Solid Pressure Model: Gidaspow-Ettehadieh 

 

The following table shows the meshing setup used in the CFD and Acoustics 

simulations: 

 

Table 2. Meshing parameters 

        Particle  

Mesh 

80 𝛍𝐦 (CFD) 150 𝛍𝐦 (CFD) 212 𝛍𝐦 (CFD) 212 𝛍𝐦 

(Multiphysics) 

Type Extremely 

fine 

Extremely 

coarse 

Extra coarse Extremely coarse 

# of 

elements 

203738 1891 2520 1584 

Grid type Triangular 

(domain) 

Quadrilateral 

(boundaries) 

Triangular 

(domain) 

Quadrilateral 

(boundaries) 

Triangular 

(domain) 

Quadrilateral 

(boundaries) 

Triangular 

(domain) 

Quadrilateral 

(boundaries) 

 

For the case of the particle of 80 μm, in the CFD simulation a time step of 0.1 s with 12 

iterations per time step was used. In the CFD simulation of the particle of 150 μm, a 

time step of 0.01 s with 200 iterations per time step was specified. With the particle of 

212 μm, a time step of 0.1 s with 120 iterations per time step was used (CFD analysis). 

On the other hand, for the multiphysics case, a time step of 0.01 s with 15 iterations 

per time step was chosen until convergence was reached.  
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Results and Discussion  

The results of this study are classified in qualitative and quantitative results for the 

three particle diameters analyzed. Then, a comparison of these results with 

experimental data obtained previously in investigations carried out by Escudero (2014) 

is presented. Solid concentration maps are shown specifically for a bed height-to-

diameter ratio h/D = 1, for both cases: non-acoustic condition (CFD only) and acoustic 

condition (Multiphysics).  

 

Qualitative Results 

Solid concentration maps (CFD) 

The solid concentration maps presented below allow to observe the qualitative 

characteristics of the fluidized bed in the CFD simulations (no acoustic intervention). As 

shown in figure 3, the hydrodynamic characteristics of the bed vary as the particle 

diameter increases. 
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Figure 3. Solid concentration for (a) 80 μm, (b) 150 μm and (c) 212 μm ground walnut shell 

 

In part (a) of figure 3, it can be seen that there is more concentration of solids near the 

walls and also in the lower part of the bed. It can also be seen there are two main 

regions in which there is no presence of solids, which are represented by blue, and 

allows to conclude that in those regions only the presence of the continuous phase 

exists. On the other hand, in part (b) there is a different hydrodynamic behavior from 

the previous one. It can be observed that the solid particles are concentrated mainly in 

the upper right part of the bed. In the lower region and near the walls, the fluidization 

of the particles is more uniform, which is why there are no red colored areas. In the 

212 μm particles (part c), the concentration of the dispersed phase is maximum in the 
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upper part of the bed. From the middle region downwards, the concentration of solids 

is uniform and remains so, even near the walls.  

  

Solid concentration maps (Multiphysics) 

The solids concentration map of the following figure shows the hydrodynamic behavior 

of the fluidized bed for the multiphysics case (with acoustic intervention). This image 

shows the distribution of the dispersed phase inside the bed with different colors 

which represent different values of solids concentration.  

 

Figure 4. Solid concentration map for 212 μm ground walnut shell with acoustic coupling 

 

As shown in figure 4, at a height of 10.2 cm, the largest number of solid particles are 

concentrated in the upper part of the bed. When h/D = 0.6 approximately, the gas-

solid mixture becomes more uniform along the diameter of the fluidized bed, and this 

uniformity is maintained from that point downwards. In the middle and lower region 

of the bed, the concentration of solids is very similar in both the walls and the center 

of the bed. It can also be observed, in the corners at the inlet of the bed, there are 

small concentrations of solids (red color) that indicate a greater particle concentration 

with respect to the rest of the bed.  
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Solid concentration maps for 212 μm (CFD – Multiphysics Comparison) 

In order to show the influence of the acoustic vibrations in the hydrodynamic 

characteristics of the fluidized bed, the following figure shows the solid concentration 

maps for the acoustic case (Multiphysics) and the no acoustic case (CFD) at different 

times of simulation.  

   
 CFD            Multiphysics 
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Figure 5. Solid concentration maps for (a) t = 1s, (b) t = 2s, (c) t = 3s, (d) t = 4s and (e) t = 5s 
 
 

At a time of 1 second (part a), there is a difference in the solid concentration profiles 

between the CFD and Multiphysics cases. It can be seen from the no acoustic 

simulation that in the center of the bed there is a greater concentration of solid 

particles with respect to the other regions of the bed. This greater concentration 

appears at a height of h/D = 0.4 approximately. When looking up the acoustic 

simulation at the same time of simulation, this region with higher concentration of 

solids disappear, and shows more uniformity in the concentration of the dispersed 

phase along the width of the bed. In part (b) at a time of 2 seconds, the results of the 

simulations show a similar hydrodynamic behavior of the solid particles inside the bed, 

with the difference that in the multiphysics simulation, there is more concentration of 

solids near the walls in the upper region of the bed. The solid concentration maps in 

part (c) show different gas-solid profiles especially in the middle region of the bed. It 

can be seen in the CFD simulation, in the center part of the bed, there is a greater 

concentration of particles when compared with the Multiphysics simulation. At 4 

seconds of simulation (part d), at a height of h/D = 0.4, the figure shows a red colored 

region with high concentration of solids in the simulation with no acoustic 

intervention. Conversely, at the same height, this red colored region disappears when 

the acoustic excitation is applied, the gas-solid mixture inside the bed is more uniform 
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and for this reason it can be said that the fluidization process is enhanced when the 

acoustic vibrations are used in the system. Part (e) of figure 5, shows a better 

fluidization of the solid particles and a better uniformity along the width of the bed in 

the acoustic simulation. The CFD simulation shows a higher concentration of solids in 

the upper right region of the bed (near the wall). On the other hand, in the 

Multiphysics simulation, the solids concentration is pretty similar in both walls.  

 

Quantitative Results 

Solid concentration profiles (CFD) 

The solids concentration is plotted as a function of height to determine quantitatively 

the variation of the dispersed phase concentration through the entire bed. The 

following figures are shown specifically for a bed height-to-diameter ratio h/D = 0.25.  
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Figure 6. Solid concentrations at a height of 2.5 cm for (a) 80 μm, (b) 150 μm and (c) 212 μm 

 

In part (a) of figure 6, it can be seen that the walnut shell concentration reaches higher 

values near the walls of the bed. When x/D is between 0.2 and 0.3, the solids 
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concentration has the lowest values, and this also happens when x/D is between 0.8 

and 0.9. This decrease in solids concentration means that the continuous phase (air) is 

flowing in those regions. In the center of the bed width there is also an important 

presence of air flowing, which is the reason that the particles concentration has a low 

value. In part (b) with particle diameter of 150 μm, it can be observed that the lowest 

values of solids concentration are located in the center of the bed (x/D = 0.4 and 0.5). 

Conversely, near the walls is where the higher values of solid particle concentration 

are shown in the figure, especially the right wall where the solids concentration 

reaches a maximum value with respect to the rest of the bed. The CFD simulation in 

part (c), shows the walnut shell concentration along the width of the bed. Near the 

walls of the bed, the solids concentration has higher values when compared them with 

the values present in the center of the bed. It is important to notice that the highest 

value of particles concentration is located near the right wall of the bed and the lowest 

value is shown to appear at x/D = 0.2 approximately, which means that the presence of 

air in this region is greater than the other parts of the fluidized bed. The higher values 

of the continuous phase in this region produces a decrease in the number of particles 

present, and that is why this part of the figure shows lower values of solids 

concentration inside the bed.  

 
 

Solid concentration profiles (Multiphysics) 

The solids concentration plot of the following figure shows quantitatively the 

hydrodynamic behavior of the fluidized bed for the multiphysics case (with acoustic 

intervention) for the ground walnut shell with particle diameter of 212 μm.  
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Figure 7. Solid concentrations at a height of 2.5 cm for 212 μm at t = 5s 

 

It is observed in figure 7 that the concentration of solids across the width of the bed is 

more uniform mainly in the center of the bed. It can also be observed that in the walls 

of the bed, the concentration of solids increases with respect to the central part. At 

approximately x/D = 0.2, the concentration of the dispersed phase reaches the lowest 

values of this graph, in other words, the gas holdup in this region has maximum values.  

 

Solid concentration profiles for 212 μm (CFD – Multiphysics Comparison)  

The following plots were taken at a simulation time of 5 seconds in order to show the 

influence of the acoustic vibrations in the hydrodynamic behavior of the fluidized bed. 

Both graphs show the solid concentration profiles of ground walnut shell at a bed 

height-to-diameter ratio h/D = 0.25. 
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Figure 8. Solid concentrations at a height of 2.5 cm for (a) CFD and (b) Multiphysics at t = 5s 

 

In part (a) of figure 8, the solids concentration along the width of the bed shows a 

fairly changeable trend throughout. Near the walls of the bed, the walnut shell 
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concentration reaches higher values when compared them with the values present in 

the center of the bed. It is important to notice that the highest value of solids 

concentration is located in the right wall of the bed and the lowest value is shown 

between x/D = 0.2 and 0.3 approximately, which means that the presence of the 

continuous phase in this region is greater with high values of gas holdup. In the region 

between x/D = 0.2 and 0.5, the lower values of the dispersed phase mean an increase 

in the gas holdup, and that is why this part of the graph shows low values of solids 

concentration inside the bed. In part (b), it can be seen a different trend of the curve 

when the acoustic excitation is applied in the fluidized bed. The concentration of 

walnut shell across the diameter of the bed is more uniform and has more constant 

values of concentrations. It can also be observed that in the walls of the bed, the 

concentration of solids increases with respect to the central region. By having more 

constant values of concentrations, it can be said that the fluidization inside the bed has 

been improved in a certain way. In both graphs, specifically between x/D = 0.2 and 0.3, 

the concentration of solid particles reaches the minimum values of each curve.  

 

Comparison with experimental results 

In order to make a comparison between the numerical model with the experimental 

data, all the experimental conditions used remained the same in the present 

simulations (Escudero, 2014): A 10.2 cm diameter fluidized bed, ground walnut shell as 

the solid particles, particle diameter of 212 μm, same frequency and sound pressure 

level (200 Hz and 110 dB) and Ug = 3Umf 
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Qualitative results 

 

 

Figure 9.  Qualitative comparison between (a) experimental data (gas holdup) and (b) 

numerical results (solids concentration) for 212 μm walnut shell 

 

Experimentally, two-dimensional time-average local gas holdup maps were obtained 

to show the qualitative characteristics of the acoustic effects in the fluidized bed 

(Escudero, 2014). In part (a) of figure 9 these experimental maps are shown for the 

acoustic and no acoustic cases. On the other hand, in the numerical simulations, solid 

concentration maps (∅𝑑 = 1 − ∅𝑐) are shown in part (b) of figure 9 for both cases, the 

multiphysics study and the CFD study. It can be seen from the CFD results that there is 

a high concentration of solids in the upper region of the bed. It can also be observed, 

there is more solids concentration near the right wall when compared with the left 
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wall of the bed. In other words, we can conclude that there is not much uniformity in 

the solids concentration along the diameter of the bed, specifically near the top of the 

bed. The solid concentration map of the multiphysics case (with acoustic intervention), 

shows a small difference when comparing it with the CFD case (no acoustics). In the 

middle region of the bed, the fluidization of the solid particles shows a more uniform 

pattern with less voids. In both walls, the concentration of solids is pretty similar and it 

can be seen that the solids volume fraction along the diameter of the bed has more 

uniformity specially in the middle region of the bed, so that, it can be concluded that 

the acoustic field improves the fluidization process, which can be seen in the 

experimental results where the acoustic intervention produced a more uniform void 

fraction distribution.  

It should be noted that in the lower part of the bed of the experimental maps, 

different profiles are shown when comparing them with those of the simulations. This 

is due to the fact that the air inlet in the experimental reactor had a series of small 

holes. On the other hand, in the numerical simulations, these holes were represented 

as a single air inlet in the computational model.  

 

Quantitative results 

Local time-average gas holdup is plotted in the experimental results. Solid 

concentrations are plotted in the numerical simulations at a time of 5 seconds and at a 

height of h = 2.5 cm. The experimental curves for the acoustic and no acoustic cases 

are plotted in the same figure, while the curves of the numerical simulations are 

plotted in separate figures.  
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Figure 10.  Quantitative comparison between (a) experimental data (gas holdup), (b) 

numerical results (acoustics) and (c) numerical results (no acoustics) for 212 μm walnut shell 



39 
 

The experimental data of figure 10 shows a slight difference between the acoustic and 

no acoustic cases. Both lines follow a very similar pattern showing a small influence of 

the acoustic field in the fluidization of the bed. When comparing part (b) and (c) of 

figure 10, it can be seen a difference between the acoustic and no acoustic cases. At a 

height of 2.5 cm, the multiphysics simulation (acoustics) shows a more uniform 

concentration of solids when comparing it with the CFD case (no acoustics). In part (b), 

between x/D = 0.1 and 0.2, the solids concentration reaches a maximum value and the 

minimum value of concentration is shown to be between x/D = 0.2 and 0.3. A similar 

trend can be seen in part (c) where the lowest value of particles concentration is 

between x/D = 0.2 and 0.3, the difference is that in the no acoustics simulation, the 

maximum value of solids concentration is located near the right wall of the bed.  

The presence of acoustic vibrations inside the bed, allows the curve of part (b) to have 

more constant values of solids concentration, that is, there are not sudden changes in 

the concentration values as can be seen in part (c). This trend can be noted especially 

in the central region of the bed. As seen in the two graphs obtained from the 

numerical simulations for both cases, CFD (no acoustics) and multiphysics (acoustics), 

the acoustic excitation does not have significant effects on the hydrodynamic behavior 

of the fluidized bed for this type and size of particle. This can be confirmed with the 

results obtained experimentally (part a), since the curves plotted in the figure do not 

show an important change between the acoustic and non-acoustic cases.   
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Conclusions 

Comsol Multiphysics simulated successfully the hydrodynamic behavior of an acoustic 

fluidized bed reactor. In order to accomplish this, a 2D computational model of a gas-

solid fluidized bed was implemented, in which the coupling of the CFD module with the 

acoustics one allowed the modeling of the reactor, the solution of the governing 

equations and obtaining results of the hydrodynamic behavior of the system. 

The effects of frequency and sound pressure level in the hydrodynamics of the 

fluidized bed reactor model were determined. To do so, the Euler-Euler two fluid 

model was fully coupled with the Linearized Euler model of aeroacoustics to obtain 

solid concentrations for particles of Geldart type A and B analyzed in this study. The 

value of frequency of 200 Hz and sound pressure level of 110 dB used experimentally, 

remained the same in the present simulations for ground walnut shell with particle 

diameter of 212 μm.  

The computational model, qualitative and quantitative data from the simulations were 

compared and validated with experimental results. Gas holdup maps obtained 

experimentally showed that the acoustic intervention improved the fluidization 

behaviour of the gas-solid flow. Solid concentration maps resulted from the numerical 

simulations, showed more uniformity along the diameter of the bed when adding the 

acoustic field. It can be concluded from the experimental and numerical data that a 

fluidized bed assisted by acoustic excitation exhibits a more uniform fluidization and 

the hydrodynamic structure of this multiphase system is enhanced.  
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