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Resumen 
 

El estudio de contaminantes emergentes tiene una importancia trascendental para los humanos 

y animales; estos pueden alterar sus funciones reproductivas como también incrementar el 

riesgo de enfermedades para la salud. Muchas de estas especies se infiltran en el ambiente y 

consecuentemente en animales a través de las descargas de aguas residuales, razón por la cual 

es requerido un sistema efectivo que permita su remoción. La filtración lenta de arena es 

considerada no solo como la tecnología más barata, sino la más eficiente en el tratamiento de 

aguas según la Organización Mundial de la Salud. En esta investigación la cafeína es escogida 

como un modelo polar orgánico de contaminantes emergentes, siendo esta la más abundante y 

representativa en las descargas del Distrito Metropolitano de Quito (DMQ). Se llevó a cabo un 

análisis dinámico de la filtración de cafeína a escala de laboratorio usando un filtro lento con 

zeolita, carbón activado, grava y cáscara de Moringa oleifera Lam. como lechos filtrantes sin 

tratamiento previo. Diferentes modelos matemáticos fueron probados para describir la 

concentración de cafeína en función del tiempo de operación y profundidad del filtro. Se 

encontró que el modelo que mejor describe los datos experimentales en el caso del carbón 

activado como lecho es el Modelo de Clark, mientras que, para la zeolita, grava, y cáscara de 

Moringa oleifera lam. fue un modelo deducido que se obtuvo combinando el modelo de 

filtración de Iwasaki e Ives en conjunto con un balance de masa a través del filtro. La capacidad 

de adsorción para cada medio filtrante fue cuantificada encontrando la masa de cafeína que es 

retenida por unidad de masa de lecho filtrante. Esta fue: (19.58 ± 4.17), (32.36 ± 5.16), (9.08 

± 1.01), y (129.98 ± 48.01) [µg/g] en promedio para el carbón activado, la zeolita, grava y 

cáscara de Moringa oleifera respectivamente. A una profundidad fija de lecho, el medio que 

más removió cafeína fue la zeolita, mientras que el medio que más removió cafeína por unidad 

de masa fue la cáscara de Moringa oleifera Lam. En general, el sistema de filtración no fue lo 

suficientemente eficiente como proponen otros estudios para realizar un escalamiento; un 

mejoramiento en la efectividad del empaquetamiento del filtro es sugerido para futuras 

investigaciones. 

 

Palabras Clave: Contaminantes emergentes, filtración lenta de arena, cafeína, Moringa oleifera 

Lam., adsorción. 
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Abstract 
 

The study of Emerging Contaminants is of substantial importance for humans and animals; 

these may alter their reproductive systems as well as increasing health risks. Most of these 

species infiltrate in the environment and, consequently, to animals through wastewater 

discharges which is why an effective removal system is required. Slow sand filtration is 

suggested to be not only the cheapest, but also the most efficient wastewater treatment 

according to the World Health Organization. In this investigation, caffeine was chosen as a 

polar organic model of emerging contaminants, being the most abundant compound in one of 

the most representative discharges of the Metropolitan District of Quito (DMQ). A laboratory 

scale dynamic filtration analysis of caffeine removal was done using a filter packed with 

untreated zeolite, activated carbon, gravel and Moringa oleifera Lam. Husk. Different 

breakthrough mathematical model curves were tested to describe caffeine concentration as a 

function of operation time and filter depth. It was found that the model that best fitted activated 

carbon´s experimental data was Clark’s model, while for zeolite, gravel and Moringa oleifera 

Husk, it was a deduced model obtained by combining Iwasaki and Ives equations, along with 

a mass balance around the filter. The adsorption capacity of each filtering medium for this 

particular system was quantified finding the mass of caffeine retained per unit mass of filtering 

bed. These were (19.58 ± 4.17), (32.36 ± 5.16), (9.08 ± 1.01), and (129.98 ± 48.01) [µg/g] for 

activated carbon, zeolite, gravel, and Moringa oleifera husk, respectively. At a fixed bed depth, 

the filtering medium that removed most caffeine was zeolite, while the medium that removed 

most caffeine per unit mass was the Moringa oleifera Lam. Husk. The overall filtration system 

was not as efficient as other studies would prefer for a scale up; a better packing effectiveness 

is suggested for future investigations. 

 

Key Words: Emerging Contaminants, Slow Sand Filtration, caffeine, Moringa oleifera Lam., 

adsorption 
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1. Introduction 

The study of Emerging Contaminants (ECs) has been gaining substantial importance from the 

area of Chemical and Environmental Engineering to aquatic Ecological Studies. ECs are 

defined by the US EPA as “new chemicals without a regulatory status and which impact on 

environment and human health are poorly understood” (Deblonde, Cossu-leguille, & 

Hartemann, 2015). The significance of these contaminants lies in the fact that they come from 

everyday used items such as pharmaceuticals, personal care products, fuel additives, and 

energized drinks, among others (Bardeló, 2014). Research has found over 200 different 

pharmaceuticals in rivers water globally (Petrie, Barden, & Kasprzyk-hordern, 2014) in which 

a significant amount of them are Endocrine Disruptors (Remtavares, 2017). These are 

chemicals that may interfere to produce “adverse developmental, reproductive, neurological, 

and immune effects in both humans and wildlife” (NIH, 2014). For instance, estrogen present 

in birth control pills can lead aquatic organisms to develop hermaphroditism phenomena, 

infertility, and loss of male identity (Campillo, 2015). Because of the water cycle, some of 

these species are consumed back and can lead to an increase in the probability of developing 

breast cancer and pregnancy issues in women. Additionally, some of these contaminants have 

feminizing effects on men that can inflict their reproductive functions (Rubén, 2013). Overall, 

ECs are now one of the major concerns and a permanent world menace regarding aquatic 

ecosystems; and in long terms, a harm to human beings. 

Most of the studies to research and eliminate ECs have been done primordially in Europe, 

North America, Australia and China; however, little research has been done in South American 

countries (Pazmiño, 2016). Ironically, these are the countries that need the most help to prevent 

damage to marine life. Taking Ecuador as an example, it has approximately 8% of all animal 

species in the world from which it has around 4.5% of all presumed fish that can be affected 

by ECs (EmbassyEcuador, 2015). Ecuador’s Capital, Quito, has established a program to 

reduce contamination from its rivers. This has been done by the EPMAPS (Empresa Pública 

Metropolitana de Agua Potable y Saneamiento de Quito), the entity in charge of provision of 

drinkable water, sanitary and pluvial sewage services through the entire water cycle. The 

program aims to manage wastewater treatment and discharge, complying with current 

environmental regulations in the city of Quito and in the D.M.Q, the Metropolitan District of 

Quito (EPMAPS, 2016). Nevertheless, the project does not embrace ECs treatment, which is 

why an ECs removal method is highly suggested for Ecuador’s aquatic ecosystem preservation. 

There have been studies done along the San Pedro – Guayllabamba – Esmeraldas river, the 
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watercourses that follows the wastewaters discharges in Quito, and results have revealed that 

there are, in fact, persistent ECs (carbamazepine and acesulfame) and other organic ECs 

(caffeine, steroidal estrogens) that degrade along the 300 km flow (Voloshenko-Rossin, et al., 

2015). Wastewater samples were taken directly from the DMQ discharge, and there is a 

relatively high concentration of organic ECs; the most abundant of them is Caffeine with a 

concentration of 5597 [µg/L] (Voloshenko-Rossin, et al., 2015). Even though results indicate 

that caffeine eventually degrades, there has not been evidence to suggest that its degradation 

products are harmless to aquatic organisms; any presence of caffeine along rivers with living 

organisms may represent a risk to their health 

 (T Moore, L Greenway, L Farris, 2008). Due to its water solubility, caffeine is considered as 

a model for all kinds of polar organic compounds to be registered as secondary contaminants 

(González, 2016). Besides, Caffeine may also serve as a model for other types of ECs, which 

can help understand and investigate its behavior against different treatments.  Overall, the use 

of caffeine as the main EC investigated may be the most imperative and significant one in 

Ecuador’s case.  

One of the main candidates suggested to remove ECs is the Moringa oleifera Lam. plant. This 

species is a drought resistant tree, native to the Himalayas in northwestern India, that has 

already been cultivated in subtropical areas in Ecuador (Leone et al., 2015). As a matter of fact, 

there are Moringa oleifera plantations across the coastal area of Ecuador, mainly in Pedernales 

and Guayaquil. The physical chemical properties of this crop has made it a powerful coagulant 

and antimicrobial agent used for wastewater treatment; previous studies have revealed its high 

adsorption capability with heavy metals (Sharma, Kumari, Srivastava, & Srivastava, 2006). 

There is evidence suggesting that the Moringa’s seed extract has an affinity to organic 

compounds reflected in the adsorption of Carmine-Indigo Dye (Beltra & Sa, 2009) and removal 

of tetracycline antibiotic (Santos et al., 2015). Batch experiments that targeted caffeine as a 

contaminant using the Moringa oleifera Seed has also been achieved; apparently, the protein 

extract in the seed interacts with caffeine and eventually removes it from water (Troya, 2017). 

Whereas it is essential to study the Moringa’s Seed for wastewater treatment, plantations in 

Ecuador aim to produce the seed mainly to process and sell it as a variety of food products such 

as tea, capsules and vegetable oil (Ecuamoringa, 2010). However, the Moringa oleifera Husk 

is currently being discarded as waste and even though it is not used in any food industry, it has 

been proved that it can be applied for adsorption removal of antibiotics such as norfloxacin 

(Wuana et al., 2016). The Moringa’s husks and pod husks have even been used to develop high 
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quality microporous activated carbons (Mcconnachie, Warhurst, Pollard, & Chipofya, 1996), 

which is why it can be a potential specie for adsorbing caffeine.  

Along with the Moringa oleifera plant, there are other candidates that may be used for the 

removal of caffeine. This includes activated carbon (Sotelo, Rodríguez, Álvarez, & García, 

2012), zeolite (Izod, 1982) and pulverized construction rocks which is most often referred to 

as gravel. Most of these materials appear to remove organic compounds by adsorption 

phenomena thanks to Van der Waals forces (either induced, permanent or transient electric 

dipoles) between contaminants and adsorbents. Due to its relatively weak interaction energy 

(10-100 meV), materials that experience physisorption may be used in slow sand filters, as they 

can be cleaned and reused several times (Bruni, 2011). Hence, these can be incorporated in 

slow sand filters as an efficient way to remove the ECs of interest. Unlike other treatments for 

ECs such as AOP (Advanced Oxidation Processes) like fenton, photo-fenton and 

photocatalysis, slow sand filters require very little mechanical power, chemical or replaceable 

parts to work (Tech Brief, 2000). The World Health Organization has even expressed that 

"under suitable circumstances, slow sand filtration may be not only the cheapest and simplest 

but also the most efficient method of water treatment"  (World Health Organization, 2011). 

Incorporating slow sand filters may result as the most practical way to treat contaminants in 

wastewater plants as it only needs to be coupled to the final process, before discharging it to 

effluent streams.   

In order to carry out an effective investigation, filtration dynamics needs to be investigated; it 

is of significant importance to investigate the contaminant removal mechanism that takes place 

inside the filter. Different filter beds may have different models that adapt to specific cases, 

which is why every medium needs to be studied independently before a combination is done. 

The first variable of interest that needs to be examined is caffeine concentration (dependent 

variable) as a function of operation time and filter bed depth (independent variables). There are 

numerous other control variables that should be taken into consideration such as temperature, 

packaging effectiveness, water flow; however, most of them are implicit in the breakthrough 

curve model’s parameters that are going to be utilized (Peric, Trgo, & Vukojevic, 2008). 

Before fabricating a pilot scale filter, it is fundamental that the first investigations are carried 

out in a smaller case dynamic filter. When the essential mechanisms are well known, a larger 

scale design will be secure and more efficient. Research studies have determined that an 

effective standard model proposal for this smaller scale dynamic filter is a cylinder-shaped 
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borosilicate filter with 11 mm diameter and 60 cm height (Vargas, 2015). A standard size filter 

bed has also been suggested with a diameter size of approximately 3-5 mm; this is the 

approximate size range of the bed filter materials. In order to test a medium blanc, inert glass 

beads with the appropriate size range are selected. All the proposed studies and considerations 

may help to the design, construction and the correct management of a larger scale dynamic 

filter.  

2. Objectives  

The general objective of this project was to perform a dynamic analysis of slow sand filters 

using caffeine as the model contaminant, with Moringa oleifera Lam. husk, Zeolite, Activated 

Carbon, and Gravel as filtering beds without any further treatment. The ultimate goal of the 

investigation is to provide the basis of dynamic removal of pollutants so that it serves for future 

escalation purposes. The specific objectives of this project were to i) obtain experimental data 

for the level curves of caffeine concentration as a function of time and filter depth, ii) determine 

and develop a breakthrough model curve that best fits each type of filtering medium, and iii) 

quantify the adsorption capability of each filtering bed with respect to caffeine as a 

contaminant.   

3. Theoretical Framework 

3.1 Filtration Mechanisms 

Within Slow Sand Filters, there are five mechanisms (refer to Figure 1 for an illustrative 

example) that are responsible for the filtration removal of contaminants. These are: 

 1) Straining: occurs when the opening between the filter´s bed media is smaller than the 

contaminant diameter and the particles get retained in the openings. 

2) Inertial Separation: Uses the principles of inertia to separate the contaminant from the water 

flow. It usually happens when there is a rapid change in fluid flow. 

3) Interception: It happens when the contaminant passes at a certain distance (1 radius of itself) 

and makes contact with the filter bed. 

4) Diffusion: Arises when random motion of contaminants causes the contaminant to interact 

with the filter bed. This species then creates an area of lower concentration to which other 

contaminants diffuse to be captured. 
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5) Electrostatic Attraction: This category corresponds to the fixation of contaminants in the 

filtration medium due to adsorption phenomena as a result of Van der Waals forces. 

 

 

 

 

 

 

 

 

Notice that the first 4 removal mechanisms (Straining, Interception, Diffusion and Inertial 

Separation) take place with relatively large particles, but not so with low concentration 

molecules dissolved in water; most of them rely on mechanical forces. Conversely, electrostatic 

attraction involves not only dissolved solids, but atoms, ions and molecules. Most ECs that 

interact with filter beds will get removed due to adsorption by this means; the other filtration 

mechanisms are negligible for ECs.   

  

a) b) 

c) d) 

e) 

Figure 1. The five different filtration mechanisms that may take place in a slow sand filter: a) Straining 

b) Interception c) Diffusion d) Inertial Separation and e) Electrostatic Attraction (Camfil, 2000). 
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3.2 Types of Filtering Beds 

The different types of filtering beds used in this investigation are presented next, as well as 

the relevant information about them regarding filtration.  

3.2.1 Moringa oleifera Husk 

The main Moringa oleifera Husk provider for this project was “Ecuamoringa”, an Ecuadorian 

company that processes Moringa mainly into capsules, teas, and oils. However, they do not use 

its husk; it is literally a waste material for them. The plantations of Ecuamoringa’s providers 

are located in the Coast of Ecuador, specifically in the province of Santa Elena. The husk was 

obtained as shown in Figure 2. 

 

 

 

 

 

 

 

 

The Husks had not received any further physical or chemical treatment; they are the husks that 

had just been taken off from their seeds. An important aspect to consider when taking into 

consideration the husk as a filtering bed is that it is not spherical, and its size range varies 

significantly. For practical purposes, the larger husks were preferred for filling up the filtration 

column, rather than the small ones. Even though it is complex to do a size analysis distribution 

for this, for practical purposes it can be said that, for the average husk, its length, width and 

height were 0.57, 0.45, and 0.10 cm, respectively. These values were the average dimensions 

of the husk.  This is represented in Figure 3. Research carried out in the University of Edinburgh 

and University of Malawi demonstrates that with a steam pyrolysis, these husks may form a 

high quality microporous system used for adsorption (Mcconnachie et al., 1996). This may 

lead to the suggestion that using the Husk without any further treatment may result in a 

physisorption with caffeine.    

Figure 2. Moringa oleifera Husk obtained by our main provider, "Ecuamoringa". 
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3.2.2 Zeolite 

The zeolite used was provided by AvalChem, an Ecuadorian Company dedicated to the 

development of projects regarding water treatment plants industrial effluent treatment.   

 

 

 

 

 

 

 

 

For the average unit of zeolite, its length, width and height was 0.31, 0.22, and 0.20 cm 

respectively (Figure 5).  

 

 

 

 

0.45 cm 

0.57 cm 0.57 cm 

Figure 3. Cross-Section representation of the average types of Moringa 

oleifera Husks that were chosen for this investigation. 

a) b) 

Figure 4. Zeolite provided by AvalChem shown in a a) packed column and b) in a 

container just after delivery. 

0.31 cm 

0.22 cm 

Figure 5. Cross-Section representation of the average unit of zeolite 

used. 
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Zeolite is an aluminium silicate characterized for being a three-dimensional structure with 

pores that consists mainly of silicon, aluminium and oxygen ions. It is the aluminium ions 

which cause negative areas to be present which is why it is a good adsorbent for polar and 

water-soluble substances, including caffeine (EPA, 1999). In contrast with other filtering 

beds, Zeolite’s adsorption capacity is not reduced greatly for low pollutant concentrations; 

thus, it can be suggested that it is more suitable for working in the parts per million (ppm) 

concentration range.  

3.2.3 Activated Carbon 

Avalchem was also the provider of Activated Carbon. This was obtained as shown in 

Figure 6. 

 

 

 

 

 

 

 

 

 

The average unit of Activated Carbon had a length, width and height of 0.49, 0.33, and 0.27 

cm respectively (Figure 7).  

 

 

 

 

 

a) b) 

Figure 6. Activated Carbon provided by AvalChem shown in a a) packed 

column and b) in a beaker just after the delivery. 

0.49 cm 

0.33 cm 

Figure 7. Cross-Section representation of the average unit of zeolite 

used. 
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Activated Carbon has the capacity to adsorb water-dissolved pollutants through surface 

interactions between these species and carbon graphitic platelets. The interactions include 

mainly Van der Waal and induced dipole forces. The platelets induce neutral organic molecules 

into intra-molecular dipoles where they get attracted into the carbon’s pores or adsorption 

spaces (Nowicki, 2016). Powdered activated carbon has faster adsorption kinetics and a higher 

adsorption capacity compared to granular activated carbon; nevertheless, this may cause a 

dramatic hydraulic head loss in the column when implemented to it. This is the reason why 

granular activated carbon is preferred. Moreover, granular activated carbon compared to 

powder, only requires about one-fourth the amount of carbon between influent and effluent.  

3.2.4 Gravel 

The actual gravel used for this investigation was obtained from the fine sand used in 

construction materials found in any local hardware store (Figure 8). The gravel used was 

separated from the other components of the fine sand by washing it with water while using a 

kitchen sieve to retain the components of interest. The types of components obtained are shown 

in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Fine Sand found at any local hardware store. 

a) b) 

Figure 9. The different components obtained from fine sand: a) the gravel used 

for the filtering bed, and b) the rest of the fine sand components. 
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Experimental data showed that for every 1000 grams of fine sand, 570 grams of filtering 

gravel was obtained. Moreover, the average particle of gravel had a length, width and height 

of 0.71, 0.52 and 0.48 cm respectively  (Figure 10).  

 

 

 

 

 

 

 

 

Previous studies have developed an iron oxide coated and natural gravel for the treatment of 

heavy metals in urban drainage systems (Norris, Pulford, Haynes, Dorea, & Phoenix, 2013). 

Results portray that the adsorption mechanism is similar as the one depicted with activated 

carbon with Van der Waal forces. Thus, this interaction may also result in the removal of 

caffeine from water. 

  

Figure 10. Cross-Section representation of the average unit of gravel 

used. 

0.71 cm 

0.52 cm 
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3.2.5 Glass Beads 

The glass beads are in effect anti bumping granules that may serve as a blank in conjunction 

with the borosilicate column. This may represent each filtering bed if it did not had present the 

physical chemical properties of adsorption.  

 

 

 

 

 

 

 

 

 

 

 

 

The Glass Beads may be treated as perfect spheres with a range of diameter between 

 0.15 – 0.30 cm.   

  

a) b) 

Figure 11. Glass Beads used as filtering bed present in a) the borosilicate column, and b) 

in its respective container. 
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3.3 Breakthrough Curves 

Although classical filtration models have been developed, these depend mainly upon 

mechanical forces rather than electrostatic ones. For instance, the Iwasaki and Ives equations 

work with the assumption that the main forces operating in the removal of particles are 

gravitational ones such as Interception and Inertial Separation (Valencia, 1972). The Mintz and 

Krishtul equations take the premise that solid particles are retained in the filter bed, which later 

becomes unstable and then detaches continuously with water flow. Evidence suggests that this 

does not happen with the adsorption of caffeine (Sotelo et al., 2012). Deb’s equation is based 

on the Iwasaki and Ives model considering local increments of concentration with respect to 

time. Nevertheless, this model takes fuller’s earth as a contaminant instead of low 

concentration molecules. Additionally, some of the parameters used in these equations, such 

as the impediment module, σ, are not time-independent which makes its resolution 

unnecessarily complex for the purpose of this investigation (Valencia, 1972). 

The models that do study electrostatic attractions as the main filtration mechanisms in slow 

sand filters are portrayed within the construction of breakthrough curves. These curves reflect 

a measure of the effectiveness and efficiency of a column filter taking into consideration 

distinct operation parameters and variables. They are normally obtained by plotting column 

effluent concentration as a function of treatment time or effluent volume. An Ideal 

breakthrough curve would be as depicted in Figure 12: 

 

Figure 12: Ideal breakthrough curve. Dimensionless effluent concentration, C/C0, is plotted 

against Effluent Volume (Tailor, 2011). 

There are certain characteristics that can be obtained from these curves. The breaking point 

concentration is the maximum acceptable concentration of the adsorbates which is usually 0.5. 
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The breakthrough capacity can be defined as “the mass of the adsorbate removed by the 

adsorbent at break point concentration” (Tailor, 2011). Similarly, the degree of column 

utilization is the mass adsorbed at breakthrough point divided by the mass adsorbed at complete 

saturation. Finally, the exhaussion capacity is the mass of the adsorbate removed by unit weight 

of the adsorbent at saturation point. These quantities may be calculated by the following 

expressions based on Figure 12: 

𝐵𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐴𝑟𝑒𝑎1 ∗ 𝐶0 (1) 

 

𝐸𝑥ℎ𝑎𝑢𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = (𝐴𝑟𝑒𝑎1 + 𝐴𝑟𝑒𝑎2) ∗ 𝐶0 (2) 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐶𝑜𝑙𝑢𝑚𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) =
𝐴𝑟𝑒𝑎1

(𝐴𝑟𝑒𝑎1 + 𝐴𝑟𝑒𝑎2)
∗ 100 (3) 

The breakthrough curves used to calculate the expressions depicted in equations (1), (2) and 

(3) may be obtained by the distinct models proposed by different authors. There are five main 

models that will be tested in this project. These are mentioned next. 

3.3.1 Bohart-Adams Model 

This model is presumably the most used one for breakthrough curves modelling, which is 

why it is essential to know its derivation and assumptions. 

If a molar balance of a chemical species “A” over a differential cylinder is applied, it will 

lead to the continuity equation (Bird, Stewart, & Lightfoot, 2002):   

𝜕𝐶𝐴

𝜕𝑡
+

1

𝑟

𝜕(𝑟𝑁𝐴𝑟)

𝜕𝑡
+

1

𝑟

𝜕(𝑁𝐴𝜃)

𝜕𝜃
+

𝜕(𝑁𝐴𝑧)

𝜕𝑧
= 𝑅𝐴 (4) 

Where 𝐶𝐴 is the concentration of species 𝐴, 𝑁𝐴 is the molar flux of 𝐴, and 𝑅𝐴 is typically  

presented as the net rate at which moles of 𝐴 are created in the control volume by chemical 

reactions. Nonetheless, for the purpose of the context, this last term may represent the net rate 

at which moles of 𝐴 are being removed thanks to the adsorption capabilities of a filter. In the 

end, 𝑅𝐴 is a measure of the amount of moles of 𝐴 being generated or removed. This term can 

be written as 𝑅𝐴 = 𝑘𝐶𝐴(𝑞̅ − 𝑞𝑠) where 𝑞̅ is the uptake adsorbate, 𝑞𝑠 is the equilibrium uptake, 

𝑐𝐴 is concentration of 𝐴, and 𝑘 is the adsorption coefficient.  
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But the molar flux can be rewritten as the product of concentration and velocity i.e. 𝑁𝐴 = 𝐶𝐴𝑣. 

Taking the axial coordinate 𝑧 as the depth of the filter, and assuming the gradient molar flux 

only takes place in this direction: 

𝜕𝐶𝐴

𝜕𝑡
+ 𝑣

𝜕𝐶𝐴

𝜕𝑧
= (

1 − 𝜀

𝜀
) 𝑘𝐶𝐴(𝑞̅ − 𝑞𝑠) (5) 

 

Notice that an expression for the void fraction parameter, 𝜀, has been introduced as the 

removal of contaminants will also depend on this. 

The boundary conditions for solving (5) are obtained realizing that at the beginning of the 

operation the bed is free of adsorbate, and when there is no bed depth, then the effluent 

concentration will be the same as the influent concentration: 

 

𝑞̅ = 0                when             𝑡 = 0 (6) 

𝐶 = 𝐶0               when             𝑧 = 0 (7) 

 

Taking the dimensionless variables for time 𝜏 and length 𝜉 after solving the differential 

equation, yields:  

𝐶

𝐶0
=

𝑒𝜏

𝑒𝜏 + 𝑒𝜉 − 1
(8) 

The dimensionless variables are:  

𝜏 = 𝑘𝐶0 (𝑡 −
𝑧

𝑣
) (9) 

  And 

𝜉 =
𝑘𝑞𝑠𝑧

𝑣
(

1 − 𝜀

𝜀
) (10) 

 

Where parameters 𝑘 and 𝑞𝑠 involve aggregate effects of mass transfer, pore diffusion, and 

adsorption kinetics. These parameters can be find using non-linear regression by computational 

methods, or by linearizing equation (8) that can be rewritten as: 
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𝐶0

𝐶
− 1 = 𝑒𝜉−𝜏 − 𝑒−𝜏 (11) 

But the term 𝑒−𝜏 is usually negligible, and as time increases the term 𝑧/𝑣 can also be 

ignored. Then, applying the natural logarithm to both sides will give the conventional 

Adams-Bohart model: 

ln (
𝐶0

𝑐
− 1) =

𝑘𝑞𝑠𝑧

𝑣
(

1 − 𝜀

𝜀
) − 𝑘𝑐0𝑡 (12) 

 

For practical uses, equation (8) will be used for modeling breakthrough curves. 

Overall, this model assumes that the adsorption rate is proportional to the residual capacity of 

the adsorbent as well as the concentration of the contaminant of interest (Han et al., 2009). 

3.3.2 Thomas model 

This model was used for the design of the maximum adsorption capacity a filter bed can have, 

and is one of the most widely used methods in column filter theory (Thomas, 1943). The main 

assumptions of the model are: negligible axial and radial dispersion in the filter, the adsorption 

acts as a pseudo second-order reaction rate, there is a constant column void fraction, and the 

intra particle diffusion and external resistance during mass transfer are considered negligible 

(Ansari, Seyghali, Muhammad-khan, & Zanjanchi, n.d.) 

 The expression is as follows: 

𝐶

𝐶0
=

1

1 + 𝑒
(

𝑘𝑞𝑧
𝑄 )

𝑒(−𝑘𝐶0𝑡)

(13) 

 

Where 𝐶 is the effluent contaminant concentration, 𝐶0 is the influent contaminant 

concentration, 𝑘 is a kinetic coefficient, 𝑞 is the adsorption capacity of the column, 𝑡 is the 

operation time, 𝑧 is the filter bed depth, and 𝑄 is the water flow of the influent stream.  

3.3.3 Yoon-Nelson Model 

This model assumes that “that the rate of decrease in the probability of adsorption for each 

adsorbate molecule is proportional to the probability of adsorbate adsorption and the 

probability of adsorbate breakthrough on the adsorbent” (Han et al., 2009). The main advantage 

of this model is that it does not require complicated data from the adsorbate characteristics or 
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the physical properties of the bed filter (Aksu & Gönen, 2004). The equation is expressed as 

follows: 

𝐶

𝐶0 − 𝐶
= 𝑒(𝑘𝑡−𝑘𝜏) (14) 

Where 𝐶 is the effluent contaminant concentration, 𝐶0 is the influent contaminant 

concentration, 𝑡 is operation time, 𝑘 is a rate constant (min-1), and 𝜏 is the time required for 

50% adsorbate breakthrough. For the purpose of this investigation, it is of significant 

importance to have an explicit relation not only with time, but with filter depth. In this model, 

the depth is implicit in the value of 𝜏. In fact, this term can be decomposed in the product of 

depth, L [cm], and a proportionality factor, F1 [s/cm]. This last factor may be found 

experimentally as the other parameters when optimizing the model. Considering this, the final 

expression will be: 

𝐶

𝐶0 − 𝐶
= 𝑒(𝑘𝑡−𝑘𝐹1𝐿) (15) 

  

3.3.4 The Clark model 

This kinetic model adopts the assumption that sorption behavior of pollutants follows the 

Freundlich adsorption isotherm, while the sorption rate is determined by outer mass transfer 

(Peric et al., 2008). The final expression yields as: 

𝐶

𝐶0
= (

1

1 + 𝐴𝑒−𝑟𝑡
)

1
𝑛−1

(16) 

Where 𝐶 is the effluent contaminant concentration, 𝐶0 is the influent contaminant 

concentration, 𝑡 is operation time, 𝐴 and 𝑟 are parameters of the kinetic adsorption, and 𝑛 is a 

constant. Similar to the Yoon-Nelson model, the parameter 𝑟 may be decomposed in the 

product of filter depth, L [cm], and a proportionality factor F2 [cm-1] which yields: 

𝐶

𝐶0
= (

1

1 + 𝐴𝑒−𝐿𝐹2𝑡
)

1
𝑛−1

(17) 

3.3.5 Deduced Model from a Bulk Mass Balance 

An expression for the variation of caffeine concentration with respect to time can also be 

deduced using the principles of mass balance taking the control volume of the entire filter. As 

seen in  

Figure 13, from a mass balance in the filter: 
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𝑚̇𝑐𝑎𝑓.𝑖𝑛 − 𝑚̇𝑐𝑎𝑓.𝑜𝑢𝑡 = 𝑚̇𝑐𝑎𝑓.𝑎𝑐𝑐 

Where 𝑚̇𝑐𝑎𝑓 denotes the molar flow of caffeine in mol/m3, then  

𝑉̇𝐶0 − 𝑉̇𝐶 =
𝑑

𝑑𝑡
[𝑉𝐶] 

Where 𝑉̇ is the fluid flow [m3/s] of caffeine solution, 𝐶0 is the inlet caffeine concentration 

[mol/m3], and  𝑉 is the volume [m3] of the system. 

Applying the product rule for derivatives: 

𝑉̇𝐶0 − 𝑉̇𝐶 = 𝐶
𝑑𝑉

𝑑𝑡
+ 𝑉

𝑑𝐶

𝑑𝑡
(18) 

 

 

 

 

 

 

 

 

 

Figure 13. Filter diagram with a depth length "l" applied for a mass balance. 

 

The term 
𝑑𝑉

𝑑𝑡
 should be taken into consideration if the contaminant removed from water was a 

colloid or suspension that would eventually reduce the effective volume of the filter. In this 

case, the interaction of caffeine with the bed does not affect significantly the filter’s volume; 

𝑑𝑉

𝑑𝑡
= 0. 

𝑉̇𝐶0 − 𝑉̇𝐶 = 𝑉
𝑑𝐶

𝑑𝑡
(19) 

𝑉̇𝐶0 

𝑉̇𝐶 

𝐿 = 𝑙 

𝐶0 

𝐶 
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𝐶0 − 𝐶 = 𝜏
𝑑𝐶

𝑑𝑡
 

Where 𝜏 =
𝑉

𝑉̇
 

∫
𝑑𝐶

𝐶0 − 𝐶
=

1

𝜏
𝑑𝑡 

−𝑙𝑛(𝐶0 − 𝐶) =
𝑡

𝜏
+ 𝐴 

Where 𝐴 is the integration constant 

𝐶0 − 𝐶 = 𝐴′𝑒−
𝑡
𝜏 

𝐶 = 𝐶0 − 𝐴′𝑒−
𝑡
𝜏 (20) 

Let 𝐶𝑟𝑒𝑚 be the concentration of the caffeine solution right after it passes through the filter 

(When 𝑡 = 0). Then: 

𝐶𝑟𝑒𝑚 = 𝐶0 − 𝐴′𝑒−
0
𝜏 

𝐶𝑟𝑒𝑚 = 𝐶0 − 𝐴′ 

𝐴′ = 𝐶0 − 𝐶𝑟𝑒𝑚 (21) 

Substituting (20) back into (21):  

𝐶 = 𝐶0 − (𝐶0 − 𝐶𝑟𝑒𝑚)𝑒−
𝑡
𝜏 (22) 

Notice that 𝐶𝑟𝑒𝑚 depends on the length of the filter as well as the material used in the filtering 

bed. If there is a filter with a fixed depth and unique material, the term 𝐶𝑟𝑒𝑚 remains constant. 

The differential expression can also be approached using a Laplace transformation. The result 

depicts that its analogy to a 1st order retard element. 

Applying Laplace transformation to equation (19). 

𝑉̇𝐿{𝐶0} − 𝑉̇𝐿{𝐶} = 𝑉𝐿 {
𝑑𝐶

𝑑𝑡
} 

𝑉̇Ƈ0 − 𝑉̇Ƈ = 𝑉(𝑠Ƈ − 𝐶𝑡=0) 

Where Ƈ denotes the Laplace transformation of the variable 𝐶 
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𝑉̇Ƈ0 − 𝑉̇Ƈ = 𝑉𝑠Ƈ − 𝑉𝐶𝑡=0 

Assuming an ideal filter in which the filter medium has 𝐶𝑡=0 = 0, then 

𝑉̇Ƈ0 − 𝑉̇Ƈ = 𝑉𝑠Ƈ 

𝑉𝑠Ƈ + 𝑉̇Ƈ = 𝑉̇Ƈ0 

Ƈ(𝑉𝑠 + 𝑉̇) = 𝑉̇Ƈ0 

Ƈ

Ƈ0

=
𝑉̇

𝑉𝑠 + 𝑉̇
(23) 

Ƈ

Ƈ0

= 𝐺 =
1

𝑇𝑠 + 1
(24) 

Where 𝐺 is the transmittance and 𝑇 is the time constant or, in this case, the residence time.  

This is the same expression for the transmittance of a Resistance-Capacitance circuit in 

 Figure 14.  

 

 

 

 

 

 

Taking 𝑉 as the input variable and  𝑉𝐶 as the output variable the result of the transmittance is 

the same as equation (24). The time constant 𝑇 is equal to the product of Resistance and 

Capacitance. It can be inferred that 

𝑇 = 𝑅𝐶 =
𝑉

𝑉̇
(25) 

The resistance is considered to be the inverse of the volumetric flow rate. A greater flow rate 

will generate a smaller resistance to transfer the new concentration to the capacity 𝑉. The 

advantage of solving the differential equation this way is that the analogy of capacitance may 

be appreciated; it is a measure of the effective volume of the filter. This volume represents 

𝑉 

𝑅 

𝐶 𝑉𝐶 

𝑉𝑅 

Figure 14. Resistance-Capacitance circuit in series. 
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indirectly the capacity of the filter to adsorb caffeine. A greater effective volume will show a 

greater capacitance. As shown in Figure 15, if a packed medium has a greater volume, the 

water flow will have a prolonged interaction with the medium; therefore, a higher adsorption. 

 

 

 

 

 

 

 

Figure 15: The different "effective volumes" of a filter. A greater effective volume (a) will 

have more ways in which a liquid may flow than a medium with a lower effective volume 

(b). 

It may be observed that the mass balance at the beginning is taking into consideration the filter 

as a Continuously Stirred Tank Reactor (CSTR), which is why the result resembles this system 

when there is a step function as the input variable. This premise makes the assumption that the 

volume 𝑉 obtained in the equations is not directly the volume from the filter, but rather a 

representation of what the volume would be if the filter was a CSTR. This is the reason why it 

may appear that the volume of the filter is significantly bigger when adjusting experimental 

models. As the discussed volume is implicit in the time constant (residence time) it is 

convenient to express this value in a different form. Studies regarding slow sand filters have 

used the time constant as follows (Valencia, n.d.):  

𝑇 =  
𝐶𝐿

𝑄𝑛
(26) 

Where 𝐿 is the depth of the filter, 𝐶 is a constant, 𝑄 is the flow rate, and 𝑛 is an exponent.  

Moreover, the initial concentration entering the filter can be considered as the step function 

𝐶0 = 𝐶0𝑢(𝑡), and therefore Ƈ0 =
𝐶0

𝑠
. Substituting this values back to equation (5) will give: 

Ƈ =
𝐶0

𝑠(𝑇𝑠 + 1)
 

b) a) 
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Applying Inverse Laplace:  

𝐶 = 𝐶0 (1 − 𝑒−
𝑡
𝜏) (27) 

But considering real initial conditions, that is 𝐶 = 𝐶𝑟𝑒𝑚 when 𝑡 = 0, the solution gives the 

same as equation (22).  

Similarly, the relation between filter length and concentration can be found using the Iwasaki 

model. This theory suggests that particle removal is proportional and first order with respect 

to the filter depth when the media is homogenous. The mathematical model is constructed as 

shown: 

𝑑𝐶

𝑑𝐿
= −𝜆𝐶 (28) 

Where 𝐶 is the concentration of caffeine, 𝐿 is the length of the filter depth, and 𝜆 is the filter 

coefficient. Notice that 
𝑑𝐶

𝑑𝐿
 represents the particle removal.  

Solving for 𝐶 as a function of 𝐿: 

∫
𝑑𝐶

𝐶
= − ∫ 𝜆𝑑𝐿 

ln 𝐶 = −𝜆𝐿 + 𝐵 

𝐶 = 𝐵′𝑒−𝜆𝐿 (29) 

But if the depth of the filter is null, i.e. when there is no filtering bed, then, the concentration 

after the filter is the same as the one entering. That is,  𝐶 = 𝐶0 when 𝐿 = 0.  

Applying this boundary condition: 

𝐶0 = 𝐵′𝑒0 

𝐶0 = 𝐵′ 

Suggesting that the concentration of the contaminant with respect to the depth of the filter is 

as follows: 

𝐶 = 𝐶0𝑒−𝜆𝐿 (30) 

The coefficient 𝜆 is the efficiency for the layer 𝑑𝐿 of the filter. Iwasaki proposed that 𝜆 is a 

constant with respect to L, suggesting that for a determined time, each layer will have the same 
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efficiency for the removal of contaminants. Not often, this is not the case for the variable time. 

As time progresses, the filtering bed will start to saturate; hence, the impediment module 𝜆 will 

also decrease. This variation of 𝜆 with respect to time can be taken into consideration when 

describing the condition in which 𝐶𝑟𝑒𝑚 is defined. When 𝑡 = 0, 𝜆 will be become a fixed value 

𝜆0. So by definition: 

𝐶𝑟𝑒𝑚 = 𝐶0𝑒−𝜆0𝐿 (31) 

Which can then be replaced back to obtain a final expression that relates explicitly the 

relationship between concentration with length and time: 

𝐶 = 𝐶0 − 𝐶0(1 − 𝑒−𝜆0𝐿)𝑒−
𝑡
𝑇 (32) 

Where 

𝑇 =  
𝐶𝐿

𝑄𝑛
 

Equation (32) is the “deduced model” from a bulk mass analysis and will be referred like this 

for the rest of this investigation. 
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4. Methodology 

The methodology may be divided into the preparation of the filtering system, the experiments 

regarding the generation of breakthrough curves, and the instrumental chemical analysis. 

4.1 Column Packing and Preparation 

 

When the borosilicate columns were obtained, they were cleaned up by adding a 0.1 M NaOH 

solution until completely filled. Subsequently, they were washed with distilled water so that a 

final solution of pure ethanol could be introduced to fill up the column. This was left for 2 

minutes before it was released. Finally, the empty columns were left to dry overnight so that 

any species left inside the column could evaporate.  

When packing the columns with the filtering beds, each bed (with the exception of Moringa 

oleifera Husk) was carefully washed with water until all possible contaminants (such as dirt or 

small rocks) were carried away. Then, there were left to dry out at room temperature in a time 

period of 3 hours. Afterwards, each filtering bed was placed in the borosilicate column up to 

the desired depth; a gentle shake was also given so as to ensure a better packing. Finally, 100 

mL of water were passed through the column with the filtering bed to guarantee that the fluid 

pathway was also cleaned.   

In the case of Moringa oleifera Husk, a different approach was taken. As the husk became 

brittle after being dried out at room temperature, the mechanical properties could have also 

changed. Moreover, the packing was complicated as very often the husk got stuck inside the 

column and became so tight it completely blocked the fluid flow. For these reasons, the 

following method was used: 

Firstly, the Moringa oleifera Husk was cleaned and washed with the help of a sieve for a time 

period of 1 minute (Figure 16 a-b). A small quantity of this husk was then added to the 

column entrance and gently pushed inside with the help of a rod (Figure 16 c-d). This was 

placed until the bottom of the column, and it was always checked that the husk did not block 

the pathway. The procedure was repeated for the rest of the husk until the column was packed 

with the desired depth (Figure 16 e-f).  
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a) b) c) 

d) e) f) 

Figure 16. Packing procedure for the Moringa oleifera Husk inside the borosilicate column. The 

husk was cleaned (a), washed (b), then added to the top of the column (c) and gently pushed by 

a rod (d) until it reached its bottom (e) so that the rest of the husk could be packed tightly (f). 
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4.2 Construction of Breakthrough Curves 

The idea behind breakthrough curves is to analyze the behavior of the contaminant 

concentration across the filter as a function of time and medium depth. In order to obtain 

accurate and precise results, other fixed variables and parameters needed to be controlled. One 

of these parameters was flow; this procedure required a mechanism that could regulate fluid 

flow and maintain it approximately constant during the entire operation time.  

4.2.1 Filtering system using a Micro-dropper  

The first section of the project was achieved using a micro-dropper followed by the filter as 

showed in Figure 17.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150 ml mark 

100 ml mark 

50 ml mark 

Water Flow Calibration 

Micro-Dropper 

Filter bed depth 

Container 

Receiver 
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Height difference 

between initial 

solution reservoir 

and injection 
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Roller Clamp 

Injection Output 

Borosillicate 

Collumn 

Figure 17. Scheme of the Micro-Dropper system used for the analysis of Breakthrough Curves. 

Mark “A” 

Mark “B” 
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The system worked using gravity as the driving force for fluid flow and could be regulated 

with the roller clamp. A hole was done on the upper lid of the micro-dropper in order to create 

an input conduct where the caffeine solution could be stored. The micro-dropper was filled 

with caffeine solution (50 ppm) until the 100 mL mark by default. The height difference 

between the initial solution reservoir and injection output was 90 cm. In these conditions, the 

position of the roller clamp was experimentally regulated and marked so that it included a 

relatively low fluid flow (Mark “A”) and a relatively high fluid  

flow (Mark “B”).    

4.2.2 Filtering system using a peristaltic pump 

For the second section of this project, a peristaltic pump was used as the system that could 

regulate fluid flow. Depending on the velocity mark, the water flow increased or decreased. In 

order to standardize its flow, the time taken for a specific volume of water to fill was recorded 

(Figure 18). This was done for every mark in the pump. 

 

Figure 18. Operating peristaltic pump for the standardization of its fluid flow. 

The selected fluid flow in the peristaltic pump was chosen based on which resembled the most 

as the fluid flow in the micro-dropper system. 

With both systems ready, the column needed to be filled and prepared depending on which 

variable was going to be fixed and measured (e.g. caffeine concentration as a function of time 

or depth).  Each filter medium was thoroughly washed in a beaker with distilled water to make 

sure they were effectively cleaned up. Then, the column was packed up at a specific height 
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with the medium (Figure 19) and further washed with distilled water. This was done in order 

to further clean the theoretical pathway the caffeine solution was going to pass.  

 

Figure 19. The different filtering beds (Moringa oleifera husk, Activated Carbon, Gravel and 

Zeolite) packed at a specific depth (30 cm). 

The porosity of the system was then recorded measuring the volume between spaces in the 

filtering bed. This was achieved covering the end of the column, and letting distilled water fill 

up to the end point of the filtering bed. Then, the end of the column was released so that water 

could be collected and weighted. This is shown in Figure 20. The importance of this measure 

is reflected on the effectiveness of the filter packaging; not every time the columns are packed, 

they are done in the same exact way. Measuring the spaces in between the filtering beds may 

be used as a way to quantify this variation. However, for a specific filtering medium with a 

fixed bed depth, this volume was ensured to be approximately equal reflecting a similar filter 

packaging and consequently, an appropriate reproducibility of the system. 

Zeolite 

Grave

 
Activated Carbon 

Moringa oleifera Husk 
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4.2.3 Concentration as a function of time 

Once the micro-dropper and filter were ready, the roller clamp was turned to the low flow 

mark. In the case of the peristaltic water pump, it was turned on into a specific position 

corresponding to a particular water flow; i.e. the same one as that of the roller clamp. The 

operation time begun when the first drop of the outflow appeared at the end of the filter 

 (time = 0). The effluent was collected at 15 s, 30 s, 1 min, 2 min, 3 min, 4 min, 5 min and 6 

min in separate containers. It is important to point out that the time used for collecting data 

varied for every material, as some got saturated faster than others. For every time, the solution 

obtained had a margin of ± 5 seconds; for instance, for the 1-minute data, the solution was 

collected between 55 and 65 seconds.  After the 6th minute, there was a last measure taken in 

which the solution was collected for an entire minute. This allowed an approximate measure 

of the fluid flow that occurred for the entire run in the micro-dropper’s case. This was done for 

all filtering bed types. The overall operating system is shown in Figure 21. 

H 

a) b) 

c) 

Figure 20. System used for measuring porosity. the end of the column is covered 

(a) so water can fill up until a desired height in the filter (b) this amount of water 

can then be (c) released and measured. 
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Figure 21. Overall operating system for the analysis of breakthrough curves. 

4.2.4 Concentration as a function of depth 

Similarly, concentration was monitored as a function of depth at a fixed time. The column was 

filled with every medium filter so that its height varied between 10 and 50 cm. As each filtering 

medium had distinct removal effectiveness, the selected depth was not exactly the same for 

every single case. For instance, a species with a high percentage removal capacity would 

require a lower filter depth than a species with a low percentage removal. If there is a low depth 

selected in both cases, the species with a lower percentage removal will get saturated instantly; 

henceforth, the results would not be as significant as for this species in particular as if a larger 

filter depth were chosen. Basically, the depth was selected independently for each type of 

filtering bed. The selected depths for each type of bed is shown in Table  1. For every case, a 

caffeine solution of 50 ppm was allowed to flow at the low velocity mark. 

Table  1. Selected depths for each type of filtering medium. 

No. of 

Depth  

Filtering Bed Depth [cm] 

Activated Carbon Zeolite Gravel Moringa oleifera Husk 

1st Depth 27.0 26.0 54.0 46.0 

2nd Depth 22.5 23.0 37.0 35.0 

3rd Depth 18.0 18.0 27.0 27.0 

4th Depth 13.0 13.0 18.0 15.0 
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For every scenario, caffeine concentration was analyzed using High Performance Liquid 

Chromatography (HPLC) or UV-VIS absorbance depending on the case, explained as 

follows. 

4.3 HPLC Analysis 

High Performance Liquid Chromatography was operated in reverse phase  

with a Non-Polar C-18 column. The mobile phase used was a solution of    

CH3OH : CH3COOH : H2O (15:1:34 ) v/v/v. The analyzed samples were stored in plastic flasks 

which were then degasified to allow any air particles trapped in the solution to escape. The 

characteristic peak of caffeine regarding HPLC analysis was found experimentally at a given 

retention time as in the artificial water this was the only existent species. The Area below this 

characteristic peak as well as the peak’s height were measured in order to quantify caffeine 

concentration. To compute the peak’s height and the area below the peak, the PeakSimple 

Chromatography Software was used. For a detailed procedure of the operation of the HPLC 

refer to Appendix A. 

4.4 UV-VIS Spectrograph Analysis 

The CECIL 2021 spectrograph was used along with a 10 mm quartz cuvette. At the beginning, 

the spectrograph was operated in spectrometer mode in order to obtain the complete spectra of 

an artificial solution of caffeine and identify at which wavelength did the maximum absorbance 

took place. The spectrograph was then set in spectrophotometer mode at this particular 

wavelength to measure absorbance and eventually quantify caffeine concentration. For a more 

in detail methodology of how the samples were analyzed using the UV-VIS Spectrograph, refer 

to Appendix B. 

4.5 Generation of Calibration Curves 

Calibration curves were constructed for both the UV-VIS Spectrophotometer and High 

Performance Liquid Chromatography (HPLC). This was done preparing an artificial stock 

solution of 1000 ppm caffeine from the Sigma-Aldrich Caffeine Powder. Consequently, 

caffeine solutions with specific concentrations (0, 5, 15, 30, 50 and 60 ppm) were prepared 

with the help of a micro pipette and a Florence flask.  

In the case of UV-VIS spectroscopy, quantification was done measuring the absorbance for 

each sample at a wavelength of 273.5 nm. When using HPLC, both, the height and the area 

below the characteristic peak of caffeine were measured for each concentration.  
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To further test the reproducibility of the instrument along with the storage conditions of 

caffeine solutions, two calibration curves were performed: one when this whole investigation 

started (June 2017), and a second one after the investigation ended (October 2017).   

5. Results and Discussion 

5.1 Calibration Curves 

5.1.1 UV-VIS Calibration Curve. 

The caffeine spectrum obtained from the UV-VIS Spectrograph is presented in Figure 22. 

 

Figure 22. UV-VIS Caffeine spectrum of caffeine (50 ppm). 

There was one characteristic peak in the spectrograph at a wavelength of 273.5 nm. Note that 

the first peak of the spectrum (205 nm) corresponds to distilled water, which is why it is not 

taken into account. The specific data for this calibration curve is found in Appendix C, from 

which Figure 23 was constructed. 

 

Figure 23. Calibration Curves Graphs using UV-VIS Spectroscopy at 273.5 nm (5 months 

apart). 
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Note that the 60 ppm data was omitted as the absorbance portrayed started to show deviations 

from Beer’s Law. It appears that the linearity functions correctly between the range of 0 and 

50 ppm caffeine.  

 

5.1.2 HPLC Calibration Curve. 

The chromatogram obtained when analyzing a pure caffeine solution in an HPLC reverse 

phase is shown in Figure 24: 

 

Figure 24. HPLC Chromatogram for an artificial solution of caffeine 15 ppm. 

The first interference in the chromatogram makes reference to the dilution effect of water, 

while the second peak corresponds to caffeine. Using the corresponding Stationary Phase  

(C-18 column) in conjunction with the selected mobile phase, it was found that the retention 

time of caffeine was 12.58 ± 0.5 minutes. It is important to show the chromatogram and find 

experimentally the retention time of caffeine as in future investigations with real wastewaters 

this might be used as a reference to identify qualitatively which species is actually caffeine.  

For data quantification, the area below the peak and the peak’s height could be used. A 

calibration curve was done for both cases. Refer to Appendix C for the actual calibration curves 

data. For further information about the chromatograms obtained for these calibration curves 

refer to Appendix G. The calibration curves of caffeine using the area below the peak and the 

peak’s height are presented in FiguresFigure 25 and Figure 26 respectively. 
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Figure 25. Calibration Curve of Caffeine using the Area Below its Characteristic Peak using 

an HPLC Chromatogram. 

 

 

Figure 26. Calibration Curve of Caffeine using its Characteristic Peak Height in an HPLC 

Chromatogram. 
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Based on the graphs, the equation used for relating absorbance and concentration for the UV-

VIS spectrograph is: 

𝐶 =
𝐴 − 0.0073

0.049
(33) 

Where 𝐶 is caffeine concentration in ppm, and 𝐴 is the absorbance at 273.5 nm.  

As for the HPLC, the relationship is given by: 

𝐶 =
𝐴𝑝 − 0.1257

0.5
(34) 

Or by: 

𝐶 =
𝐻 − 0.0098

0.0181
(35) 

Where 𝐶 is caffeine concentration in ppm, 𝐴𝑝 is the area below the characteristic peak of 

caffeine, and 𝐻 is the characteristic peak’s Height.  

5.2 Peristaltic Bomb Calibration  

The velocity marks on the peristaltic pump had the following results: 

Table  2. Water Flow corresponding to every position in the peristaltic bomb. 

Bomb 

position 

Time [s] to reach 50 ml 
Average 

Water Flow [ml/s] % Standard 

Deviation Test 1 Test 2 Test 3 [ml/s] [ml/min] 

1 436 434 432 434 0.115 6.912 0.461 

1.5 217 218 217 217 0.230 13.825 0.266 

2 171 175 172 173 0.292 17.544 1.206 

2.5 125 122 126 124 0.400 24.000 1.674 

3 107 103 104 105 0.467 28.037 1.989 

 

Bomb Position 1.5 was used in the rest of this work as this resembled the micro dropper system 

that was used at the beginning of the investigation. Although the peristaltic pump used 

pulsations to transfer water to the column, while the micro-dropper used a continuous drop to 

drop flow, both methods provided the same results when tested in the filtering system (Results 

not shown). 
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5.3 Concentration as a function of time 

Once the filtration system was operational, caffeine concentration was monitored as a function 

of time for every type of filtering bed at different filter depths. This is shown in the following 

sections. The most representative data for the construction of these curves is shown in 

Appendix D. For detailed information about the absorbance of each measurement with its 

corresponding uncertainty and standard deviation, see Appendix I.   

5.3.1 Activated Carbon as the filtering bed 

Table 14 in Appendix D presents caffeine concentration data at different operation times on a 

given filter depth using activated carbon as the filtering bed. Figure 27 illustrates these 

relationships graphically.  

 

 

Figure 27. Caffeine concentration as a function of time for different depth lengths (L) using 

Activated Carbon as filtering bed.  

It can be observed that as operation time progresses, the effluent concentration tends 

asymptotically to the initial influent concentration. Moreover, as the filter depth increases, the 

outflow caffeine concentration takes a larger time to reach the same concentration as with a 

smaller filter depth. Also note that the instantaneous variation of caffeine concentration with 

respect to time is significantly greater at the beginning of the operation compared to the end of 

the operation. This suggests that a non-saturated bed will have a greater adsorption capacity 
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than a semi-saturated bed; the attachment of caffeine molecules in the bed seems to decrease 

the electrostatic attraction that exists between them. It is important to know that this is not 

always the case. Some studies regarding the removal of heavy metals indicate that a semi-

saturated bed actually increase the adsorption capacity of the filter (Muhammad, Parr, Smith, 

& Wheatley, 1998). This happens as the deposited layer has a greater attraction for metals as 

the filter itself. In the case of caffeine, even though it is a polar molecule, induced dipole 

attraction is not sufficient in order to show this behavior. Consequently, if a low caffeine 

concentration is to be sought, the filter will only be effective for a small amount of time (until 

1 minute for most). The behavior of these curves appear to be essentially the same for every 

type of filtering bed as Figures Figure 28,Figure 29, and Figure 31 indicate. 

5.3.2 Zeolite as the filtering bed 

Table 15 in Appendix D presents caffeine concentration data at different operation times on a 

given filter depth using zeolite as the filtering bed. Figure 28 illustrates these relationships 

graphically.  

 

Figure 28. Caffeine concentration as a function of time for different depth lengths (L) using 

Zeolite as filtering bed.  

Comparing zeolite with the rest of the filtering beds, it can be seen that these curves present a 

much greater resistance to saturation. This is reflected in the curves as the rate of change of 

concentration with respect to time is lower compared to the other filtering beds. Note that the 

level curves for zeolite in which L = 13, 18 and 23 cm in Figure 28 are must more 
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distinguishable than any other type of bed for the same depth difference. It appears to be that 

Zeolite is the most sensitive medium regarding filtering depth when plotting caffeine 

concentration vs operation time; a small change in filtering depth creates a large variation in 

the concentration-time level curve. 

5.3.3 Gravel as the filtering bed 
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Table  16 in Appendix D presents caffeine concentration data at different operation times on a 

given filter depth using gravel as the filtering bed. Figure 29 illustrates these relationships 

graphically.  

 

Figure 29. Caffeine concentration as a function of time for different depth lengths (L) using 

Gravel as filtering bed. 

When using Gravel, the different level curves needed to be constructed with the greatest 

difference in filter depth. It varied from L =18 cm to L = 54 cm as shown in Figure 29. This 

was because a small change in gravel’s filtering depth did not affected significantly its level 

curves (the complete opposite effect of Zeolite). Even though the filter tends to get saturated 

rapidly for every level curve, increasing its depth reduces to a great extent caffeine 

concentration at the beginning of the operation. This behavior supports the fact that attraction 

between the media and caffeine is taking place, but loses effectiveness as caffeine gets 

deposited in a layers.  

 

5.3.4 Moringa oleifera Lam. Husk as the filtering bed 

The system with Moringa oleifera Husk as the filtering bed presented a peculiar behavior. Even 

though the husk was cleaned thoroughly with water, when water passed through this filter, it 

gave off a pale yellow solution. This was clearly shown when the samples were taken as a 

function of time in the containers. This can be visualized next in Figure 30. 
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Figure 30. Pale yellow solution given off when the Moringa oleifera Husk was used as the 

filtering bed. 

It turned out that these solutions absorbed in a similar wavelength than the characteristic peak 

of caffeine when analyzed in the UV-VIS spectrophotometer (at 273.5 nm).  Actually, the 

caffeine and this pale yellow solution spectrum overlapped when analyzed in the UV-VIS 

spectrometer. For instance, in order to quantify caffeine concentration only, Liquid 

Chromatography needed to be applied (HPLC Analysis). This separated both species at 

different retention times which was the reason why HPLC analysis was chosen as the main 

instrumental analysis when using the Moringa oleifera Husk as the filtering bed. 

Table  17 presents in Appendix D caffeine concentration data at different operation times on a 

given filter depth using Moringa oleifera as the filtering bed. Figure 31 illustrates these 

relationships graphically.  

 

Figure 31. Caffeine concentration as a function of time for different depth lengths using 

Moringa oleifera Lam. husk as filtering bed.  
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The level curves corresponding to the Moringa oleifera husk resembles the behavior of the rest 

of the filtering beds; electrostatic attraction is taking place which is why caffeine is getting 

removed. From this aspect, it may be inferred that the husk can actually be used and compared 

with the rest of the filtering beds. Note that the error bars are much more noticeable in 

 Figure 31 than any other graph. The husk’s morphology and column packing varied in every 

case which is why even though the filtering depth could be the same, the system inside could 

differ. It was this constant variation that indirectly made the results fluctuate more and 

consequently, have a larger uncertainty. 

5.4 Concentration as a function of depth 

Appendix E presents the most representative data for caffeine concentration at different filter 

depths on a given operation time for each bed individually. Appendix J has these complete set 

of data. Figures 34-37 illustrates this corresponding relationships graphically.  

5.4.1 Activated Carbon as the filtering bed. 

 

Figure 32. Caffeine concentration as a function of depth for different operating times (t) using 

Activated Carbon as the filtering bed. 
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5.4.2 Zeolite as the filtering bed. 

 

Figure 33. Caffeine concentration as a function of depth for different operating times (t)  

using Zeolite as the filtering bed. 

 

5.4.3 Gravel as the filtering bed 

 

Figure 34. Caffeine concentration as a function of depth for different operating times (t) using 

Gravel as the filtering bed.  

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 [

p
p

m
]

Filter Depth [cm[

t = 300s

t = 240s

t = 180s

t = 120s

t = 60s

t = 30s

t = 15s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

C
o

n
ce

n
tr

at
io

n
 [

p
p

m
]

Filter Depth [cm]

t = 300s

t = 240s

t = 180s

t = 120s

t = 60s

t = 30s

t = 15s



54 

 

 

5.4.4 Moringa oleifera Lam. Husk as the filtering bed 

 

Figure 35. Caffeine concentration as a function of depth for different operating times (t) using 

Moringa oleifera husk as the filtering bed. 

The behavior of caffeine concentration with respect to filter depth appears to be the same for 

every filtering bed. At the beginning, when the filtering bed begins to fill the column, the 

caffeine concentration appears to decrease lineally with respect to the bed depth. This linear 

range appears to be for the first 22, 18, 27, and 27 cm for activated carbon, zeolite, gravel, and 

Moringa oleifera husk respectively. After this range, caffeine removal starts to lose 

effectiveness and the rate of change of caffeine concentration decreases. Apparently, with a 

lower contaminant concentration the removal effectiveness of a bed layer decreases. Actually, 

this is exactly what Iwasaki and Ives proposed with their filtering and clarification water theory 

(Valencia, 1972). In fact, equation (28) expresses that the variation of concentration with 

respect to a filtering bed layer (in this case, caffeine removal with respect to filter depth) is 

proportional to its concentration. i.e. a greater caffeine concentration will lead to a greater 

caffeine removal with a fixed layer “L”, and a lower caffeine concentration will lead to a lower 

caffeine removal with the same fixed layer “L”. It is important to highlight the fact that this 

model works with the assumption that the main operating forces that remove contaminants are 

gravitational flows, but this is not necessarily the case when removing caffeine; experimental 

discrepancies may be attributed to this. 
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The level curves regarding Figures Figure 32, Figure 33, Figure 34 and Figure 35 are mostly 

significant when the operation time is low. As operation time progresses, the level curves are 

closer to each other and the resolution (understanding it as the ability to distinguish curves 

from each other) between them is lost. The only filtering bed that has a higher resolution at an 

advanced operating time is Zeolite.  
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5.5 Filter Standardization   

Most of the results regarding filtering beds refer to their filter depth rather than its mass; 

however, these two quantities are directly related. It is significant to know this relationship as 

this will be used in analyzing how much caffeine can a specific bed mass adsorb and retain. In 

order to see the variation of the filter’s bed mass with respect to its depth, the mass of each 

medium was recorded at specific filter lengths. The actual data for each bed is portrayed in   

The gradient of the lines in Figure 36 depicts the proportional relationship between the mass 

of the filtering medium, and its corresponding depth in the column. These are found to be 0.433 

[g/cm], 0.873 [g/cm], 0.075 [g/cm], and 0.861 [g/cm] for activated carbon, zeolite, Moringa 

oleifera husk, and gravel respectively. For a graphical representation of each bed individually, 

see Appendix F.  

 

Figure 36. Mass of the distinct type of filtering mediums as a function of their corresponding 

filter depth in the column. 
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The first qualitative observation that could be corroborated using instrumental analysis (HPLC 

and UV-VIS Spectroscopy) is that, in fact, the phenomena that removes caffeine in the filtering 

system is adsorption. This can be verified by referring to the UV-VIS spectrum before and after 

operation (Figure 37).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the shape of the UV-VIS Spectrums for all filtering beds behaved the same way as 

the one on Figure 37. If the caffeine molecule would have had degraded or broken down, like 

in Advanced Oxidation Processes, the spectrum before and after would have had noticeable 

different peaks at different wavelengths. This is not the case; the characteristic peak of caffeine 

after the treatment only decreased, maintaining its original shape. This highlights the fact that 

caffeine is only getting retained by a physical-chemical phenomenon, adsorption. To ensure 

that the interaction between caffeine and the filtering beds was mainly physical (i.e. without 

chemical bonding), a backwash with distilled water was applied to every filtering system after 

it saturated. The effluents were analyzed and each was found to be with caffeine (their UV-

a) 

b) 

Figure 37. UV-VIS spectrum of a caffeine artificial solution before (a) and after (b) 

dynamic filtration using Gravel as the filtering bed (t = 10s, L = 26 cm). 
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VIS spectrum matched exactly with the caffeine spectrum). If there was any chemical bonding 

whatsoever, the backwash solution would not have had the presence of caffeine at all. 

Additionally, HPLC analysis was used to detect if any species other than caffeine was present 

in the filter effluent. UV-VIS spectroscopy was complemented with HPLC analysis as this last 

one would notice different species that absorb at a same wavelength. The chromatograms 

obtained after the artificial solution passed each filtering bed were similar as those shown next 

in Figure 38.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As there were no other peaks other than the one corresponding to the retention time of caffeine, 

it was inferred that there were no other species produced.  

a) 

b) 

Figure 38. HPLC Chromatogram (a) before and (b) after filtration using 

Moringa oleifera Husk as the filtering bed (L = 26 cm). 
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The five different models discussed previously were tested on each breakthrough curve for 

every filtering bed. The parameters and variables for every model were optimized for each case 

in order to obtain a best fit model. This was performed using the “Solver” complement in 

Microsoft Excel.  The following results show the experimental data and each model with its 

corresponding optimized parameters. A table with the values of these parameters was included. 

Also, the models were numbered in ascending order from best to worst to describe which model 

best fitted the experimental data. These were based on the value of the Minimum Mean Squared 

Error (MMSE) for each model. 
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5.6 Best Fit Models for Activated Carbon 

 

 

Figure 39. Best fit models of breakthrough curves for the adsorption of Caffeine (C0 = 46 

ppm) using Activated Carbon as the filtering bed (Depth = 27 cm) at a flow of 13.83 mL/min. 

 

Table  3. Optimized parameters for each breakthrough curve model using Activated Carbon 

as the filtering medium. 

Deduced Model  

(2) 

c [cm2] n [-] 𝜆0 [cm-1] MMSE 

0.569 0.0966 0.112 1.677 

Bohart Adams Model  

(5) 

k [s-1] qs [-] 𝜀 [-] 
63.750 

0.00187 5.0946×10-5 0.9998 

Thomas Model  

(3) 

k [s-1] q [cm2] 
2.515 

0.00250 4.261 

Yoon Nelson Model  

(4) 

k [s-1] F1 [s/cm] 
2.635 

0.120 0.392 

Clark Model  

(1) 

r [s-1] n [-] F2 [cm-1] 
1.562 

0.114 2.005 0.113 
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5.7 Best Fit Model for Zeolite 

 

Figure 40. Best fit models of breakthrough curves for the adsorption of Caffeine (C0 = 46 

ppm) using Zeolite as the filtering bed (Depth = 26 cm) at a flow of 13.83 mL/min. 

 

Table  4. Optimized parameters for each breakthrough curve model using Zeolite as the 

filtering medium. 

Deduced Model  

(1) 

c [cm2] n [-] 𝜆0 [cm-1] MMSE 

1.398 0.5265 0.055 8.931 

Bohart Adams Model 

(5) 

k [s-1] qs [-] 𝜀 [-] 
18.926 

0.000314 1.935 0.7140 

Thomas Model  

(4) 

k [s-1] q [cm2] 
17.080 

0.000674 12.483 

Yoon Nelson Model  

(3) 

k [s-1] F1 [s/cm] 
15.541 

0.032 1.233 

Clark Model  

(2) 

r [s-1] n [-] F2 [cm-1] 
10.536 

0.0306 2.010 0.0909 
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5.8 Best Fit Model for Gravel 

 

Figure 41. Best fit models of breakthrough curves for the adsorption of Caffeine (C0 = 46 

ppm) using gravel as the filtering bed (Depth = 27 cm) at a flow of 13.83 mL/min. 

 

Table  5. Optimized parameters for each breakthrough curve model using gravel as the 

filtering medium. 

Deduced Model  

(1) 

c [cm2] n [-] 𝜆0 [cm-1] MMSE 

0.755 0.0056 0.064 2.691 

Bohart Adams Model 

(5) 

k [s-1] qs [-] 𝜀 [-] 
643.248 

0.002162 9.505×10-7 0.9874 

Thomas Model  

(3) 

k [s-1] q [cm2] 
9.064 

0.002477 4.706 

Yoon Nelson Model  

(2) 

k [s-1] F1 [s/cm] 
8.615 

0.115 0.434 

Clark Model  

(4) 

r [s-1] n [-] F2 [cm-1] 
9.337 

0.0786 2.008 0.0895 
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5.9 Best Fit Model for Moringa oleifera Husk 

 

 

Figure 42. Best fit models of breakthrough curves for the adsorption of Caffeine (C0 = 46 

ppm) using Moringa oleifera Husk as the filtering bed (Depth = 27 cm) at a flow of 13.83 

mL/min. 

 

Table  6. Optimized parameters for each breakthrough curve model using Moringa oleifera 

husk as the filtering medium. 

Deduced Model  

(1) 

c [cm2] n [-] 𝜆0 [cm-1] MMSE 

0.517 0.3473 0.122 3.538 

Bohart Adams Model 

(5) 

k [s-1] qs [-] 𝜀 [-] 
286.517 

0.002087 8.019×10-5 1.000 

Thomas Model  

(3) 

k [s-1] q [cm2] 
7.627 

0.002130 5.860 

Yoon Nelson Model  

(4) 

k [s-1] F1 [s/cm] 
8.968 

0.090 0.559 

Clark Model  

(2) 

r [s-1] n [-] F2 [cm-1] 
6.559 

0.0988 2.012 0.1652 
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5.10 Comparison Between Filtering Mediums 

 

A direct measure of the efficiency of filtering mediums may be achieved by plotting the 

percentage of caffeine removal as a function of time for a fixed bed depth. This was done for 

every filtering medium. Figure 43 shows the actual caffeine removed vs. operation time, while 

in  Figure 44, the best models that fit experimental data. Note that the efficiency removal is a 

function of time because as time progresses, the filter will continue to saturate; the ability to 

retain caffeine will then decrease.  

 

Figure 43. Percentage of caffeine removal as a function of time for different filter mediums 

(Depth = 27 cm). 

 

Figure 44. Percentage of caffeine removal (applying the models that best describe 

experimental data) as a function of time for different filter mediums (Depth = 27 cm). 
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Note that the comparison between medium beds were carried out at a selected depth of  

27 cm. where all filters were tested and experimented. From Figure 43 it can be observed that 

the filtering bed that maintains the highest percentage caffeine removal through operation time 

is zeolite. However, based on the models that best describe experimental data on Figure 44 it 

can be inferred that zeolite does not produce the highest percentage of caffeine removal at the 

beginning of the operation. When the first drop of the effluent appears (when t = 0), the 

percentage of caffeine removal of zeolite is barely 75% while other beds such as Moringa 

oleifera husk and gravel present a percentage removal of 96% and 81% respectively. From this 

perspective, zeolite will be preferred as the filtering medium if the priority is to maintain a high 

percentage removal through time. However, other beds such as the Moringa oleifera husk or 

gravel will be preferred if what is sought is to obtain an instantaneous caffeine removal at the 

beginning of the operation.  

 

5.11 Breakthrough Curves Analysis 

In order to calculate the operational parameters from the classical models of breakthrough 

curves, the results were processed so that dimensionless concentration (C/C0) could be plotted 

against effluent volume taking Figure 12 as reference. The conversion between operation time 

to effluent volume was done taking into account the water flow control variable  

(13.83 mL/min). Comparing these type of breakthrough curves for each medium filter at a 

depth of 27 cm. the following results were obtained using the best models.   

 

Figure 45. Classical Breakthrough Curves for different medium filters at a depth of 27 cm. 
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At the beginning of the operation, the adsorption capacity of each filtering bed was the highest 

as it did not contain any pollutant; its surface could take up most caffeine. As time progressed, 

the bed started to become saturated and so, the effluent concentration started to increase and 

tend to C0. 

Comparing Figure 45 with the ideal breakthrough curve shown in Figure 12, it may be observed 

that the breaking point for every graph is almost instantaneous, and so, it is negligible. This 

makes the breakthrough capacity along with the percentage degree of column utilization 

virtually null for the interaction of caffeine with every filtering bed. This could be a reflection 

of the relatively small interaction forces between caffeine and the filtering medium if compared 

to other pollutants. For example, investigations with similar filtering beds have shown a much 

greater adsorption capacity when the contaminants were dye or heavy metals (Beltra & Sa, 

2009). The fact that caffeine is a polar organic molecule may explain this.  

Nevertheless, other studies regarding caffeine removal using granulated activated carbon in a 

filtering bed have in fact showed a much greater efficiency through a noticeable breaking point 

at an advanced operation time (Sotelo et al., 2012). The main difference between this last 

investigation with the presented project was that the chosen fluid flow was lower and the 

column packing was compressed to a much higher efficiency. Even though one of the indirect 

aims of this project was to use the filtering beds as they were without any further treatment, 

evidence claims that this is actually necessary in order to gain a better removal capacity and a 

more evident breaking point. Packing efficiency may be increased by reducing the particle size 

and compressing it more inside the column. Only when this is achieved, the results can be 

comparable. This may be applied not only for activated carbon, but also for zeolite, gravel and 

Moringa oleifera Husk. 

Some studies regarding removal of pollutants in wastewater suggest that a common breaking 

point should be reached after 100 mL of effluent volume in order to consider a scale up. This 

is the case of the biosorption of phenol in a continuous packed bed (Aksu & Gönen, 2004). As 

it may be observed from Figure 45, after 100 mL of effluent volume the filter practically got 

saturated; the packing system with the column needs to be redesigned to achieve this. It is 

important to consider how does the concentration-time graphs compare to other species as this 

will serve as a reference when considering a scale up. Most of the breakthrough curves found 

experimentally tend to have their breaking point in the first couple of hours (when operating at 

a similar water flow). For example, adsorption of methylene blue in a fixed-bed column using 
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phoenix tree leaf powder has a breaking point after an operation time of 1 hour with a fluid 

flow of 1 mL/min (Han et al., 2009). This value should be taken into account as reference for 

future works as it considers a possible scale up. The presented difference is quite noteworthy 

when comparing the results obtained shown in Figures Figure 39 - Figure 42. Methylene blue 

may represent a basic organic dye that is present in wastewaters which is why it may be 

compared to other pollutants such as caffeine. The study serves as a reference denoting that the 

breaking point needs to occur much longer in order to consider the filtering system as a 

potential candidate for pollutants in wastewater treatment plants. Overall, the kinetic 

parameters for every model highlighted in tables Table  3- Table  6 are lower than the ones 

obtained in studies regarding caffeine removal with other filtering beds (Sotelo et al., 2012). 

Most of the breakthrough curves appear to be best represented by the “Deduced Model” with 

the exception of activated carbon. When using activated carbon as the filtering bed, Clark’s 

Model was the mathematical expression that best adapted experimental data. Clark’s model 

works with the assumption that sorption behavior of contaminants follows the Freundlich 

adsorption isotherm which suggests that a multilayer is formed. If a multilayer is formed, 

technically the contaminants are going to be continuously adsorbed into the bed even past 

saturation. This could actually be the reason why in Figure 27 the different level curves seem 

to have different asymptotes; a larger filter depth will signify a larger surface area where 

caffeine could continuously form a multilayer. Thus, as the bed continues to filter out more 

caffeine, the effluent will not tend to the influent concentration, but tend to a relatively lower 

one which highlights that the sorption rate is determined by the outer mass transfer step. This 

also occurs with zeolite and Moringa oleifera husk as Clark’s model is the second model that 

best fits experimental data. Actually, an investigation concerning the removal of lead ions from 

aqueous solutions suggests that zeolite in a filtering bed follow Clark’s kinetic model of 

adsorption (Peric et al., 2008). On the other hand, gravel is the only bed that does not consider 

Clark’s model as one of the best expression to describe its data. Henceforth, evidence points 

out that gravel does not follow the Freundlich adsorption isotherm. Further experiments should 

be carried out to test whether each bed follows the Freundlich or Langmuir adsorption 

isotherm. 

The exhaussion point, however, does exist for every graph presented in this project. The 

caffeine retained in every filtering bed can then be calculated; as a matter of fact, the area 

englobed between the curve for a particular model and C/C0 = 1 will give a direct relationship 

on how much caffeine did that filter bed retain. Using this criteria, it can be seen that the bed 
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that adsorbed caffeine the most was zeolite, followed by Moringa oleifera Husk, Gravel, and 

Activated Carbon respectively. 

Taking zeolite as an example of the filtering bed, the area englobed between its curve and  

C/C0 = 1 is found to be 14.0988 [mL]. multiplying this value by the initial caffeine 

concentration (0.0482 mg/mL) will give 0.6796 [mg] which is in fact, its exhaussion capacity. 

This suggests that in that particular filtering bed of zeolite with a depth of 27 cm, a quantity of 

0.6796 mg of caffeine is retained. Considering Avogadro’s Number and that the molar mass of 

caffeine is 194.19 [g/mol] it can be found that there are 1.0288*10-6 and 6.1959*1017 moles 

and molecules of caffeine respectively.  

It is essential to obtain a relationship that indicates how much caffeine will be retained per 

mass of filtering bed as this will be the practical information that may be used when considering 

a possible escalation.  From the filter standardization results it is known that 27 cm of zeolite 

will have around 21 grams of zeolite. The actual measured value was 21.06 g. Finding the 

quotient of the exhaussion capacity (in grams) and this last value will give the relation between 

mass of caffeine retained to the mass of zeolite. This was 3.236 x 10-5 for zeolite. Moreover, 

the unit mass of the filtering beds (Figure 46) can be weighed and so, the total mass of caffeine 

may be determined.  

 

Figure 46. Filtering Bed Units. 
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The unit mass of zeolite weighed 0.0202 g, and so, the total mass of caffeine retained in this 

unit could be calculated: 0.0202 [g]  ×  3.236 × 10−5 = 6.5368 ×  10−7[g]. 

So that particular single unit of zeolite with a mass of 0.0202 grams has a capability of 

adsorbing approximately 0.65368 µg of caffeine. This was applied for every filter length  

(L = 26, 23, 18, 13 cm for the case of zeolite) in order to obtain a standard deviation and 

consequently, an uncertainty. Processing the results, it was found that in average, the unit mass 

of zeolite adsorbed 5.640 × 10-7 ± 1.007 × 10-7 g of caffeine. This information was processed 

for each filtering bed and is summarized in  

Table  7. 

Table  7. Adsorption characteristics of the different types of filtering beds with respect to 

caffeine. 

Adsorption characteristic Activated Carbon Zeolite Gravel 
Moringa oleifera 

Husk 

Mass of caffeine retained [g] in 

filtering bed (L =27 cm) 
0.0002154 0.0006796 0.0001998 0.0002600 

Moles of retained Caffeine in 

filtering bed (L = 27 cm) 
1.1093 × 10-6 3.4995 × 10-6 1.0288 × 10-6 1.3387 × 10-6 

Molecules of retained Caffeine 

in filtering bed (L = 27 cm) 
6.6801 × 1017 2.1074 × 1018 6.1959 × 1017 8.0619 × 1017 

Mass of retained caffeine/Mass 

of filtering bed [µg/g] 
19.58 ± 4.17 32.36 ± 5.16 9.08 ± 1.01 129.98 ± 48.01 

Mass of unit bed [g] 
0.0469 0.0202 0.2111 0.0073 

Mass of caffeine retained per 

unit bed [µg] 1.100 ± 0.20 0.564 ± 0.10 1.681 ± 0.22 1.196 ± 0.46 

 

From the information obtained, the best filtering beds will depend on what variables are 

considered a priority. For instance, if the main goal is to achieve a maximum removal with a 

fixed bed depth, zeolite will be chosen. However, if the purpose is to obtain the most pollutant 
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retention with the least amount (mass) of medium, then the Moringa oleifera Husk will be the 

best filtering bed. On the other hand, if there is an economic analysis on which is the cheapest 

and the most abundant filtering bed that could be used, then gravel will appear as the best 

candidate. A combination of these beds may result in the optimum dynamic filtration system 

if an escalation is desired.  

6. Conclusion 

In conclusion, a dynamic filtration analysis was achieved using caffeine as the contaminant 

model with Zeolite, Activated Carbon, Gravel and Moringa oleifera Husk as the filtering beds. 

Chemical Instrumental Analysis through the use of UV-VIS Spectroscopy and High 

Performance Liquid Chromatography corroborated the fact that the mechanism which removes 

caffeine in the presented system is adsorption. Under a fluid flow of 13.83 [mL/min] with a 

concentration of 50 ppm, caffeine concentration was monitored as a function of operation time 

and filter bed depth obtaining individual level curves for each variable. For each type of 

filtering medium, different mathematical models were tested to see which one fitted best each 

experimental set of data. These included the Bohart-Adams model, Thomas model, the Yoon-

Nelson model, the Clark Model, and a deduced model from Iwasaki & Ives equations in 

conjunction with a mass balance around the filter. It was found that the model that best adapted 

to activated carbon as the filtering bed was Clark’s model, while for zeolite, gravel and 

Moringa oleifera Husk, it was the deduced model. The breakthrough capacity and percentage 

degree of column utilization for every filtering medium with caffeine was virtually null due to 

the low value of their breaking points. Based on different studies regarding similar filter beds 

with similar contaminants, it was found that the system proposed on this investigation is not 

efficient for a scale up. The different parameters obtained experimentally depicted a relatively 

low adsorption kinetics which is why it is suggested to improve the filtering system by 

increasing the packing effectiveness and reduce the fluid flow. Overall, caffeine removal has a 

lower effectiveness than other contaminants like dye or heavy metals with similar filtering 

beds. Nevertheless, an exhaussion capacity was found, which permitted the quantification of 

the adsorption capabilities of each medium for this particular system. When having a fixed bed 

depth, the medium that removed the most caffeine was zeolite, followed by Moringa oleifera 

husk, activated carbon, and gravel. At a bed depth of 27 cm, these retained a quantity of 0.6796, 

0.2600, 0.2154, and 0.1998 mg of caffeine, respectively. Taking into account the relation of 

filter bed depth with its corresponding mass for every medium, the mass of caffeine retained 

per mass of filtering bed [µg/g] could be calculated. This was 19.58 ± 4.17, 32.36 ± 5.16, 9.08 



71 

 

± 1.01, and 129.98 ± 48.01 for activated carbon, zeolite, gravel, and Moringa oleifera husk 

respectively. Additionally, analyzing the average filter bed units for each medium, it was found 

that these retained 1.10×10-6 ± 2.02×10-7, 5.640×10-7 ± 1.01×10-7, 1.681×10-6 ± 2.19×10-7,  

1.196×10-6 ± 4.59×10-7 mg of caffeine per unit of activated carbon, zeolite, gravel, and Moringa 

oleifera husk respectively. The optimal filtering bed will rely on the variables that are 

considered priorities. If the objective is to remove the maximum amount of caffeine in a fixed 

column length, zeolite will be chosen; however, if the main goal is to retain the most caffeine 

with the least amount of bed mass, then Moringa oleifera husk would be recommended. To 

consider a possible scale up, an increase of the surface area available should be achieved in the 

system in order for the breaking point to occur at time of 1 hour with a fluid flow of 

approximately 1 mL/min. 

 

7. Recommendations 

This investigation was specifically focused on the dynamics of pollutant removal; nonetheless, 

a hydraulic analysis may be recommended for determining the possibilities and limitations of 

a real system. Sometimes the effectiveness of the filtering medium will not only be determined 

by the pollutant removal, but also by the amount of fluid it is capable of treating per unit time. 

Henceforth, hydraulic head loss in conjunction with the analysis done in this investigation will 

ultimately indicate which bed is the best for treating a specific fluid flow.  

It is important to notice that even though the characterization of filtering mediums were done 

with their depth-mass relation, it is not the mass per se that is responsible for adsorption; it is 

its superficial area. It will be recommended for future investigations to enhance and develop a 

relation between filtering bed mass to its superficial area. Varying the superficial area of the 

beds through particle size could also be explored to determine which combination yields the 

best percentage of pollutant removal considering hydraulic head losses.   

As mentioned in the introduction, the filtering systems were constructed in a small scale so that 

it could then be scaled-up to a pilot plant and consequently, a large water treatment plant. Still, 

some of the effects and filtration dynamics reported in this investigation would not necessarily 

apply exactly for larger filters. The column diameter used here was 1.1 cm, but in a real pilot 

plant filter this will be much wider. It will be of significant importance to explore the effects 

of increasing the diameter of the column as this will be an approach to scale-up this study to a 

larger filter.  
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10. APPENDICES 

APPENDIX A: DETAILED METHODOLOGY FOR USING THE HPLC 

With the help of a syringe and needle, the samples were taken (Figure 47 a-b) so that the needle 

could then be replaced with a 45 µm filter (Figure 47 c-d) to filter out solid particles that could 

block the chromatograph column. A volume of 100 µL was then taken from the filtered samples 

with the help of a micro syringe (Figure 48 a); this volume was then ejected. In order to clean 

the syringe and make sure any previous contaminants were expelled, this was done a total of 3 

times. A final volume of 100 µL was taken making sure no bubbles were present in the liquid 

(Figure 48 b). The samples were then injected into the input port of the HPLC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 47. Filtering process before injecting sample in the HPLC column. Samples are 

absorbed using a syringe (a) & (b) so that the needle (c) could be replaced with a 

microfilter (d) to make sure no solid particles were injected in the column. 

a) b) 

c) d) 
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APPENDIX B: DETAILED METHODOLOGY FOR USING THE UV-VIS 

SPECTROMETER 

Beforehand, the quartz cuvettes were carefully cleaned with selected wipe-paper making sure 

the frontal and rear sides did not have any contaminants that could interfere with absorbance 

readings. The inside of the cuvettes was then cleaned with distilled water to make sure any 

previous pollutants where expelled. The spectrograph was turned on and left for 5 minutes until 

the deuterium and tungsten lamp were calibrated and ready to use.   

As the experimental samples had only water and caffeine, distilled water was used as the 

baseline reference. Once this baseline was selected, the first collected sample was transferred 

in the cuvette until the suggested mark. The cuvette was then positioned on the sample cell of 

the spectrograph following the corresponding instructions of the instrument. Consequently, the 

path length, resolution, and maximum absorbance were introduced in the software. To obtain 

the complete spectrum of the sample solution the wavelength range was selected between 200 

nm and 600 nm. The spectrograph was left to run so that the software could record a specific 

absorbance for each wavelength. This way, a maximum absorbance for caffeine could be 

noticed at a specific wavelength. This position would then be used for quantifying data. Once 

the sample was analyzed and recorded, this solution was thrown away and the cuvette was 

cleaned. This procedure was repeated for every sample. 

 

a) b) 

Figure 48. Preparation for the HPLC injection with the 

microsyringe. A volume of 100 µL was taken (a) making sure no 

air bubbles are present (b). 
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APPENDIX C: CALIBRATION CURVES DATA 

 

Table  8. Caffeine Calibration Curve data for UV-VIS Spectroscopy (June 2017). 

Concentration 

[ppm] 

Absorbance Average 

Absorbance 
Standard 

Deviation 1st Data 2nd Data 3rd Data 

0 0.000 0.000 0.000 0.000 0.000 

5 0.254 0.253 0.254 0.254 0.001 

15 0.760 0.761 0.760 0.760 0.001 

30 1.461 1.459 1.462 1.461 0.002 

50 2.460 2.461 2.463 2.461 0.002 

60 2.765 2.767 2.765 2.766 0.001 

 

Table 9. Caffeine Calibration Curve data for UV-VIS Spectroscopy (October 2017). 

Concentration 

[ppm] 

Absorbance Average 

Absorbance 
Standard 

Deviation 1st Data 2nd Data 3rd Data 

0 0.000 0.000 0.000 0.000 0.000 

5 0.251 0.249 0.251 0.250 0.001 

15 0.758 0.757 0.754 0.756 0.002 

30 1.411 1.402 1.404 1.406 0.005 

50 2.405 2.411 2.394 2.403 0.009 

 

Table  10. Data for the Calibration Curve of Caffeine using the Area Below its Characteristic 

Peak applying HPLC (June 2017). 

ppm (caffeine) 
Area Below Characteristic Peak Standard 

Deviation Test 1 Test 2 Test 3 Average 

0 0.000 0.000 0.000 0.000 0.000 

5 3.0175 2.6470 2.2266 2.6304 0.3231 

10 4.8242 4.8918 4.8918 4.8693 0.0319 

15 7.2564 6.9364 7.3294 7.1741 0.1707 

30 15.0433 16.3337 16.2972 15.8914 0.5999 

60 31.5364 29.4557 30.8892 30.6271 0.8694 

100 50.6169 48.2298 50.2215 49.6894 1.0446 
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Table  11. Data for the Calibration Curve of Caffeine using the Area Below its Characteristic 

Peak applying HPLC (October 2017). 

ppm (caffeine) 
Area Below Characteristic Peak Standard 

Deviation Test 1 Test 2 Test 3 Average 

0 0.000 0.000 0.000 0.000 0.000 

5 3.0175 2.6470 2.2266 2.6304 0.3231 

10 4.8242 4.8918 4.8918 4.8693 0.0319 

15 7.2564 6.9364 7.3294 7.1741 0.1707 

30 15.0433 16.3337 16.2972 15.8914 0.5999 

60 31.5364 29.4557 30.8892 30.6271 0.8694 

100 50.6169 48.2298 50.2215 49.6894 1.0446 

 

Table  12. Data for the Calibration Curve of Caffeine using its Characteristic Peak Height 

(June 2017). 

Caffeine 

concentration 

[ppm] 

Height of Chacarcteristic Peak Standard 

Deviation Test 1 Test 2 Test 3 Average 

0 0.000 0.000 0.000 0.000 0.000 

5 0.109 0.097 0.094 0.100 0.008 

10 0.191 0.194 0.194 0.193 0.002 

15 0.299 0.292 0.287 0.293 0.006 

30 0.530 0.570 0.554 0.551 0.020 

60 1.101 1.131 1.054 1.095 0.039 

100 1.776 1.833 1.850 1.820 0.039 

 

Table  13. Data for the Calibration Curve of Caffeine using its Characteristic Peak Height 

(October 2017). 

Caffeine 

concentration 

[ppm] 

Height of Chacarcteristic Peak 
Standard 

Deviation Test 1 Test 2 Test 3 Average 

0 0.000 0.000 0.000 0.000 0.000 

5 0.098 0.093 0.096 0.096 0.003 

10 0.198 0.192 0.195 0.195 0.003 

15 0.299 0.292 0.296 0.296 0.004 

30 0.571 0.549 0.561 0.560 0.011 

60 1.064 1.052 1.059 1.058 0.006 

100 1.711 1.696 1.703 1.703 0.008 
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APPENDIX D: MOST REPRESENTATIVE DATA USED FOR THE 

CONSTRUCTION OF CAFFEINE CONCENTRATION AS A FUNCTION OF 

TIME 

Table  14. Caffeine concentration data as a function of time for different depth lengths using 

Activated Carbon as the filtering bed.  

Range of time 

taken from samples 

[s]   

Represented 

Time [s] 

Caffeine Concentration [ppm] 

L = 13 cm L = 18 cm L = 22 cm L = 27 cm 

0-15 7 31.96 26.23 20.10 16.29 

15-30 22 43.94 41.73 36.85 37.07 

50-70 60 47.46 46.14 44.01 42.67 

110-130 120 48.25 47.29 46.27 43.81 

170-180 180 48.45 47.99 46.90 44.67 

230-250 240 48.63 48.17 46.96 45.35 

290-310 300 48.69 48.57 47.36 45.42 

350-370 360 48.82 48.78 47.87 45.50 

 

Table  15. Caffeine concentration data as a function of time for different depth lengths using 

Zeolite as the filtering bed.  

Range of time 

taken from samples 

[s]   

Represented 

Time [s] 

Caffeine Concentration [ppm] 

L = 13 cm L = 18 cm L = 23 cm L = 26 cm 

0-15 7 27.041 18.327 9.708 9.511 

15-30 22 38.844 32.021 19.742 18.341 

50-70 60 43.708 39.695 31.225 29.701 

110-130 120 46.062 43.681 39.014 38.273 

170-180 180 46.654 45.490 41.735 43.048 

230-250 240 46.831 46.293 43.191 44.844 

290-310 300 47.266 46.810 44.069 45.633 

350-370 360 48.967 47.293 45.674 46.286 
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Table  16. Caffeine concentration data as a function of time for different depth lengths using 

Gravel as the filtering bed. 

Range of time 

taken from samples 

[s]   

Represented 

Time [s] 

Caffeine Concentration [ppm] 

L = 18 cm L = 27 cm L = 37 cm L = 54 cm 

0-15 7 31.09 19.01 12.28 4.71 

15-30 22 44.76 38.78 30.16 19.59 

50-70 60 47.48 45.43 41.95 36.58 

110-130 120 47.92 47.31 44.93 43.29 

170-180 180 48.58 47.15 46.90 44.93 

230-250 240 47.50 47.96 46.44 46.13 

290-310 300 49.35 48.57 46.93 46.44 

350-370 360 49.46 48.78 48.60 46.63 

 

Table  17. Caffeine concentration data as a function of time for different depth lengths using 

Moringa oleifera Lam. Husk as the filtering bed. 

Range of time 

taken from samples 

[s]   

Represented 

Time [s] 

Caffeine Concentration [ppm] 

L = 15 cm L = 27 cm L = 35 cm L = 46 cm 

0-15 7 25.10 13.71 6.92 6.01 

15-30 22 39.75 33.18 27.65 23.37 

50-70 60 45.04 42.80 39.58 37.18 

110-130 120 46.94 45.91 44.35 41.96 

170-180 180 47.57 46.92 45.72 43.27 

230-250 240 47.89 47.33 46.52 44.37 

290-310 300 48.11 47.65 47.07 45.97 

350-370 360 48.14 47.74 47.47 46.48 
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APPENDIX E: MOST REPRESENTATIVE DATA USED FOR THE 

CONSTRUCTION OF CAFFEINE CONCENTRATION AS A FUNCTION OF 

DEPTH 

Table  18. Caffeine concentration data as a function of depth for different operating times 

using Activated Carbon as the filtering bed. 

Filter 

Depth 

[cm] 

Caffeine Concentration [ppm] 

t = 15 s t = 30 s t = 60 s t = 120 s t = 180s t = 240 s t = 300 s 

13 31.96 43.94 47.46 48.12 48.45 48.63 48.69 

18 26.23 41.73 46.14 47.86 47.99 48.17 48.57 

22 20.10 36.85 44.01 45.98 46.90 46.96 47.36 

27 16.29 37.07 42.67 43.54 44.67 45.35 45.42 

0 49.85 49.85 49.85 49.85 49.85 49.85 49.85 

 

Table  19. Caffeine concentration data as a function of depth for different operating times 

using Zeolite as the filtering bed. 

Filter 

Depth 

[cm] 

Caffeine concentration [ppm] 

t = 15 s t = 30 s t = 60 s t = 120 s t = 180 s t = 240 s t = 300 s 

13 27.04 38.84 43.71 46.06 46.65 46.83 47.27 

18 18.33 32.02 39.69 43.68 45.49 46.29 46.81 

23 9.71 19.74 31.23 39.01 41.74 43.19 44.07 

26 9.51 18.34 29.70 38.27 43.05 44.84 45.63 

0 49.85 49.85 49.85 49.85 49.85 49.85 49.85 

 

Table  20. Caffeine concentration data as a function of depth for different operating times 

using Gravel as the filtering bed. 

Filter 

Depth 

[cm] 

Caffeine Concentration [ppm] 

t = 15 s t = 30 s t = 60 s t = 120 s t = 180s t = 240 s t = 300 s 

18 31.09 44.76 47.48 47.92 48.58 47.50 49.35 

27 19.01 38.78 45.43 47.92 47.15 47.96 48.57 

37 12.28 30.16 38.78 47.48 46.90 46.44 46.93 

54 4.71 19.59 36.58 43.29 44.93 46.13 46.44 

0 49.85 49.85 49.85 49.85 49.85 49.85 49.85 
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APPENDIX F: DATA FOR THE STANDARDIZATION OF THE MASS OF 

THE DIFFERENT FILTERING BEDS WITH RESPECT TO THEIR 

COLUMN DEPTH 

Table  21. Corresponding mass of Activated Carbon with respect to its filter depth in the 

column. 

Length 

[cm] 

Mass [g] Standard 

Deviation Test 1 Test 2 Test 3 Average 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.4693 0.4500 0.4724 0.4639 0.0121 

3.2 1.3765 1.3664 1.3822 1.3750 0.0080 

5.5 2.1739 2.2024 2.1572 2.1778 0.0229 

11.5 4.8652 4.8300 4.8432 4.8366 0.0178 

15.0 6.3915 6.3400 6.4378 6.3898 0.0489 

18.0 7.6780 7.9256 7.3278 7.6438 0.3004 

21.5 9.5271 8.7162 9.1660 8.9411 0.4063 

30.0 12.8662 12.7200 14.0000 13.1954 0.7006 

 

Table  22. Corresponding mass of Zeolite with respect to its filter depth in the column. 

Length 

[cm] 

Mass [g] Standard 

Deviation Test 1 Test 2 Test 3 Average 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.8213 0.8611 0.8721 0.8515 0.0267 

3.5 2.6964 2.6621 2.7652 2.7079 0.0525 

5.0 3.6398 3.5175 3.8923 3.6832 0.1911 

9.5 7.2645 7.5706 7.6352 7.4901 0.1980 

13.0 9.8462 11.4932 11.4212 10.9202 0.9308 

17.5 12.5242 12.6287 14.1231 13.0920 0.8945 

20.5 15.1121 16.5771 17.0293 16.2395 1.0022 

27.0 21.8909 22.5042 24.7672 23.0541 1.5149 
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Table  23. Corresponding mass of Moringa oleifera Husk with respect to its filter depth in the 

column. 

Length 

[cm] 

Mass [g] Standard 

Deviation Test 1 Test 2 Test 3 Average 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.8 0.1029 0.1182 0.1452 0.1221 0.0214 

4 0.2773 0.2187 0.2987 0.2649 0.0414 

6.5 0.3676 0.3017 0.4215 0.3636 0.0600 

9 0.5954 0.5762 0.6872 0.6196 0.0593 

14 0.8906 0.9762 1.1869 1.0179 0.1525 

19 1.5256 1.2342 1.6721 1.4773 0.2229 

27 1.9687 1.8021 2.1242 1.9650 0.1611 

 

Table  24. Corresponding mass of Gravel with respect to its filter depth in the column. 

Length 

[cm] 

Mass [g] Standard 

Deviation Test 1 Test 2 Test 3 Average 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.3 1.0537 1.0627 0.9982 1.0382 0.0349 

4.0 2.8437 3.1263 2.9790 2.9830 0.1413 

6.0 4.6964 4.7981 4.4726 4.6557 0.1665 

9.0 6.8772 7.2142 6.9851 7.0255 0.1721 

15.5 12.0091 12.2765 12.0912 12.1256 0.1370 

19.0 15.9752 16.3111 15.4821 15.9228 0.4170 

25.0 20.8801 21.4921 20.9971 21.1231 0.3249 

31.0 26.7231 27.4765 26.8712 27.0236 0.3992 

38.5 32.8835 33.0121 31.8921 32.5959 0.6129 
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APPENDIX G:  

HPLC CHROMATOGRAMS FOR THE CALIBRATION CURVE OF CAFFEINE 

Figure 49. HPLC Chromatograms used for the Calibration Curves of caffeine applying the area below the characteristic peak, and the 

peak’s height. a) 5 ppm b) 10 ppm c) 15 ppm d) 30 ppm e) 50 ppm f) 60 ppm. 

a) b) 
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c) d) 

e) f) 

Figure 49. (Continued) HPLC Chromatograms used for the Calibration Curves of caffeine applying the area below the characteristic 

peak, and the peak’s height. a) 5 ppm b) 10 ppm c) 15 ppm d) 30 ppm e) 50 ppm f) 60 ppm. 
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APPENDIX H:  

CHARACTERIZATION OF FILTERING BEDS: MASS OF THE FILTERING MEDIUM AS A FUNCTION OF ITS FILTER 

DEPTH IN THE COLUMN 
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Figure 53. Mass of Activated Carbon as a function of its 

filtering depth in the column. 
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Figure 52. Mass of Zeolite as a function of its filtering 

depth in the column. 
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Figure 51. Mass of Moringa oleifera Husk as a function of 

its filtering depth in the column. 
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Figure 50. Mass of Gravel as a function of its filtering 

depth in the column. 
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APPENDIX I:  

CONCENTRATION OF THE DIFFERENT FILTERING BEDS (ACTIVATED CARBON, ZEOLITE, GRAVEL, AND Moringa 

oleifera HUSK) AS A FUNCTION OF TIME 
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Table 25. Caffeine concentration as a function of time using Activated Carbon as the filtering bed with a depth of 27 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

0-15 7 0.843 0.743 0.831 0.806 6.78 16.29 1.104 0.327 0.0222 

15-30 22 1.640 1.954 1.877 1.824 8.97 37.07 3.326 0.744 0.0667 

50-70 60 2.003 2.159 2.132 2.098 3.97 42.67 1.696 0.856 0.0340 

110-130 120 2.12 2.198 2.144 2.154 1.85 43.81 0.813 0.879 0.0163 

170-180 180 2.177 2.213 2.199 2.196 0.83 44.67 0.369 0.896 0.0074 

230-250 240 2.175 2.27 2.243 2.229 2.20 45.35 0.996 0.910 0.0200 

290-310 300 2.227 2.235 2.236 2.233 0.22 45.42 0.100 0.911 0.0020 

350-370 360 2.231 2.239 2.241 2.237 0.24 45.50 0.108 0.913 0.0022 

 

Table 26. Caffeine concentration as a function of time using Activated Carbon as the filtering bed with a depth of 22 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 Absolute 

Uncertainty 
Test 1  Test 2 Test 3 Average 

0-15 7 1.037 1.041 0.899 0.992 8.148 20.10 1.638 0.403 0.0329 

15-30 22 1.864 1.809 1.766 1.813 2.709 36.85 0.998 0.739 0.0200 

50-70 60 2.179 2.169 2.143 2.164 0.859 44.01 0.378 0.883 0.0076 

110-130 120 2.272 2.270 2.281 2.274 0.258 46.27 0.119 0.928 0.0024 

170-180 180 2.307 2.305 2.304 2.305 0.066 46.90 0.031 0.941 0.0006 

230-250 240 2.301 2.317 2.307 2.308 0.350 46.96 0.164 0.942 0.0033 

290-310 300 2.322 2.333 2.329 2.328 0.239 47.36 0.113 0.950 0.0023 

350-370 360 2.352 2.351 2.356 2.353 0.112 47.87 0.054 0.960 0.0011 
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Table 27. Caffeine concentration as a function of time using Activated Carbon as the filtering bed with a depth of 18 cm. 

 

Table 28. Caffeine concentration as a function of time using Activated Carbon as the filtering bed with a depth of 13 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance 
% Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

0-15 7 1.573 1.569 1.578 1.573 0.286 31.96 0.092 0.641 0.00184 

15-30 22 2.159 2.158 2.164 2.160 0.148 43.94 0.065 0.881 0.00131 

50-70 60 2.329 2.333 2.337 2.333 0.171 47.46 0.081 0.952 0.00163 

110-130 120 2.368 2.371 2.375 2.371 0.148 48.25 0.071 0.968 0.00143 

170-180 180 2.381 2.379 2.384 2.381 0.105 48.45 0.051 0.972 0.00103 

230-250 240 2.388 2.39 2.392 2.390 0.083 48.63 0.041 0.975 0.00082 

290-310 300 2.391 2.394 2.395 2.393 0.086 48.69 0.042 0.977 0.00085 

350-370 360 2.397 2.401 2.401 2.400 0.096 48.82 0.047 0.979 0.00094 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance 
% Standard 

Deviation 

Concentration 

[ppm] 
Absolute 

Uncertainty 

C/C0 Absolute 

Uncertainty 
Test 1  Test 2 Test 3 Average 

0-15 7 1.310 1.200 1.367 1.292 6.568 26.23 1.723 0.526 0.03456 

15-30 22 2.071 2.001 2.084 2.052 2.175 41.73 0.908 0.837 0.01821 

50-70 60 2.252 2.261 2.291 2.268 0.900 46.14 0.415 0.925 0.00833 

110-130 120 2.323 2.322 2.329 2.325 0.162 47.29 0.077 0.949 0.00155 

170-180 180 2.362 2.351 2.364 2.359 0.296 47.99 0.142 0.963 0.00286 

230-250 240 2.362 2.37 2.371 2.368 0.208 48.17 0.100 0.966 0.00201 

290-310 300 2.383 2.388 2.39 2.387 0.151 48.57 0.073 0.974 0.00147 

350-370 360 2.389 2.401 2.402 2.397 0.301 48.78 0.147 0.978 0.00295 
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Table 29. Caffeine concentration as a function of time using Zeolite as the filtering bed with a depth of 26 cm. 
Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.491 0.474 0.455 0.473 3.805 9.511 0.362 0.191 0.00726 

15-30 22 0.934 0.908 0.876 0.906 3.207 18.341 0.588 0.368 0.01180 

50-70 60 1.471 1.461 1.456 1.463 0.522 29.701 0.155 0.596 0.00311 

110-130 120 1.891 1.883 1.874 1.883 0.452 38.273 0.173 0.768 0.00347 

170-180 180 2.121 2.118 2.111 2.117 0.242 43.048 0.104 0.864 0.00209 

230-250 240 2.223 2.202 2.189 2.205 0.778 44.844 0.349 0.900 0.00700 

290-310 300 2.251 2.243 2.236 2.243 0.335 45.633 0.153 0.915 0.00306 

350-370 360 2.283 2.277 2.266 2.275 0.379 46.286 0.175 0.928 0.00352 

 

Table 30. Caffeine concentration as a function of time using Zeolite as the filtering bed with a depth of 23 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.398 0.561 0.49 0.483 16.920 9.708 1.643 0.195 0.03295 

15-30 22 0.951 1.002 0.971 0.975 2.636 19.742 0.520 0.396 0.01044 

50-70 60 1.529 1.545 1.538 1.537 0.522 31.225 0.163 0.626 0.00327 

110-130 120 1.901 1.943 1.913 1.919 1.127 39.014 0.440 0.783 0.00882 

170-180 180 2.041 2.066 2.05 2.052 0.617 41.735 0.257 0.837 0.00517 

230-250 240 2.108 2.138 2.125 2.124 0.708 43.191 0.306 0.866 0.00614 

290-310 300 2.153 2.182 2.165 2.167 0.673 44.069 0.296 0.884 0.00595 

350-370 360 2.231 2.253 2.252 2.245 0.553 45.674 0.253 0.916 0.00507 
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Table 31. Caffeine concentration as a function of time using Zeolite as the filtering bed with a depth of 18 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.907 0.921 0.888 0.905 1.829 18.327 0.335 0.368 0.00673 

15-30 22 1.576 1.584 1.569 1.576 0.476 32.021 0.152 0.642 0.00306 

50-70 60 1.951 1.962 1.944 1.952 0.465 39.695 0.184 0.796 0.00370 

110-130 120 2.149 2.155 2.139 2.148 0.376 43.681 0.164 0.876 0.00330 

170-180 180 2.238 2.242 2.229 2.236 0.298 45.490 0.135 0.913 0.00272 

230-250 240 2.275 2.281 2.271 2.276 0.221 46.293 0.102 0.929 0.00205 

290-310 300 2.29 2.322 2.291 2.301 0.791 46.810 0.370 0.939 0.00742 

350-370 360 2.326 2.327 2.321 2.325 0.138 47.293 0.065 0.949 0.00131 

 

Table 32. Caffeine concentration as a function of time using Zeolite as the filtering bed with a depth of 13 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 1.281 1.314 1.402 1.332 4.695 27.041 1.270 0.542 0.02547 

15-30 22 1.897 1.911 1.924 1.911 0.707 38.844 0.275 0.779 0.00551 

50-70 60 2.097 2.165 2.185 2.149 2.147 43.708 0.938 0.877 0.01882 

110-130 120 2.255 2.262 2.276 2.264 0.472 46.062 0.218 0.924 0.00436 

170-180 180 2.286 2.293 2.301 2.293 0.327 46.654 0.153 0.936 0.00306 

230-250 240 2.291 2.301 2.314 2.302 0.501 46.831 0.235 0.939 0.00471 

290-310 300 2.317 2.323 2.33 2.323 0.280 47.266 0.132 0.948 0.00266 

350-370 360 2.401 2.408 2.411 2.407 0.213 48.967 0.104 0.982 0.00209 
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Table 33. Caffeine concentration as a function of time using Gravel as the filtering bed with a depth of 54 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.233 0.276 0.205 0.238 15.027 4.708 0.707 0.094 0.01419 

15-30 22 0.962 0.988 0.951 0.967 1.965 19.586 0.385 0.393 0.00772 

50-70 60 1.799 1.803 1.797 1.800 0.170 36.579 0.062 0.734 0.00125 

110-130 120 2.127 2.134 2.124 2.128 0.241 43.286 0.104 0.868 0.00209 

170-180 180 2.208 2.212 2.206 2.209 0.138 44.926 0.062 0.901 0.00125 

230-250 240 2.267 2.271 2.265 2.268 0.135 46.130 0.062 0.925 0.00125 

290-310 300 2.282 2.285 2.281 2.283 0.091 46.436 0.042 0.931 0.00085 

350-370 360 2.292 2.296 2.289 2.292 0.153 46.633 0.071 0.935 0.00143 

 

Table 34. Caffeine concentration as a function of time using Gravel as the filtering bed with a depth of 37 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.616 0.522 0.689 0.609 13.747 12.280 1.688 0.246 0.03386 

15-30 22 1.488 1.475 1.492 1.485 0.599 30.157 0.181 0.605 0.00362 

50-70 60 2.085 2.003 2.101 2.063 2.548 41.953 1.069 0.842 0.02145 

110-130 120 2.213 2.189 2.225 2.209 0.830 44.933 0.373 0.901 0.00748 

170-180 180 2.309 2.294 2.313 2.305 0.434 46.899 0.204 0.941 0.00409 

230-250 240 2.282 2.277 2.289 2.283 0.264 46.436 0.123 0.931 0.00246 

290-310 300 2.309 2.300 2.311 2.307 0.254 46.926 0.119 0.941 0.00239 

350-370 360 2.389 2.386 2.391 2.389 0.105 48.599 0.051 0.975 0.00103 
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Table 35. Caffeine concentration as a function of time using Gravel as the filtering bed with a depth of 27 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.899 0.941 0.976 0.939 4.107 19.007 0.781 0.381 0.01566 

15-30 22 1.882 1.895 1.945 1.907 1.744 38.776 0.676 0.778 0.01356 

50-70 60 2.221 2.236 2.243 2.233 0.503 45.429 0.229 0.911 0.00459 

110-130 120 2.315 2.323 2.338 2.325 0.502 47.307 0.238 0.949 0.00477 

170-180 180 2.309 2.318 2.326 2.318 0.367 47.150 0.173 0.946 0.00347 

230-250 240 2.348 2.356 2.368 2.357 0.427 47.960 0.205 0.962 0.00411 

290-310 300 2.376 2.388 2.397 2.387 0.441 48.565 0.214 0.974 0.00430 

350-370 360 2.391 2.399 2.402 2.397 0.237 48.776 0.116 0.978 0.00232 

 

Table 36. Caffeine concentration as a function of time using Gravel as the filtering bed with a depth of 18 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 1.536 1.505 1.551 1.531 1.533 31.089 0.476 0.624 0.00956 

15-30 22 2.200 2.189 2.212 2.200 0.523 44.756 0.234 0.898 0.00469 

50-70 60 2.335 2.318 2.349 2.334 0.665 47.484 0.316 0.953 0.00634 

110-130 120 2.353 2.344 2.369 2.355 0.538 47.919 0.258 0.961 0.00517 

170-180 180 2.388 2.377 2.398 2.388 0.440 48.579 0.214 0.974 0.00429 

230-250 240 2.339 2.322 2.343 2.335 0.478 47.497 0.227 0.953 0.00455 

290-310 300 2.426 2.421 2.429 2.425 0.167 49.348 0.082 0.990 0.00165 

350-370 360 2.431 2.428 2.434 2.431 0.123 49.463 0.061 0.992 0.00122 

 

 

 



96 

 

 

Table 37. Caffeine concentration as a function of time using Moringa oleifera Lam. Husk as the filtering bed with a depth of 46 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.224 0.381 0.301 0.302 25.995 6.014 1.563 0.121 0.0314 

15-30 22 1.010 1.340 1.107 1.152 14.719 23.368 3.439 0.469 0.0690 

50-70 60 1.749 1.843 1.896 1.829 4.070 37.184 1.513 0.746 0.0304 

110-130 120 2.008 2.043 2.139 2.063 3.287 41.960 1.379 0.842 0.0277 

170-180 180 2.069 2.117 2.196 2.127 3.014 43.266 1.304 0.868 0.0262 

230-250 240 2.152 2.136 2.256 2.181 2.987 44.368 1.325 0.890 0.0266 

290-310 300 2.230 2..211 2.290 2.260 1.877 45.973 0.863 0.922 0.0173 

350-370 360 2.250 2.270 2.334 2.285 1.921 46.477 0.893 0.932 0.0179 

 

Table 38. Caffeine concentration as a function of time using Moringa oleifera Lam. Husk as the filtering bed with a depth of 35 cm. 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.349 0.281 0.409 0.346 18.491 6.919 1.279 0.139 0.0257 

15-30 22 1.366 1.332 1.388 1.362 2.071 27.647 0.573 0.555 0.0115 

50-70 60 1.949 1.850 2.041 1.947 4.907 39.579 1.942 0.794 0.0390 

110-130 120 2.181 2.159 2.201 2.180 0.964 44.348 0.427 0.890 0.0086 

170-180 180 2.249 2.233 2.261 2.248 0.625 45.722 0.286 0.917 0.0057 

230-250 240 2.285 2.282 2.293 2.287 0.249 46.518 0.116 0.933 0.0023 

290-310 300 2.313 2.304 2.324 2.314 0.433 47.069 0.204 0.944 0.0041 

350-370 360 2.333 2.328 2.339 2.333 0.236 47.470 0.112 0.952 0.0022 
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Table 39. Caffeine concentration as a function of time using Moringa oleifera Lam. Husk as the filtering bed with a depth of 27 cm 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 0.405 0.678 0.955 0.679 40.481 13.715 5.552 0.275 0.1114 

15-30 22 1.517 1.632 1.751 1.633 7.164 33.184 2.377 0.666 0.0477 

50-70 60 2.031 2.104 2.179 2.105 3.516 42.803 1.505 0.859 0.0302 

110-130 120 2.231 2.256 2.284 2.257 1.175 45.912 0.539 0.921 0.0108 

170-180 180 2.299 2.305 2.315 2.306 0.350 46.919 0.164 0.941 0.0033 

230-250 240 2.311 2.326 2.342 2.326 0.666 47.327 0.315 0.949 0.0063 

290-310 300 2.336 2.341 2.35 2.342 0.303 47.654 0.144 0.956 0.0029 

350-370 360 2.339 2.345 2.355 2.346 0.344 47.735 0.164 0.958 0.0033 

 

Table 40. Caffeine concentration as a function of time using Moringa oleifera Lam. Husk as the filtering bed with a depth of 15 cm 

Range of time 

taken from 

samples [s]   

Represented 

Time [s] 

Absorbance % 

Standard 

Deviation 

Concentratio

n [ppm] 

Absolute 

Uncertaint

y 

C/C0 

Absolute 

Uncertaint

y 
Test 1  Test 2 Test 3 Average 

0-15 7 1.361 1.114 1.236 1.237 9.984 25.096 2.506 0.503 0.0503 

15-30 22 2.004 1.882 1.979 1.955 3.296 39.749 1.310 0.797 0.0263 

50-70 60 2.321 2.107 2.215 2.214 4.832 45.041 2.177 0.904 0.0437 

110-130 120 2.338 2.278 2.306 2.307 1.301 46.939 0.611 0.942 0.0123 

170-180 180 2.366 2.311 2.337 2.338 1.177 47.565 0.560 0.954 0.0112 

230-250 240 2.368 2.342 2.351 2.354 0.561 47.885 0.269 0.961 0.0054 

290-310 300 2.371 2.359 2.364 2.365 0.255 48.110 0.123 0.965 0.0025 

350-370 360 2.372 2.361 2.365 2.366 0.235 48.137 0.113 0.966 0.0023 
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APPENDIX J:  

CONCENTRATION OF THE DIFFERENT FILTERING BEDS (ACTIVATED CARBON, ZEOLITE, GRAVEL, AND Moringa 

oleifera HUSK) AS A FUNCTION OF DEPTH 

 

Table 41. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 15 seconds. 

 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 1.573 1.569 1.578 1.573 0.2866 31.9599 0.0916 0.6411 0.001837 

18 1.31 1.2 1.367 1.292 6.5687 26.2252 1.7227 0.5261 0.034556 

22 1.037 1.041 0.899 0.992 8.1478 20.1027 1.6379 0.4033 0.032857 

27 0.843 0.743 0.831 0.806 6.7772 16.2932 1.1042 0.3268 0.022150 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 

 

Table 42. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 30 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.159 2.158 2.164 2.160 0.1488 43.9395 0.0654 0.8814 0.001312 

18 2.071 2.001 2.084 2.052 2.1756 41.7286 0.9078 0.8371 0.018211 

22.5 1.864 1.809 1.766 1.813 2.7094 36.8510 0.9985 0.7392 0.020029 

27 1.64 1.954 1.877 1.824 8.9738 37.0687 3.3265 0.7436 0.066729 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 
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Table 43. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 1 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.329 2.333 2.337 2.333 0.1715 47.4633 0.0814 0.9521 0.001632 

18 2.252 2.261 2.291 2.268 0.9004 46.1367 0.4154 0.9255 0.008333 

22.5 2.179 2.169 2.143 2.164 0.8589 44.0075 0.3780 0.8828 0.007582 

27 2.003 2.159 2.132 2.098 3.9739 42.6673 1.6956 0.8559 0.034013 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 

 

 

Table 44. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 2 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.381 2.379 2.384 2.381 0.1057 48.4497 0.0512 0.9719 0.001027 

18 2.362 2.351 2.364 2.359 0.2967 47.9939 0.1424 0.9627 0.002857 

22.5 2.307 2.305 2.304 2.305 0.0663 46.8986 0.0311 0.9408 0.000623 

27 2.177 2.213 2.199 2.196 0.8263 44.6741 0.3691 0.8962 0.007405 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 
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Table 45. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 3 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.381 2.379 2.384 2.381 0.1057 48.4497 0.0512 0.9719 0.001027 

18 2.362 2.351 2.364 2.359 0.2967 47.9939 0.1424 0.9627 0.002857 

22.5 2.307 2.305 2.304 2.305 0.0663 46.8986 0.0311 0.9408 0.000623 

27 2.177 2.213 2.199 2.196 0.8263 44.6741 0.3691 0.8962 0.007405 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 

 

Table 46. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 4 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.388 2.39 2.392 2.390 0.0837 48.6265 0.0407 0.9754 0.000816 

18 2.362 2.37 2.371 2.368 0.2083 48.1707 0.1004 0.9663 0.002013 

22.5 2.301 2.317 2.307 2.308 0.3502 46.9599 0.1644 0.9420 0.003299 

27 2.175 2.27 2.243 2.229 2.1958 45.3476 0.9958 0.9097 0.019975 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 
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Table 47. Caffeine concentration as a function of depth using Activated Carbon as filtering bed at an operation time of 5 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.391 2.394 2.395 2.393 0.0870 48.6946 0.0424 0.9768 0.000850 

18 2.383 2.388 2.39 2.387 0.1510 48.5653 0.0734 0.9742 0.001472 

22.5 2.322 2.333 2.329 2.328 0.2392 47.3612 0.1133 0.9501 0.002272 

27 2.227 2.235 2.236 2.233 0.2209 45.4156 0.1003 0.9110 0.002013 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.000000 

 

Table 48. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 15 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 1.281 1.314 1.402 1.332 4.695 27.041 1.270 0.542 0.02547 

18 0.907 0.921 0.888 0.905 1.829 18.327 0.335 0.368 0.00673 

23 0.398 0.561 0.49 0.483 16.920 9.708 1.643 0.195 0.03295 

26 0.491 0.474 0.455 0.473 3.805 9.511 0.362 0.191 0.00726 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 
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Table 49. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 30 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 1.897 1.911 1.924 1.910 0.707 38.844 0.275 0.779 0.00551 

18 1.576 1.584 1.569 1.576 0.476 32.021 0.152 0.642 0.00306 

23 0.951 1.002 0.971 0.974 2.636 19.742 0.520 0.396 0.01044 

26 0.934 0.908 0.876 0.906 3.207 18.341 0.588 0.368 0.01180 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 

 

 

Table 50. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 1 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.097 2.165 2.185 2.149 2.147 43.708 0.938 0.877 0.01882 

18 1.951 1.962 1.944 1.952 0.465 39.695 0.184 0.796 0.00370 

23 1.529 1.545 1.538 1.537 0.522 31.225 0.163 0.626 0.00327 

26 1.471 1.461 1.456 1.463 0.522 29.701 0.155 0.596 0.00311 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 
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Table 51. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 2 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.255 2.262 2.276 2.264 0.472 46.062 0.218 0.924 0.00436 

18 2.149 2.155 2.139 2.148 0.376 43.681 0.164 0.876 0.00330 

23 1.901 1.943 1.913 1.919 1.127 39.014 0.440 0.783 0.00882 

26 1.891 1.883 1.874 1.883 0.452 38.273 0.173 0.768 0.00347 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 

 

 

Table 52. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 3 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.286 2.293 2.301 2.293 0.327 46.654 0.153 0.936 0.00306 

18 2.238 2.242 2.229 2.236 0.298 45.490 0.135 0.913 0.00272 

23 2.041 2.066 2.05 2.052 0.617 41.735 0.257 0.837 0.00517 

26 2.121 2.118 2.111 2.117 0.242 43.048 0.104 0.864 0.00209 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 
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Table 53. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 4 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.291 2.301 2.314 2.302 0.501 46.831 0.235 0.939 0.00471 

18 2.275 2.281 2.271 2.276 0.221 46.293 0.102 0.929 0.00205 

23 2.108 2.138 2.125 2.124 0.708 43.191 0.306 0.866 0.00614 

26 2.223 2.202 2.189 2.205 0.778 44.844 0.349 0.900 0.00700 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 

 

 

Table 54. Caffeine concentration as a function of depth using Zeolite as filtering bed at an operation time of 5 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

13 2.317 2.323 2.33 2.323 0.280 47.266 0.132 0.948 0.00266 

18 2.290 2.322 2.291 2.301 0.791 46.810 0.370 0.939 0.00742 

23 2.153 2.182 2.165 2.167 0.673 44.069 0.296 0.884 0.00595 

26 2.251 2.243 2.236 2.243 0.335 45.633 0.153 0.915 0.00306 

0 2.450 2.450 2.450 2.450 0.000 49.851 0.000 1.000 0.00000 
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Table 55. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 15 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 1.536 1.505 1.551 1.531 1.5326 31.0891 0.4765 0.6236 0.00956 

27 0.899 0.941 0.976 0.939 4.1072 19.0075 0.7807 0.3813 0.01566 

37 0.616 0.522 0.689 0.609 13.7471 12.2796 1.6881 0.2463 0.03386 

54 0.233 0.276 0.205 0.238 15.0265 4.7082 0.7075 0.0944 0.01419 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 

 

 

Table 56. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 30 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 2.2 2.189 2.212 2.200 0.5228 44.7558 0.2340 0.8978 0.00469 

27 1.882 1.895 1.945 1.907 1.7439 38.7762 0.6762 0.7778 0.01356 

37 1.488 1.475 1.492 1.485 0.5985 30.1571 0.1805 0.6049 0.00362 

54 0.962 0.988 0.951 0.967 1.9648 19.5857 0.3848 0.3929 0.00772 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 
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Table 57. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 1 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 2.335 2.318 2.349 2.334 0.6651 47.4837 0.3158 0.9525 0.00634 

27 2.221 2.236 2.243 2.23333333 0.5033 45.4293 0.2286 0.9113 0.00459 

37 2.085 2.003 2.101 1.90733333 2.7564 38.7762 1.0688 0.7778 0.02144 

54 1.799 1.803 1.797 1.800 0.1698 36.5789 0.0621 0.7338 0.00125 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 

 

 

Table 58. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 2 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 2.353 2.344 2.369 2.355 0.5376 47.9190 0.2576 0.9612 0.00517 

27 2.315 2.323 2.338 2.355 0.4957 47.9190 0.2376 0.9612 0.00477 

37 2.213 2.189 2.225 2.334 0.7854 47.4837 0.3729 0.9525 0.00748 

54 2.127 2.134 2.124 2.128 0.2411 43.2864 0.1044 0.8683 0.00209 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 
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Table 59. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 3 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 2.388 2.377 2.398 2.388 0.4399 48.5789 0.2137 0.9745 0.00429 

27 2.309 2.318 2.326 2.318 0.3670 47.1503 0.1730 0.9458 0.00347 

37 2.309 2.294 2.313 2.305 0.4345 46.8986 0.2038 0.9408 0.00409 

54 2.208 2.212 2.206 2.209 0.1383 44.9259 0.0621 0.9012 0.00125 

0 2.450 2.450 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 

 

 

 

Table 60. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 4 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 2.339 2.322 2.343 2.335 0.4776 47.4973 0.2268 0.9528 0.00455 

27 2.348 2.356 2.368 2.357 0.4270 47.9599 0.2048 0.9621 0.00411 

37 2.282 2.277 2.289 2.283 0.2641 46.4361 0.1226 0.9315 0.00246 

54 2.267 2.271 2.265 2.268 0.1347 46.1299 0.0621 0.9254 0.00125 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 
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Table 61. Caffeine concentration as a function of depth using Gravel as filtering bed at an operation time of 5 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

18 2.426 2.421 2.429 2.425 0.1666 49.3476 0.0822 0.9899 0.00165 

27 2.376 2.388 2.397 2.387 0.4414 48.5653 0.2144 0.9742 0.00430 

37 2.309 2.300 2.311 2.307 0.2540 46.9259 0.1192 0.9413 0.00239 

54 2.282 2.285 2.281 2.283 0.0912 46.4361 0.0423 0.9315 0.00085 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.00000 

 

Table 62. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 15 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 1.361 1.114 1.236 1.237 9.9841 25.0959 2.5056 0.5034 0.0503 

27 0.405 0.678 0.955 0.679 40.4812 13.7150 5.5520 0.2751 0.1114 

35 0.349 0.281 0.409 0.346 18.4913 6.9190 1.2794 0.1388 0.0257 

46 0.224 0.381 0.301 0.302 25.9950 6.0143 1.5634 0.1206 0.0314 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 
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Table 63. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 30 seconds. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 2.004 1.882 1.979 1.955 3.2964 39.7490 1.3103 0.7974 0.0263 

27 1.517 1.632 1.751 1.633 7.1636 33.1844 2.3772 0.6657 0.0477 

35 1.366 1.332 1.388 1.362 2.0715 27.6469 0.5727 0.5546 0.0115 

46 1.01 1.34 1.107 1.152 14.7185 23.3680 3.4394 0.4688 0.0690 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 

 

 

Table 64. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 1 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 2.321 2.107 2.215 2.214 4.8322 45.0415 2.1765 0.9035 0.0437 

27 2.031 2.104 2.179 2.105 3.5161 42.8034 1.5050 0.8586 0.0302 

35 1.949 1.85 2.041 1.947 4.9069 39.5789 1.9421 0.7939 0.0390 

46 1.749 1.843 1.896 1.829 4.0696 37.1844 1.5133 0.7459 0.0304 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 
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Table 65. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 2 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 2.338 2.278 2.306 2.307 1.3012 46.9395 0.6108 0.9416 0.0123 

27 2.231 2.256 2.284 2.257 1.1748 45.9122 0.5394 0.9210 0.0108 

35 2.181 2.159 2.201 2.180 0.9635 44.3476 0.4273 0.8896 0.0086 

46 2.008 2.043 2.139 2.063 3.2872 41.9599 1.3793 0.8417 0.0277 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 

 

 

Table 66. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 3 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 2.366 2.311 2.337 2.338 1.1768 47.5653 0.5597 0.9541 0.0112 

27 2.299 2.305 2.315 2.306 0.3505 46.9190 0.1644 0.9412 0.0033 

35 2.249 2.233 2.261 2.248 0.6250 45.7218 0.2858 0.9172 0.0057 

46 2.069 2.117 2.196 2.127 3.0145 43.2660 1.3042 0.8679 0.0262 

0 2.45 2.45 2.450 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 
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Table 67. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 4 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 2.368 2.342 2.351 2.353 0.5610 47.8850 0.2686 0.9606 0.0054 

27 2.311 2.326 2.342 2.326 0.6664 47.3272 0.3154 0.9494 0.0063 

35 2.285 2.282 2.293 2.287 0.2487 46.5177 0.1157 0.9331 0.0023 

46 2.152 2.136 2.256 2.181 2.9870 44.3680 1.3253 0.8900 0.0266 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 

 

 

Table 68. Caffeine concentration as a function of depth using Moringa oleifera Lam. Husk as filtering bed at an operation time of 5 min. 

Filter 

Depth 

[cm] 

Absorbance % 

Standard 

Deviation 

Concentration 

[ppm] 

Absolute 

Uncertainty 
C/C0 

Absolute 

Uncertainty Test 1  Test 2 Test 3 Average 

15 2.371 2.359 2.364 2.365 0.2549 48.1095 0.1226 0.9651 0.0025 

27 2.336 2.341 2.35 2.342 0.3029 47.6537 0.1443 0.9559 0.0029 

35 2.313 2.304 2.324 2.314 0.4329 47.0687 0.2038 0.9442 0.0041 

46 2.23 2..211 2.29 2.260 1.8773 45.9735 0.8630 0.9222 0.0173 

0 2.45 2.45 2.45 2.450 0.0000 49.8510 0.0000 1.0000 0.0000 

 

 

 

 

 

 

 


