
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Optimizing Large Databases: A Study on Index Structures
Proyecto de Investigación

.

Ricardo Andres Leon Ruiz

Ingeniería en Sistemas

Trabajo de titulación presentado como requisito
para la obtención del título de

Ingeniero en Sistemas

Quito, 22 de Diciembre de 2017

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

COLEGIO DE CIENCIAS E INGENIERÍAS

HOJA DE CALIFICACIÓN
 DE TRABAJO DE TITULACIÓN

Optimizing Large Databases: A Study on Index Structures

Ricardo Andres Leon Ruiz

Calificación:

Nombre del profesor, Título académico Aldo Cassola, Ph.D.

Firma del profesor

Quito, Diciembre de 2017

3

Derechos de Autor

Por medio del presente documento certifico que he leído todas las Políticas y

Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de

Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos

de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas

Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley

Orgánica de Educación Superior.

Firma del estudiante:

Nombres y Apellidos: Ricardo Andres Leon Ruiz

Código de estudiante: 110346

C. I.: 1714286265

Lugar, Fecha Quito, 22 de Diciembre de 2017

4

RESUMEN

La siguiente investigación trata sobre comparar estructuras de índice para grandes bases de
datos, tanto analíticamente, como experimentalmente. El estudio se encuentra dividido en
dos partes principales. La primera parte se centra en índices de hash y B-trees. Ambas
estructuras son estudiadas en el contexto del modelo de acceso de disco tradicional. La
segunda parte presenta al modelo cache-oblivious, incluyendo sus implicaciones en el
diseño de algoritmos para niveles de memoria arbitrarios. Dentro de este modelo, se
estudian dos estructuras: el cache-oblivious B-tree, y el lookahead array. Usando bases de
datos que contienen varios millones de filas, los resultados experimentales confirman al B-
tree como la opción preferida entre las estructuras convencionales. Sin embargo,
comparaciones contra el lookahead array señalan a esta nueva estructura como una
alternativa eficiente para actualizar y almacenar cantidades masivas de datos

PALABRAS CLAVE
I/O: Ingresar datos desde disco hacia la memoria principal, enviar datos desde la memoria
principal al disco.
Bloque: Unidad de información que es escrita desde o hacia disco. Los bloques contienen
registros. Equivalentemente, podemos referirnos a los bloques como páginas.
Índice: Archivo que permite la organización de registros de datos con el fin de optimizar
operaciones de búsqueda de registros. Un índice brinda la posibilidad de obtener registros
de manera eficiente, dada la clave de búsqueda de dicho índice. Una colección de registros
de datos puede tener múltiples índices, cada uno con una clave de búsqueda distinta. Esto
permite acelerar operaciones de búsqueda sin considerar la organización de archivos que
almacenen a los registros en sí.
Elemento del Índice: A los registros que se hallan en un archivo de índice se los conoce
como elementos del índice.
Tiempo de Acceso: Tiempo necesario para buscar un registro, o conjunto de ellos desde una
estructura de índice.
Tiempo de Inserción: Tiempo necesario para insertar un registro en una estructura de
índice.
Costo de Espacio: Espacio requerido para almacenar una estructura de índice.

5

ABSTRACT

The following research is about comparing index structures for large databases, both
analytically and experimentally. The study is divided into two main parts. The first part is
centered around hash-based indexing and B-trees. Both of which are set in the context of
the widely known external memory model. The second part presents the cache-oblivious
model, describing its implications on the design of algorithms for any arbitrary pair of
memory levels. Within this model, two structures are studied: the cache-oblivious B-tree,
and the lookahead array. Experimental results for databases containing several million rows
confirm the B-tree as the preferred choice among conventional structures. However,
comparisons against the more modern lookahead array, point to the newer structure as
more fit to efficiently update and store large amounts of data.

KEY TERMS
I/O: Input data from disk to main memory. Output data from main memory to disk.
Block: Unit of information read from or written to disk. Blocks contain records. Equivalently,
we can refer to blocks as pages.
Index: File that enables organization of data records on disk in order to optimize retrieval
operations. It allows to efficiently retrieve records that satisfy a specific search condition,
based on the search key field of the index. A given collection of data records can have
multiple indexes, each with a different search key field. This enables to speed up search
operations, regardless of the file organization used to store records.
Index Entry: Records stored in an index file are called index entries.
Access Time: Time required to retrieve a particular record, or set of records from an index
structure.
Insertion Time: Time required to insert a record into an index structure.
Space Overhead: Space required to store an index structure.

6

TABLE OF CONTENTS

ABSTRACT...5

INTRODUCTION..9

PART 1: CACHE-AWARE STRUCTURES AND ALGORITHMS...11

1. Disk Access Model..11

2. Index Data Structures ..12

3. Hash-based Indexing..13

Introduction...13

Analysis..14

Static Hashing..16

Extendible Hashing..17

Summary of I/O Complexity Bounds...19

4. B-tree..19

Introduction...19

Analysis..21

Buffer Tree...22

Summary of I/O Complexity Bounds...23

5. Experimental Results: Comparing the B-Tree vs. Hash-based indexing...............................23

Assumptions..25

Results. ..26

PART 2: CACHE-OBLIVIOUS DATA STRUCTURES...30

6. Cache-oblivious Model...30

7. Cache-oblivious B Tree...31

Introduction...31

Static Cache-Oblivious Binary Search Tree..31

Packed memory structure...33

Summary of I/O Complexity Bounds...35

8. Cache-oblivious lookahead array...35

Introduction...35

Basic COLA...35

Optimizing Searches in the COLA..37

7

Cache-aware analysis...39

Summary of I/O Complexity Bounds...40

9. Experimental Results: Comparing B-Tree vs COLA...40

Assumptions..41

Results..42

CONCLUSIONS..46

REFERENCES...48

8

INDEX OF FIGURES

Figure 1: Disk Access Model...12

Figure 2: Notation for Analysis...12

Figure 3: Extendible Hashing Structure with d=3 and k=2...18

Figure 4: Time and Space Complexity for Extendible Hashing Operations..............................19

Figure 5: B- Tree with degree 4..21

Figure 6: Time and Space Complexity for B-Tree Operations...23

Figure 7: B-tree vs. hash index disk usage..26

Figure 8: Transactions-per-second averages for SELECT..27

Figure 9: Average and Standard Deviation values for SELECT..28

Figure 10: Transactions-per-second averages INSERT..28

Figure 11: Average and Standard Deviation values for INSERT..29

Figure 12: Van Emde Boas layout for a BST tree of height 5..32

Figure 13: Time and Space Complexity for Cache-oblivious B Tree Operations......................35

Figure 14: COLA of 5 levels...36

Figure 15: Inserting 31 into the COLA..36

Figure 16: Merging the levels...36

Figure 17: COLA with lookahead pointers..38

Figure 18: Time and Space Complexity for COLA Operations..40

Figure 19: B-tree vs. COLA disk usage ...42

Figure 20: Transaction-per-second averages for SELECT..43

Figure 21: Average and Standard Deviation values for SELECT..44

Figure 22: Transaction-per-second averages for INSERT..44

Figure 23: Average and Standard Deviation values for INSERT..45

9

INTRODUCTION

From a historical standpoint, the ever-increasing demand for computing performance has

often forced researchers to develop systems and techniques that take advantage of the

available hardware. Particularly, the recent advances in networking and the development of

cheap, high-throughput hardware systems has led to the prominence of massive amounts of

data being processed around the world. Such conditions, have massively outgrown the

expectations of experts and scientists from decades past. We can expect this trend to

continue for the foreseeable future, making the research and study of optimal data-

management techniques relevant to this day. In this study, we shall review data structures

and algorithms developed in order to design efficient memory systems, built to handle the

massive amounts of data being generated every instant.

We begin by identifying the main issues and motivations for developing efficient memory

systems. Specifically, those dealing with the management of large OLTP databases. On the

same note, it becomes necessary to capture such issues and abstract them into a coherent

representation. The first of such, the disk access model, is a classical approach to model

interactions between memory systems. Referring to this model allows us to define quality

metrics that guide subsequent analysis. To follow, we shall define the core concept of this

study, which consists in employing external-memory index structures as means to minimize

secondary storage latency and improve overall database throughput. Owing to that idea,

follows a detailed description for a set of index data structures, along with their respective

asymptotic performance analysis. The aforementioned structures include conventional

dictionaries such as hash-based indices and B-trees, the most prominent and widely used

index structure to this day. Whereas these structures are well known and have been

10

optimized throughout decades of use, research points out that newer techniques may offer

improved performance and adaptability.

Having understood the limitations and obstacles associated with implementing structures

within the disk access model, we shall review a relatively modern scheme: the cache-

oblivious model. The cache-oblivious model provides a vastly different approach for analysis

and implementation of database engines. Consequently, the next stage involves studying

structures within this model such as the cache-oblivious B-tree and the cache-oblivious

lookahead array, with the latter being a strong contender to B-trees' dominance. To conclude

the study, we perform an experimental comparison of the performance of B-trees against

hash-based indexing and the cache-oblivious lookahead array. The B-Tree is chosen as the

basis for contrast due to its pervasiveness in database management systems. The actual

comparison parameters involve testing both search and update throughput for each

structure, along with the disk space costs associated with large scale databases. The

implementations of such experiments consist on executing performance benchmarks on real

database systems, so as to put the analytic results into a real life context. Thus, providing

verifiable knowledge to database users who seek to improve their systems' performance.

11

PART 1: CACHE-AWARE STRUCTURES AND ALGORITHMS

In order to compare different strategies and techniques to develop optimal memory

systems, we must define a context for both theoretical and experimental analysis. We begin

by exploring the disk access model, also known as the I/O model or external-memory model.

This model was developed many decades ago but it is still relevant to this day.

1. Disk Access Model
The disk access model, also known as the external memory model and the I/O model, was

introduced by Alok Aggarwal and Jeff Vitter in 1988. The DAM simplifies the memory

hierarchy to just two levels. The CPU interacts with a fast memory layer called “cache”.

Cache is then connected to a secondary storage called “disk” by a low bandwidth channel.

On one hand, cache is finite and bounded in terms its size M. On the other hand, disk is

infinitely large. The way both cache and disk exchange information is by transferring sets of

records, called blocks. Both cache and disk, are divided into blocks of size B. Therefore,

cache contains M/B blocks. Cache can perform memory operations on its internal blocks

infinitely fast (0 cost). Nonetheless, transferring 1 block of data between memory and disk

costs 1 time unit, equivalent to performing one I/O operation. A single I/O operation can

only transfer a single contiguous block at a time, relative to the disk cursor's current position

(Demaine, 2012).

12

Figure 1: Disk Access Model (Bender & Kuszmaul, 2012)

In order to analyze problems within this model, let us define the appropriate notation:

Quantity Meaning

B Number of records per block

M Number of records stored in cache

N Number of records stored in disk

Figure 2: Notation for Analysis

For the sake of notational convenience, upper-case letters denote a determined quantity of

records, while lower-case letters denote the corresponding number of blocks containing said

records. To illustrate, m=M /B is the number of blocks that fit into cache and n=N /B

is the number of blocks stored in disk.

2. Index Data Structures
Database management systems have the challenge to organize blocks of data residing in disk

efficiently, so as to minimize the number of I/O operations required to perform a

determined operation. Particularly, database engines must implement methods that enable

to minimize both time and space complexity for data retrieval, insertion and deletion. In

order to address this issue, researchers have devised several ways to build index files and

their respective index entries, by analytically modeling them with data structures. We shall

13

refer to these data structures as index structures. Index structures, and the subsequent

analysis of their asymptotic performance, are the most important resource researchers have

in order to abstract and break-down I/O problems into comparable, measurable terms

(Ramakrishnan & Gehrke, 2003).

To illustrate the impact of index structures, let's analyze a scenario where index structures

haven't been implemented. Consider the use case where we want to perform a query on a

specific data field, with a particular search-key value. The only way available to identify the

first such entity that satisfies the query is by doing a binary search on the complete file

containing the records, yielding O(log2(FileSize)) I/Os. This bound would be optimal for

main-memory. However, recall we are attempting to improve on the cache-disk interface. In

addition, remember that the database engine would have to maintain a sorted file to store

records, which in turn presents additional I/O costs and possibly a greater space overhead to

handle insert, and delete operations.

As evidenced, simply keeping a sorted file to manage efficient I/O operations is not good

enough. In practice, severe performance limitations arouse when taking into account

applications that require operating on large amounts of data. Overall, the importance of

index structures for optimization of data retrieval operations cannot be understated. It

follows the necessity to seek improvements by looking at some of the most relevant

structures on this field (Graefe & Larson, 2001).

3. Hash-based Indexing

Introduction.

The first structure we shall review is based on encoding search-key values using hashing

methods. Generally speaking, hashing is a technique used to perform mappings from a set of

14

keys to a set of values. In this context, we define the term bucket, which denotes a unit of

storage that can store one or more data records. In practical terms, a bucket plays a role

similar to a block or page of records. Hash-based indexing relies on mapping the set of all

possible search keys-values with a set of bucket addresses by means of a hash function. In

modern times, hash-based indexing is not used extensively because it is outperformed by

tree-based structures in update operations and range searches, which will be discussed later.

However, hashing leads to very efficient equality searches, making it particularly useful in

the implementation of certain relational operations such as joins (Ramakrishnan & Gehrke,

2003).

Hashing can be used to serve two purposes. A hash file organization, which returns the

address of the disk block containing a desired record by computing the hash function on the

search-key value of said record. The other common application is to generate a hash index

structure, which organizes search-keys into a hash file structure. Specifically, a hash index is

built by applying a hash function on a search-key value, which returns a an identifier that

enables to quickly retrieve a bucket. At the same time, the bucket itself stores the

appropriate search-key and its associated pointers to the data records it contains

(Silberchatz et. al., 2010). We shall focus only on hash index organizations in our discussion.

We shall review two hashing schemes. The first one static hashing, which suffers from

scalability issues. Followed by the extendible hashing dictionary, a structure that supports

efficient insertion and deletion with the use of an additional directory.

Analysis.

Formally, let K denote the set of all search-key values. Similarly, let A denote the set

of all bucket addresses stored in disk. The hash function, denoted as h is a function from

15

K to A . The worst possible hash function would map K entirely into the same

bucket. This would result in having to scan the whole record collection on any given lookup

query. Therefore, ideally it is desired h assigns search-key values to buckets in such a way

that:

1. The distribution is uniform. h Assigns each bucket the same number of

search-key values from the set of all possible search-key values (Silberchatz

et. al., 2010).

2. The distribution is random. The hashed value will not be correlated to any

visible ordering on the search-key values. Thus, resulting that in average, each

bucket would have the same number of assigned values (Silberchatz et. al.,

2010).

In terms of performance, the goal of external-memory hashing techniques is to achieve

O(1) I/Os per lookup, which is possible even in the worst case when loading a complete

bucket into cache (Moshkovitz & Tidor, 2012). In an ideal scenario, it would take O(1)

I/O's per insert and delete operation and a O(N) space overhead amortized. The worst

case would be O(B) for updates, resulting from having to completely traverse a bucket to

locate the desired record. The biggest challenge in designing such a hash-based index is to

enable it to handle widely varying values of N (Vitter, 2008). However, we must take into

account that the structure can only return individual data records at a time. The inability to

return complete blocks is because records within each bucket are not sorted. Thereafter,

such bounds apply only for single record operations. Consider performing a range search,

then we would produce O(n) I/O's, with an additional overhead for sorting the returned

values for most practical scenarios. This indicates that hash-based algorithms are best suited

16

for equality searches and individual record updates (Ramakrishnan & Gehrke, 2003).

Static Hashing.

The basic method to construct a hash-based index is to use static hashing. This structure

provides simple algorithms to perform search, insertion and deletion operations. However,

issues arise when bucket overflows occur. The general search algorithm on a search-key

value K i , consists in computing h(K i) , which returns the address of the bucket to be

traversed. Once we locate the appropriate bucket, we scan sequentially every record within

the bucket that matches the given search-key value. In order to insert a new index entry

with search-key value K i , we compute h(K i) and use its output as the address of the

bucket to store the index entry. For now, assume there is sufficient space in the bucket to

perform the operation. Similarly, deletion of an index entry simply consists in locating the

appropriate bucket and consequently removing the item that matches K i from the bucket

(Silberchatz et. al., 2010).

Up to this point, we have only considered that during the insertion of a new record, the

respective destination bucket has enough available space to perform the operation.

Nonetheless, this situation does not occur all the time, leading to a bucket overflow. The

reasons for bucket overflows occurring are insufficient buckets (Number of buckets <

Number of records / Records per bucket), and skewing. Skewing refers to the situation

where a bucket overflows due to being assigned more records than other buckets. Skewing

is often a result of too many records having the same search-key value, or the use of a poor

hashing function (Silberchatz et. al., 2010).

Static hashing uses overflow buckets as a policy to handle overflowing. If a new entry is to be

inserted on a bucket b and b is already full, the algorithm creates an additional bucket,

17

in which the new entry is stored. If the overflow bucket becomes full yet again, an additional

overflow bucket is created. Overflow buckets associated to b are chained together as part

of a linked list. This concept is referred to as overflow chaining. The search algorithm of a

search-key value remains the same, with the additional scanning of the overflow chain

associated to a bucket. Other policies to deal with bucket overflowing include bucket

probing and computing additional hashing functions (Silberchatz et. al., 2010).

The biggest drawback of implementing a static hash index as an efficient external-memory

data structure is having to define the hash function a priori. Furthermore, it cannot be

changed easily thereafter if the associated indexed record file grows or shrinks. This implies

that, insert and delete operations are very likely to suffer delays associated with the

overhead of keeping unbalanced pointers to overflow chains. Considering h maps search-

key values to A , space is wasted if A is designed to be large enough to handle the

record collection's growth. Alternatively, if A is not sufficiently large, bucket overflowing

becomes more frequent, affecting performance as overflow chains grow larger (Silberchatz

et. al., 2010).

Extendible Hashing.

A different approach to the simple static hashing structure is a more dynamic scheme called

extendible hashing. A key feature of this structure is having an additional directory in the

shape of an array. Each directory entry contains a pointer to a bucket where records are

stored. The advantage of extendible hashing over directory-less methods is being able to

perform efficient operations for multiple values of N , while minimizing waste in terms of

space usage due to bucket overflowing (Fagin et. al., 1979). However, considering that for

large databases, the directory is stored in disk, every operation takes an additional I/O to

access the directory itself (Vitter, 2008).

18

The directory consist of a table of 2d pointers, for a given d≥0 . Each record address

r i is assigned to the table location address that matches the d least significant bits of

h(r i) . As such, we define d as the global depth of the directory. The global depth value

is invariantly set to be the smallest value for which every bucket associated to its respective

table entry holds at most B records. Nonetheless, it is possible that several table locations

have fewer than B assigned records. In order to minimize space overhead, such table

locations may share the same bucket for storing their items. A table location is set to share

its corresponding bucket with all the other locations that share the same k least

significant bits in their respective addresses. A local depth k , is associated to each table

location in the directory. The value of k is selected to be the smallest possible value, as

long as that the grouped records fit into a single bucket (Vitter, 2008).

Figure 3: Extendible Hashing Structure with d=3 and k=2 (Vitter, 2008)

The insertion algorithm is identical to static hashing, with the benefit of not having to deal

with overflow buckets, but the added overhead related to traversing the additional

directory. When a bucket overflows, the global and local depths are recomputed so that the

invariants on k and d hold once again. The scenario where a bucket has overflowed,

19

but k is smaller than the global depth, the bucket is split into two, with each having a

separate pointer and location in the directory table and a local depth value of k+1 . If the

value of k becomes greater than d during an insertion, the global depth must be

increased by 1 and consequently, the directory is doubled in size, in addition to the

aforementioned splitting process. The worst case for insertion occurs when the directory's

size must be increased, which yields O(n) I/Os. The deletion algorithm simply follows a

reversed insertion algorithm, keeping the invariants on the global and local depth (Vitter,

2008).

Summary of I/O Complexity Bounds.

Measure Average Worst

Access Time O(1) O(1)

Insertion Time O(1) O(n)

Deletion Time O(1) O(n)

Space Overhead O(N) O(N)

Figure 4: Time and Space Complexity for Extendible Hashing Operations

4. B-tree

Introduction.

The B-tree is a dynamic, flexible data structure that improves radically on most fronts when

compared to hash-based indexing. The B-tree is the most widely used data structure among

those that support efficient insertion and deletion. Being the most popular index structure,

it is implemented by most database engines, including: InnoDB, SQLite, PostgreSQL,

WiredTiger, among others. It is also part of operating systems such as: Mac OS HFS/HFS+,

Windows NTFS, Linux ext4, among others. Considering the B-tree was invented several

decades ago (1972), modern implementations have been heavily optimized and usually

20

differ from its basic definition. This is due to some of its implicit limitations, which will be

discussed ahead. The main characteristics of a B-tree include:

• Insert and delete operations keep the tree balanced and ordered invariantly

(Schwarz, 2016).

• Searching for a block requires a traversal from the root to the appropriate leaf. The

time to perform this operation is constant regardless of the selected entry since a B-

tree is balanced as its height (Schwarz, 2016).

A B-tree is a balanced tree, in which every path from the root of the tree to each of the

leaves has the same length. In other words, all the leaves are always at the same depth. The

internal nodes of the tree contain a set of pivot values that direct the search of a given

value, while the leaf nodes contain the actual blocks of data. Every B-tree has a branching

factor, or degree, which determines the shape and layout of the tree. Particularly, the

following rules apply for every non-leaf node bar the root node:

•
B
2
≤C≤B . Where C stands for number of children nodes.

•
B
2
−1≤K≤B−1 . Where K stands for number of pivots within a node. In other

words, the number of pivots per node is always one less than the number of

children.

For the root node, The same inequality for the upper bounds of number of children is

enforced. However for the lower bound for both children and keys is greater than 1

(Ramakrishnan & Gehrke, 2003).

21

Analysis.

The B-tree is the most popular index dictionary available for the DAM. The most common

implementations are designed so that the data associated with a single node in the tree fits

into a single block. This means that every leaf in the B-tree stores between B/2 and B data

records. In terms of space requirements, B-trees use a linear space of O(n) .

Figure 5: B- Tree with degree 4

The search algorithm for a search-key x from the tree consists in loading the block of keys at

the root, locating the pair of keys that encapsulate x's value and then searching the

corresponding sub-tree recursively. In order to take advantage of the B-tree's properties, we

may set the branching factor to be equal to B , more precisely Θ(B) . This implies that

by searching each level of the tree, the range of candidate positions for x drops by a factor of

Θ(B) , which is at least B/2, except possibly for the root level. Thus, the number of

required I/Os for searching is O(logB(N)) . This makes B-trees excellent for range

selection queries since they simply require finding a single index key that matches the given

range and then returning the corresponding sub-tree (Demaine et. al., 2015).

For insertion of a new record x, we would have to locate the appropriate leaf l to store its

value. If l has available room, store x and return. Else, split l into two new leaves. Each

22

new leaf stores half of the elements of l . This split triggers the insertion of a new key

node at the parent of l , which in turn is handled the same way as leaf nodes, propagating

up to the root node if necessary. During propagation, the tree grows in height, but keeps

itself balanced. If possible, propagation can be limited by having incomplete nodes

borrowing elements from full sibling nodes. The total time to complete the insertion

operation is O(logB(N)) . The deletion algorithm is exactly opposite to insertion. First

remove the target leaf. Then, instead of splitting full leaves, the algorithm would combine

incomplete leaves and propagate if necessary. This results in deletion requiring the same

number of I/O operations (Erickson, 2002).

In order use the B-tree within the context of external memory, we have considered an online

setting. In other words, we are performing operations on single data records one at a time.

The issue is that, in order to insert or delete a new record, the standard algorithm spends

one I/O loading the root's index node, then finding position of a single element recursively.

This results in sub optimal performance of the B-tree for batched problems like

computational geometry and graph related problems. However, in a different, in-memory

context, online structures often adapt well to these scenarios. This brings up the need to

perform batch operations on external memory in order to take advantage of its size and

inherent parallelism (Vitter, 2008).

Buffer Tree.

The solution for the batched-update problem proposed by Lars Arge, named Buffer tree,

consists in adapting the B-tree into a modified tree with a branching factor of Θ(m) ,

instead of the usual Θ(B) (Arge, 2003). The buffer tree's key distinguishing feature is that

each index node has an associated buffer that can store Θ(m) blocks of items. Records

23

kept within a node's buffer are pushed down to the children once its filled, or a flush

operation is called. Doing a full buffer flush operation on a node requires Θ(m) I/Os,

reducing the cost of distributing possible M items on, at most m children . This method

allows each item to be flushed down with an amortized cost of O(m /M)=O(1/B) per

level (Erickson, 2002). Thus resulting in O(
logm(N)

B
) amortized I/Os for deletion and

insertion. In sum, the buffer tree provides means for optimal offline updates, which is useful

whenever we intend to perform delayed queries, sorting, and implementing priority queues

(Vitter, 2008).

Summary of I/O Complexity Bounds.

Measure Average Worst

Access Time
O(

log (N)

log(B)
) O(

log (N)

log(B)
)

Insertion Time
O(

log (N)

log(B)
) O(

log (N)

log(B)
)

Deletion Time
O(

log (N)

log(B)
) O(

log (N)

log(B)
)

Space Overhead O(N) O(N)

Batched Update
O(

logm(N)

B
)

O(logB(N))

Figure 6: Time and Space Complexity for B-Tree Operations

5. Experimental Results: Comparing the B-Tree vs. Hash-based indexing
In order to test the throughput of the analyzed data structures, let us first define what SQL

operations are more relevant to the context of large-databases performance. As we

reviewed both B-trees and hash-based indices, it becomes apparent that insertion and

deletion procedures are equivalent in terms of I/O cost. In similar fashion, update operations

24

are redundant since they involve a search-write-delete pattern. Therefore, the primary focus

are SELECT and INSERT operations. Moreover, the experiments have been designed to

perform the aforementioned operations with randomly varying search-key values, so as to

emulate a real working environment where data records possess diverse column values. In

addition to the standard database operations, another concern regarding database's

scalability is database disk usage. Thus, the experiments shall include a comparison for their

space overhead.

SELECT statements may involve either equality searches or range searches. Nonetheless, it is

only relevant to measure equality searching SELECT statements, since hash-based indices do

not support range searches. Additionally, range searches would require large-sized test

samples to be analyzed since they are heavily affected by the number of returned records.

This fact, in combination with up to two random bound values that limit range searching,

make this operation yield high entropy results. Thus, discarding range search testing

becomes a sensible assumption for the scope of this study. It is imperative to mention that

the techniques studied are based on a OLTP environment, and therefore, we define

transaction throughput as our primary measure for performance.

The tests consist in OLTP benchmarks on the PostgreSQL 9.5 engine. The reasoning behind

this decision is because PostgreSQL is one of the few remaining engines that still support

hash-based indexing, while implementing modern, state of the art B-tree indexes.

The machine used to run the benchmarks was a Ubuntu 16.04 LTS virtual machine with a 4

Core 3.5GHz Intel processor, 4 GB DDR3 SDRAM and 100GB storage on a 5400 RPM SATA

drive. The actual tests were executed using pgbench, an open source benchmark tool

included in PostgreSQL.

25

Assumptions.

In this scenario, the focal point is to weight the transaction throughput in terms of the

number of rows present in the database at the beginning of the operation. In this way, it is

possible to obtain a clear picture on the database's performance for a determined number

of records stored on external-memory. For the tests, we attempt to perform comparisons

based on database system locality. In other words, we claim that by fixing the database

engine's settings, except for the index of choice, the tests results will reflect the impact of

said choice in terms of relative transaction throughput.

It is also worth noting that the analysis section presents results in terms of I/O operations

count instead of SQL transaction throughput. These measures are clearly correlated, yet not

equal. Therefore, we do not expect to generate data that reflects the actual asymptotic

bounds, but rather a description of the throughput vs. database size trend. Thus, we may

also assume that the SQL schema used to perform the tests, has little impact on the

gathering and analysis of results, as long as they permit creating the desired indexes on

them and the database contains enough data rows so that they cannot be fit into main

memory.

For this specific comparison, we use a 8 column table, featuring 3 secondary indices, in

addition to the primary key index. The benchmarks consisted on a set of 30, 90-second tests

continuously running on the operation that was tested, be it SELECT and INSERT, for each of

the tested indices.

26

Results.

Figure 7: B-tree vs. hash index disk usage

The experiments for this comparison consist on doing benchmarks on five increasing

database row count scales. Thus, the row count scales chosen were: 10, 20, 40, 80 and 160

million rows, with the latter filling the machine's secondary storage by 86.16%. Figure 7

displays a chart for the space requirements for each index type. However, this behavior is

not consistent for different row counts, making it unappropriated to claim hash-based index

require less disk blocks. Although we can recognize a linear behavior for the B-tree's (

O(N)) space overhead, the trend line for the hash-based index is not as good a fit and

may not correlate strongly to its analytic O(N) bound. Thus, we may not point to a

preferred index alternative for this parameter.

10M 20M 40M 80M 160M
0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

Space Overhead

Hash Disk Usage

Linear (Hash Disk Usage)

B-Tree Disk Usage

Linear (B-Tree Disk Usage)

Database Scale (Rows)

D
is

k
U

sa
g

e
 (

K
B

)

27

Figure 8: Transactions-per-second averages for SELECT

Figure 8 shows the transaction throughput for SELECT queries performed on the B-tree

index, alongside the throughput the same operation on the hash-based index on different

database size scales. It becomes apparent the trend points to hash-based index

outperforming B-Tree indices considerably. For the largest value of N=160∗106 rows, the

hash-based index was 3.086 times faster. The average the improvement offered by the hash

index in terms of database size was a factor of 3.088. This fits nicely alongside the previous

analysis, where it was expected that hash indices (O(1)) would outperform B-trees (

O(logB(N))) for searches in terms of total I/O operations. Nonetheless, the logarithmic

tendency lines suggest that in both cases, row count doesn't impact SELECT operations

considerably, resembling more of a constant behavior O(1) . The tabulated values for the

average and standard deviation for each of the database scales is presented in Figure 9:

Structure Scale (Rows) Average TPS Standard Dev.

10M 20M 40M 80M 160M
0

20

40

60

80

100

120

SELECT Throughput

HashTPS

Logarithmic (HashTPS)

B-TreeTPS

Logarithmic (B-TreeTPS)

Database Scale (Rows)

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

28

B-Tree 10M 36.86 0.76

B-Tree 20M 36.83 0.73

B-Tree 40M 36.86 0.45

B-Tree 80M 36.92 0.64

B-Tree 160M 36.93 0.54

Hash Index 10M 113.91 0.13

Hash Index 20M 113.58 0.15

Hash Index 40M 114.11 0.16

Hash Index 80M 114.02 0.12

Hash Index 160M 114 0.11

Figure 9: Average and Standard Deviation values for SELECT

Figure 10: Transactions-per-second averages INSERT

Figure 10 shows the transaction throughput for INSERT queries performed on the B-tree

index, alongside the throughput the same operation on the hash-based index on different

database size scales. The logarithmic tendency line added in the figure suggests that as the

row count grows, the hash-based index's performance consistently receives a greater

impact. Contrary to the results observed for SELECT, it is clear that B-trees offer greater

optimization for writing records into disk. For the largest row count of N=160∗106 , the

10M 20M 40M 80M 160M
0

500

1000

1500

2000

2500

INSERT Throughput

HashTPS

Logarithmic (HashTPS)

B-TreeTPS

Logarithmic (B-TreeTPS)

Database Scale (Rows)

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

29

B-tree index was 3.18 times faster. For the smallest row count of N=10∗106 , the

improvement scales down to a factor of 1.132. In average, the B-tree performed 2.2477

times more transactions than the hash-based index during the same interval of time and

row count. This result is expected as we recall that in asymptotic analysis, the worst case for

hash indices inserts is O(N) , which is massive in comparison to the O(logB(N)) I/Os

for B-trees as the number of records in the index grows. Analysis could explain that the

worst-case for hash-based indices insertion occurs more frequently during insert-heavy

scenarios. Considering that as more data is inserted into the extendible hashing index's

directory, the need to double the index's directory would become more frequent. The

tabulated values for the average and standard deviation for each of the databases scale is

presented in Figure 11:

Structure Scale (Rows) Average TPS Standard Dev.

B-Tree 10M 2060.14 77.06

B-Tree 20M 1894.3 49.05

B-Tree 40M 1880.96 54.83

B-Tree 80M 1878.72 58.32

B-Tree 160M 1877.46 57.05

Hash Index 10M 1819.47 256.18

Hash Index 20M 1042.86 168.36

Hash Index 40M 804.88 54.67

Hash Index 80M 677.33 35.63

Hash Index 160M 590.47 25.38

Figure 11: Average and Standard Deviation values for INSERT

30

PART 2: CACHE-OBLIVIOUS DATA STRUCTURES

6. Cache-oblivious Model
So far, we have only analyzed structures and algorithms within the context of the traditional

DAM model. We may call all previously analyzed structures cache-aware because the DAM

model assumes that the cache layout is known. This incurs into difficulties when designing

and implementing actual database engines due to the wide array of possible values for

memory size and block length in different memory hierarchy levels and systems altogether.

For instance, in order to use standard B-Trees to efficiently manipulate data across a multi-

leveled hierarchy, it would require tuning the structure so that it becomes optimal for every

level interface, for every machine architecture. In some cases it is even impossible in

heterogeneous computing environments such as across a network. However, it is not

entirely necessary to assume we know the memory layout. The cache-oblivious memory

model is a solution that provides more flexibility for implementing high performance

database engines, while staying close to the lower bounds of required memory transfers for

cache-aware algorithms (Prokop, 1999).

The key difference from the DAM based analysis, is that cache-oblivious algorithms don't

know the values of B and M. This does not mean that the actual machine that runs the

algorithm is agnostic about B or M, it would still have a fixed memory size and transfer

blocks of B data records during a memory transfer. Nonetheless, algorithms cannot make

decisions based on block length, including reading or writing a particular block. We also

assume that the strategy for block replacement is optimal, which can be approximated by

operating systems using a least-recently used replacement policy, or even a first-in-first-out

31

policy. This assumptions make cache-oblivious algorithms resemble main memory

algorithms in terms of their implementation. A good data structure for the cache-oblivious

model is very valuable, since it becomes simultaneously good for every possible cache

layout. Specifically, if an algorithm performs optimally on the cache-oblivious model, the

algorithm performs asymptotically optimally on any unknown multilevel memory hierarchy

(Demaine, 2002).

7. Cache-oblivious B Tree

Introduction.

The first cache-oblivious problem we shall study is a cache-oblivious version of the well

known B- tree. However, the solution consists in the combination of two concepts: a cache-

oblivious static binary search tree and a packed memory structure (Kasheff, 2004). This

structure was developed around 2002, but real life implementations and usage has not

reflected the great theoretical advantages it offers. Nonetheless, understanding how the

most popular data structure for external-memory can be adapted to a cache-oblivious

context could lead to the improvement of heterogeneous memory systems in the future.

Static Cache-Oblivious Binary Search Tree.

Similar to the usual B-tree's implementation, the binary search tree (BST) is laid out as an

array of contiguous blocks of data following a breadth-first search order. We also assume

that the tree is full and balanced. However, the BST follows a cache-oblivious layout, known

as Van Emde Boas layout (Kasheff, 2004). Assume a BST with N items and height h, h being a

power of 2 for simplicity. Consider splitting the tree so that each sub-tree has height h/2.

This leaves a top half of the tree, sharing the same root as the original tree, holding √(N)

32

items. The division leaves a bottom half that contains √(N) sub-trees, each containing

approximately √(N) nodes. The Van Emde Boas order consists in laying out the top half of

the tree recursively, followed by recursively laying out each of the √(N) bottom-half sub-

trees (Moshkovits & Tidor, 2012).

Figure 12: Van Emde Boas layout for a BST tree of height 5 (Kasheff, 2004)

In the scenario displayed in the left of Figure 12, the entire A sub-tree would be recursively

laid out first, followed by each of the Bi sub-trees consecutively. To handle the case where h

is not a power of 2, such as the one in Figure 12, the bottom-half of the tree is chosen such

that its height becomes a power of 2. The Van Emde Boas order allows the BST tree to be

laid out in disk in a recursive manner, this property is what makes it work as a cache-

oblivious structure, since it is possible to adjust the level of recursion to match cache's block

size B. In practice, the idea is to continue dividing each sub-tree until each one has between

√(B) and B elements and height of
log2(B)

2
and log2(B) respectively. This

implies that each sub-tree requires less or equal than 2 disk blocks to be stored and the

number of levels searched per memory transfer is at least O(log2(B)) . Thus, by

calculating the number of sub-trees that are traversed in root-to-node order, we can now

33

the lower bound for searching an element. In this way we would require at most

O(2
log2(N)

1/2∗log2(B)
)=O (logB(N)) memory transfers, which is asymptotically optimal

(Bender, et. al., 2005).

 A massive issue with this structure is that it is static because it doesn't support updates in a

trivial fashion. The challenge is to maintain a dynamic Van Emde Boas layout of a BST. On

one hand, the solution would have to achieve locality of reference by packing index entries

densely into disk. At the same time, it should support future insertions by having enough

extra space between entries. The solution that follows consists in using a packed memory

structure (Demaine, 2012).

Packed memory structure.

This structure consists in an array containing N elements. Inserting elements into arrays is a

well studied problem which can be approached similarly to the ordered file maintenance

problem. In order to insert a new element into this array, it is necessary to move elements in

the array and handle split and merge operations. Therefore, a good strategy is to have a

loosely packed structure, with empty slots among elements of the array. The number of

memory transfers it takes to perform an update into this structure is O(
log2

2
(N)

B
)

amortized (Demaine, 2012).

If we combine the static binary search tree alongside the packed memory structure, it is

possible to get a cache-oblivious data structure that is efficient on both searches and

updates. The combined data structure is made up of the BST, with its corresponding leaves

stored as the packed memory structure which keeps the Van Emde Boas layout. The

34

searching algorithm is the same as the BST, keeping the same bounds. In order to insert a

new element, it is required to first locate the place where it should be stored (

O(logB(N))). Then, we update the packed memory array in O(
log2

2
(N)

B
) . The next

step is to propagate the changes into the BST tree in order to preserve the Van Emde Boas

layout. This procedure is equivalent to performing a post-order traversal of the tree, which

changes the values of the BST nodes, but does not affect the tree's layout. The result is a

total O(
log2

2
(N)

B
+ logB(N)) memory transfers for updating the tree (Bender, et. al.,

2005).

The insertion bound for the cache-oblivious B-tree differs from the cache-aware version by a

factor of O(log2
2
(N)) . The way we improve on this bound was by adding an additional

level of indirection to the packed memory structure. By splitting the packed memory array

into linked sub-arrays of size Θ(log2(N)) , which work similarly to disk blocks in cache-

aware B-trees, it is possible to optimize update operations. Introducing the additional level

of indirection affects searches by having to scan a memory block in Θ(
log2(N)

B
) memory

transfers. However, this modification helps improve insertions and deletions by a factor of

log2(N) since the BST tree does not have to keep pointers to each of the packed array

elements, but rather to each block. The resulting bounds for searching and insertion, with

the added level of indirection are, respectively: O(logB(N)+
log2(N)

B
)≈O(logB(N)) and

35

O(
log2

2
(N)

B
log2(N)

+
log2(N)

B
+logB(N))≈O(

log2(N)

B
+ logB(N)) (Bender, et. al., 2005).

Summary of I/O Complexity Bounds.

Measure Average Worst

Access Time O(logB(N))
O(logB(N)+

log2(N)

B
)

Insertion Time
O(

log2(N)

B
+ logB(N)) O(

log2(N)

B
+ logB(N))

Deletion Time
O(

log2(N)

B
+ logB(N)) O(

log2(N)

B
+ logB(N))

Space Overhead O(N) O(N)

Figure 13: Time and Space Complexity for Cache-oblivious B Tree Operations

8. Cache-oblivious lookahead array

Introduction.

The following section will describe one of the modern cache-oblivious structures, the cache-

oblivious lookahead array (COLA). This structure was developed by researchers from MIT

and Stony Brook university (2007), and is intended to optimize insertions, while keeping

searching bounds that compete with B-trees.

Basic COLA.

The basic COLA structure consists of log2(N) arrays, or levels. The kth array is of size 2k

and is always either completely full or completely empty. The way the COLA is stored is by

contiguously laying out each array into memory (Bender et. al., 2007). The COLA follows the

following invariants:

1. The kth array contains items if and only if the kth least significant bit of N is equal to 1

(Bender et. al., 2007).

36

2. Each array contains its items in ascending order by key (Bender et. al., 2007).

In this basic instance of the COLA, searches are very costly, requiring to perform a binary

search on each array. Yielding up to O(log2
2
(N)) memory transfers. The insertion

algorithm requires having an additional COLA structure, with the same number of arrays as

temporary storage (Bender et. al., 2007).

Figure 14: COLA of 5 levels (Kuszmaul, 2010)

In order to keep the invariants defined previously, the new element to be stored must first

be put into the first level of the temporary structure. We proceed by merging the elements

of the 1st level of each structure together and keep them into the temporary COLA.

Figure 15: Inserting 31 into the COLA (Kuszmaul, 2010)

The process is repeated until every level is merged together, storing the last merged array

into the original COLA.

Figure 16: Merging the levels (Kuszmaul, 2010)

37

Since there are log2(N) levels, once an item has been inserted, it has been involved in at

most log2(N) merges. Consider the worst case where the new element ends up stored in

the last level. The first log2(B) merged levels require only one memory transfer and can

be performed in cache. It follows that the next levels being merged have at least k elements,

k being greater than B. Each level would require O(k /B) memory transfers, equivalent to

scanning its respective array. This means that each merging operation requires O(1/B)

per item, resulting in an amortized O(
log2(N)

B
) number of memory transfers . However,

is is possible to have up to O(N /B) merge operations in the worst case, where every

element, in every array must be merged. To improve this, we first assume that

M=Θ(log2(N)) . We then perform deamortization by using the cache blocks to store

additional information related to each level in the array, containing details about its

elements and their likely future destination level. This allows the algorithm to avoid

performing unnecessary merges, thus deamortizing the worst case into O(log2(N))

(Bender et. al., 2007).

Optimizing Searches in the COLA.

Searching in the basic COLA structure is expensive. In order to improve on the

O(log2
2
(N)) bound, we use a technique called “fractional cascading”. The general idea is

to skip doing a binary search on a determined level by using information from the binary

search on the previous level. This is achieved by setting pointers among elements from

consecutive levels, called lookahead pointers. We setup this technique beginning in the third

level of the structure, of size 8. For each level i onward, every eight element in the level is

38

duplicated into the i-1 level alongside a pointer to the original element, the duplicated

entries are called “lookahead pointers”. Additionally, in each level, every fourth element is

reserved for an additional entry called “duplicate lookahead pointer”, which holds pointers

to the nearest lookahead pointers both to its left and right. Thus, incurring into each level

holding half of its space for real elements and the remaining half for lookahead pointers

(Nelson, 2013).

Figure 17: COLA with lookahead pointers (Nelson, 2013)

In order to measure the improvement on searches produced by adding lookahead pointers,

we inductively prove its properties for each pair of levels. If we can prove that each level

requires Θ(1) comparisons per level, then it is intuitive that the overall cost for searches is

O(log2(N)) . We first claim that a search for a key r looks at most eight contiguous items

in each level and at the same time, r is greater than or equal to the smallest of such items

and smaller than or equal to the larger of such items. The claim is inherently true for the first

three levels since each has size of at most eight. The claim is also true at the kth level, where

searching in this level involves looking at contiguous items with keys r1<r2<...<r8 and

that r1⩽r⩽r8 . Let l be such that rl<r<r l+1 . The first possibility is that rl=r , then we

have successfully found the desired element. For this case, the induction is trivial for all

remaining levels. Otherwise, it must be true that r l<r . In this scenario, the algorithm

39

restricts searching on the next level to the keys that fall between the elements pointed by

the two closest lookahead pointers, which hold key values that are the maximum below r

and minimum above r. Thus searching with the lookahead pointers incurs in O(log2(N))

memory transfers (Bender et. al., 2007).

Cache-aware analysis.

So far we have found bounds that are optimal within the cache-oblivious model. However, it

is possible to improve on those bounds by adapting the COLA to cache-aware context.

Specifically, it is possible to achieve O(logB(N)) for searches and O(
logB(N)

B
) for

updates (Bender et. al., 2007).

Take the previously discussed COLA, but instead of doubling the array size at level k from the

size of the array at level k-1, we can have it grow by some arbitrary multiplicative factor g,

called growing factor. The cache-oblivious COLA would have a g value of two. In order to

reach the desired bounds, we set g=Θ(B) . This means that now there are

O(logB(N)) levels in the structure (Bender et. al., 2007).

For searches, instead of having a lookahead pointer every eight element per level, the cache-

aware structure would create a lookahead pointer every Θ(B)th element. The algorithm

would look through Θ(B) elements per level, instead of Θ(1) . Nonetheless, we tune

Θ(B) so that Θ(B) elements fit in at most 2 blocks, implying a constant number of

I/Os per level. This settings enable us to keep the proof for the regular COLA searching

bound, resulting in O(logB(N)) memory transfers because of the reduced number of

levels (Bender et. al., 2007).

For updates, the level of the original structure that is being merged may not be empty, thus

40

having to merge its elements with the ones stored in previous levels. It is known that the

sum of the sizes of the first k-1 levels is at least an Ω(1/B) fraction of the size of the kth

level, since each level grows by a factor of Θ(B) . Therefore, a level can handle at most B

merges before its items are merged into a higher level in the future. Combining this

assertion, with there being O(logB(N)) levels, it turns out that insertions have an

O(
logB (N)

B
) amortized worst case bound (Bender et. al., 2007).

Summary of I/O Complexity Bounds.

Measure Average Worst Cache-aware
Average

Cache-aware
Worst

Access Time O(log2(N)) O(log2(N)) O(logB(N)) O(logB(N))

Insertion Time
O(

log2(N)

B
)

O(log2(N)) If
M=Θ(log2(N))

else O(N /B)

O(
logB (N)

B
)

O(logB(N))

Deletion Time
O(

log2(N)

B
)

O(log2(N)) If
M=Θ(log2(N))

else O(N /B)

O(
logB (N)

B
)

O(logB(N))

Space Overhead O(N) O(N) O(N) O(N)

Figure 18: Time and Space Complexity for COLA Operations

9. Experimental Results: Comparing B-Tree vs COLA
On a similar note to the set of experiments on cache-aware structures, testing the

throughput of the analyzed data structures, requires to first define what SQL operations are

more relevant to the context of large-databases performance. Just like in the B-tree vs. hash

experiments, insertion and deletion procedures are equivalent in terms of I/O cost.

Consequently, update operations are still omitted from the experiments. Therefore, the

primary focus are SELECT and INSERT operations, followed by testing the corresponding

41

space overhead. Lastly, we maintain the randomness policy for search-key values used in

experiments, so as to emulate a real working environment where data records possess

diverse column values.

For the following set of experiments, we continue to ignore range searching SELECT

statements. In this case, the aforementioned argument stands since range searches would

still require excessive test samples in order to visualize consistent patterns.

The tests executed as part of the following experiments consist in OLTP benchmarks on

Percona Server 5.7, an open source distribution of the MySQL database management

system. Specifically, tests are intended to isolate the InnoDB and TokuDB engines. This

choice is based on the fact that TokuDB is the only database engine that supports lookahead

arrays (albeit with the commercial name of Fractal Tree Index®), while being integrated into

a major database management system. Percona Server is also a great platform for

comparison, when taking into account that it also supports InnoDB, which is actually the

most popular and one of the most heavily optimized open source implementation of B-tree

indexes available.

The machine used to run the benchmarks was the same as the one used for the previous set

of experiments. The actual tests were executed using sysbench 0.4.12, a multi-use open

source benchmark tool.

Assumptions.

For this comparison, most of the assumptions made for the hash vs B-tree experiments

remain. The main focus remains measuring transaction throughput in terms of the

database's row count.

For this specific set of experiments, we use a 4 column table, featuring 1 secondary index

42

and the primary key index. The benchmarks consisted on a set of 60, 90-second tests

continuously running on the operation that was tested, be it SELECT and INSERT, on each of

the tested database engines.

Results.

Figure 19: B-tree vs. COLA disk usage

The experiments were executed on five database row count scales. Specifically on: 10, 50,

100, 300 and 500 million rows. However, during experimentation, it turned out that the

virtual machine's disk could not fit 500 million records using InnoDB's engine. In actual fact,

the 300 million-row sample nearly saturated the virtual machine's secondary storage

(94.23% usage). On the other hand, TokuDB indices showed massively greater scalability in

terms of disk space usage, managing to store 500 million records with even less space

requirements than the InnoDB 300-million-row database. For the highest comparable

database size of 300 million records, B-tree indices were outclassed by fractal-tree indices by

a factor of 0.519. In average, fractal-tree indices required 0.6439 less disk space than their B-

tree counterpart. It is clear that the results would be more complete with more database

scales for comparison. One may suggest that a smaller row count value would have solved

10M 50M 100M 300M 500M
0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

Space Overhead

COLA Disk Usage

B-Tree

Database Scale (Rows)

D
is

k
U

sa
g

e
 (

K
B

)

43

this issue, yet this would have hindered other tests' results, which shall be discussed on the

INSERT tests' results that follow.

Figure 20: Transaction-per-second averages for SELECT

Figure 20 is a visualization of the average transaction throughput for SELECT queries

performed on the fractal-tree index, alongside the throughput of the same operation on the

B-tree index on increasing database size scales. Figure 20 suggests that there is a consistent

throughput advantage for B-trees, edging over COLA indices for every row count tested.

Nonetheless, both indices display a clear trend to reduce transaction throughput as

database sizes increase. For the largest value of N=300∗106 rows, B-trees were 1.256

times faster. The average the improvement offered by B-trees in terms of database size was

a factor of 1.384. Even though we visualize a clear trend, there is no clear evidence as to why

this occurs. From an analytical standpoint, it could be argued that TokuDB implements a

cache-oblivious lookahead array (O(log2(N))) rather than its more efficient cache-aware

implementation, which should manage to compete with cache-aware B-trees (

O(logB(N))). However, results obtained on the INSERT test disprove this argument. In

10M 50M 100M 300M 500M
0

2000

4000

6000

8000

10000

12000

SELECT Throughput

COLA_TPS

Logarithmic (COLA_TPS)

B-TreeTPS

Logarithmic (B-TreeTPS)

Database Scale (Rows)

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

44

addition, TokuDB developers have explained that there is an inevitable tradeoff between

search queries and insert queries for this structure (Bender, n.d.). The tabulated values for

the average and standard deviation for each of the database scales are presented in Figure

21:

Structure Scale (Rows) Average TPS Standard Dev.

B-Tree 10M 10454.78 904.7

B-Tree 50M 7248.98 492.15

B-Tree 100M 6512 358.91

B-Tree 300M 6548.09 438.15

COLA 10M 8697.68 276.71

COLA 50M 5041.26 183.97

COLA 100M 4297.09 259.13

COLA 300M 3553.65 54.78

COLA 500M 2550.46 67.77

Figure 21: Average and Standard Deviation values for SELECT

Figure 22: Transaction-per-second averages for INSERT

The final experiment for the COLA vs. B-tree comparison. Figure 22 shows the average

INSERT throughput for the sixty samples. From Figure 18, it becomes clear that for relatively

10M 50M 100M 300M 500M
0

500

1000

1500

2000

2500

INSERT Throughput

COLA_TPS

Logarithmic (COLA_TPS)

B-TreeTPS

Logarithmic (B-TreeTPS)

Database Scale

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

45

small row count values, B-trees tend to outperform COLA indices considerably. For the three

smallest database scales, B-trees showed a 1.395 times larger throughput than COLA.

However, as database size increases, the difference between the two indices seems to be

reduced. From the figure, it may appear that the critical point for this phenomenon is

around the 300 million-row mark. The trend lines show that although, B-trees may seem

superior for smaller databases, their throughput seems to decrease more rapidly as

databases become larger. On the other hand, COLAs appear to be slow for relatively smaller

databases, yet display a trend that resembles near constant time O(1) . This result is very

insightful to show the COLA's strongest suit, and provides justification for not selecting a

smaller database scale in order to fit more samples into the tests' results. Analysis doesn't

seem to provide a clear explanation as to the lookahead array indices seemingly constant

insert time. Nonetheless, it was expected that a cache-aware implementation for the

lookahead array (O(
logB (N)

B
)) could outperform B-trees (O(logB(N))), which is

exactly what TokuDB's brand offers as a commercial product. The tabulated values for the

average and standard deviation for each of the database scales are shown in Figure 23:

Structure Scale Average TPS Standard Dev.

B-Tree 10M 2220.57 75.24

B-Tree 50M 2283.81 135.38

B-Tree 100M 1974.36 108.35

B-Tree 300M 1539.22 146.79

COLA 10M 1543.56 42

COLA 50M 1562.04 38.33

COLA 100M 1534.5 32.09

COLA 300M 1542.46 26.13

COLA 500M 1560.05 37.84

Figure 23: Average and Standard Deviation values for INSERT

46

CONCLUSIONS

• Observation of modern computers' memory hierarchies has revealed that minimizing

I/O operations is key to the design of optimal memory systems.

• The disk access model is a good abstraction for the disk-memory interaction that

facilitates the analysis of algorithms and data structures. However, its algorithms

require careful implementation and tuning.

• Analytically, B-trees present optimal bounds for range searches and are often more

effective at inserts than other cache-aware structures.

• Analytically, hash-based indices are optimal for equality searches. Although, their

applications on real life databases are limited due to their lack of support of range

searches.

• Both analytically and empirically, B-trees and hash-based indices tend to show similar

bounds in terms of disk space overhead.

• Benchmarks performed on the PostgreSQL engine suggest that, although hash-based

indices display near constant throughput over growing database sizes, B-trees'

throughput scales similarly well.

• Benchmarks performed on the PostgreSQL engine strongly suggest B-trees as a

preferable solution within the disk access model for use cases that require high-

insertion throughput.

• The cache-oblivious model provides a wide platform to design optimal algorithms

and structures that could theoretically be implemented for any pair of levels within

the memory hierarchy.

47

• The cache-oblivious B-tree has been analytically proven to be competitive with its

cache-aware counterpart in terms of worst-case bounds required for search and

insert.

• Analytically, it has been proven the cache-oblivious lookahead array could

outperform B-tree's worst-case insertion bound depending on block size.

• Cache-aware optimizations on the cache-oblivious lookahead array have proven to

make the lookahead array's worst-case search bound equal to B-trees and its worst-

case insertion bound considerably superior.

• Benchmarks comparing InnoDB's B-tree implementation against TokuDB's COLA

implementation suggest that COLA's tend to offer massive space overhead

improvements.

• Benchmarks comparing InnoDB's B-tree implementation against TokuDB's COLA

implementation suggest that B-trees tend to outperform COLA indices on equality

searches.

• Experimental results point to TokuDB's COLA implementation as a highly scalable

solution for large databases due to the observation of a nearly constant trend for

insert operations' throughput.

48

REFERENCES

Arge, L. (2003). “The Buffer Tree: A Technique for Designing Batched External Data
Structures” (pp. 1-9). Retrieved from:
https://www.cs.cmu.edu/~guyb/realworld/slidesF10/buffertree.pdf

Bender, M., Kuszmaul, B. (2012). “Data Structures and Algorithms for Big Databases”(pp. 8-
72). Retrieved from: http://people.csail.mit.edu/bradley/BenderKuszmaul-tutorial-
xldb12.pdf

Bender, M., Farach-Colton, M., Fineman, J., Fogel, Y., Kuszmaul, B., Nelson, J. (2007). “Cache-
Oblivious Streaming B-trees” (pp. 1, 8-11). Retrieved from:
http://supertech.csail.mit.edu/papers/sbtree.pdf

Bender, M., Demaine, E., Farach-Colton, M. (2005). “Cache-Oblivious B-Trees” (pp. 1-6, 10).
Retrieved from: http://erikdemaine.org/papers/FOCS2000b/paper.pdf

Bender, M. (n. d.) “Performance of Fractal-Tree Databases” (pp. 6-18). Retrieved from:
https://www.bnl.gov/csc/seminars/abstracts/Bender_Presentation.pdf

Demaine, E., Devadas, S., Lynch N. (2015). Recitation 2: 2-3 Trees and B-Trees on
6.046J/18.410J : Design and Analysis of Algorithms (pp. 6-7). Massachusetts Institute
of Technology, Cambridge, Massachusetts. Retrieved from:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-
design-and-analysis-of-algorithms-spring-2015/recitation-
notes/MIT6_046JS15_Recitation2.pdf

Demaine, E. (2012). Lecture 7 on 6.851: Advanced Data Structures (pp. 1-8). Massachusetts
Institute of Technology, Cambridge, Massachusetts. Retrieved from:
https://courses.csail.mit.edu/6.851/spring12/scribe/lec7.pdf

Demaine, E. (2002). “Cache-Oblivious Algorithms and Data Structures” (pp. 3-6, 15-16, 19-
23). http://erikdemaine.org/papers/BRICS2002/paper.pdf

Erickson, J. (2002). Lecture 1: Introduction on CS473: Topics in Analysis of Algorithms (pp. 1-
4). University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois. Retrieved
from: http://jeffe.cs.illinois.edu/teaching/473/01-search+sort.pdf

Erickson, J. (2002). Lecture 2: Buffer Trees on CS473: Topics in Analysis of Algorithms (pp. 1-
4). University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois. Retrieved
from: http://jeffe.cs.illinois.edu/teaching/473/02-buffertrees.pdf

Fagin, R., Nievergelt, J., Pippenger, N., Strong, H. (1979). “Extendible Hashing-A Fast Access
Method for Dynamic Files” (pp. 315-318). Retrieved from:
http://researcher.watson.ibm.com/researcher/files/us-fagin/tods79.pdf

Graefe, G., Larson, P. (2001). “B-tree Indexes and CPU Caches” (pp. 10). Retrieved from:

49

http://www.cse.unt.edu/~huangyan/6330/Papers/B-tree-Cache-ICDE2001.pdf

Kasheff, Z. (2004). “Cache-Oblivious Dynamic Search Trees” (pp. 1, 15-22). Retrieved from:
http://people.csail.mit.edu/bradley/papers/Kasheff04.pdf

Kuszmaul, B. (2010). Lecture 19: Cache-oblivious B-Tree (TokuDB) on 6.172 Performance
Engineering (pp. 4-32). Massachusetts Institute of Technology, Cambridge,
Massachusetts. Retrieved from: https://ocw.mit.edu/courses/electrical-engineering-
and-computer-science/6-172-performance-engineering-of-software-systems-fall-
2010/video-lectures/lecture-19-how-tokudb-fractal-tree-indexes-
work/MIT6_172F10_lec19.pdf

Moshkovitz, D., Tidor, B. (2012). Lecture 10: Hashing and Amortization on 6.046J/18.410J:
Design and Analysis of Algorithms (pp. 1-2, 6-7). Massachusetts Institute of
Technology, Cambridge, Massachusetts. Retrieved from:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-
design-and-analysis-of-algorithms-spring-2012/lecture-
notes/MIT6_046JS12_lec10.pdf

Moshkovitz, D., Tidor, B. (2012). Lecture 15: Van Emde Boas Data Structure on
6.046J/18.410J: Design and Analysis of Algorithms (pp. 1-3). Massachusetts Institute
of Technology, Cambridge, Massachusetts. Retrieved from:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-
design-and-analysis-of-algorithms-spring-2012/lecture-
notes/MIT6_046JS12_lec15.pdf

Nelson, J. (2013). Lecture 23 on CS229r: Algorithms for Big Data (pp. 1-3). Harvard University,
Cambridge, Massachusetts. Retrieved from:
https://pdfs.semanticscholar.org/abcc/8e337925ef5d8f8e348c5056256bce9b16bc.p
df

Prokop, H. (1999). “Cache-Oblivious Algorithms” (pp. 55-58). Retrieved from:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-895-
theory-of-parallel-systems-sma-5509-fall-2003/readings/cach_oblvs_thsis.pdf

Ramakrishnan, R., Gehrke, J. (2003) “Database Management Systems” (pp. 273-384). Third
Edition. McGraw-Hill.

Silberchatz, A., Korth, H., Sudarshan, S. (2010) “Database system concepts” (pp. 476-523),
Sixth edition. McGraw-Hill

Schwarz, K. (2016). Lecture 5: Balanced Trees on CS166: Data Structures (pp. 18-41).
Stanford University, Stanford, California. Retrieved from:
https://web.stanford.edu/class/cs166/lectures/05/Small05.pdf

Vitter, J. (2008). “Algorithms and Data Structures for External Memory” (pp. 83-95).
Retrieved from: https://www.ittc.ku.edu/~jsv/Papers/Vit.IO_book.pdf

	ABSTRACT
	INTRODUCTION
	PART 1: CACHE-AWARE STRUCTURES AND ALGORITHMS
	1. Disk Access Model
	2. Index Data Structures
	3. Hash-based Indexing
	Introduction.
	Analysis.
	Static Hashing.
	Extendible Hashing.
	Summary of I/O Complexity Bounds.

	4. B-tree
	Introduction.
	Analysis.
	Buffer Tree.
	Summary of I/O Complexity Bounds.

	5. Experimental Results: Comparing the B-Tree vs. Hash-based indexing
	Assumptions.
	Results.

	PART 2: CACHE-OBLIVIOUS DATA STRUCTURES
	6. Cache-oblivious Model
	7. Cache-oblivious B Tree
	Introduction.
	Static Cache-Oblivious Binary Search Tree.
	Packed memory structure.
	Summary of I/O Complexity Bounds.

	8. Cache-oblivious lookahead array
	Introduction.
	Basic COLA.
	Optimizing Searches in the COLA.
	Cache-aware analysis.
	Summary of I/O Complexity Bounds.

	9. Experimental Results: Comparing B-Tree vs COLA
	Assumptions.
	Results.

	CONCLUSIONS
	REFERENCES

