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RESUMEN 

A nivel mundial las aguas ricas en nutrientes producidas por afloramientos son un factor 

ambiental clave que influye la naturaleza de las cadenas tróficas. La Reserva Marina de 

Galápagos es conocida por la gran variación espacial y temporal de los afloramientos, lo que 

permite la existencia de una biota única en aguas ecuatoriales. Se sabe que las diferencias en 

niveles de afloramiento produce una variación en la estructura de las comunidades bentónicas. 

Sin embargo, se desconoce cómo dichas diferencias afectan a las comunidades locales de 

peces y cómo las respuestas de éstos contribuyen al entendimiento de los patrones de 

afloramientos.  

El objetivo general de este estudio fue el de entender los patrones de crecimiento de la 

damisela de cola amarilla (Stegastes arcifrons), un pez territorial, así como de las señales de 

química elemental en sus otolitos, bajo diferentes regímenes de afloramiento, utilizando 

métodos descriptivos y experimentales. 

Se colectaron 10 peces adultos, con un diseño anidado, en ocho sitios cuatro con alto, 

cuatro con bajo afloramiento), se utilizó los otolitos sagitales para determinar la edad de los 

individuos, la tasa de crecimiento (relación entre talla y edad), crecimiento anual (incremento 

entre los anillos de crecimiento en el otolito). También se realizaron análisis de química 

elemental mediante el uso de Espectometría de Masas con Plasma Acoplado Inductivamente 

(ICP-MS), sola y mediante Ablación con Láser. Se obtuvieron datos de la temperatura 

superficial del mar de imágenes satelitales, para comparar con la carga elemental de los 

otolitos. Adicionalmente, se colectaron 36 peces juveniles con los que se llevó a cabo un 

experimento de mesocosmos para evaluar los efectos de temperatura y alimento en la química 

de los otolitos. Se utilizaron métodos estadísticos univariados y multivariados para el análisis 

de datos. 

 Se encontró que la edad máxima de un pez fue 23 años. Los peces por lo general 

fueron más grandes en áreas de alto afloramiento, aún así las curvas de Von Bertalanffy 

demostraron que la talla al infinito fue similar entre los tratamientos (~ 116 mm SL).  Sin 

embargo, la tasa de crecimiento hacia L∞ fue mayor en peces provenientes de áreas con alto 

afloramiento (K = 0.8, cf 0.5 en bajo afloramiento). El incrementos anual entre los anillos de 

crecimiento se estabilizó alrededor de los 8 años y la variación del incremento a partir de ese 

tiempo se consideró un aproximamiento para la variación anual de crecimiento. Los menores 

incrementos ocurrieron en sitios de bajo afloramiento. 

Se encontraron patrones contrastantes en las proporciones elementales de los otolitos 

enteros de los peces provenientes de diferentes regímenes de afloramiento. Las proporciones 

Ba/Ca fueron significativamente menores en sitios con alto afloramiento comparados con 

sitios de bajo afloramiento. Además, la mayoría de la variación (46%) fue explicada por estas 

diferencias. Para las proporciones Mn/Ca también se encontraron diferencias significativas en 

diferentes regímenes de afloramiento, sin embargo, la mayoría de la varianza fue explicada 

por la variabilidad entre sitios. Por otro lado, para Mg/Ca y Sr/Ca no se encontraron 

diferencias significativas entre diferentes regímenes de afloramientos y la mayor parte de la 

variación fue entre los peces (a nivel de individuos), y entre sitios, respectivamente.  

Los análisis multivariados (PCA) detectaron que existen diferencias en las firmas 

elementales entre sitios, que los distinguen dentro de los regímenes de afloramiento.  Se 

encontró una fuerte y positiva correlación entre la temperatura y las proporciones Sr/Ca. Los 

resultados de los análisis hechos a los otolitos con el uso de ablación de láser y ICP- 

concuerdan con las conclusiones para los análisis de otolitos enteros, en el sentido de que se 

encontraron diferencias entre los tratamientos consistentes entre ambas técnicas. Inclusive se 

pudo detectar patrones temporales de incremento de la proporción Sr/Ca que puede 
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corresponder al incremento de la temperatura que caracteriza eventos de El Niño. Por otro 

lado, los hallazgos del experimento concuerdan con la relación entre más altas proporciones 

de Sr/Ca y mayores temperaturas, como en el caso de los otolitos de los peces adultos 

provenientes de sitios con bajo afloramientos. También se evidenció una tendencia fuerte en 

el aumento de la proporción Ba/Ca con el incremento en la temperatura y la cantidad de 

alimento, pero ésta no fue significativa. 

En conclusión, la variación espacial y temporal en los patrones de crecimiento, el 

incremento en los anillos de crecimiento dentro de los otolitos y la química elemental se 

pueden relacionar con los niveles de afloramiento. Los patrones detectados en este estudio 

proveen un mayor entendimiento de la ecología de peces territoriales de arrecife.  

 

Palabras clave: Afloramiento, peces damisela, otolitos, patrones de crecimiento, química 

elemental.
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ABSTRACT 

Worldwide the upwelling of nutrient rich waters is a key environmental factor that influences 

the nature of marine food chains. The Galapagos Marine Reserve (GMR) is known for great 

spatial and temporal variation in upwelling and this supports a unique fauna in equatorial 

waters. It is known that differences in levels of upwelling (ie. High vs. Low) translates in the 

variation in benthic community structure. There is, however, a paucity of knowledge on how 

such differences affect local fish communities and how the responses of fishes can be 

informative about patterns of upwelling. Otolith elemental chemistry can vary according to 

environmental conditions during the life of a fish.   

The broad objective of this thesis was to study patterns of growth and elemental 

signals in the otoliths of a territorial damselfish (Stegastes arcifrons) to identify responses to 

different levels of upwelling; descriptive and experimental methods were used. 

Adult fish (n=10) were collected at 8 sites, in areas of Low and High upwelling 

regimes, where four sites were nested in each treatment. Sagittal otoliths were used to 

determine the age of individuals, growth rate (size vs. age), yearly growth (increment of 

interannual spacing). Also elemental chemistry analysis were performed with inductively 

coupled plasma mass spectrometry (ICP-MS), in some cases coupled with a laser ablation 

system. Sea surface temperatures among sites were determined using satellite imagery, to 

relate it to elemental loads. Additionally, 36 juvenile fish were collected to perform a 

mesocosm experiment to evaluate the effects of temperature and food in otolith chemistry. 

Univariate and multivariate statistical methods were used for data analysis. 

The maximum age of fish was 23 years. Fish were generally larger in areas of High 

upwelling, but Von Bertalanffy curves demonstrated that length at infinity was similar 

between upwelling treatments (~ 116 mm SL).  However, the rate of growth to L∞ was higher 

in fish from areas of High upwelling (K = 0.8, cf 0.5 in low upwelling).  The spacing of 

increments plateaued after about 8 years and variation in spacing from that time was 

considered to be a proxy for annual variation in growth.  Increments were more closely 

spaced at Low upwelling sites.   

Contrasting patterns of elemental ratios were found in whole otoliths of fish among 

upwelling treatments. Ba/Ca ratios were lower in High upwelling sites compared to Low 

upwelling sites and significant differences were found among sites within upwelling regimes. 

For Mn/Ca and Sr/Ca ratios variance components indicated that most of the variation was 

found among sites. Most of the variation for Mg/Ca ratios was detected at the residual level 

and high levels of individual variation was recorded for all elements.  Multivariate analyses 

(PCA) detected differences in elemental fingerprints among sites, within treatments. Ba/Ca 

and Sr/Ca ratios had greatest influence in the elemental fingerprints. A positive correlation 

was detected between temperature and Sr/Ca ratios.  Laser ICP-MS allowed me to test for 

temporal variation within otoliths. Laser data concurred with the conclusions of whole otolith 

analyses in that the differences found between upwelling treatments were consistent for both 

methods. Furthermore, temporal patterns were detected within fish that apparently correlates 

with the timing of major El Niño events, with Sr/Ca increments. 

The experiment concurred with the relationship found in adult fish in that significant 

differences in Sr/Ca rations were detected among temperature treatments.  Sr/Ca ratio where 

highest in the highest temperature treatment. There was a strong trend for Ba/Ca ratios to 

increase with temperature and quantity of food, but this was not significant. 

In conclusion, spatial and temporal variation in patterns of growth, increment spacing 

within otoliths and elemental chemistry could be related to level of upwelling. The patterns 

detected in this study provide greater insight to the ecology of a reef fish.  
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Key words: Upwelling, damselfish, Otoliths, growth patterns, elemental chemistry. 
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1. INTRODUCTION 

In marine ecosystems, oceanic conditions affect local biodiversity, community composition 

and important ecological processes. Ocean currents are particular significant because they 

provide continuous water mass movement that greatly influences biological productivity 

(Sigman & Hain, 2012). As currents meet and mix, reach continental landmasses or major 

rivers, or move over shallower depths, various types of vertical circulation patterns are 

generated that affect nutrient availability (Lalli & Parsons, 1997). There are two general 

patterns of nutrient supply in the ocean: (i) at high latitudes and during winter deep mixing, 

the thermocline decreases and nutrient mixing increases; (ii) at low latitudes where 

seasonality is often weak, as in the Eastern Tropical Pacific, wind-driven surface water flow 

produces upwelling (Pennington et al., 2006). 

Generally speaking, high latitude oceans have nutrient-rich waters (Sigman & Hain, 

2012). This feature contributes to high primary productivity that supports large fish 

populations and important commercial fisheries. In contrast, tropical nutrient-poor waters host 

a great diversity of fish species, however population sizes and biomass are smaller compared 

to the temperate or polar regions (Bone & Moore, 2008). Coastal upwelling is a wind-driven 

circulation process that results in high nutrient supply to the surface ocean, and when 

followed by stratification and an optimal light environment leads to greatly enhanced levels of 

primary production relative to other regions of the world ocean. While coastal upwelling can 

occur along any coastline it is most prevalent in the eastern boundaries of the Atlantic and 

Pacific Oceans (Messié & Chavez, 2015). These general patterns however are affected by 

regional climatic variability. For example, in the North Pacific there are well documented 

“regime shifts” with abrupt physical and biological changes that persist for over a decade 

(Lalli & Parsons, 1997). Such changes have significant consequences for productivity and 
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species composition of fisheries resources in the region (Lalli & Parsons, 1997). In the 

Eastern Pacific, the inter-annual and decadal climatic variability affects annual catches of the 

Peruvian anchoveta, the largest single-species fishery in the world (Brander, 2007). During El 

Niño Southern Oscillation (ENSO) events, upwelling is reduced and warmer water spreads 

and persists in the region for several months, reducing significantly the primary productivity 

and therefore the population of the Peruvian anchoveta, with catastrophic consequences for 

the seabirds that feed on them, as well as for the fisheries that depend on them (Brander, 

2007). 

 

1.1. Oceanographic settings surrounding the Galápagos Marine Reserve 

(GMR) 

The particular geographic and oceanographic settings that surround the Galápagos 

Archipelago make these oceanic islands unique in terms of diversity and endemism, since it 

possesses marine ecosystems with characteristics from both tropical and 

subtropical/temperate regions (Edgar, Banks, Fariña, Calvopiña, & Martínez, 2004). The 

Galápagos Islands are located at the equator at the confluence of several major oceanic 

currents in the Eastern Tropical Pacific Ocean. The warm Panama Current flows from the 

northeast and affects the northern and central islands. In addition, cool water flows from east 

to west carried by the South Equatorial Current. This current is also affected by the Panama 

current in the north and by the Humboldt Current, which is generated in the Peru upwelling 

zone, and affects the central and southern areas of the Galápagos. In addition, the eastward-

flowing subsurface Equatorial Undercurrent (EUC, also known as the Cromwell Current), 

brings cold nutrient-rich waters to the surface by means of topographically generated 

upwelling, and mainly affects the western section of the archipelago (Palacios, 2004), with 

some influence in the central archipelago as well (Witman, Brandt, & Smith, 2010). These 
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currents show seasonal variability and are also influenced by trade winds and other 

atmospheric processes that change the water mass properties in terms of salinity, pH and 

temperature (Sweet et al., 2007, 2007). 

During an El Niño event, the Equatorial Undercurrent weakens, upwelling is 

suppressed, the ocean surface around the Galápagos warms substantially and the islands 

receive significantly more rainfall than normal (Cane, 2005; Sachs & Ladd, 2010; (Liu, Xie, 

Morrison, & Kamykowski, 2013). The warmer water is poorer in nutrients compared to the 

cool waters that normally surround the archipelago, primary production decreases, and fish 

numbers diminish (Liu et al., 2013). These changes had devastating impacts on the marine 

ecosystems, causing mass mortality of corals, seabirds, marine iguanas, marine mammals, 

fish and invertebrates during the most intense events, such as those of 1982–3 and 1997–8 

(Victor, Wellington, Robertson, & Ruttenberg, 2001; Edgar, Banks, Brandt, Bustamante, 

Chiriboga, Earle & others, 2010; Sachs & Ladd 2010); both the strongest historically recorded 

(Cane, 2005; Liu et al., 2013).  

 

1.2. Upwelling-related ecological processes in Galápagos 

The topography on the seafloor on the Galápagos also contributes to the contrasting 

oceanographic conditions within the archipelago: in several sites closed to deep waters there 

is frequent upwelling, commonly reported by scuba divers (Witman & Smith, 2003). Gordon 

Rocks (northeast of Santa Cruz Island), a site with strong upwelling, experienced daily 

temperature fluctuations that corresponded to upwelling events (Witman & Smith, 2003). As 

a consequence, there was a rapid epifaunal community change over one year, doubling the 

species richness within that period. At the same time some macro invertebrates showed great 

changes in percentage cover, biomass and/or density. This study took place between 1999 and 

2000, after the severe 1997-98 El Niño event, when an important portion of the shallow water 
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communities experienced severe changes (Witman & Smith, 2003). In another study between 

2006 and 2009, in the intertidal rocky shores in an upwelling gradient in the Galapagos, 

(Vinueza, Menge, Ruiz, & Palacios, 2014) demonstrated that in areas of Intermediate and 

High upwelling, the bottom up effects were stronger on algal biomass, whereas in sites of low 

upwelling the top down control of macro-herbivores was the prevailing mechanism regulating 

algal abundance.   

On the other hand, Krutwa (2014) demonstrated experimentally, by comparing the 

sessile communities in two sites in Floreana, that the Low upwelling site experienced 

seasonal changes in community structure, while the High upwelling site showed a more stable 

community composition, because it received cold water pulses frequently, which masked the 

effects of seasonality. In another study that compared several sites with High, Mid and Low 

upwelling regimes in the central archipelago, High upwelling sites supported a greater 

recruitment and abundance of the barnacle Megabalanus peninsularis, an important 

suspension feeder of the archipelago, and their abundance was also correlated to greater 

abundances of one of its main predator, the whelk Hexaplex princeps (Witman et al., 2010). 

In addition, there were higher predation rates from whelks and fish on the barnacles in the 

High upwelling sites (Witman et al., 2010). 

The findings of these studies suggested that High upwelling sites are very important as 

a frequent source of nutrients and food availability. Also High upwelling sites seem to have 

less environmental variation compared to Low upwelling sites, which has a direct impact on 

local community structure. Understanding how this productivity supports local diversity and 

ecological processes has been studied mostly on benthic organisms, however the importance 

of upwelling on the ecology of reef fish remains unstudied in the Galápagos. For this reason, 

the objective of my project was to determine the effects of upwelling on the patterns of 

growth and elemental loads in the otoliths of a wide spread herbivore fish, the yellow-tail 
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damselfish, Stegastes arcifrons.  It was thought possible that elemental and growth records in 

the otoliths of fish could provide an environmental record that would give better resolution of 

spatial and temporal patterns of upwelling. 

 

1.3. Otoliths as environmental recorders 

There are several tools to quantify marine environmental variables that can be related to 

primary productivity: water flow, temperature, chlorophyll-α and dissolved oxygen 

concentrations. A viable alternative is the utilization of satellite imagery that uses 

chlorophyll-α concentration as a proxy for primary productivity, however this tool has its 

limitations. 

Different plankton species have different photosynthetic rates, which derives into 

dissimilar chlorophyll cellular concentrations that are not necessarily related to primary 

productivity. Also, small variations in grazing can have considerable proportional effects on 

plankton biomass, affecting the image taken (Sigman & Hain, 2012). In addition, both image 

quality and processing tools are continuously improving along with different levels of 

resolution, making a standardized method difficult to define (Thengade & Agale, 2014). 

Although satellite-derived ocean color observations have transformed our view of oceanic 

productivity, in order to elucidate environmental histories at the habitat level, it is perhaps a 

better option to work directly with living organisms, because satellite data are not easily 

available.  

Many sessile organisms, such as scleractinian corals and bivalves possess carbonate 

skeletons that are useful for the reconstruction of temporal and spatial variation of 

environmental conditions in marine systems. The deposition of calcium carbonate in most 

skeletons provides a chronological record that is generally not deconstructed through 

metabolism. Not only is there sequential deposition, but discontinuities can represent years 
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and even days. Furthermore, variation in microchemistry can provide geochemical signals 

that can be related to variation in the environment (Walther, Kingsford, & McCulloch, 2013).  

In order to reconstruct in the Galápagos Archipelago the temporal and spatial 

dynamics of some elements as geochemical signals, the use of fish otoliths seems a good 

alternative because as opposed to other organisms that need specific locations to survive (e.g. 

scleractinian corals) fish are present all over the archipelago. In this regard, the yellow-tail 

damselfish (Stegastes arcifrons) is a perfect candidate species, because it has wide-spread 

distribution in the Archipelago (Allen & Woods, 1980; Allen et al., 2010). In addition, by 

being a territorial and sedentary fish, variation in patterns of growth and elemental chemistry 

could be attributed to variation in the environment rather the potentially confounding 

influence of fish movement. 

Teleost fishes have three pairs of structures called otoliths. The sagittae, lapilli and the 

astericus are located in the inner ear and are used for balance and auditory senses. Otoliths are 

made of calcium carbonate (aragonite) deposited on a protein matrix. New material is 

incorporated on a daily basis to the exterior surface of this structure. In addition to the major 

constituents such as Ca, minor (e.g. Sr) and trace elements (e.g. Ba) are incorporated into the 

aragonite matrix. The incorporation of these elements and nightly increases in protein 

deposition is continuous and it leads to the formation of daily and annual growth rings that 

have been used for over a century to determine the age of fishes (Campana, 1999). Otoliths 

are acellular and metabolically inert, therefore once elements are incorporated into the 

calcareous material they are not subject to reabsorption and the chemical composition of a 

given layer will remain constant over time (Campana & Thorrold, 2001; Walther & Thorrold, 

2006). 

Environmental variables such as temperature, salinity and water chemistry influence 

how elemental incorporation takes place (Elsdon & Gillanders, 2004).  Because of this, 
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otoliths can provide a chemical chronology of the entire life of a fish (Elsdon et al., 2008). 

Reconstructions of life histories are possible with modern spectrometry tools that allow finer 

resolution analysis (Elsdon & Gillanders, 2004). The use of elemental signature in otoliths has 

helped to determine differences in chemical composition even at a small spatial scale (200 m), 

which may be useful for determining the movements of fishes (salmon), recruitment areas 

(Gillanders & Kingsford, 1996) and population connectivity studies (Lo-Yat et al., 2005). 

There is not a clear pattern on how environmental water chemistry and oceanographic 

physical conditions determine the element up take into the otolith (Bath et al., 2000), and 

apparently there are significant differences that are species or stock-specific (Barnes, 

Gillanders, & Rose, 2013). In a recent study it was found that Strontium (Sr) was considered 

one of the most informative and extensively used elements in otolith chemistry; it substitutes 

Ca within the aragonite crystal, which means that its presence in the otolith will depend on the 

availability on the environment (Doubleday, Harris, Izzo, & Gillanders, 2013). As a 

consequence of this and as reviewed by Campana (1999), elements in the otolith are likely to 

provide an accurate prediction of the chemical and physical properties of the water mass. 

In addition, the use of otoliths for aging fishes began more than a century ago; over the 

years mostly important temperate fisheries-related species have received sufficient attention 

(Campana & Thorrold, 2001; Campana, 2005). Since the 1990s, more studies have focused on 

tropical species, that also experience seasonal variation, which in turn, due to physiochemical 

regimes produce different markings on the otoliths, translated into opaque and translucent 

bands, that together are accepted to be produced during one-year periods (Fowler, 2009).  

 

1.4. Stegastes arcifrons (Heller & Snodgrass, 1903) 

The species of focus in my study belongs to the Pomacentridae. It inhabits the Galápagos, 

Cocos and Malpelo Islands, where is common and abundant (Allen & Woods, 1980). In 
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Galápagos the yellow-tail damselfish suffered a minor population decline following the 1997-

98 El Niño event, however it recovered completely after one year (Allen et al. 2010). It is an 

omnivorous species that feeds on algae and several invertebrates including tubeworms, small 

crustaceans and anemone’s tentacles (Allen et al. 2010). As is typical of many reef fish, the 

yellow-tail damselfish disperses during planktonic larval stage and once settled it spends its 

remaining life in a specific territory; such a behavior is common in several damselfish species 

(Munday & Jones, 1998; (Ceccarelli, Jones, & McCook, 2001). Stegastes arcifrons defends 

its ‘farmed' algal turf from other herbivorous fish and small invertebrates, and this has a 

positive effect on maintenance of algal composition and diversity (as well as associated 

fauna) of the habitat, since the fish will favor certain algal species inside their territory (Irving 

& Witman, 2009).  

Stegastes arcifrons is particularly useful for this study because it is relatively long-

lived; it has been reported to live 25+ years (Meekan, Wellington, & Axe, 1999). Although it 

has been reported to be present up to 20 m (Allen et al. 2010), currently it is difficult to find 

individuals deeper than 7 m (pers. obs.). This means that it spends its life exposed to the 

shallow water conditions historically documented to equate with Sea Surface Temperature 

(SST) conditions. Meekan et al. (1999) found bands on the otoliths of the yellow-tail 

damselfish that corresponded to the 1982-1983 El Niño event, suggesting that environmental 

conditions are indeed recorded in these structures; however, chemical load differences from 

‘normal’ and El Niño years, or between sites are still unknown. 

The objective of the study was to determine variation in growth and elemental 

chemistry of Stegastes arcifrons otoliths in areas of Low and High upwelling.  The specific 

aims were: 

1. To describe the patterns of growth of fish collected in areas of High and Low upwelling 

sites. 
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2. To use the spacing of annual increments in the otoliths as a proxy of growth, and to 

determine the temporal variation that could be related to upwelling. 

3. To use a mensurative experimental design to determine any differences in the elemental 

loads in otoliths of fish from sites of High and Low upwelling and, 

4. To experimentally determine the influence of temperature and the amount of food ingested 

on elemental fingerprinting. 
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2. PATTERNS OF GROWTH 

2.1. Hypothesis  

I hypothesized that the environmental conditions (i.e. water temperature, primary 

productivity) that are known to vary between sites with High or Low upwelling intensity 

would have an effect in the growth patterns of fish from different upwelling regimes, and this 

will be reflected in the annuli growth of the otoliths of the yellow-tail damselfish. 

 

2.2. Materials and methods 

2.2.1. Selection of study sites  

Eight sites in the GMR were chosen according to the average environmental conditions 

described in previous studies that were related to upwelling, marine biogeography and 

satellite imagery analysis of sea surface temperatures and chlorophyll concentrations (Table 

1; Figure 1). Witman et al. (2010) used in-situ measurements to classify upwelling regimes 

according to vertical flow speed, vicinity of sites to deep waters and persistence of the EUC. 

Schaeffer et al. (2008) collected in-situ water samples to estimate chlorophyll and nitrate 

concentrations, salinity, and temperature, which they compared to satellite-derived 

information for determining productive habitats in the GMR. Their findings support the idea 

of topographically induced upwelling of the EUC to surface waters, similar to Witman et al. 

(2010). Finally, Edgar et al. (2004) analyzed fish and macro invertebrate distribution and 

abundances, and recognized four major biogeographic regions that are determined by 

different environmental conditions. Based on these publications, three sites were treated as 

High Upwelling sites and three others as Low Upwelling sites. In addition, the classification 

of the sites in San Cristóbal were based on personal observations at the moment of fish 

collections. Cerro Brujo (classified as a High Upwelling Site) had a temperature 4°C lower 
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than North Tijeretas, and the water column seem to have more particles in suspension. Those 

conditions were similar to High upwelling sites, such as La Botella in Floreana Island, were 

sample collection took place earlier (May of 2015). In comparison North Tijeretas had higher 

temperatures and a better visibility due to less suspended particles, and was classified as a 

Low Upwelling Site.  

 

2.2.2. Sample design and collection of specimens 

A mensurative approach was used to determine the influence of upwelling on patterns of 

growth.  The sampling design was fully nested and hierarchical with the sources of variation 

and treatments as follows: Upwelling (Low and High); sites nested in upwelling (b = 4); n = 

10 adults fish per site. Fish were collected in May and October 2015 using hand spears while 

SCUBA diving; all fish were in the adult size range (>100 mm total length). In May a field 

trip was conducted to the sites in San Cristóbal and Floreana Islands; in October fish were 

collected in Baltra, Fernandina, Pinta and Santiago (Table 1). In May fish were collected 

during daily field trips, stored on ice and transported to be processed at the Marine Ecology 

Laboratory of the Galápagos Science Center (GSC) facility on San Cristóbal Island. Fish 

collected in October were processed on board of the MV Queen Mabel immediately after the 

dive.  

 

2.2.3. Otolith extraction  

In order to extract the otoliths I followed the methods of studies of other pomacentrid species 

(Kingsford, Hughes, & Patterson, 2009); (Walther, Kingsford, O’Callaghan, & McCulloch, 

2010) Acanthochromis polyacanthus; (Sih & Kingsford, 2015) Pomacentrus amboinensis. 

Independently of the time of collection, all fish were maintained in a flat posture before rigor 

mortis to minimize measurement errors. All fish were measured for standard length (SL), fork 
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length (FL) and total length (TL) to the nearest millimeter before dissection. Afterwards, the 

largest pair of otoliths (sagittae) were removed, cleaned with Milli-Q water to remove of any 

tissue left, dried and placed into Eppendorf tubes. Then they were transported to the College 

of Science and Engineering at James Cook University (Townsville, Australia) where otolith 

preparation and chemical analysis took place.  

 
2.2.4. Otolith preparation 

One sagittal otolith was used for aging the fish, while the other for elemental load analysis 

(section 3.2). The former was sectioned transversally, placed in Crystalbond resin on glass 

microscope slides, grounded and polished with lapping film. Mounted otoliths were viewed 

under a Leica DMLB compound microscope using a cold light source. Images were taken 

with the attached Leica DC300 camera and IM50 software. The images were used for aging 

the fish and for width increment measurements, which are considered to be a proxy for annual 

variation in growth (Campana & Thorrold, 2001; Kingsford, O’Callaghan, Liggins, & 

Gerlach, 2017).  

Sectioned otoliths were examined at 200x and opaque annuli (discontinuous zone) and 

translucent bands (continuous zones) identified and the opaque bands were counted from the 

nucleus to the edge of the sagittae. One reader made three different readings of every otolith, 

with an interval of five days between readings. The identification and size of each fish was 

unknown to avoid potential bias in estimates of age. The data of the different readings were 

recorded in different files. After the three readings were done, the information was put 

together in one file to compare. In the cases were readings did not match, a second reader, 

made at least two independent readings before an age was determined, and a consensus was 

reached between the two readers.   
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2.2.5. Growth rate 

Growth rates were described using the von Bertalanffy growth function, a widely known 

method for fishes. This model consists of the measurement of length and the assignment of 

age to individual fish at the time it was collected (Choat & Robertson, 2002). The function 

has been used to describe with accuracy the growth of other pomacentrids (Kingsford & 

Hughes, 2005), Acanthochromis polyacanthus; (Kingsford et al., 2017), Pomacentrus 

coelestis; (Schwamborn & Ferreira, 2002), Stegastes fuscus, and it is described as follows: 

𝐿𝑡 = 𝐿∞(1 − 𝑒𝑥𝑝−𝑘(𝑡−𝑡0)) 

where 

Lt = length at age t; 

L∞ = the asymptote of the growth curve (average maximum length); 

k = the rate at which the growth curve approaches the asymptote (L∞); 

t = age of fish in years; 

to = the theoretical origin of the growth curve (i.e., the hypothetical age of the fish 

when it has no length); and  

exp = the base of the natural logarithm. 

Values of K and L∞ were attained through the Solver routine in Excel. In addition, the four 

oldest fish from all sites were chosen to analyze growth rates. All fish were seven years old or 

older (up to 23 yrs.) and in order to minimize the possible bias that during early years growth 

rates are higher, bandwidth data for the last seven yrs. was used (2009-2015). 

Repeated Measures ANOVA (RM-ANOVA) was used to analyze annual increment since the 

same otoliths were being used, and therefore the data were not independent. This statistical 

approach has been used to analyze temporal variation in element loading during several stages 

of a fish’s life (Sturrock, Trueman, Darnaude, & Hunter, 2012); (Sih & Kingsford, 2015). 
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2.3. Results 

2.3.1. Age estimation 

The collected fish included ages from 3 up to 23 yrs. The mean age of fish from High 

upwelling sites was 7.944 yrs. (SE=0.631) and was very similar to that of fish from the Low 

upwelling treatment (mean age = 7.881 yrs, SE=0.602); however the age distribution for High 

upwelling sites is normal, while in the Low upwelling regime there are several young 

individuals (Fig. 2). 

The maximum age of fish was found at a High upwelling site (La Botella, Floreana 

Island) and it was 23 yrs., while the oldest fish found across all Low upwelling sites was 19 

yrs. old and it was collected in Beagle Rocks (Figs. 2 & 3). On the other hand, there was a 

trend for fish to be larger in areas of High upwelling (SL Mean=119.2; SE=1.18) compared to 

lLow upwelling sites (SL Mean=113.6; SE=1.53, Figs. 4 & 5).  

 

2.3.2. Growth of all individuals  

Although von Bertalanffy growth curves demonstrated that length at infinity was similar 

between upwelling regimes (~ 119 mm SL, Fig. 6), the rate of growth to L∞ was higher in 

fish from areas of High upwelling (K = 0.8, cf 0.5 in Low upwelling, Table 2). This parameter 

expresses the mean length the fish of a given stock would reach if they were to grow for an 

infinitely long period. Fish grew more rapidly, therefore, early in life at upwelled areas 

compared to areas of Low upwelling 

The spacing of increments (space between annuli) also showed that for fish of similar 

age the increments were more widely spaced early in life and when compared to fish from 

Low upwelling sites.  Late in life, when growth had slowed, increment spacing was similar 
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between upwelling regimes (Fig. 7). Accordingly, the ability to detect differences in growth 

between upwelling regimes was best when fish were young (ie < 6 yrs. old) (Fig. 7).  

 

2.3.3. Annual growth rates 

The growth rates through time were significantly different, however not across different 

upwelling regimes (RM ANOVA, Table 3a). Nevertheless, there is a strong trend for fish of 

High upwelling sites having wider average annual increments than fish from Low upwelling 

sites (Fig. 7), which suggest a faster growth in High upwelling sites, specifically early in life. 

On the other hand, growth rates were significantly different across all sites and years and their 

interaction (RM ANOVA, Table 3b). 
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3. Elemental Chemistry Analysis 

 

3.1. Hypothesis  

 
I hypothesized that the variation in environmental conditions (i.e. water temperature, primary 

productivity) between sites with High or Low upwelling regime should be reflected in the 

elemental load in the otoliths of the yellow-tail damselfish. In order to test this, two 

approaches were used: (1) a mensurative experiment where fish were collected from areas 

known to be characterized by Low and High upwelling; sites of collection in the nested 

design were the same as in Chapter two. (2) a manipulative experimental design was used to 

determine the effects of temperature and food ration on elemental signals. 

 

3.2. Materials and Methods 

 
3.2.1.  Elemental chemistry analysis with all adult fish    

One otolith from each pair (of samples collected according to section 2.2.2) was randomly 

selected and weighed using a Sartorius Genius microbalance to the nearest 0.00001 gr. 

Otoliths were then cleaned in 1% HNO3 (65% Merck Suprapure) for 5 to 10 s, rinsed three 

times in Milli-Q water and allowed to dry inside a positive flow Class-100 laminar flow 

cabinet (AS 1807). Samples were dissolved in 500 µl of HNO3 (20%); the solution was then 

made up to a final volume of 5 ml with Milli-Q water; otoliths were previously partitioned 

into groups by eight category for appropriate dilution factor. Samples were analysed on a 

Varian 820 inductively coupled plasma mass spectrometer (ICP-MS). Blank samples (without 

otoliths), were prepared in the same fashion and were used for ‘blank corrections’ and to 

calculate limits of detection (Kingsford et al., 2009).  
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3.2.2. LA-ICP-MS analysis of selected adult fish 

Sectioned otoliths, corresponding to the two oldest fish from Champion, La Botella, Cabo 

Ibbetson and Punta Mangle, were analyzed with a GeoLas 200 Excimer Laser Ablation 

System (193 nm) coupled to a Varian 820 ICP-MS at the Advanced Analytical Centre in 

James Cook University. Certified reference material was used to calibrate the equipment. All 

samples were pre-ablated from the core through the margin with one spot path at 1 Hz with a 

24 µm aperture to remove surface material. Ablation was performed on the previous path with 

a 16 µm aperture at 5 Hz with 10 pulses per spot (58 mJ). Ablated material was delivered to 

the ICP-MS via an Ar-He carrier gas.  

These sites were chosen considering the evidence described in the literature that 

strongly suggest that La Botella (Floreana) and Punta Mangle (Fernandina) have a strong 

upwelling regime, whereas Champion (Floreana) and Cabo Ibbetson (Pinta) have weak 

upwelling regimes (Edgar et al., 2004; Sweet et al., 2007; Witman et al., 2010; Krutwa, 2014; 

Vinueza et al., 2014). The two oldest fish per site (≥ 9 yrs. old) were selected for this analysis 

in order to maximize the detection of temporal variation. 

 

3.2.3.  Elemental chemistry analysis with juvenile fish 

As both of these factors are known to affect elemental ratios in other studies (e.g. in Walther 

et al. 2010), I hypothesized that water temperature and the food ration would alter damselfish 

otolith chemistry. To test this, I performed an experiment with an orthogonal design with 

temperature (three levels: High, Mid, Low) and food quantity (three levels: High, Mid, Low) 

as fixed factors and the ratio between the different chemical elements and Ca as the response 

variable. The amount of food was based on levels that had the potential to affect growth, and 

were also used by (Munday, Kingsford, O’callaghan, & Donelson, 2008) and Walther et al. 

(2010), where somatic differences by food ration were measured. On May 21st, 2015, 40 
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juvenile S. arcifrons (< 50 mm TL) were collected at Tijeretas, San Cristóbal Island, using 

hand nets and 1:10 clove oil-to-ethanol mixture to enhance survivorship prior the experiment. 

All fish were taken to the GSC Marine Ecology Lab and placed in a 200 L tank with constant 

airflow and filtered seawater. Fishes were allowed to acclimatize for 24 hrs at 22°C. During 

this period fish were ad libatum during the day every 6 hrs with a mixture of the following 

commercial fish pellets (INVE Aquaculture): NRD 3/5 (0.3-0.5 mm), NRD G8 (0.8 mm) and 

NRD G12 (1.2 mm).  

For the experimental phase, 36 fish were randomly chosen and placed in pairs in one 

of the 18 50 L fish tanks that were used for the experiments. All tanks had a constant flow of 

filtered seawater and were internally divided in two with a plastic mesh, which allowed 

having two fish per tank sharing the same temperature treatment, but preventing the fish from 

affecting each other’s food ration.  Care was taken to drop food close to target fish to 

minimize the chances that they would miss the ration.  

All Food treatments consisted of the same quantity of commercial fish pellets per fed, 

however the frequency of food provision varied. High Food Treatment fish were fed twice per 

day and every day during the experiment, Medium Food Treatment fish were fed once every 

day, and Low Food Treatment fish only once every other day. Each ration consisted of two 

NRD G8 (0.8 mm) and three NRD 3/5 (0.3-0.5 mm) INVE Aquaculture pellets, which were 

the sizes preferred by the fish during the acclimatization period. 

I chose three different temperatures for the Temperature Treatment: 18°C, 22°C and 

24°C (Low, Medium and High Temperature, respectively). These temperatures were chosen 

to reflect average SST in distant sites of the archipelago that are known to have variable 

oceanic conditions, including different upwelling regimes. For instance, in Punta Espinosa in 

Fernandina Island (located in the West, it is considered a High Upwelling Site), an average 

SST of 18°C was recorded before the 1997-1998 El Niño event, while in Wolf Island (located 
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in the far North, where water temperature is the highest) the average SST was 24°C 

(Wellington, Strong, & Merlen, 2001). Similar average water temperatures were also reported 

in more recent studies; the northeast side of the archipelago having >25°C and the upwelling 

zone west to Isabela, <20°C (Sweet et al., 2007). The 22°C treatment was chosen as the 

midpoint between the other two.  

At the end of the experiment (9 d), all fish were euthanized with Ethanol (95%), stored 

in individual 12 ml Falcon Vials and transported to the College of Science and Engineering of 

James Cook University, where otolith extraction, preparation and chemical analysis took 

place. Before dissection, all fish were measured to the nearest ml for standard (SL) and total 

length (TL) and weighted to the nearest 0.001 gr. Both sagittae were extracted and cleaned 

with Milli-Q water to get rid of any remaining tissue. Then they were let dry for 24 hrs before 

processed. One otolith per fish was randomly chosen, transverse- sectioned, placed in 

Crystalbond resin on glass microscope slides, grounded and polished with lapping film; 

similarly to the handling and preparation of adult otoliths. 

The otoliths of the experimental fish were analyzed with La-ICP-MS the same way as 

for adult fish. However, only the data obtained from the laser ablation spots performed on the 

external edge of the otolith were used on the analysis since that section corresponded to the 

growth that took place during the experiment. 

 

3.2.4. Data Analyses 

Otolith Elemental Chemistry of Adult Fish (Mensurative Design) - In order to analyze 

individual element loads, a Nested ANOVA design was applied with upwelling regime (two 

levels, High or Low) and sites (b=4) nested in each upwelling regime as fixed and random 

factors, respectively. Some otoliths were lost; in these cases a degree of freedom was 
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subtracted for each loss, so the balanced design (n=10 fish per site) was not affected 

(Underwood, 1996).  

The elemental fingerprints were also analyzed using Principal Component Analysis 

(PCA). Raw elemental ratios contributed to PC1 and PC2.  The PC scores were used as an 

aggregate score representing a multi-element signal. These scores were then analyzed with the 

same Nested ANOVA design as above.  This approach was also used for the data analysis 

corresponding to the manipulative experiment.   

Data obtained from the LA-ICP-MS phase was plotted after outliers were removed, 

comparing elemental loads with the literature (Ruttenberg & Warner, 2006; Kingsford et al., 

2009). Considering that the use of LA-ICP-MS was to show how element incorporation took 

place through the life of the fish, exponential smoothing was performed in order to reduce 

noise in the visualization of the data (5-point moving average, 0.5 damping factor). The data 

input for the plots was done with an emphasis in overlapping the margin and going backwards 

to the core, considering that not all fish were born in the same year. 

In order to determine any patterns related to temperature and elemental load, satellite 

derived SST monthly averages data near our collection sites was obtained for a 20 yr. period 

(1995-2015) (IRI/LDEO Climate Data Library: http://ingrid.ldgo.columbia.edu). Element 

ratios (Ba/Ca and Sr/Ca) were correlated to the average temperature for that 20 yr. period on 

every site.  

 

Otolith Elemental Chemistry of Juvenile Fish (Manipulative design) - A Two-Way ANOVA 

design was applied with Food (three levels: High, Mid, Low) and Temperature (three levels: 

High, Mid, Low) as fixed factors. Similarly to the adult fish otolith analysis, a PCA was also 

applied for elemental fingerprint analyses, with PC1 and PC2 used in separate analyses. 

Minitab Statistical Software 17.0 was used for all statistical analysis and plots.  
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3.3. Results   

3.3.1. Elemental chemistry analysis with all adult fish 

Contrasting patterns of elemental ratios were found among upwelling regimes (Fig. 8). Some 

elements showed significant differences between High Upwelling and Low Upwelling sites 

(Ba/Ca and Mn/Ca), while others did not (Mg/Ca and Sr/Ca) (Fig. 8, Table 4). Significant 

differences were found among Sites within Upwelling Regimes for all elements (Table 4), 

and this variation explained 19.1 to 62.9 % of the total variation in the analyses. Variation 

among replicate fish, within sites, was 25.8 to 80.9 % of the total variation (Table 4). 

In general, Ba/Ca ratios were lower in High upwelling sites (Mean 11.77 µmol/mol 

[1.00 SE]) compared to Low upwelling sites (Mean 33.39 µmol/mol [3.31 SE], Figure 8). 

There were also significant differences among sites within upwelling regimes, however the 

upwelling regime explained most of the variation (42.6%), while site within upwelling regime 

explained 24.6% and replicate fish 32.8% (Table 4). Similar to the Ba/Ca ratio, the Mn/Ca 

ratio was significantly lower in High upwelling sites compared to Low upwelling sites (Figure 

8); with a High upwelling Mean of 1.33 µmol/mol [0.133 SE] and a Low upwelling Mean of 

2.23 µmol/mol [0.114 SE]), however it only explained 25.7% of the variation (Table 4).  

There were not significant differences for the Mg/Ca (High upwelling Mean 63.89 

µmol/mol [5.51 SE]; Low upwelling Mean 71.94 µmol/mol [4.91 SE]) and the Sr/Ca (High 

upwelling Mean 5.48 mmol/mol [0.213 SE]; Low upwelling Mean 6.97 mmol/mol [0.392 

SE]) ratios between Upwelling Regimes (Table 4, Fig. 8). Most of the variation for the Mg/Ca 

ratio was explained by the replicate fish (80.9%, Table 4). This contrasts to the greater 

percentage of the variation being explained by the Sites within Upwelling regime, for both the 

Mn/Ca and the Sr/Ca ratios (48.5 and 62.9%, respectively, Table 4). 

The results from the PCA indicated great variation in individual elemental fingerprints 

(individual fish). The majority of fishes in Low upwelling areas had positive values in PC1 in 
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contrast with those in High upwelling areas that had negative values (Fig. 9). PC1 explained 

50.7% of the variance, and was characterized by high Sr and Ba values whereas PC2 (21.7% 

of the variance) presented high negative Mg values. Mn was the element that contributed the 

less in the two principal components and in the elemental fingerprint in general (Table 5; Fig. 

9). 

PC1 multi-element signatures had a strong trend for upwelling, however it was not 

significant (Nested ANOVA, Table 5). Most of the variation was explained at the site level 

(within upwelling treatments, 38.5%), with individual fish explaining 37.71% of the variation. 

As for PC2 the residual explained 86.64% of the variation according to the analysis (Table 5). 

PCA values for individual fish for PC1 were higher in Low upwelling sites compared to High 

upwelling sites; PC2 values were negative for High and Low upwelling regime sites (Fig. 10). 

Sr/Ca ratios profiles from the LA-ICP-MS transects (Fig. 11) support the findings 

described above, with Low upwelling sites having higher Sr loads. Two peaks for the Low 

upwelling sites can be observed, one around spot 350, and another between spots 450 and 

500. Ba/Ca ratio detection limit was two orders of magnitude lower compared to otolith 

analysis of adult fish (which was not the case for Sr/Ca), the profile does not show a very 

clear pattern, however there is a consistency in that in average metal-to-calcium ratio in Low 

upwelling sites have a higher Ba/Ca ratio.  

The correlation between SST and elemental load was strong for Sr/Ca ratios (r2=0.411, 

Fig. 12), with the fish collected in some Low upwelling sites (Cabo Ibbetson and Champion) 

having a higher Sr load than sites from High upwelling (La Botella and Punta Mangle). A 

similar pattern was observed for Ba/Ca ratios, although it was weaker relation (r2=0.269, Fig. 

12). 
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3.3.2. Elemental chemistry analysis with juvenile fish 

In general elemental differences between the experimental treatments were rare, although 

there were strong trends for some elements. Sr/Ca ratio showed significant differences among 

temperature treatments, having consistently highest values for high temperature treatments 

and this was independent of levels of food rations that were given to fish (Table 6; Fig. 13). In 

addition, high residual differences for most element ratios suggest great differences between 

individual fish (Table 6, this was represented by SE of up to 50% of the mean). There 

appeared to be an interaction between temperature and food ration for Ba/Ca ratios, but this 

was not significant (Fig. 13). For Mg/Ca and Zn/Ca ratios, although there were no significant 

differences among treatments, a strong trend for high element/Ca values can be found in the 

high food and high temperature treatments (Fig. 13).  There were no significant differences 

for Mn/Ca and Cu/Ca ratios either, however there was a strong trend for low values where the 

food ration was low (Fig. 13). 

No differences in elemental fingerprints were identified (Fig. 14) and the two-way 

ANOVA did not detect any significant differences among PC scores (Table 7). The use of 

multivariate analysis did not result as useful as for the adult fish. The results from the PCA 

indicated great variation in individual elemental fingerprints. The majority of fishes in 

medium temperature and medium food treatments had negative values both in PC1 and PC2, 

while high food and high temperature treatments had positive PC1 values (Fig. 14). PC1 

explained 56.7% of the variance, and was characterized by high Zn/Ca and Cu/Ca values, 

Mg/Ca and Ba/Ca values were also important in PC1. PC2, explaining 19.6% of the variance, 

presented high Sr/Ca values and high Mn/Ca negative values. However multi-element 

signatures have a strong trend for high food and high temperature treatments for PC1 (Table 

7, Fig. 15). As for PC2 no significant differences were found according to the analysis, 
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although there was a trend for low and mid temperatures for higher PC value no matter the 

food treatment (Table 7, Fig. 15). 
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4. DISCUSSION 
 
I have provided strong evidence that fishes collected in Low and High areas of upwelling 

have different patterns of growth and elemental chemistry of the otoliths.  My conclusions 

were based on a broad scale mensurative design and was supported by a-posteriori analyses 

of temperature data from satellites and a manipulative experiment.  It was clear that strong 

inference on the environmental regime that fish experience could be deduced from growth 

and elemental chemistry without site-specific historical environmental measurements.  I also 

predict that interactions among individuals, particularly with respect to the availability of food 

is likely to be highest where upwelling is low and variance in elemental signatures was as 

Ba/Ca were highest.  

 

4.1. Patterns of growth 

The findings presented here (von Bertalanffy parameters) support the hypothesis that fish 

grow faster in areas of High upwelling, this was especially the case for young fish that are 

shorter for their age in Low upwelling regime compared to the fish growing in High 

upwelling regimes. In a previous study growth parameters for S. arcifrons were reported for 

the whole Archipelago without considering environmental variation, even though fish were 

collected in several locations with different conditions and the sample size was fairly large 

(n=301), the mean asymptotic standard length was smaller than in this thesis compared to 

either High or Low upwelling fish (103.8 mm SL), however the coefficient of growth was 

larger than my findings for Low upwelling sites (0.75)  (Meekan, Ackerman, & Wellington, 

2001).  The results that I describe show a similar pattern to what was found by Kingsford & 

Hughes (2005) in Acanthochromis polyacanthus (Pomacentridae) (inner, mid-, and outer shelf 

comparison) growth correlated with an environmental gradient, however they found similar 
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maximum age, suggesting that the differences in growth patterns correspond to quantity and 

quality of food. 

This idea is supported by another study of the Rockfishes (Sebastes spp.) that showed 

higher individual growth (as well as recent settlement and juvenile recruitment) in a year of 

productivity bloom in the California upwelling system (Wheeler, Anderson, Bell, Morgan, & 

Hobbs, 2016). Similarly, the growth of the deep sea fish hapuku (Polyprion oxygeneios is 

favored by the Leeuwin Current, an east boundary current that influences the primary 

productivity in south-western Australia (Nguyen et al., 2015). 

In another study of A. polyacanthus, it was experimentally demonstrated that temperature and 

food supply affected the growth of juveniles and adults. Individuals grew more on high food 

rations, but growth declined with increasing temperature, in fact at the highest temperature 

treatment (30 ºC) growth was very similar disregarding food ratio (Munday et al. 2008).  

Contrastingly,  (Neuheimer, Thresher, Lyle, & Semmens, 2011) reported that 

populations of banded morwong (Cheilodactylus spectabilis) in the Tasman Sea near the 

center of the species range showed acceleration of growth with increasing temperature, while 

those at the warm margin of the range showed decreased growth rates, indicating that 

temperatures may have already reached levels associated with increased metabolic costs. 

(Rountrey, Coulson, Meeuwig, & Meekan, 2014) observed that the growth of the western 

blue groper (Achoerodus gouldii), in Wetern Australia, tend to respond positively to increased 

temperature which may indicate a physiological effect, also it could be related to prey 

availability or other biotic interactions, or a combination of both. It is worth mentioning that 

the abundances of several other marine invertebrate and fish species found off southwestern 

Australia appear to be influenced by the strength of the Leeuwin Current, therefore food 

availability may be the limiting factor for growth in this case. 
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The results I am presenting agree with what was reported by (Schwamborn & Ferreira, 

2002)  for Stegastes fuscus in Brazilian waters: high individual variability in growth therefore 

suggesting that length frequencies are not ideal to determine growth rate, nonetheless otoliths 

proof to be reliable for age determination. Greater variance on the SL of fish of a given age 

for those individuals collected at Low upwelling sites probably contributed to this pattern.  

Estimations of age, growth and mortality in wild fish generally required a large sample 

size of different age classes. For this reason my comparisons of age and size among sites 

within upwelling regimes were not considered robust. However, at the level of upwelling the 

evidence was strong.  Only the largest fish were collected (ie close to L∞) and it was not 

possible that we could have selected ages and sizes by treatment.  Potential differences among 

sites could be explored with large sample sizes.  

 

4.2. Elemental chemistry 

My findings demonstrate that there are differences in element incorporation into the otolith of 

fish between upwelling regimes, and furthermore within treatments there was significant 

variation as well. This partially agrees with the variation in elemental chemistry in 

Acanthochromis polyacanthus, in the Great Barrier Reef, that was explained, to a large degree 

at the site level, however Ba/Ca ratios were higher where upwelling occurred (Kingsford et al. 

2009). Contrastingly in the GMR it is the opposite, Low upwelling sites had greater Ba/Ca 

concentrations, which agrees with the experiment conducted by Walther et al. (2010) who 

reported significant interactive effects between life history stage, temperature and food 

quantity were observed for otolith Ba/Ca ratios for A. polyacanthus ; sub-adults had higher 

ratios than juveniles or adults, and juveniles reared with low quality food had higher Ba/Ca 

concentrations than those with high quality diet, which corresponds with my findings in wild 

fish.  



43 
 

Significant differences were observed for Ba/Ca ratios related to temperature,  for 

juvenile black bream, Acanthopagrus butcheri in a manipulative experiment, where Ba/Ca 

concentration ratio increased with temperature but the upper and lower  temperature 

treatments showed no significant differences (Elsdon & Gillanders, 2002). 

The relation of Sr/Ca and temperature was evident in this study when compared to 

SST and supported by the findings in the manipulative experiment, S. arcifrons Sr 

incorporation into its otolith increases with temperature, and apparently food consumption is 

not an important mechanism for Sr incorporation. However, due to a low resolution in the 

satellite imagery data, which failed to discriminate the patchiness of upwelling events in the 

archipelago, sites that are close but are known to have contrasting upwelling regimes (e.g. La 

Botella and Champion, in Floreana) were considered to have the same SST average, this 

would have added unknown residual to the analysis. 

  In the experiment mentioned above with juvenile black bream, A.s butcheri Sr/Ca 

ratios was significantly greater at low and high temperatures (12 and 16°C and 28°C, 

respectively) (Elsdon & Gillanders, 2002); while significant inter- actions between stage and 

food were observed for Sr/ Ca in A. polyacanthus (Walther et al., 2010). In another 

experiment it was demonstrated that genetic component (stock) has a strong interactive effect 

with salinity and temperature for Sr incorporation, but salinity interacted just with the genetic 

factor for Ba incorporation for the mulloway (Argyrosomus japonicus) reared in captivity 

(Barnes et al., 2013).   

When ploted, Sr/Ca LA-ICP-MS transects, two peaks are easily recognizable, these 

peaks may correspond to 2010 and 2015 when El Niño events were reported, however further 

data analysis is needed to confirm this, despite that high correlation between the Sr/Ca ratio 

and SST, with Sr load increasing with higher temperature, suggests this may be the case.  A 

possibility that can be supported by the fact that seasonal variations in otolith elemental 



44 
 

composition is thought to reflected physiological controls, which are likely moderated by 

ambient temperature. This was particularly evident in Sr/Ca ratios in the European plaice 

Pleuronectes platessa (Sturrock et al. 2015). 

Liu et al. (2013) findings demonstrate that throughout the Archipelago different 

current systems affect some areas in a different fashion, in some areas are affected by only 

one current, and in other regions the influence of several currents occur, seasonality plays an 

important role in the interactions of environmental conditions. In this sense the use of 

multivariate analysis for the elemental fingerprints in the otoliths of territorial fish can be a 

very useful tool helping to discriminate/identify areas with contrasting environmental 

conditions (upwelling regime that affects nutrient input); the great variation at the site level 

from our results supports the idea that seasonality as well as upwelling regime play and 

important role in damselfish ecology.  

In structurally complex areas, where fish are more abundant and resources are often scarce, 

herbivorous fish may be forced to consume less-optimal resources relative to those in low- 

complexity areas, which are less-preferred habitats and may have better quality food 

sources.(Catano, Shantz, & Burkepile, 2014). In the Galapagos rocky reefs a territorial fish 

has to consume whatever is available, and at the same time there is the factor of inter specific 

competition since yelow-tail damselfish are quite abundant where it occurs. Vinueza et al. 

(2014) have already point out that at low productivity areas, there is a strong top down effect 

on algal cover in the intertidal zone, where high quality algae are scarce, and such mechanism 

is probable to happen in the shallow sub tidal zone as well. Edgar et al. (2010) noted that sea 

urchin numbers are increasing in numbers probable because top predators that feed on 

urchin’s predators have been removed from the system, therefore increasing competition in 

Low upwelling areas, where resources are already scarce, which implies that territorial fish 

may experience starvation occasionally. The potential impact of El Niño events is also a 
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source of disruption in the system, there are well documented evidence of areas that use to 

harbor abundant microalgae populations that no longer exist (Tompkins & Wolff, 2017), and 

otolith elemental analysis can be a reliable tool to reconstruct the life history of reef fish. 

Biological factors, such as metabolism, kinetics, and ontogeny, are thought to 

influence otolith microchemistry. Sadovy & Severin (1994) reported that the concentration 

ratio of Sr/Ca in fish otoliths was inversely related to the growth rate of the fish, which can be 

an explanation of my findings, since Sr/Ca ratios were higher where growth rate was slower 

in S. arcifrons. Physiological processes may be contributing to an important extent in the 

recording of different elements and therefore establishing unique fingerprints for different 

sites. Recent studies on the European plaice Pleuronectes platessa strongly suggest that 

growth and reproduction have a strong effect in element incorporation into the otolith, and the 

seasonal variation in environmental conditions trigger those physiological responses (A. M. 

Sturrock et al., 2014); (A. M. Sturrock et al., 2015). There is the need for more exploration on 

this trends in tropical species, since elemental incorporation has being assumed to have 

primarily an environmental drive (Campana 1999; Doubleday et al. 2013). A recent study 

(Grammer et al., n.d.) on the reef ocean perch (Helicolenus percoides), confirmed that Sr/Ca 

is mainly controlled by physiological processes, while Ba/Ca is more environmentally 

influenced. This supports our findings regarding Sr/Ca and its relation with temperature, both 

in the wild and in the experimental phase. 

 Stegastes arcifrons is a reef fish species that live in fairly shallow waters, during our 

study we were no able to find this species deeper than 7 m, and therefore similarities to 

intertidal habitats can be drawn to some extent, however further studies are needed to 

corroborate this idea. However in periods of low food or even starvation any organism will 

have a somatic response, and growth will have a slower rate than in conditions of food 

surplus. As Sturrock et al. (A. Sturrock et al., 2012) have stated physiological hypothesis is 
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based on the coupling of somatic growth rates with protein synthesis, with significant changes 

in the protein composition of biological fluids affecting the availability of ions for uptake into 

the otolith, which can be reflected both in element incorporation and therefore annual 

increments. The abundance and wide distribution of S. arcifrons in the GMR provide the 

opportunity to continue to study this species, the analysis of otoliths for aging and 

microelement incorporation has been useful to understand the ecological differences between 

High and Low upwelling sites. A manipulative experiment for a longer period would be 

adequate to deepen in the understanding of the relation of environmental factors in fish 

growth and element incorporation into the otolith.  
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5. CONCLUSION 

 

It can be concluded that upwelling regime strongly affects patterns of growth and elemental 

concentrations in otoliths.  In this sense it was demonstrated that otoliths are excellent 

environmental loggers. Even though there was significant variation in elemental load between 

upwelling treatments, most of the variation occurred at the site level. In an environmental 

patchy archipelago such as the Galapagos I advise against pooling age length data; a greater 

sample size would be needed to explore the possibility of age/length relation occurring at site 

level.   

Ba and Sr proved to be the more reliable elements to discriminate upwelling strength, Mn also 

seem to be useful when it comes to site level identification, and not so much at upwelling 

regime discrimination, however the three elements combine as elemental fingerprints seem to 

explain most of the variance, and may be useful to discriminate between sites in further 

otolith elemental chemistry studies.  

I also found that temperature plays a strong role in determining elemental patterns, especially 

for Sr.  There is considerable evidence that Ba signatures are heavily influenced by how well 

fish feed.  Where variance is high among individuals could be an index of competition (e.g. 

Cabo Ibbetson, Pinta).  It is likely that territorial herbivores may be competing aggressively 

for food – resulting in winner and loser, having data of fish densities would help to test this 

assumption.  Patterns of growth and elemental chemistry provide a tool for diagnosing 

upwelling regimes and provide a hypothesis generating platform for ecological processes that 

could be occurring by site. 
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7. TABLES AND FIGURES 

 

Table. 1 Sites where adult Stegastes arcifrons were collected in the GMR 

Site Island Upwelling Regime Reference 

La Botella Floreana 

High 

Witman et al. 2010 

Punta Mangle Fernandina Edgar et al. 2004 

Cerro Brujo  San Cristóbal Schaeffer et al. 2008 

North Baltra Baltra Witman et al. 2010 

Champion Floreana 

Low 

Witman et al. 2010 

Cabo Ibettson Pinta Edgar et al. 2004 

Tijeretas San Cristóbal This study 

Beagle Rocks Santiago Witman et al. 2010 

 

 

Table 2. Summary of von Bertalanffy growth parameters for S.arcifrons from High 

and Low upwelling sites. 

Upwelling regime n L∞ K 

High 36 120.63 0.807 

Low 40 118.24 0.546 

All fish 76 119.06 0.654 

 

 

 

 

Table 3. RM-ANOVA for annual band increments 

a) Upwelling 

Source df MS F P 

Upwelling 1 2548.9 5.05 0.066 

Year 6 8128.2 16.11 0.002 

Interaction 6 504.6 1.33 0.244 

Residual 210 378.7   

b) Site 

Source df MS F P 

Site 7 3355.8 5.97 0.000 

Year 6 8128.2 14.47 0.000 

Interaction 42 561.8 2.48 0.000 

Residual 168 226.3   

Data correspond to the four oldest fish from all sites. n=16 fish per upwelling regime. 
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Table 4. Nested ANOVA for elemental ratios of otoliths of adult fish with variance 

components for each factor expressed as the percentage (%) of the total variation 

 
Ba137/Ca43 

 df MS F P % 

Upwelling Regime 1 9351.63 7.12 0.009 42.6 

Site (Upwelling Regime) 6 1314.25 8.51 0.000 24.6 

Residual 70 174.28   32.8 

 
Mn55/Ca43 

 df MS F P % 

Upwelling Regime 1 16.02 6 0.017 25.7 

Site (Upwelling Regime) 6 5.32 19.83 0.000 48.5 

Residual 60 0.27   25.8 

 
Mg25/Ca43 

 df MS F P % 

Upwelling Regime 1 1298.32 0.39 0.532 0 

Site (Upwelling Regime) 6 3302.93 3.34 0.006 19.1 

Residual 66 986.73   80.9 

 
Sr88/Ca43 

 df MS F P % 

Upwelling Regime 1 44060800 1.32 0.254 5.3 

Site (Upwelling Regime) 6 33331333.33 20.74 0.000 62.9 

Residual 69 1606492.75   31.8 

 

Table 5. Nested ANOVA for values for the Principal Components PC1 and PC2 of 

otoliths of adult fish with variance components for each factor expressed as the 

percentage (%) of the total variation 

 
Values for PC1 

 df MS F P % 

Upwelling Regime 1 5080.63 3.251 0.121 23.79 

Site (Upwelling Regime) 6 1562.87 11.211 0.000 38.50 

Residual 72 10037.19   37.71 

 
Values for PC2 

 df MS F P % 

Upwelling Regime 1 11.58 0.006 0.942 0.0* 

Site (Upwelling Regime) 6 1997.81 2.542 0.027 13.36 

Residual 72 785.99   86.64 

*The variance component value was negative, and was estimated by zero. 
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Table 6. Two-Way ANOVA for elemental ratios in the marginal edge of the 

otolith of juvenile fish 

 
Ba137/Ca43 

Source df MS F P 

Food 2 0.000034 0.32 0.728 

Temperature 2 0.000192 1.85 0.173 

Interaction 4 0.000181 1.75 0.161 

Residual 26 0.000103   

 
Mg25/Ca43 

Source df MS F P 

Food 2 0.3574 0.41 0.666 

Temperature 2 1.8040 2.07 0.141 

Interaction 4 2.1347 2.45 0.064 

Residual 26 0.8699   

 
Mn55/Ca43 

Source df MS F P 

Food 2 0.00193 0.74 0.484 

Temperature 2 0.00207 0.79 0.461 

Interaction 4 0.00231 0.88 0.486 

Residual 26 0.00261   

 
Sr87/Ca43 

Source df MS F P 

Food 2 0.00938 0.12 0.887 

Temperature 2 0.32233 4.06 0.026 

Interaction 4 0.02810 0.35 0.842 

Residual 26 0.73425   

                                                Cu65/Ca43 

Source df MS F P 

Food 2 7.1715 3.19 0.053 

Temperature 2 3.5735 1.59 0.218 

Interaction 4 3.1885 1.42 0.248 

Residual 26 2.2466   

 
Zn66/Ca43 

Source df MS F P 

Food 2 1.103 2.89 0.069 

Temperature 2 0.606 1.58 0.221 

Interaction 4 0.599 1.57 0.204 

Residual 26 0.381   
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Table 7. Two-way ANOVA for elemental ratios for the Principal Components 

PC1 and PC2 of otoliths of juvenile fish 

 
Values for PC1 

Source df MS F P 

Food 2 4.953 2.30 0.119 

Temperature 2 4.139 1.92 0.165 

Interaction 4 4.053 1.88 0.142 

Residual 27 2.150   

 
Values for PC2 

Source df MS F P 

Food 2 0.2291 2.09 0.143 

Temperature 2 0.0569 0.52 0.601 

Interaction 4 0.0876 0.80 0.536 

Residual 27 0.1095   
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Figure 1. Study sites with High upwelling (blue dots) and Low upwelling (red dots) in the 

GMR. Orange lines show the limits of the reserve; the inner line is a baseline used to 

project the 40 nm boundary of the protected area. 
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Figure 2. Age-frequency distributions for S. arcifrons. Data pooled by Upwelling regime. 

High Upwelling n=36; Low Upwelling n=40. All age estimates were derived from counts of 

otolith annuli. Arrows indicate means. 

 

 
Figure 3. Age-frequency distributions for S. arcifrons across four High Upwelling Sites 

(Dark grey) and four Low Upwelling Sites (light grey). For all sites n=10, except for Cerro 

Brujo (n=9), La Botella (n=9) and North Baltra (n=8). All age estimates were derived from 

counts of otolith annuli. 
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Figure 4. Size-frequency distributions for S. arcifrons. Data pooled by Upwelling regime.   

High Upwelling n=36; Low Upwelling n=40. Arrows indicate means. 

 
 

 
Figure 5. Size-frequency distributions for S. arcifrons collected across four High Upwelling 

Sites (Dark grey) and four Low Upwelling Sites (light grey). For all sites n=10, except Cerro 

Brujo (n=9), La Botella (n=9) and North Baltra (n=8). 
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Figure 6. Von Bertalanffy growth curves fitted to length-at-age data of all age classes of S. 

arcifrons at High upwelling (blue dots) and Low upwelling (red dots) sites. SL = Standard 

length. High Upwelling n=36; Low Upwelling n=40. 
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Figure 7. Comparison of mean ± SE band widths between annuli of S. arcifrons, from High 

and Low upwelling regimes. Data correspond to the four oldest fish from all sites. n=16 fish 

per upwelling regime. For High upwelling sites minimum age was 7 yrs. and maximum age 

was 23 yrs., for Low upwelling sites it was 7 and 19 yrs., respectively.   
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Figure 8. Variation in metal-to-calcium ratios in otolith of adult fish among High Upwelling 

Sites (Cerro Brujo [CB], La Botella [LB], North Baltra [NB] and Punta Mangle [PM]) and 

Low Upwelling Sites (Beagle Rocks [BR], Cabo Ibettson [CI], Champion [CH] and North 

Tijeretas [NT]). Standard error bars, n = 10 fish. Dotted lines represent the mean. For 

Mn55/Ca 43 there was not a detectable amount by the ICP-MS in PM. Asterisks represent 

outliers within acceptable levels. 
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Figure 9. Principal Components Analysis Score plot of elemental loads in otoliths of adult 

fish by upwelling regime. Each point represents a single otolith. PC1 loads are 0.562 

Sr88/Ca43, 0.556 Ba137/Ca43, 0.519 Mn55/Ca43 and 0.325 Mg25/Ca43, while PC2 ratios 

are -0.917 Mg25/Ca43, 0.289 Ba137/Ca43, 0.274 Sr88/Ca43 and -0.032 Mn55/Ca43. 
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Figure 10. Variation in Principal Component Values in metal-to-calcium ratios in otolith of 

adult fish among High Upwelling Sites (Cerro Brujo [CB], La Botella [LB], North Baltra 

[NB] and Punta Mangle [PM]) and Low Upwelling Sites (Beagle Rocks [BR], Cabo Ibettson 

[CI], Champion[CH] and North Tijeretas [NT]). Standard error bars, n = 10 fish. Dotted lines 

represent the mean. 
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Figure 11. Mean Ba/Ca and Sr/Ca profiles for LA-ICP-MS data of otoliths of adult fish. The 

values in the x-axis represent the number of Laser Ablation spot; the higher values coincide 

with the marginal edge of the otoliths. Dotted lines represent the mean.  
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Figure 12.  Correlation between Sea Surface Temperature (SST) and metal-to-calcium ratios 

of otoliths of adult fish (Sr/Ca r2=0.411, Ba/Ca r2=0.269). 
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Figure 13. Variation in metal-to-calcium ratios from the edge of the otolith of juvenile fish 

among experimental treatments: Temperature (Low [L], Medium [M] and High [H]) and 

Food (Low [L], Medium [M] and High [H]). Standard error bars. 

 

 

 

Food

Temp

HML

HMLHMLHML

0,035

0,030

0,025

0,020

0,015

0,010

0,005

0,000

B
a
1
3
7
/C

a
4
4
 (
μ

m
o
l/

m
o
l)

Food

Temp

HML

HMLHMLHML

0,14

0,12

0,10

0,08

0,06

0,04

0,02

0,00

M
n

5
5
/C

a
4
4
 (
μ

m
o
l/

m
o
l)

Food

Temp

HML

HMLHMLHML

3,5

3,0

2,5

2,0

1,5

1,0

0,5

0,0

M
g
2
5
/C

a
4
4
 (
μ

m
o
l/

m
o
l)

Food

Temp

HML

HMLHMLHML

1,4

1,2

1,0

0,8

0,6

0,4

0,2

0,0

S
r
8
7
/C

a
4

4
 (
μ

m
o

l/
m

o
l)

Food

Temp

HML

HMLHMLHML

5

4

3

2

1

0

C
u

6
5
/C

a
4

4
 (
μ

m
o
l/

m
o
l)

Food

Temp

HML

HMLHMLHML

2,5

2,0

1,5

1,0

0,5

0,0

Z
n

6
6
/C

a
4
4
 (
μ

m
o
l/

m
o
l)



68 
 

 
Figure 14. Principal Components Analysis Score plot of elemental loads in the margin of 

otoliths of juvenile fish by treatment (Temperature or Food). Each point represents a single 

otolith. Circles=Low Temp., triangles=Mid Temp., squares=High Temp.; blue=Low food, 

red=Mid Food, green=High Food. PC1 ratios are 0.524 Zn66/Ca43. 0.516 Cu65/Ca43, 0.496 

Mg25/Ca43, 0.460 Ba137/Ca43, -0.038 Mn55/Ca43 and -0.007 Sr87/Ca43, while PC2 ratios 

are 0.737 Sr87/Ca43, -0.638 Mn55/Ca43, 0.135 Ba137/Ca43, -0.132 Cu65/Ca43, -0.096 

Zn66/Ca43 and 0.074 Mg25/Ca43. 
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Figure 15. Variation in Principal Component Values for metal-to-calcium ratios in the margin 

of otoliths of juvenile fish among experimental treatments: Temperature (Low [L], Medium 

[M] and High [H]) and Food (Low [L], Medium [M] and High [H]). Standard error bars, 

dotted lines represent the mean. 

 

 

 


