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RESUMEN

RESUMEN
La teoría del funcional de densidad y la aproximación GW son métodos computacionales utilizados

para obtener propiedades de solidos sin la necesidad de resolver la ecuación de Schrödinger. A pesar de
que intentos para obtener la energía de átomos con la función de densidad fueron propuestos en 1927, la
formalización de la teoría llegaría en los años 60 con los teoremas de Hohenberg-Kohn, que darían paso
a los funcionales LDA, GGA y Meta-GGA. Los funcionales híbridos fueron creados posteriormente
para mejorar la eficiencia de DFT por medio de ajustes empíricos. El modelo de cuasipartícula permitió
el desarrollo de la aproximación GW, que se basa en la solución iterativa y autoconsistente de cinco
ecuaciones. Si bien la aproximación completa aún no es factible, algunas simplificaciones han sido
formuladas, y se desempeñan mejor que la mayoría de funcionales DFT. Este trabajo explica los
conceptos teóricos fundamentales de estos modelos, así como algunas de las aproximaciones más
comúnmente utilizadas. Finalmente, se presentan varios resultados numéricos para recalcar la utilidad y
precisión de estos métodos, así como sus limitaciones.

Palabras Clave: Ab-initio, Aproximación GW, DFT, LDA, GGA, Meta-GGA, Teoría del Funcional
de Densidad.
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ABSTRACT

ABSTRACT
Density functional theory and the GW approximation are computational methods used to obtain

properties of solids without the need of solving Schrödinger’s equation. While attempts to obtain
the energy of atoms with the density function were proposed in 1927, the formalization of the theory
came in the 60s with the Hohenberg-Kohn theorems, which gave way to LDA, GGA and Meta-GGA
functionals. Hybrid functionals then attempted to improve the efficiency of DFT through empirical
fitting. The quasiparticle model permitted the development of the GW approximation, which relies on
the iterative, self-consistent solution of five equations. Even though the full scheme is still not practical,
some simplifications have been formulated, and perform better than most DFT functionals. This review
explains the theoretical concepts underlying these models, as well as some of the most commonly used
approximations. Finally, multiple numerical results are presented to underline the utility and precision
of these methods, as well as their limitations.

Keywords: Ab-initio, Density Functional Theory, DFT, GGA, GW Approximation, LDA, Meta-
GGA.
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2

Introduction

INTRODUCTION

The calculation of properties and behavior of many-body solids has become of great importance in
the field of Solid-State Physics. The ability to predict the properties of new materials without the need
of empiric tests permits to develop new semiconductors, better adapted for their designed use. Density
Functional Theory, or DFT, and the GW approximation have become the methods of choice in chemistry,
physics, and materials science to calculate structural and electronic properties of many-body solids.

The importance of these methods relies on the fact that the material properties are given by the
electronic structure of the system (Hasnip et al., 2014). The equation published by Erwin Schrödinger in
1926 showed that all information about a system was contained in the wave function. As such, solving
the Schrödinger equation became a fundamental step to obtain the properties of solids. However, for
large many-body systems the equation becomes too complex, and practically impossible to solve (Kohn,
1999). As early as in 1927, the notion of expressing the energy of a system in terms of its electronic
density instead of the wave function appeared (Laird, Ross, & Ziegler, 1996). Models formulated by
Enrico Fermi and Llewellyn Thomas, and later by Paul Dirac and John Slater would expand on this idea.
In 1964, Pierre Hohenberg and Walter Kohn presented a set of theorems that proved that the ground state
energy of a system could be uniquely defined by the density, thus giving this notion a formal background.

Density Functional Theory and the GW approximation are techniques based on these theorems
that generate models to calculate and predict the properties of many-body solids. These models are
particularly useful for the development of semiconductor materials (Fraga, Prócel, Trojman, & Torres,
2013), which have applications in various domains such as photovoltaics (Even et al., 2014), vibrational
spectroscopy (Baroni, de Gironcoli, Dal Corso, & Giannozzi, 2001), among others. Developing new
tools for solving problems of many-electron systems through these techniques has become the focus of
research for many Mathematicians, Physicists, Chemists and Computer Scientists (Bach & Delle, 2014)

Both Density Functional Theory and the GW approximation are methods that have been extensively
in development for over 50 years. Even though their bases are well established, new approaches to these
methods are constantly being published to reduce computational cost or provide a better fit. As a result,
the volume of information on the topic required to understand the theory can be overwhelming. The
present work aims to review Density Functional Theory and GW Approximation, both theoretically and
with a comparison of numerical results. With that in mind, chapter 3 presents the background necessary
to understand both methods. In chapters 4 and 5, the theoretical principles of the models created by
DFT and the GW Approximation are described, and some of the most popular approximations based
on each of these models are presented. Finally, we gather some numerical results from bibliography to
provide context to the applicability of the methods, which depends on the requirements of the experiment.
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Theoretical Background

THEORETICAL BACKGROUND

3.1 Schrödinger’s Equation

Density functional theory is a method widely used to find a solution to the Schrödinger’s equation for
many-body solids. Schrödinger’s equation describes the changes of a many-body system over time,
taking quantum effects in consideration.

3.1.1 The Equation

The general time dependent form of Schrödinger’s equation determines the existence of stationary states,
or orbitals, and is expressed as

i~
∂

∂t
Ψ = ĤΨ (3.1)

where Ĥ is the Hamiltonian operator of the system, and Ψ is the wave-function of all the bodies in the
system, giving the description of the quantum state of the system. If the Hamiltonian operator does
not depend on time, then the stationary state can be described by the time independent Schrödinger’s
equation

H̄Ψ = EΨ (3.2)

which is an eigenvalue equation in which the constant E is the total energy of the orbital. This form of
the equation is particularly useful to find the ground-state of the system (Griffiths, 1995).

3.1.2 Hamiltonian Operator

The Hamiltonian operator of the system is the sum of all kinetic and potential energies in the system.
That is,

Ĥ = T̂ + V̂ (3.3)

where T̂ is the kinetic energy, and V̂ represents the potential energy. For a system composed of M nuclei
and n electrons, the kinetic energy equals the sum of the kinetic energies of all bodies,

T̂ = −

M∑
A=1

1
2MA

∇2
A −

n∑
i=1

1
2
∇2

i , (3.4)

where MA is the mass of nuclei A, ∇2
A is the Laplace operator for the nuclei A, ∇2

i is the Laplace operator
for the electron i, and we use Hartree atomic units1, such that ~ = me = e = 4πε0 = 1. The potential
energy V̂ is the sum of the interactions between all nuclei and electrons,

V̂ = V̂Ne + V̂N + V̂e = −

M∑
A=1

n∑
i=1

ZA

|RA − ri|
−

M∑
A=1

M∑
B>A

ZAZB

|RA −RB|
−

n∑
i=1

n∑
j>i

1∣∣∣ri − r j
∣∣∣ . (3.5)

where V̂Ne is the potential energy due to interactions between electrons and nuclei, V̂N is the potential
energy due to nuclei interactions, V̂e is the potential energy due to electron-electron interactions, RA is
the position vector of nuclei A, ri is the position vector of electron i, and ZA is the charge of nuclei A.

1Throughout this thesis, Hartree atomic units are used.
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Thus, the complete Hamiltonian operator is

Ĥ = −

M∑
A=1

1
2MA

∇2
A −

n∑
i=1

1
2
∇2

i −

M∑
A=1

n∑
i=1

ZA

|RA − ri|
−

M∑
A=1

M∑
B>A

ZAZB

|RA −RB|
−

n∑
i=1

n∑
j>i

1∣∣∣ri − r j
∣∣∣ , (3.6)

.

3.1.3 Expectation Value and Variational Principle

From equation (3.2) we see that the expectation value is

E =
〈Ψ |H|Ψ〉
〈Ψ|Ψ〉

(3.7)

where

〈Ψ |H|Ψ〉 =

∫
Ψ∗HΨdr, 〈Ψ|Ψ〉 =

∫
|Ψ|2 dr.

The variational principle states that the energy calculated with a trial wave function Ψ is always
greater or equal than the ground-state energy. This can be proved as follows.

Proof. Suppose that Ψn and En are the true quantum states and corresponding eigenvalues of the system,
for n ∈ N.

Let
E0 < E1 < E2 < · · · ,

such that Ψ0 is the ground-state. If the wave function is normalized, we can write

Ψ =
∑

i

ciψi (3.8)

where ∑
i

|ci|
2 = 1 (3.9)

and all ψi are orthonormal.
Calculating the energy with our trial wave function, we obtain

E = 〈Ψ |H|Ψ〉 =

〈∑
i

ciψi

∣∣∣∣∣∣∣ H

∣∣∣∣∣∣∣∣
∑

j

c jψ j

〉
. (3.10)

This is,

=

∫ ∑
i

ciψi

∗ H

∑
j

c jψ j

 dr (3.11)

=

∫ ∑
i

c∗i ψ
∗
i


∑

j

c jHψ j

 dr
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Applying equation (3.2),

=

∫ ∑
i

c∗i ψ
∗
i


∑

j

c jE jψ j

 dr

=
∑

i

∑
j

∫ (
c∗i ψ

∗
i

) (
c jE jψ j

)
dr

=
∑

i

∑
j

c∗i c jE j

∫
ψiψ jdr (3.12)

Because ψi and ψ j are orthonormal,∫
ψiψ jdr =

1 if i = j
0 otherwise

and (3.12) results in, ∑
i

|ci|
2 Ei (3.13)

= |c0|
2 E0 +

∑
i>0

|ci|
2 Ei (3.14)

We can rewrite equation (3.9) as

|c0|
2 = 1 −

∑
i>0

|ci|
2 (3.15)

Applying this equation into equation (3.14), we finally obtain that

E = E0 +
∑
i>0

|ci|
2 (Ei − E0) (3.16)

Since we started from the fact that Ei > E0 ∀i > 0, we obtain that

E = 〈Ψ |H|Ψ〉 ≥ 0 (3.17)

and that E = E0 ⇔ Ψ is the true ground-state wave function Ψ0
�

3.2 Born-Oppenheimer Approximation

Schrödinger’s equation becomes exceedingly difficult to solve in large systems, as for an n-body system,
Ψ depends on 3n variables. To solve this problem, we can consider that under typical conditions, the
speed of nuclei is insignificant compared to that of electrons. Thus, we can simplify the Hamiltonian
operator for practical purposes disregarding the nuclei’s motion in space. This simplification leads to

−

M∑
A=1

1
2MA

∇2
A = 0 (3.18)

M∑
A=1

M∑
B>A

ZAZB

|RA −RB|
= constant (3.19)

reducing the Hamiltonian operator to
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Ĥelec = −

n∑
i=1

1
2
∇2

i −

M∑
A=1

n∑
i=1

ZA

|RA − ri|
−

n∑
i=1

n∑
j>i

1∣∣∣ri − r j
∣∣∣ (3.20)

which calculates only the energy of the electrons. With this approximation, we can solve the electronic
Schrödinger equation,

ĤelecΨelec = EelecΨelec (3.21)

to obtain the pure electronic energy Eelec. Finally, to obtain the total energy of the system, the potential
energy due to nuclear interactions, as described in equation (3.19), is added:

E = Eelec +

M∑
A=1

M∑
B>A

ZAZB

|RA −RB|
. (3.22)

This simplification, called the Born-Oppenheimer approximation, is widely used to reduce the
number of variables involved and the size of calculations performed.

3.3 Using Density Functionals

3.3.1 Functionals

A functional is a mapping from a vector space V into its scalar field F . The functionals used in DFT
are mappings from the space of functions to �, this means, a functional F is a map

F : f → �

f (x) 7−→ F
[
f (x)

]
.

Here, x is a parameter.
These functionals are also often described as a function of a function (Eberhard & Dreizler, 2011).

3.3.2 Thomas-Fermi model

In 1927, Llewellyn Thomas and Enrico Fermi proposed, independently, an approximation using a
functional of the electron density function instead of the wave function to estimate the kinetic and
potential energy of a many-body system (Thomas, 1927) (Fermi, 1927). In order to estimate the
electronic density, the model assumes that electrons are distributed uniformly in the volume occupied by
the atom,

ρ =
n
V

(3.23)

where ρ is the electron density, and V is the volume. This assumption is known as the uniform electron
gas model, and immediately simplifies the calculation of the potential energy. The interaction between
the uniform electron gas and the nuclei can be calculated with the expression

VNe =

M∑
A=1

∫
ZA · ρ (r)
|r −RA|

dr, (3.24)
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and the potential energy of the uniform electron gas is

Ve =
1
2

∫ ∫
ρ (r1) ρ (r2)
|r1 − r2|

dr1dr2 (3.25)

To obtain the kinetic energy, we begin by calculating the maximum possible momentum for the
electrons, pF , within the volume occupied by the solid in phase space. This can be done with equation
(3.26), where h3 is the volume in phase space occupied by two electrons of opposite spin. By applying
equation (3.23) here, we obtain the expression (3.27) for the maximum momentum in terms of ρ.

4π
3

p3
F · V ·

2
h3 = n (3.26)

pF =

[
3h3

8π
ρ

]1/3

(3.27)

Since the kinetic energy at a specific point can be calculated as

t (r) =

∫ pF

0

p2

2me
ρ (r)

4πp2

4
3πp3

F

dp (3.28)

t (r) =
3ρ

2p3
F

∫ pF

0
p4dp

t (r) =
3ρ

2p3
F

[
p5

5

]pF

0

t (r) =
3ρ
10

p2
F . (3.29)

Applying equation (3.27) on equation (3.29), we obtain an expression for the kinetic energy t at a
point r in terms of ρ.

t (r) =
3ρ (r)

10

(
3h3

8π
ρ (r)

) 2
3

(3.30)

Finally, to obtain the general kinetic energy, T̂ , we integrate the expression (3.30) over the volume
occupied by the system,

T̂ =

∫
V

t (r) =
3h2

10

(
3

8π

) 2
3
∫ [

ρ (r)
] 5

3 d3r (3.31)

The Thomas-Fermi model was the first attempt to solve Schrödinger’s equation by using the
electronic density instead of the wave function, but is very inaccurate. The kinetic energy is only
approximated, and the potential energy does not consider correlation between electrons.
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3.3.3 Electronic Density Function

The Thomas-Fermi model used equation (3.23) to find the electronic density, and apply it to the kinetic
energy functional. For Density Functional Theory, however, we formalize the idea of the electronic
density as a probability density function derived from the wave function.

The electronic density function, ρ, measures the probability of an electron being present in a unit of
volume during a given state Ψ. It is defined as

ρ (r) =

∫
|Ψ (r, r2, . . . , rn)|2 dr2 . . . drn (3.32)

and depends only on 3 spatial variables.
Integrating the density function over all space, we obtain the number of electrons within the system.

Approaching r = 0, the density function approaches 0 as well.
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Density Functional Theory

DENSITY FUNCTIONAL THEORY

4.1 Founding results of DFT

The Thomas-Fermi model showed the possibility of calculating the energy of a system by using an
electronic density function instead of the more complicated wave function. However, the formalism
required for Density Functional Theory would come years later through the Hohenberg-Kohn theorems,
and the Kohn-Sham equations.

4.1.1 Hohenberg-Kohn Theorems

In 1964, Pierre Hohenberg and Walter Kohn published proof for a variational principle where the density
function was the variable. The two theorems published in this paper are presented below.

Theorem 4.1.1. A given ground-state density ρ0 (r) determines the ground-state wave function, Ψ0, as
well as the external potential Vext and all properties of the system.

This theorem states, in other words, that the energy of the system is a unique functional of the
density (Toffoli, 2009a).

Proof. Assume that there exist two potentials Vext and V ′ext, which differ by more than a constant and
result in the same ground-state density ρ0 (r). Since the two potentials are different, they belong to
different Hamiltonians H and H′ and different wave functions Ψ and Ψ′.

Because of the variational principle,

E0 < Ψ′HΨ′ = Ψ′∗H′Ψ′ − Ψ′∗
(
H − H′

)
Ψ′ = E′0 +

∫
ρ (r)

[
Vext (r) − V ′ext (r)

]
dr (4.1)

and

E′0 <
〈
Ψ

∣∣∣H′∣∣∣ Ψ〉
= 〈Ψ |H|Ψ〉 −

〈
Ψ

∣∣∣H′ − H
∣∣∣ Ψ〉

= E0 +

∫
ρ (r)

[
V ′ext (r) − Vext (r)

]
dr (4.2)

Adding both sides we obtain that

E0 + E′0 < E′0 + E0 (4.3)

which is a contradiction.
�

For this reason, we can write the energy functional as

E
[
ρ
]

=

∫
ρ (r) VNe (r) dr + F

[
ρ
]

(4.4)

where F
[
ρ
]

is a functional corresponding to T
[
ρ
]
+ Ve

[
ρ
]
, in which

Ve
[
ρ
]

=
1
2

∫ ∫
ρ (r1) ρ (r2)
|r1 − r2|

dr1dr2 + Fe [r] (4.5)

where Fe [r] is the self-interaction correction, exchange and Coulomb correlation of the electron-
electron interaction.
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Theorem 4.1.2. The density functional resulting in the ground-state energy will have a global minimum
value only at the true ground-state density.

E
[
ρ0

]
≤ E

[
ρ
]

= T
[
ρ
]
+ ENe

[
ρ
]
+ Ee

[
ρ
]

(4.6)

E
[
ρ0

]
= E

[
ρ
]
⇔ ρ = ρ0 (4.7)

Proof. The ground-state density returns the ground-state energy

E
[
ρ0

]
= E0 = 〈Ψ0 |H|Ψ0〉 (4.8)

By theorem 1 and the variational principle, we know that a different density will return a different
wave function and a greater energy

E
[
ρ′

]
=

〈
Ψ′ |H|Ψ′

〉
> 〈Ψ0 |H|Ψ0〉 = E0 (4.9)

�

4.1.2 Kohn-Sham equations

In 1965, Walter Kohn and Lu Jeu Sham created a model for solving the Schrödinger equation using the
density function, using the Hohenberg-Kohn theorems to solve the problems that made the Thomas-
Fermi method inaccurate (Kohn & Sham, 1965). The model proposes calculating the kinetic energy of a
non-interacting system such that the electronic density is the same as that of the real, interacting one.

In order to calculate the ground-state energy of such a system, we need to obtain the wave function
that describe the bodies in it. For this purpose, we set

ρ (r) =

N∑
i=1

|ψi (r)|2 = ρ0 (r) (4.10)

where ψi is the orbital corresponding to the i-th body. Next, we use the Slater determinant

ψ (r1, r2, . . . , rN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣
ψ1 (r1) ψ1 (r2) · · · ψ1 (rN)
ψ2 (r1) ψ2 (r2) · · · ψ2 (rN)

...
...

. . .
...

ψN (r1) ψN (r2) · · · ψN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.11)

to approximate the general wave function.
We can now calculate the kinetic energy using the new approximation of the wave function

TKS = −
1
2

N∑
i=1

(
ψ∗i∇

2ψi
)

(4.12)

Equation (4.4) then becomes

E
[
ρ
]

= TKS +

∫
ρ (r) VNe (r) dr + EXC (4.13)

where EXC is the exchange-correlation energy, defined as

EXC =
(
T

[
ρ
]
− TKS

)
+ Fe

[
ρ
]
. (4.14)
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The orbitals used must satisfy the Hohenberg-Kohn theorems, and they can be obtained by solving
the following equations:−1

2
∇2 +

∫
ρ (r1)
|r − r1|

dr1 +

M∑
A=1

ZA

|r −RA|
+ VXC

ψi (r) = εψi (r) (4.15)

VXC =
∂EXC

∂ρ
(4.16)

Equations (4.15) and (4.16) are known as the Kohn-Sham equations.
To obtain the total energy using the Kohn-Sham equations, we need to approximate the unknown

exchange-correlation potential functional, VXC
[
ρ
]
.

4.2 Local Density Approximation

The Local Density Approximation (LDA) calculates the exchange-correlation energy by assuming that
the system is a uniform electron gas (Kohn & Sham, 1965). It introduces an energy density functional
εXC

[
ρ
]
, as seen in equation (4.17). This term corresponds to the exchange-correlation energy per

particle.

EXC =

∫
ρ (r) εXC [r] dr. (4.17)

The energy density functional can be divided into its exchange and correlation contributions,
εXC = εX + εC . The exchange contribution is the same as that derived by Paul Dirac in 1930,

εX = −
3
4

(
3ρ (r)
π

) 1
3

. (4.18)

The correlation contribution was neglected initially, and Monte Carlo simulations were generally
used to calculate it. Many alternative functionals for the correlation energy density have been developed
since (Perdew & Wang, 1992) (Vosko, Wilk, & Nusair, 1980). However, because of the uniform electron
gas model used, LDA tends to overestimate the exchange energy, and underestimate the correlation
energy (Toffoli, 2009b).

4.3 Generalized Gradient Approximation

To improve the accuracy of LDA, Generalized Gradient Approximations introduced the gradient of the
density into the exchange and correlation functional, which takes the general form

EGGA
XC

[
ρ ↑, ρ ↓

]
=

∫
ρ (r) εXC

[
ρ
]

FXC [s] (4.19)

where ρ ↑ and ρ ↓ are the spin densities such that ρ = ρ ↑ +ρ ↓, FXC is the GGA correction factor, and

s = |∇ρ| /
(
2
[
3πρ (r)

] 1
3 ρ

)
.

The correction factor, FXC depends on the approximation used. Some functionals are made to satisfy
physical restrictions, such as PBE and PW91; whereas others are obtained by fitting to empirical data,
like B88.
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PBE Functional

One of the most used GGA approximations is the PBE functional (Swart, Bickelhaupt, & Duran, 2016).
This functional is built to only satisfy physical conditions that are energetically significant (Perdew,
Burke, & Ernzerhof, 1996). To do so, Perdew, et al. began with the correlation functional

EPBE
C

[
ρ ↑, ρ ↓

]
=

∫
ρ (r)

[
εLDA

C + H (rS , ζ, t)
]
, (4.20)

where rS = (3/ (4πρ))
1
3 is the Seitz radius, ζ = (ρ ↑ −ρ ↓) /ρ is the relative spin polarization, and

t = |∇ρ| / (2gksρ) is a density gradient correction factor, where g =
[
(1 + ζ)(2/3) + (1 − ζ)(2/3)

]
/2 is a

spin scaling factor and ks =

((
4
[
3π2ρ

](1/3)
)
/π

)(1/2)
is the Thomas-Fermi screening wave number 1996.

The correlation correction functional H (rS , ζ, t) was defined so that:

1. In the slowly varying limit, when the density gradient tends to 0, H is given by

lim
t→0

H = βg3t2, (4.21)

where β ≈ 0.066725 is the high density limit of the gradient coefficient for the correlation energy.

2. In the rapidly varying limit, correlation vanishes, so

lim
t→∞

H = −εLDA
C . (4.22)

3. Under uniform scaling, ρ (r) = λ3ρ (λr), the correlation energy must scale to a constant.

The functional H was then defined by the ansatz

HPBE = γg3 ln
[
1 +

β

γ

(
t2 + At4

1 + At2 + A2t4

)]
(4.23)

where γ = (1 + ln 2) /π2 and

A =
β

γ

exp
−εLDA

C

γg3

 − 1
−1

. (4.24)

This functional satisfies all three conditions.
The exchange functional for PBE must also satisfy the following restrictions:

1. Under uniform scaling, FX (0) = 1

2. The exchange energy obeys the relationship

EX
[
ρ ↑, ρ ↓

]
=

EX
[
2ρ ↑

]
+ EX

[
2ρ ↓

]
2

(4.25)

3. The functional recovers the linear response of LDA, so

lim
s→0

FX (s) = 1 + µs2, (4.26)

where µ = β
(
π2/3

)
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4. The functional must satisfy the Lieb-Oxford bound,

EX
[
ρ ↑, ρ ↓

]
≥ EXC

[
ρ ↑, ρ ↓

]
≥ −1.679e2

∫
ρ (r) dr, (4.27)

which provides a lower bound for the exchange correlation energy.

The exchange correction functional FX (s) that Perdew, et al. chose is

FPBE
X (s) = 1 + κ −

κ

1 +
µs2

κ

, (4.28)

which satisfies all restrictions.
This functional was built upon the PW91 functional, which satisfied more theoretical restrictions but

did not recover the linear response that LDA has (Perdew et al., 1992) (Perdew et al., 1996).

B88 functional

The B88 exchange functional was developed by Axel Becke in 1988. The functional was developed
such that the real asymptotic behavior of the exchange energy as r tends to ∞ is generated. The B88
functional has the form

EB
X = ELDA

X − β

∫
|∇ρ|

1 + 6β |∇ρ|
ρ4/3 sinh−1

(
|∇ρ|

ρ4/3

) , (4.29)

where β = 0.0042. This is considered a semi-empiric functional, as β was obtained through a least-
squares fit using the exact exchange energies of the first six noble gases. The functional was obtained by
adapting previous empirical non-universal functionals (Becke, 1988).

While LDA and GGA show good agreement with experimental results for the calculation of exchange
and correlation energies, it has been shown that the errors obtained by these approximations come from
self-correlation in the case of energy (Seidl, Perdew, & Levy, 1999), and the Kohn-Sham scheme in the
case of band gaps (Perdew, 1985), since Kohn-Sham band gaps are always smaller than the fundamental
band gap.

4.4 Meta-GGA

To improve the accuracy of GGA functionals even further, some functionals also include the kinetic
energy density obtained from the Kohn-Sham orbitals,

τ =
∑

i

1
2
|∇ψi (r)|2 . (4.30)

The kinetic energy density can be written in terms of the electronic density. A commonly used
functional for τ is the Weizsäcker functional

τW = −
1
8
|∇ρ|2

ρ
, (4.31)

obtained in 1935 by Carl Friedrich von Weizsäcker.
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LYP Functional

The LYP functional was developed by Chengteh Lee, Weitao Yang and Robert Parr. It was built upon
the Colle-Salvetti correlation formula which used the second order density matrix. By applying the
Weizsäcker kinetic energy density, Lee, et al. turned this formula into the functional shown in equation
(4.32).

ELYP
C = −a

∫
1

1 + dρ−
1
3

{
ρ + bρ−

2
3

[
3

10

(
3π2

) 2
3 ρ

5
3 −

17
72

(
|∇ρ|2

ρ
− ∇2ρ

)
+

1
18
∇2ρ

]
e−cρ−

1
3

}
dr, (4.32)

where a = 0.04918, b = 0.132, c = 0.2533, d = 0.349 are the coefficients obtained by Colle-Salvetti
(Lee, Yang, & Parr, 1988).

Other examples of Meta-GGA functionals are PKZB and M06L.

4.5 Hybrid Functionals

A fourth kind of functionals mixes previously developed GGA functionals with the Hartree-Fock
exchange energy,

EHF
X =

1
2

n∑
i=0

n∑
j>i

∫ ∫
ψ∗i (r1)ψ∗j (r2)

1
|r1 − r2|

ψi (r2)ψ j (r1) dr1dr2, (4.33)

usually taking the general form

EXC
[
ρ
]

= αEHF
X + (1 − α) EGGA

XC + EGGA
C . (4.34)

where α is a parameter usually obtained through fitting. Functionals of this form are called hybrid
functionals.

Among the most used hybrid functionals are B3LYP, HSE and PBE0.

B3LYP Functional

The B3LYP functional has the form

EB3LYP
XC = ELDA

X + a0
(
EHF

X − ELDA
X

)
+ ax

(
EB

X − ELDA
X

)
+ EVWN

C + ac
(
ELYP

C − EVWN
C

)
(4.35)

where a0 = 0.2, ax = 0.72, ac = 0.81 are weights obtained from experimental data (Stephens, Devlin,
Chabalowski, & Frisch, 1994), EB88

X is the B88 exchange functional, and EVWN
C is the semi-empiric

VWN correlation functional for LDA developed by S. H. Vosko, L. Wilk and M. Nusair (1980).

HSE and PBE0 Functionals

The HSE hybrid functionals published by Jochen Heyd, Gustavo Scuseria, and Matthias Ernzerhof
separate the exchange functional into a short range term and a long range term, taking the form

EHS E
XC = aEHF,S R

X + (1 − a) EPBE,S R
X + EPBE,LR

X + EPBE
C (4.36)

where a = 1/4 is the mixing coefficient, S R represents that the functional is applied to the short range,
and LR represents a long range application. The PBE exchange and correlation functionals are used. The
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separation between short and long range is performed by dividing the Coulomb operator as it appears in
equation (4.33) in the following manner:

1
|r1 − r2|

=
erfc

(
ω

∣∣∣ri − r j
∣∣∣)∣∣∣ri − r j

∣∣∣ +
erf

(
ω

∣∣∣ri − r j
∣∣∣)∣∣∣ri − r j

∣∣∣ (4.37)

where erf is the error function, and erfc = 1− erf. ω is the parameter that controls the effective radius
of the short range functional. The PBE functionals EPBE,S R

X and EPBE,LR
X are modified by multiplying

the correction factor with the error function (Heyd, Scuseria, & Ernzerhof, 2003). The value of omega
varies depending on the approximation used. For HSE03, ω = 0.3; for HSE06, ω = 0.2; and finally, if
ω = 0 we obtain the PBE0 functional (Heyd et al. 2003, 2006).

The use of short and long range functionals, along with the Hartree-Fock exchange energy helps
solve the band gap problem that arises from the Kohn-Sham scheme, as HF band gaps are generally
larger than those of KS (Crawford, Furche, & Burke, 2009).
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GW Approximation

GW APPROXIMATION
In 1965, Lars Hedin proposed an alternative method to obtain the energy of a system. This method

utilizes the quasiparticle model to maintain a system with independent particles.

5.1 Quasiparticle model

In a solid, an electron repels other electrons due to the Coulomb potential, and forms a positively charged
polarization cloud around it, which we call electron hole. The electron and electron hole pair forms a
quasiparticle which only interacts weakly with other quasiparticles via a screened Coulomb potential
(Aulbur, Jönsson, & Wilkins, 2000). This weak interaction allows us to consider a non-interacting
system. The exchange and correlation energies of the bare electron are considered as the self-energy Σ

of the quasiparticle.
The energy of a system formed by independent quasiparticles is calculated in a similar manner to

that of the Kohn-Sham model. Each quasiparticle responds to the equation[
1
2
∇2 +

∫
ρ (r2)
|r1 − r2|

dr2 + VNe

]
ψi (r1) +

∫
Σ (r1, r2)ψi (r2) dr2 = Eiψ (r1) (5.1)

where ψi is the wave function of the quasiparticle, and Ei is the total energy of the quasiparticle.

5.1.1 Green Function

For a linear differential operator L, a Green function G corresponding to L is a function that satisfies
the equation

LG (x, x1) = δ (x − x1) (5.2)

where δ is Dirac’s delta function

δ (x) =

∞ x = 0
0 x , 0

. (5.3)

The Green function is defined this way to find the solution to the differential equation

Lu (x) = f (x) . (5.4)

Here, the function u (x) takes the integral form

u (x) =

∫
G (x, x1) f (x1) dx1. (5.5)

(Stover, n.d.)
For equation (5.1), the corresponding Green function satisfies the equation

[ω − h (1)] G (1, 2) +

∫
Σ (r1, r2) G (1, 2) dr2 = δ (r1 − r2) , (5.6)

where the numerals 1, 2, . . . represent the space and time pair (r1, t1), and h is the one body hamiltonian.
The Green function G describes the effects of the propagation of an electron or electron hole in the
system. Thus, in order to obtain G, we first define the propagation functions as follows:
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Let EN be the energy of the |N, 0〉 ground state of the N-body system, EN+1,a the energy of the a-th
state |N + 1, a〉 of the N + 1-body system, EN−1,i the energy of the i-th state |N − 1, i〉 of the N − 1-body
system, ψ̂† (r) the electron creation operator and ψ̂ (r) the electron annihilation operator.〈

N, 0
∣∣∣∣[ψ̂ (r1, t1) ψ̂† (r2, t2)

]∣∣∣∣ N, 0
〉

= iGe (1, 2) (5.7)

represents the propagation of an electron from 2 to 1.〈
N, 0

∣∣∣∣[ψ̂† (r2, t2) ψ̂ (r1, t1)
]∣∣∣∣ N, 0

〉
= iGh (1, 2) (5.8)

represents the propagation of an electron hole from 1 to 2.

The resulting Green function for the quasiparticle system is

G (1, 2) = −iθ (t1 − t2)
〈
N, 0

∣∣∣ψ̂ (r1, t1) ψ̂† (r2, t2)
∣∣∣ψ〉 + iθ (t2 − t1)

〈
N, 0

∣∣∣ψ̂ (r1, t1) ψ̂† (r2, t2)
∣∣∣ψ〉 (5.9)

where θ is the Heaviside step function.
Through the Fourier transformation t1− t2 → ω, we obtain the Lehmann form for the Green function,

G (r1, r2;ω) = lim
η→0

(
fa (r1) f ∗a (r2)
ω − Ea + iη

+
fi (r1) f ∗i (r2)
ω − Ei − iη

)
(5.10)

where fa (x) =
〈
N, 0

∣∣∣ψ̂ (x)
∣∣∣ N + 1, a

〉
, fi (x) =

〈
N − 1, i

∣∣∣ψ̂ (x)
∣∣∣ N, 0

〉
are the quasiparticle wave functions,

and Ea = EN+1,a − EN and Ei = EN − EN−1,i are the quasiparticle energies (Toulouse, 2015).

5.2 Hedin Equations

In order to obtain the total energy of the system under this model, we need the self-energy of the
quasiparticles. We can calculate the self-energy by solving a set of five equations self-consistently
(Aulbur et al., 2000).

5.2.1 Dyson Equation

We now consider the non-interacting Green function, G0, which corresponds to a one body system and
follows the equation

[ω − h0] G0 (1, 2) = δ (1 − 2) , . (5.11)

From equations (5.6) and (5.11), we obtain the Dyson equation,

G (1, 2) = G0 (1, 2) +

∫ ∫
G0 (1, 3) Σ (3, 4) G (4, 2) d3d4 (5.12)

which calculates the Green function.
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5.2.2 Vertex Function

We introduce now a fictional effective potential, Ve f f , which we will use for the following derivations,
and define the vertex function Γ as the variation of the inverse of the Green function with respect to the
effective potential,

Γ (1; 2, 3) =
∂G−1 (2, 3)
∂Ve f f (1)

(5.13)

To obtain a closed set of equations, we find the expression for G−1, defined as∫
G−1 (1, 3) G (3, 2) d3 = δ (1, 2) . (5.14)

From equation (5.11) we get that

G−1
0 (1, 2) = (ω − h (1)) δ (1 − 2) . (5.15)

From equation (5.6) we also get

G−1 (1, 2) = (ω − h (1)) δ (1 − 2) + Σ (1, 2) , (5.16)

and because of equation (5.15),

G−1 (1, 2) = G−1
0 (1, 2) + Σ (1, 2) . (5.17)

We can now express Γ in terms of G and Σ,

Γ (1; 2, 3) =
∂G−1

0 (2, 3)

∂Ve f f (1)
+
∂Σ (2, 3)
∂Ve f f (1)

(5.18)

which becomes

Γ (1; 2, 3) =δ (1 − 2) δ (1 − 3) +
∂Σ (2, 3)
∂Ve f f (1)

=δ (1 − 2) δ (2 − 3) +

∫ ∫
∂Σ (2, 3)
∂G (4, 5)

G (4, 5)
∂Ve f f (1)

d4d5

=δ (1 − 2) δ (2 − 3) +

∫ ∫
∂Σ (2, 3)
∂G (4, 5)

∫ ∫
G (4, 6)

G−1 (6, 7)
∂Ve f f (1)

G (7, 5) d6d7d4d5.

Finally, because of equation (5.13), we obtain the final form of the vertex function

Γ (1; 2, 3) = δ (1 − 2) δ (2 − 3) +

∫ ∫
∂Σ (2, 3)
∂G (4, 5)

∫ ∫
G (4, 6) Γ (1; 6, 7) G (7, 5) d6d7d4d5. (5.19)
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5.2.3 Polarization

The polarization function is defined as

P (1, 2) = −i
∂G

(
2, 2+)

∂Ve f f (1)
(5.20)

where 1+ represents an infinitesimal change in t1.
Applying equation (5.14),

P (1, 2) = −i
∫

G (2, 3)
G−1 (3, 4)
Ve f f (1)

G (4, 2)

To obtain the final form of the polarization function, we apply equation (5.13),

P (1, 2) = −i
∫

G (2, 3) Γ (1; 3, 4) G (4, 2) . (5.21)

5.2.4 Screened Coulomb Potential

To calculate the effective interaction between quasiparticles, we use a screened Coulomb potential. This
is the effect of the Coulomb potential on the quasiparticles as if it were an external field (Pavlyukh,
2003). The screened Coulomb potential has the form

W (1, 2) = Ve (1, 2) +

∫
W (1, 3) P (3, 4) Ve (4, 2) d3d4 (5.22)

where Ve is the bare Coulomb potential.

5.2.5 Self-Energy

The self-energy of the quasiparticles is defined by the equation

Σ (1, 2) = i
∫

G (1, 4) W
(
1+, 3

)
Γ (3; 4, 2) d3d4 (5.23)

This expression gives the GW approximation its name.

The equations

G (1, 2) = G0 (1, 2) +

∫ ∫
G0 (1, 3) Σ (3, 4) G (4, 2) d3d4 (5.12 revisited)

Γ (1; 2, 3) = δ (1 − 2) δ (2 − 3) +

∫ ∫
∂Σ (2, 3)
∂G (4, 5)

∫ ∫
G (4, 6) Γ (1; 6, 7) G (7, 5) d6d7d4d5.

(5.19 rev.)

P (1, 2) = −i
∫

G (2, 3) Γ (1; 3, 4) G (4, 2) . (5.21 rev.)

W (1, 2) = Ve (1, 2) +

∫
W (1, 3) P (3, 4) Ve (4, 2) d3d4 (5.22 rev.)

Σ (1, 2) = i
∫

G (1, 4) W
(
1+, 3

)
Γ (3; 4, 2) d3d4 (5.23 rev.)
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are called the Hedin equations. These equations form a recursive set of five equations that, when solved
iteratively, return the self-energy and all properties of the quasiparticles. The complete iterative cycle
can be appreciated in figure 5.1. However, the process of solving the complete system of equations is
still too computationally heavy for practical purposes. For this reason, simplified GW approximations
are used.

Figure 5.1: Representation of the complete GW approximation iterative cycle
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5.3 Simplifications of the GW model

Different types of GW approximations can be performed, with various levels of complexity. The three
most widely used are explained below.

5.3.1 G0W0 Approximation

The GW approximation begins by obtaining the initial quasiparticle wave functions through a DFT
method, and then setting the initial value of the self-energy Σ = 0, which also leads to G (1, 2) = G0 (1, 2).
The calculation then proceeds through each equation.

Stopping the process after the first iteration, one obtains values for W and Σ approximated by
using only non-interacting quasiparticles. This approach is called the G0W0 approximation. This
approximation does not have a high computational cost and shows improvement over LDA (van
Schilfgaarde, Kotani, & Faleev, 2006), but because the solution was not obtained self-consistently,
it heavily depends on the DFT method used initially to calculate G0. Another downside of this
approximation is that the G0W0 approximation does not obey conservation laws for "particle number,
momentum, angular momentum and energy" (Stan, Dahlen, & van Leeuwen, 2009), which in turn has
negative effects on spectral and conductive properties.

5.3.2 GW0 Approximation

Figure 5.2: Representation of the itera-
tive cycle using the GW0 approximation

The GW0 approximation is a partially self-consistent ap-
proach that obeys particle number conservation, and its solu-
tion does not depend on the DFT method used. The method
begins with a complete iteration of the Hedin equations. It
then solves the Dyson equation and updates the self-energy
iteratively, effectively reducing the system of equations to
only equations (5.12) and (5.24), as shown in figure 5.2.

Σ (1, 2) = iG (1, 2) W0 (1, 2) (5.24)

This approximation is not moment or energy conserving,
as W is not solved self-consistently. However, the computa-
tional cost is not severely increased (Stan et al., 2009)

5.3.3 scGW Approximation

A simple self-consistent and practical approximation of the Hedin equations is performed by setting the
vertex function Γ = 1. With this change, the four remaining equations are the Dyson equation ,(5.12),
and (5.21), (5.22) and (5.23) without vertex corrections. with these changes the system of equations that
must be solved iteratively is as follows:

G (1, 2) = G0 (1, 2) +

∫ ∫
G0 (1, 3) Σ (3, 4) G (4, 2) d3d4

P (1, 2) = −iG (1, 2) G (2, 1) (5.25)

W (1, 2) = Ve (1, 2) +

∫
W (1, 3) P (3, 4) Ve (4, 2) d3d4 (5.26)

Σ (1, 2) = iG (1, 2) W (1, 2) (5.27)
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This approximation obeys all conservation laws, and is independent of the DFT method used to
calculate G0, but is much more computationally expensive (Aulbur et al., 2000). Furthermore, the scGW
approximation results in a more accurate total energy, but overestimates the band gaps (Hafner, 2008)
due to ignoring vertex corrections.

The iterative scheme of the scGW approximation is shown in figure 5.3.

Figure 5.3: Representation of the iterative cycle using the scGW approximation

5.3.4 Vertex corrections

Currently, some studies prove that the inclusion of a simplified vertex function can reduce the error in
band gap calculations, but the computational cost is as prohibitive as that of the scGW approximation
(Schmidt, Patrick, & Thygesen, 2017) (Chen & Pasquarello, 2015).
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Experimental Results

EXPERIMENTAL RESULTS
Chapters 4 and 5 present some of the approximations that have been developed under the DFT

and quasiparticle models. The importance of each of these approximations relies on their applicability.
The different functionals used in DFT take different approaches to obtain the exchange and correlation
energies, and therefore each approximation may prove more suitable to calculate specific parameters for
different solids. The difference in accuracy to calculate atomization energies of molecules shows this, as
can be seen in table 6.1, where ∆E is the experimental exchange and correlation energy.

Table 6.1: Exchange and correlation atomization energies (in kcal/mol) of 6 small molecules

Molecule ∆E(1) ∆ELDA(1) ∆EPBE (1) ∆EPKZB(1) ∆EHS E (2)

H2 109.5 113.2 104.6 114.5 104.4
CH4 419.3 462.3 419.8 421.1 418.0
LiF 138.9 156.1 138.6 128.0 131.2
HCN 311.9 361.0 326.1 311.8 311.6
CO 259.3 299.1 268.8 256.0 255.7
N2 228.5 267.4 243.2 229.2 225.86
(1) Values published by Kurth, Perdew, and Blaha (1999)
(2) Values published by Schimka, Harl, and Kresse (2011).

In table 6.2 we can see that the calculation of the lattice constant through different DFT functionals
shows similar results (Torres, Reytier, & Trojman, 2017). LDA performs well, underestimating the real
value by less than 0.5%. PBE and B3LYP overestimate experimental values by around 2%. PBE0 and
HSE06 perform similarly well, with errors under 1%.

Table 6.2: Lattice constant of 4 semiconductors

Solid Exp. LDA PBE PBE0 B3LYP HSE06
Si 5.4307 5.4032 5.4696 5.4307 5.4859 5.4354
Ge 5.6575 5.6466 5.7823 5.6969 5.7962 5.7033
GaAs 5.65 5.6258 5.7622 5.6900 5.7825 5.6961
GaN 3.1889 3.1843 3.2462 3.2079 3.2346 3.2093

Tables 6.1 and 6.2 show that LDA and PBE work well to obtain structural properties of simple
molecules, but fails for larger systems. Each hybrid functional was developed for a different purpose,
which explains the consistency of HSE06 and PBE0, while B3LYP fails to estimate the lattice constant.
Meta-GGA methods like PKZB have a higher accuracy than LDA or PBE for energy calculations of
bigger molecules such as HCN or N2 because it eliminates the self-correlation error, but overestimates
the correlation energy for simpler molecules like H2.

Hybrid functionals prove to be better at estimating the band gap than LDA or GGA functionals, as
the latter tend to significantly underestimate the real value. However, since these functionals introduce
empirical parameters, they are sensitive to the material. The data presented in table 6.3 shows, for
example, that HSE06 provides the best approximation for Si, whereas B3LYP provides a better result
for GaN, and GaAs is better approximated by PBE0. For this reason, the application of these functionals
on new materials requires a previous study, in order to choose the most appropriate method.
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Table 6.3: Band gaps for four semiconductors (1)

Solid Exp. LDA PBE PBE0 B3LYP HSE06
Si 1.17 0.4416 0.6104 1.6396 1.7165 1.1684
Ge 0.74 0 0 1.1203 0.1325 0.5883
GaAs 1.52 0.5079 0.1751 1.6369 0.9508 1.2353
GaN 3.47 2.0284 1.6112 3.7853 3.2328 3.0941
MgO 7.83(2) 5.39(2) 4.91(2) 7.220(3) 7.3(4) 7.09(2)

(1) All values published by Torres et al. (2017) unless noted otherwise
(2) Values published by Heyd and Scuseria (2004)
(3) Values published by Fritsch, Morgan, and Walsh (2017)
(4) Values published by Muscat, Wander, and Harrison (2001)

The GW approximations greatly improve the accuracy of the band gaps in comparison to DFT
functionals. Table 6.4 shows the band gap estimation of the three GW approximation methods, where
the G0 function was obtained from PBE calculations. The data shows a very noticeable improvement
from the PBE band gaps. G0W0 usually underestimates the values, and gives the best results for Si
and MgO. GW0 and scGW tend to overestimate the band gap. Nevertheless, for Ge, GaAs and GaN,
a self-consistent method provides a better approximation, probably due to the particularly small gaps
obtained by PBE (Shishkin & Kresse, 2007).

Table 6.4: Band gaps of four semiconductors (cont.)

Solid Exp. G0W0 GW0 GW
Si(1) 1.17 1.12 1.20 1.28
Ge(2) 0.66 0.50 0.72 0.96
GaAs(1) 1.52 1.30 1.42 1.52
GaN(1) 3.20 2.80 3.00 3.32
MgO(1) 7.25 7.72 8.47 7.83

(1) Values published by Shishkin and Kresse (2007).
(2) Values published by Chen and Pasquarello (2015)

It is worth noting that the improvement in accuracy comes at a high computational cost. The GW0
and scGW approximations take much longer than DFT methods or even the G0W0 approximation
because of their iterative scheme.
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Conclusions

CONCLUSIONS
Computational methods such as Density Functional Theory and the GW approximation provide

a practical and efficient way of calculating electronic and material properties of solids, which could
not be obtained by solving Schrödinger’s equation due to its complexity. The accurate knowledge of
the properties of different materials allows the development of new technologies. The approximations
presented in this work are important, as they brought significant advancements to the fields of Chemistry,
Electronics and Material sciences.

Several improvements have been made since Thomas and Fermi proposed the calculation of atomic
energy using the electronic density. The formalization provided by the Hohenberg-Kohn theorems and
the Kohn-Sham model allowed the development of more satisfying functionals based on the uniform gas
model. Local density approximation was the first functional created, and it provides good results for
the energy of many-body systems. The GGA functionals presented in this paper, PBE and B88, were
built with energy approximations in mind. For this reason they are better than LDA at these calculations.
The band gap problem encountered by LDA and GGA comes from the Kohn-Sham model itself, since
Kohn-Sham band gaps are smaller than fundamental band gaps. Meta-GGA functionals reduce the
errors associated with the uniform density model, and eliminate the self-correlation error from LDA and
GGA. The hybrid functionals developed later introduced the Hartree-Fock potential and were tuned to
perform well through empirical fitting.

The quasiparticle model allows for the GW approximation, which relies on an entirely theoretical
method to obtain the energy of the system. The method consists in solving a set of five equations
iteratively, and is too expensive computationally to be performed fully, but simplifications such as G0W0,
GW0, and scGW prove to be sufficient to outperform most DFT methods. Some problems, however,
arise from these approaches. G0W0 does not obey conservation laws for particle number, momentum, or
energy, and heavily depends on the method used to obtain the initial Green function. The other methods,
GW0 and scGW, do not have these downsides, but are still very computationally expensive compared to
DFT. Furthermore, many studies suggest that the vertex function, omitted by these simplifications, has
very important consequences in the results, which explains the reduction in band gap accuracy between
G0W0 and scGW. GW0 and scGW approximations tend to overestimate the band gap, depending on the
material studied.

The numerical values presented in chapter 6 for atomization energies and lattice constants show the
validity of DFT methods, yielding very similar results to those obtained empirically. Moreover, the data
shows that no functional is strictly better than any other for these calculations, and that the precision of
the approximation depends on the material. The hybrid functionals are generally better at estimating the
band gap than LDA or GGA, but due to the empirical parameters introduced, the efficiency of each of
these is sensitive to the material studied. The GW approximation drastically reduces the errors from the
DFT functional. Self-consistent GW approximations tend to overestimate the band gap compared to
G0W0, as discussed previously.

The theoretical and experimental results of this study show that the GW approximation serves as a
good method to refine DFT results. Self-consistent solutions are required to obtain correct structural
and energetic properties; nonetheless, further research in this topic is required to solve the problems
of high computational cost and overestimation found in iterative forms of GW. Nowadays, some
studies seek to reduce the overestimation of self-consistent GW approximations without increasing
the computational time significantly, and give great results. Vertex corrected schemes in GW are
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promising new approaches to overcome the present difficulties associated with the current computational
methodologies. Approximations that include the vertex function in some form open a new field of
investigation that would increase the applicability of the already very effective method.
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