UNIVERSIDAD SAN FRANCISCO DE QUITO

Estudio de la adsorción de oro en carbón activado a diferentes condiciones, y modelado de la cinética de adsorción en función del tamaño de partícula

Jorge Humberto Pazmiño Ayala

Tesis de grado presentada como requisito para la obtención del título de Ingeniero Químico.

Quito

Julio, 2007

Universidad San Francisco de Quito Colegio de Ciencias e Ingeniería "El Politécnico"

HOJA DE APROBACION DE TESIS

Estudio de la adsorción de oro en carbón activado a diferentes condiciones y modelado de la cinética de adsorción en función del tamaño de partícula

Jorge Humberto Pazmiño Ayala

Gustavo Muñoz Rivadeneira, Ph.D. Director de Tesis

César Zambrano, Ph.D. Miembro del Comité de Tesis

Carlos Fabara, M.S. Miembro del Comité de Tesis

Fernando Romo, M.S., M.B.A. Decano del Colegio de Ciencias e Ingeniería

Quito, Julio 2007

© Derechos de autor: Según la actual Ley de Propiedad Intelectual, Art. 5:

"el derecho de autor nace y se protege por el solo hecho de la creación de la obra, independientemente de su mérito, destino o modo de expresión... El reconocimiento de los derechos de autor y de los derechos conexos no está sometido a registro, depósito, ni al cumplimiento de formalidad alguna." (Ecuador. Ley de Propiedad Intelectual, Art. 5)

> Jorge H. Pazmiño Ayala 2007

A la memoria de mi padre Jorge H. Pazmiño Silva y con mucha gratitud para mi madre Maria del Pilar Ayala, mi hermano Santiago D. Pazmiño y mis abuelos Luis Humberto Ayala y Aída Andrade.

AGRADECIMIENTOS

Mis mayores agradecimientos a mi director de tesis, Dr. Gustavo Muñoz Rivadeneira, por su constante soporte en el desarrollo del trabajo; por dejar que yo descubra por mi mismo los problemas a los que me enfrentaba, y por motivarme constantemente a alcanzar mis objetivos. Agradezco de igual forma al Dr. César Zambrano y al Dr. Carlos Fabara por sus valiosos comentarios, y por brindarme todo el apoyo logístico para la realización del proyecto. De manera muy especial, agradezco a la Ing. Lourdes Orejuela y al Ing. Nelson Herrera, por la provisión de los reactivos y la asistencia en el montaje del equipo, respectivamente; por su colaboración incondicional, y su apertura para resolver las dificultades que se presentaron. Finalmente un reconocimiento especial a mi esposa, Ivonne Viteri Yánez, y mi mejor amigo, Eric Aguayo, por su compañía y apoyo moral constante durante las etapas de experimentación.

RESUMEN

Se describe la cinética de adsorción de oro en carbón activado bajo diferentes condiciones y el modelado del fenómeno en función del diámetro de partícula del carbón. Primero se presentan los fundamentos teóricos de la adsorción, y se explica en detalle el diseño experimental para el caso de sistemas de oro-carbón activado en soluciones cianuradas. A continuación se discuten los datos de cinética de adsorción de oro obtenidos al variar la velocidad de agitación, el nivel de pH, la presencia de iones espectadores y el tamaño de partícula. Durante la experimentación fue evidente un efecto inductivo a bajas concentraciones de carbón con diámetro mayor a 500 µm, en donde no se produjo adsorción de oro. El análisis de los datos de cinética sugiere que la inducción es causada por la resistencia natural a la difusión intraparticular. Para efectos de modelado, fue necesario obtener curvas de cinética de adsorción de oro con una tendencia de primer orden y cuyo nivel de equilibrio esté por debajo del 80% de adsorción. Seguidamente se discute la aplicación y la validación del modelo modificado planteado por Le Roux et al., y se presenta las tendencias para la constante de difusión k_{f} . Se encontró que el modelo predice adecuadamente los datos experimentales durante las primeras 8 horas de operación y que el paso limitante en la adsorción es la difusión intraparticular. Finalmente, un análisis de sensibilidad reveló que el modelo tiene gran dependencia a la variación de los parámetros de Freundlich, especialmente en la capacidad de absorción, A. Se estimó que para una muestra de carbón activado Calgon GRC-22 Plus 6X16, un valor de A cercano a 55 predice la cinética hasta etapas próximas al equilibrio. Se sugiere una determinación cuidadosa de estos parámetros, así como futuros estudios para minimizar el efecto de inducción y validar modelos matemáticos para tamaños de partícula mayores a 500 µm.

ABSTRACT

The adsorption kinetics of gold on activated carbon under different experimental conditions is described, along with the modeling of such phenomena in terms of the particle diameter. First, the fundamentals of the adsorption process are described, followed by the experimental techniques used for Au-carbon systems in cyanide solutions. Next, the gold adsorption data is analyzed for variations in agitation speed, pH, concentration of spectator species, and particle size. During the experiments under low carbon concentration and particle diameter greater than 500 μm, it was evident that an inductive effect was present, in which no adsorption of gold took place. Results suggested that such effect was due to a natural resistance to intraparticular diffusion. Later, the modeling stage required the generation of consistent kinetic data for gold adsorption which can be characterized by a first order trend, with an equilibrium level under 80%. The application and validation of the mathematical model proposed by Le Roux et al., is discussed, along with presenting the results for the diffusion coefficient k_f . It was found that the model accurately predicts experimental data for the first 8 hours of operation, and that the limiting step in the adsorption process is the intraparticular diffusion. Finally, a sensitivity analysis revealed a large dependency of the model on the Freundlich parameters, especially on the adsorption capacity, A. It was estimated that for a Calgon GRC-22 Plus 6X16 activated carbon sample, a value for A of about 55 predicts the kinetics close to equilibrium. Consequently, a meticulous determination such parameters is suggested, along with potential future studies focused on minimizing the inductive effect as well as verifying the mathematical models for particle sizes greater than 500 μ m.

TABLA DE CONTENIDOS

LISTA DE FIGURAS	xi
LISTA DE TABLAS	xiii
LISTA DE SÍMBOLOS	xiv

CAPÍTULO

1.	INTRODUCCIÓN	1
	1.1. Generalidades del Carbón Activado	1
	1.2. Materias Primas	3
	1.3. Caracterización del Carbón Activado	5
	1.4. Aplicaciones Industriales	7
	1.5. Métodos de Regeneración	7
2.	PROCESO DE EXTRACCIÓN DE ORO CON CARBÓN ACTIVADO	10
	2.1. Cianuración del Oro	11
	2.2. Condiciones Óptimas para la Cianuración	13
3.	ADSORCIÓN DE ORO EN CARBÓN ACTIVADO	18
	3.1. Mecanismo de Adsorción	20
	3.2. Factores que Afectan la Adsorción de Oro	21
	3.3. Elución	23
	3.4. Electrolisis de Oro en Soluciones Cianuradas	24

4.	CINÉTICA Y MODELADO DEL FENÓMENO DE	
	ADSORCIÓN DE ORO EN CARBÓN ACTIVADO	25
	4.1. Ecuaciones Fundamentales	25
	4.1.1. Modelo no lineal basado en difusión en la capa límite	26
	4.1.2. Modelo de difusión superficial homogénea (HSDM)	29
	4.1.3. Modelo de van Deventer	31
5.	OBJETIVOS DEL PROYECTO	33
	5.1. Objetivos Generales	33
	5.2. Objetivos Específicos	33
6.	MÉTODOS EXPERIMENTALES	35
	6.1. Materiales y Reactivos	35
	6.2. Caracterización del Carbón Activado	36
	6.3. Preparación de Reactivos	37
	6.4. Diseño del Reactor	37
	6.5. Análisis de Muestras	39
7.	RESULTADOS Y DISCUSIÓN	41
	7.1. Caracterización del Carbón por Número de Yodo	41
	7.2. Pruebas de Cinética de Adsorción	41
	7.2.1. Efecto de la velocidad de agitación	42
	7.2.2. Efecto del nivel de pH y la presencia de iones espectadores	43
	7.2.3. Efecto del tamaño de partícula	47
	7.3. Curvas de Equilibrio	49
	7.4. Curvas de Cinética para Modelado a Distintos Tamaños de Partícula	56
8.	APLICACIÓN DEL MODELO MATEMÁTICO	59
9.	CONCLUSIONES Y RECOMENDACIONES	67

ix

REF	REFERENCIAS	
APE	NDICES	
A:	Diseño Experimental Final y Equipos de Control de las variables del Proceso	76
B:	Métodos y Equipo para Análisis	78
C:	Datos para la Estimación de los Parámetros de Freundlich	80
D:	Resolución Numérica del Modelo Modificado de Le Roux en MATLAB	81
E:	Método Estándar D4607 ASTM para la Determinación del Número de Yodo	83

LISTA DE FIGURAS

Figura

1	Diagrama del mecanismo de reacción de disolución de oro en la interfase sólido-líquido13
2	Diagrama de estabilidad Eh-pH para el sistema cianuro-agua15
3	Diagrama de estabilidad Eh-pH para el sistema oro-agua16
4	Diagrama de estabilidad para el sistema oro-cianuro-agua17
5	Determinación del número de yodo para los carbones Norit RO 3515 y Calgon GRC 22 Plus 6X1242
6	Efecto de la velocidad de agitación en la cinética de adsorción de oro en carbón activado43
7	Cinética de adsorción y perfil de pH ante la ausencia de iones espectadores44
8	Cinética de adsorción y perfil de pH al adicionar iones espectadores Ca ²⁺ 46
9	Efecto de la concentración de iones Ca^{2+} en la cinética de adsorción y el perfil de pH48
10	Efecto del tamaño de partícula en la velocidad inicial de adsorción49
11	Efecto de la concentración de carbón en la cinética de adsorción. Diámetro de partícula: 1180-3350 μ m, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M50
12	Efecto de la concentración de carbón en la cinética de adsorción. Diámetro de partícula: 500-1000 μ m, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M51
13	Efecto inductivo a distintas concentraciones de carbón. Tamaño de partícula entre 1180-3350 μ m, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M52

14	Efecto inductivo a distintas concentraciones de carbón. Tamaño de partícula entre 500-1000 μ m, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M
15	Efecto de la humedad del aire en el tiempo de inducción. Tamaño de partícula entre 1180-3350 μ m, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M54
16	Efecto del pre-tratamiento del carbón en agua destilada en el tiempo de inducción. Tamaño de partícula entre 1180-3350 μ m, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M55
17	Efecto del pre-tratamiento de carbón en solución alcalina pH 11. Tamaño de partícula entre 1180-3350 μ m. T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M
18	Cinética de adsorción de oro para modelado. 0.35 mm>Dp> 0.5 mm, concentración de carbón = 0.152 g/l, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M
19	Cinética de adsorción de oro para modelado. 0.25 mm <dp<<math>0.35mm, concentración de carbón = 0.152 g/l, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M</dp<<math>
20	Isotermas de Freundlich para tres tamaños de partícula60
21	Predicción del modelo de Le Roux para la cinética de adsorción. 0.35mm <dp<<math>0.50 mm, concentración de carbón = 0.152 g/l, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M62</dp<<math>
22	Predicción del modelo de Le Roux para la cinética de adsorción. 0.25 mm < Dp < 0.350 mm, concentración de carbón = $0.152 g/l$, T = 298 K, [Au] = 10 mg/L, [NaCN] = 0.02 M 63
23	Comportamiento del valor ajustado del coeficiente de difusión <i>k_f</i>
24	Análisis de sensibilidad para la constante de Freundlich65
25	Análisis de sensibilidad para el exponente de Freundlich66

LISTA DE TABLAS

Tabla

1	Propiedades de Algunas Materias Primas Usadas para la Producción de Carbón Activado	5
2	Aplicaciones Industriales del Carbón Activado.	8
3	Especificaciones del Fabricante para el Carbón CALGON tipo GRC-22	35
4	Valores Experimentales para los Parámetros de Freundlich	61

LISTA DE SÍMBOLOS

V	caída de voltaje en celda electroquímica (V)
Ε	potencial de reducción (V)
n	sobrepotenciales (V)
i	densidad de corriente eléctrica en solución (A/cm^2)
R	resistencia a través de solución (ohm)
E_{rev}	potencial reducción reversible (V)
J_A	flujo fickiano de masa (mg $Au/dm^2 \cdot s$)
k_f	constante de difusión a través de la capa límite (dm/s)
ť	tiempo (s)
С	concentración de oro en solución (mg Au/dm ³)
C_s	concentración de oro en la interfase (mg Au/dm ³)
C_o	concentración inicial de oro en solución (mg Au/dm ³)
V	volumen de solución (dm ³)
т	masa de carbón (g)
$ ho_p$	densidad aparente del carbón (g/dm³)
r_p	radio de la partícula de carbón (dm)
\dot{q}	carga de oro sobre la superficie del carbón (mg Au/g carbón)
A	constante de Freundlich (dm³/g carbón)
γ	exponente de Freundlich
β	factor de conversión (dm^{-1})
D_s	coeficiente de difusión del sólido (cm^2/s)
q_o	concentración de oro en superficie en equilibrio con la concentración
	inicial de oro en solución (mg Au/g)
r_o	radio externo de partícula (dm)
Sh_b	número adimensional de Sherwood
α	parámetro adimensional
5	coordenada radial adimensional
Θ	concentración superficial adimensional
τ	tiempo adimensional
χ	concentración en solución adimensional
Xs	concentración interfacial adimensional
Q_m	carga en los macroporos al cuadrado (mg ² Au/g ² carbón)
$D_{e\!f\!f}$	$coeficiente$ efectivo de difusión (dm^2/s)
qs	carga de oro en la interfase líquida-sólida (mg Au/g carbón)
q_b	carga de oro en los Microporos (mg Au/g carbón)
k_b	coeficiente de transporte desde los macroporos a los Microporos (s^{-1})
ε	fracción de la capacidad de adsorción en forma de macroporos