UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Estimación del parámetro de densidad de fisuras en el hormigón mediante ondas de esfuerzo Trabajo Experimental

Andrea de los Ángeles Moreno León

Ingeniería Civil

Trabajo de titulación presentado como requisito para la obtención del título de Ingeniera Civil

Quito, 17 de diciembre de 2018

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ COLEGIO DE CIENCIAS E INGENIERÍAS

HOJA DE CALIFICACIÓN DE TRABAJO DE TITULACIÓN

Estimación del parámetro de densidad de microfisuras en el hormigón mediantes ondas de esfuerzo

Andrea de los Ángeles Moreno León

Calificación:

Nombre del profesor, Título académico

Juan José Recalde, Ph.D

Firma del profesor

Quito, 17 de diciembre de 2018

DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Firma del estudiante:	
Nombres y apellidos:	Andrea de los Ángeles Moreno León
Código:	121419
Cédula de Identidad:	1717635419
Lugar y fecha:	Quito, 17 de diciembre de 2018

DEDICATORIA

A mis padres, mis hermanos y a todas las personas que confiaron en mi potencial para poder culminar esta etapa.

AGRADECIMIENTOS

Agradezco a mis padres Fabián y Teddy, ustedes son el motor de mi vida y mi ejemplo a seguir; a mi mejor amigo, mi hermano Fausto; a mis compañeros, que hicieron que esta etapa sea inolvidable. Agradezco a mi tutor Juan José Recalde por guiarme a lo largo del desarrollo del trabajo de titulación. Extiendo mi agradecimiento a mi compañero Esteban Riofrío, por su colaboración y arduo labor en la obtención de datos en mi trabajo de titulación.

Finalmente, agradezco a la Universidad San Francisco de Quito y al departamento de Ingeniería Civil por su gran labor en impartir nuevos conocimientos y experiencias.

RESUMEN

Es necesario tener métodos de evaluación no destructivo y semidestructivo para poder evaluar estructuras de hormigón después de eventos dañinos como: fuego, sobrecarga o cargas dinámicas. Existen métodos semidestructivos para poder determinar propiedades mecánicas y el parámetro de densidad de fisuras en el hormigón; sin embargo, éstos requieren de trabajo en laboratorio, por lo que es útil contar con una metodología en campo no destructiva para cuantificar la cantidad daño. El objetivo del presente trabajo de titulación es determinar la factibilidad de poder cuantificar el parámetro de densidad de fisuras en el hormigón mediante ondas de esfuerzos. Se estudiaron tres mezclas denominadas M3, M4 y M5 con relaciones agua/cemento de 0,35, 0,45 y 0,60 respectivamente. Para cada mezcla se fabricaron tres (3) losetas de 40 x4 0 x 20 cm y se las evaluó mediante velocidad de pulso (vp), velocidad de corte (vs) y número de rebote (NR), en estado seco al aire y mojado. Con los datos obtenidos se analizó la factibilidad de medir el parámetro densidad de fisuras. Se logró medir velocidad de pulso, velocidad de corte y número de rebote, los parámetros de densidad de fisuras para cada mezcla fueron para mezcla M3 0,146; para la mezcla M4 fue de 0,075 y para la mezcla M5 fue de 0,102. Se obtuvieron resultados preliminares tras exposición a 450 °C por 2 horas para cuatro losas, tras las cuales fue posible obtener velocidad de pulso y número de rebote; sin embargo no fue posible obtener la velocidad de corte usando transductores. Estos datos coinciden tanto para investigaciones previas como para investigaciones paralelas.

Palabras clave: velocidad de pulso, velocidad de corte, número de rebote, parámetro de densidad de fisuras, evaluación no destructiva, ondas de esfuerzo, hormigón, ingeniería forense.

ABSTRACT

It is necessary to have nondestructive and semi-destructive evaluation methods to be able to evaluate concrete structures after harmful events such as fire, overload or dynamic loads. There are semi-destructive methods to determine the mechanical properties and the crack density parameter in concrete; however, these methods require laboratory work, therefore it would be useful to have a non-destructive field methodology to quantify the amount of damage. The objective of the present work is to determine the feasibility of quantifying the crack density parameter in concrete using stress waves. Three mixtures were studied labeled M3, M4 and M5, with water/cement ratios of 0.35, 0.45, and 0.60 respectively. For each mixture, three (3) slabs 40 x 40 x 20 cm were fabricated, and tested for pulse wave velocity (vp), shear wave velocity (vs), and rebound number (RN). With the obtained data, the feasibility of measuring the crack density parameter was analyzed. It was possible to measure pulse wave velocity, shear wave speed and rebound number on air dry and soaked conditions. The crack density parameters for each mixture were 0.146 for mixture M3, 0.075 for mixture M4, and 0.102 for mixture M5. Preliminary results were obtained after exposure to 450 ° C for two hours for four slabs, after which it was possible to obtain pulse velocity and rebound number; however, shear wave velocity was not possible to obtain using transducers. These data coincide with previous and parallel research projects.

Keywords: pulse velocity, shear velocity, bounce number, crack density parameter, non-destructive evaluation, stress waves, concrete, forensic engineering.

TABLA DE CONTENIDO

Derechos	de Autor	. 3
DEDICATO	PRIA	.4
Agradecim	iientos	. 5
RESUMEN.		.6
ABSTRACT	·	. 7
TABLA DE	CONTENIDO	. 8
ÍNDICE DE	TABLAS	10
ÍNDICE DE	FIGURAS	11
1 INTRO	DDUCCIÓN	13
1.1 A	ntecedentes	13
1.2 Ju	ıstificación	14
1.3 O	bjetivos	14
1.4 R	esultados Esperados	15
1.5 A	ctividades	15
1.6 D	efiniciones	15
$\begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	RROLLO	17
2.1 1	Métodos de Evaluación no destructivo en el hormigón	17 17
2.1.1	Velocidad de Pulso (Vn)	17 17
2.1.1	 Velocidad de l'uiso (Vp). Velocidad de Corte (Vs) 	17 17
2.1.1	 Versorial de Corte (VS) Número de Rebote (NR) 	18
2.1.1	1.4 Profundidad de daño (D)	19
2.1.2	Microfisuramiento en el hormigón	20
2.1.3	Efecto de Altas Temperaturas en el hormigón	23
2.1.4	Métodos de evaluación de estructuras existentes	24
2.2 Pl	an Experimental	26
2.2.1	Matriz Experimental	26
2.3 M	letodología	29
2.3.1	Fabricación de Especímenes	29
2.3.2	Velocidad de Pulso	29
2.3.3	Velocidad Corte	30
2.3.4	Número de Rebote	32
2.3.5	Profundidad de Daño	33

2.3.6	2.3.6 Exposición Alta Temperatura				
2.3.7	2.3.7 Métodos de Condicionamiento				
2.4 Resultados					
2.4.1 Resultados de ensayos en condiciones iniciales					
2.4.2	2.4.2 Resultados preliminares tras exposición a altas temperaturas				
2.4.2	.1 Profundidad de daño	41			
2.5 Ar	alisis de Resultados	42			
2.5.1	Condiciones sin daño	42			
2.5.1	.1 Módulo de elasticidad dinámico (Ed)	42			
2.5.1	.2 Densidad de fisuras (ε)	43			
2.5.2	Resultados preliminares de exposición a altas temperaturas	44			
2.5.2	.1 Módulo de elasticidad dinámico (Ed)	44			
2.5.3	Cambios en las propiedades	45			
2.5.3	.1 Variación en peso	45			
2.5.3	.2 Variación en velocidad de pulso	47			
2.5.3	.3 Variación en velocidad de corte	49			
2.5.3	.4 Variación en número de rebote	51			
2.5.3	.5 Variación en el módulo de elasticidad dinámico	53			
2.5.4	Factibilidad para uso de ensayos no destructivos para determinar (ϵ)	53			
3 CONCL	USIONES Y RECOMENDACIONES	54			
3.1 Co	nclusiones	54			
3.2 Re	comendaciones	55			
4 REFER	ENCIAS	57			
ANEXO A		59			
ANEXO B		66			
ANEXO C					
ANEXO D		72			

ÍNDICE DE TABLAS

Tabla 1: Plan de ensayos en las losas	28
Tabla 2: Plan de ensayos preliminares	28
Tabla 3: Especificaciones de las mezclas	29
Tabla 4: Pesos de las losas en condiciones de Seco al Aire en condiciones iniciales	
Tabla 5: Pesos de las losas en condiciones de mojado en condiciones iniciales	
Tabla 6: Resultados de ensayos condicionales sin daño de las losas	
Tabla 7: Pesos de las losas en exposición a altas temperaturas	
Tabla 8: Resultados de las losas en exposición a altas temperaturas	40
Tabla 9: Pesos de las losas en condiciones de mojado en condiciones iniciales	40
Tabla 10: Pesos de las losas en condiciones de Seco al Aire en condiciones iniciales	40
Tabla 11: Resultados de ensayos preliminares tras exposición a altas temperaturas	41
Tabla 12: Resultados de profundidad de daño	41
Tabla 13: Resultados del módulo de elasticidad dinámico para condiciones iniciales	43
Tabla 14: Resultados del parámetro de densidad de fisuras	43
Tabla 15: Resultados preliminares del módulo de elasticidad dinámico para exposición	a altas
temperaturas	44
Tabla 16: Resultados del módulo de elasticidad dinámico tras la exposición a altas	
temperaturas	44
Tabla 17: Variación en el módulo de elasticidad dinámico	53

ÍNDICE DE FIGURAS

Figura 1: Efectos de defectos en el tiempo de viaje del pulso ultrasónico. Fuente (ACI	
228.2R, 2013)	20
Figura 2: Relación entre el módulo dinámico de elasticidad y el índice de impermeabili	idad
del aire (API) Fuente: Recalde, J. J. (2009)	21
Figura 3: Propiedades elásticas efectivas de un sólido a través del efecto de saturación	parcial
Fuente: O'Connell y Bundianski (1974)	22
Figura 4: Elementos de hormigón tras la exposición a altas temperaturas Fuente: Alons	о у
Flor Laguna (2013)	25
Figura 5: Relación entre la velocidad de ultrasonido, la altura de una columna y la dista	ancia
de la fisura. Fuente: Alonso y Flor Laguna (2013)	26
Figura 6: Especímenes para fase experimental	27
Figura 7: División de las losas en los puntos experimentales	27
Figura 8: Esquema experimental de la velocidad de pulso Fuente: ASTM C597-09	30
Figura 9: Configuración de velocidad de pulso en laboratorio	30
Figura 10: Esquema experimental de la velocidad de corte Fuente: ASTM C215-08	31
Figura 11: Configuración de velocidad de corte en laboratorio	32
Figura 12: Obtención de Número de Rebote en Laboratorio	33
Figura 13: Método en campo para obtención de la profundidad de daño. Fuente (ACI 2	28.2R,
2013)	34
Figura 14: Configuración de losas para obtener los datos en laboratorio de la profundid	ad de
daño	35
Figura 15: Armado de horno no industrial para exposición a altas temperaturas	36
Figura 16: Condicionamiento de mojado de las losas	37
Figura 17: Secado al Natural de las losas en laboratorio	37
Figura 18: Profundidad de daño para mezcla M5, Losa 1 tras 24 horas de ser expuesta a	a altas
temperaturas	42
Figura 19: Variación en peso de la mezcla M3	45
Figura 20: Variación en peso de la mezcla M4	46
Figura 21: Variación en peso de la mezcla M5	46
Figura 22: Variación en velocidad de pulso para la mezcla M3	47
Figura 23: Variación en velocidad de pulso de la mezcla M4	48
Figura 24: Variación en velocidad de pulso de la mezcla M5	48

Figura 25: Variación en velocidad de corte de la mezcla M3	49
Figura 26: Variación en velocidad de corte de la mezcla M4	50
Figura 27: Variación en velocidad de corte de la mezcla M5	50
Figura 28: Variación número de rebote mezcla M3	51
Figura 29: Variación número de rebote mezcla M4	52
Figura 30: Variación número de rebote mezcla M5	

1 INTRODUCCIÓN

1.1 Antecedentes

El hormigón, hoy en día es uno de los materiales de construcción más utilizados en obras civiles. Por lo tanto, debido al tiempo de vida útil del mismo, éste puede verse inmerso en distintos escenarios, ya sean de sobrecarga, exposición a cargas dinámicas o exposición a altas temperaturas. El hormigón en dichas condiciones, puede llegar a sufrir cambios en sus propiedades tanto físicas como químicas, presentando fisuras y otros desperfectos.

Con la finalidad de que este material tenga la capacidad de alargar su durabilidad es necesario considerar tanto normas como ensayos. Las normas de ejecución del hormigón se basan en investigaciones empíricas del comportamiento del material, es decir, ensayos que consisten en hipótesis de prueba y error. Debido a que ciertas de estas hipótesis no han sido probadas con efectividad se han desarrollado diversos estudios que buscan el mejoramiento de la microestructura del hormigón. Según, Ercolani, Ortega, y Señas (2007) cuando un material como el hormigón es sometido a altas temperaturas se pueden generar tanto micro como macrofisuras, donde los productos de hidratación tienden a descomponerse generando una acción combinada de contracción y expansión en la pasta de cemento. Esto depende de la temperatura a la que se encuentra expuesto un elemento de hormigón, ya que, a medida que la temperatura se eleva la deshidratación aumenta e incluso los agregados del material pueden dejar de ser estables generando una gran densidad de microfisuras concentradas en la unión de agregado y pasta.

Basado en la afectación del hormigón a altas temperaturas Recalde (2009), buscó la relación entre las condiciones mecánicas de la macroestructura y la afectación de las propiedades físicas y químicas de las microfisuras a través de métodos analíticos, los mismos que buscan cuantificar los cambios en la densidad de fisuras en especímenes expuestos a alta temperatura por un pequeño lapso de tiempo. Dichos estudios dan la pauta para el estudio de la estimación del parámetro de densidad de microfisuras en el hormigón, mediantes ondas de esfuerzo y ensayos no-destructivos tras exposición a alta temperatura

1.2 Justificación

Como se mencionó anteriormente, las estructuras de hormigón se pueden ver inmersos en distintos escenarios que pueden provocar cambios significativos en el mismo. Estos cambios son de alta importancia cuando el hormigón en exposición es parte de elementos estructurales significativos en una obra civil. Es por esta razón que, es importante crear un método de evaluación asociado a las fisuras del hormigón y a su impacto en las propiedades mecánicas del mismo, estas propiedades mecánicas pueden describir tanto la resistencia a la compresión, módulo de elasticidad como en la accesibilidad de fluidos al hormigón.

1.3 Objetivos

Los objetivos del presente trabajo de titulación son:

- Aplicar principios de trasmisión de ondas de esfuerzo en medios poroelásticos para determinar el parámetro de densidad de fisuras.
- Utilizar métodos de evaluación no-destructiva para cuantificar el daño en el hormigón tras exposición a alta temperatura.
- Analizar la factibilidad de poder cuantificar el parámetro de densidad de microfisuras en campo mediante ensayos de evaluación no-destructiva.

1.4 Resultados Esperados

Los resultados esperados del presente trabajo de titulación son los siguientes:

- Resultados de ensayos velocidad de pulso, velocidad de corte y número de rebote.
- Estimación del parámetro de densidad de fisuras a través de ondas de esfuerzo.
- Análisis de resultados y factibilidad de cuantificar el parámetro de densidad de microfisuras en campo

1.5 Actividades

- Realizar ensayos en estado Seco al Aire a edad mayor a 28 días.
- Realizar ensayos en estado mojado.
- Exponer especímenes a alta temperatura (de ser posible).
- Realizar el análisis de resultados.

1.6 Definiciones

Para el estudio de microfisuras del hormigón y su relación con las propiedades mecánicas del material después de exposición a alta temperatura, se deben considerar términos que están relacionados con los ensayos no destructivos a realizarse en la parte experimental.

Velocidad de Pulso (Vp): La velocidad de pulso se basa en las ondas de sonido, donde las mismas se propagan por medios sólidos a través de ondas longitudinales y de compresión, la velocidad de propagación de las ondas puede estimar propiedades físicas del material las cuales se pueden relacionar con parámetros de durabilidad y calidad del hormigón. Velocidad de Corte (Vs): La velocidad de corte utiliza el mismo principio de las ondas de sonido, sin embargo, la velocidad de propagación se realiza a través de ondas transversales o de corte.

Número de Rebote (NR) El número de rebote es un ensayo no destructivo que tiene correlación con la resistencia a la compresión del hormigón. Dicho método utiliza el principio de la esclerometría, es decir, la ejecución de una masa impulsada por un resorte que recolecta una cantidad específica de energía que permite extender el resorte en una posición definida.

2 DESARROLLO

2.1 Marco Teórico

2.1.1 Métodos de Evaluación no destructivo en el hormigón

2.1.1.1 Velocidad de Pulso (Vp)

La velocidad de pulso es la velocidad con la que una onda P se propaga por un sólido semi-infinito. Se caracteriza, por ser una onda de tensión que provoca el desplazamiento de partículas en dirección paralela a la de la propagación de la onda. La onda P, puede producir tensiones normales, ya sean de tensión o de compresión, a medida que la onda se propaga por un elemento (ASTM, C1383).

La velocidad de pulso se considera como un ensayo no destructivo que induce ondas de esfuerzo, con la finalidad de detectar daños y variaciones en las propiedades mecánicas de una estructura; combinando aspectos de emisión acústica a través de la caracterización ultrasónica de los materiales (ASTM, E1316).

La velocidad de pulso, Vp, de ondas de esfuerzo longitudinales en el hormigón, se encuentra relacionada con las propiedades elásticas y de densidad del elemento a través de la siguiente ecuación:

$$Vp = \sqrt{\frac{E_d(1-\mu)}{\rho(1+\mu)(1-2\mu)}}$$
(2-1)

Donde:

E_d: Módulo de elasticidad dinámico de Young, Pa

- μ: Módulo de Poisson
- ρ : Densidad del hormigón, kg/m³

2.1.1.2 Velocidad de Corte (Vs)

La velocidad de corte utiliza el principio de fenómenos de ondas elásticas transitorias, las mismas que son emitidas por la liberación inmediata de energía de fuentes

localizadas en distintos materiales. La velocidad calculada se encuentra sobre la base de tiempos de llegada de la onda, la distancia de propagación de la misma y por la generación artificial de una emisión acústica como puede ser un impulso o una ráfaga de energía (ASTM, E1316).

La velocidad de corte es un análisis que se lo realiza principalmente para detectar cambios importantes o significativos en el módulo de elasticidad dinámico; ya sea de muestras en campo o en laboratorio, que se encuentran bajo la exposición a factores potencialmente dañinos para la calidad del hormigón (ASTM, C215-08). Al igual que la onda P, la onda S, se propaga por un sólido semi-infinito; sin embargo, el desplazamiento de las partículas es perpendicular a la dirección de propagación de la onda (ASTM, E1316).

La velocidad de corte Vs se encuentra relacionada con las propiedades elásticas y de densidad del hormigón a través de la siguiente ecuación:

$$Vs = \sqrt{\frac{E_d(1-\mu)}{2\rho(1+\mu)}}$$
 (2-2)

Donde:

E_d: Módulo de elasticidad dinámico de Young, Pa

μ: Módulo de Poisson

 ρ : Densidad del hormigón, kg/m³

2.1.1.3 Número de Rebote (NR)

El número de rebote es un ensayo no destructivo, ya que, es obtenido por una prueba de martillo de rebote, el mismo que impacta con una cantidad predeterminada de energía, un émbolo de acero en contacto con una superficie de hormigón y se mide la distancia a la que rebota el martillo. El número de rebote proporciona información sobre la resistencia a compresión del hormigón en su superficie. Este método busca evaluar la uniformidad del hormigón así como para identificar el hormigón de mala calidad o deteriorado. La calidad del hormigón en este método se da a través de la relación entre la resistencia del hormigón y el número de rebote de las muestras. Este método se ve afectado por factores como el contenido de humedad en la superficie de prueba, la profundidad de carbonatación y el tipo de acabado (ASTM, C805-02).

2.1.1.4 Profundidad de daño (D)

La profundidad de daño es una variación del estudio de la velocidad de pulso, donde se aplican los principios de propagación de onda para conocer la cantidad de daño dentro de un sólido de hormigón; este estudio fue realizado por Chung y Law en 1983 a través de una publicación en la revista de la sociedad americana de hormigón (ACI). Chung y Law consideraron que en un miembro hormigón, las variaciones en la densidad pueden surgir de una consolidación no uniforme y las variaciones en las propiedades elásticas del mismo pueden ocurrir debido a las variaciones en los materiales, las proporciones de la mezcla o en el estilo de curado. Por lo tanto, al determinar la velocidad de la onda en diferentes ubicaciones de la estructura es posible hacer inferencias sobre la uniformidad del hormigón.

En la Figura 1, se observan cuatro reacciones de la velocidad de pulso frente a la uniformidad del hormigón. En el primer caso (caso superior), se observa la ruta directa corta a través del hormigón resultando en el tiempo de viaje más corto o la velocidad de onda más rápida. El segundo caso, representa una ruta que pasa a través de una porción de hormigón de baja calidad y el tercer caso muestra un camino interrumpido por un gran vacío o grieta, en los dos últimos casos antes mencionados el tiempo de viaje sería mayor que en el primer caso. Finalmente, el último caso indica una trayectoria de viaje que es interrumpida por un vacío, lo que resulta en una reflexión total de la onda de esfuerzo.

Figura 1: Efectos de defectos en el tiempo de viaje del pulso ultrasónico. Fuente (ACI 228.2R, 2013)

2.1.2 Microfisuramiento en el hormigón

El hormigón se conforma principalmente por tres compuestos: la pasta de cemento, una estructura compuesta por poros y una zona de transición entre los agregados y la pasta de cemento. Con el paso de los años se ha buscado reducir el microfisuramiento, para mejorar el desempeño y la durabilidad del hormigón, a través de la adicción de cementantes especiales a las mezclas; como el sílice (Si O₂), aluminio (Al₂ O₃), o reduciendo de la relación agua/cemento. Sin embargo, la rama de la microestructura parece ser también una manera efectiva de comprender y mejorar el desenvolvimiento del hormigón (Hilal, 2016). El microfisuramiento en el hormigón es un resultado de la extensión menor de grietas preexistente, estas grietas existen debido a que el concreto es un material bastante heterogéneo. Según Hsu, Slaye, Sturmany Winter (1963) y Carrasquillo Nilson y Slate (1981), el microfisuramiento es el resultado de grietas en la zona de transición expuestas a esfuerzos de tensión de hasta el 50 por ciento de la resistencia máxima de la mezcla y en consecuencia existe un agrietamiento adicional de dichas grietas en hasta un 70 por ciento.

Según Recalde (2009), un aumento en la permeabilidad de la mezcla puede reducir la durabilidad del hormigón en ambientes agresivos, y es importante considerar que la mayoría de estructuras hoy en día se encuentran expuestas a distintas condiciones ambientales como la tensión de cargas aplicadas a los elementos estructurales. Por lo tanto, el índice de permeabilidad juega un papel muy importante con respecto al cambio de las propiedades mecánicas en la microestructura del hormigón. Dilek, Leming y Guth (2004) estudiaron la relación entre los cambios del módulo dinámico de elasticidad y el índice de permeabilidad del aire.

Figura 2: Relación entre el módulo dinámico de elasticidad y el índice de impermeabilidad del aire (API) Fuente: Recalde, J. J. (2009)

El parámetro de densidad de fisuras (ε), estudiado por O'Connell y Bundianski (1974), considera que el módulo de corte varía dependiendo del grado de saturación al que se encuentra sometido una mezcla y es un método que relaciona los cambios entre el módulo de Young, el módulo de corte, el módulo de compresibilidad y la relación de Poisson.

$$\frac{K}{K_0} = 1 - \frac{16(1-\mu^2)}{9(1-2\mu)} D\varepsilon$$
 (2-3)

$$\frac{E}{E_0} = 1 - \frac{16}{45} (1 - \mu^2) \left[3D + \frac{4}{(2 - \mu)} \right]$$
(2-4)

$$\frac{G}{G_0} = 1 - \frac{32}{45} (1 - \mu) \left[D + \frac{3}{(2 - \mu)} \right]$$
 (2-5)

Donde:

E: Módulo de elasticidad dinámico de Young, Pa

E_o: Módulo de elasticidad dinámico de Young del sólido no fisurado, Pa

G: Módulo de corte, Pa

G_o: Módulo de corte del sólido no fisurado, Pa

K: Módulo de compresibilidad efectivo, Pa

K_o: Módulo de compresibilidad del sólido no fisurado, Pa

 μ : Módulo de Poisson

 μ_o : Módulo de Poisson del sólido no fisurado

Figura 3: Propiedades elásticas efectivas de un sólido a través del efecto de saturación parcial Fuente: O'Connell y Bundianski (1974)

2.1.3 Efecto de Altas Temperaturas en el hormigón

El efecto del hormigón a altas temperaturas es un tema que ha sido tratado e investigado desde 1950 con la finalidad de entender el comportamiento mecánico de las microfisuras ocasionadas por dicho fenómeno. Los primeros estudios estuvieron a cargo de Malhotra en el año 1956, a través de una publicación denominada "El efecto de la temperatura en la fuerza de compresión del hormigón" en la revista de investigación del hormigón. Abrams, en 1971, analizó la resistencia a la compresión del hormigón a temperaturas de hasta 1600°F. Finalmente Schneider, realizó dos publicaciones, una en el año 1985 y otra en el año 1988, acerca del comportamiento de las propiedades mecánicas del hormigón tras la exposición a altas temperaturas. Estas investigaciones fueron las principales recomendaciones y provisiones para determinar los códigos sobre la resistencia a la compresión tras la exposición a altas temperaturas.

Phan (2009), realizó un estudio sobre el comportamiento de hormigón de alta resistencia expuesto a altas temperaturas, considerando cilindros de 100 x 200 milímetros y bloques de hormigón de 100 x 200 x 200 mm expuestos a temperaturas de hasta 600°C. Phan tomó en cuenta que cerca del 40 por ciento de la resistencia a la compresión se reduce en especímenes cuyo diseño es de alto desempeño, mientras que los hormigones diseñados con una dosificación estándar pierden entre el 10 y 20 por ciento de su resistencia a la compresión. Finalmente, tras realizar pruebas en dos mezclas, una con relación agua/cemento de 0,22 y otra con una relación de 0,57, concluyó que, el desprendimiento explosivo de elementos de hormigón puede suceder en temperaturas de 35°C a 200°C, este desprendimiento coincidió con la relación del gradiente de temperatura y la presión de poro de los especímenes. Por otro lado, las pérdidas de resistencia para temperaturas entre 100°C y 200°C depende de los distintos métodos de evaluación, por ejemplo, la prueba de propiedad residual resulto en un 25 por ciento de

reducción de la resistencia a la compresión de los especímenes; mientras que, la pérdida de resistencia relativa es de aproximadamente 40 por ciento.

Un estudio más reciente realizado por Huo, Jin, Tu, He y Liu (2016), establece que, cuando las temperaturas son menores a 300 °C, la pérdida de resistencia a la compresión depende de la interacción entre la pasta de cementos y áridos. Sin embargo, cuando la temperatura es superior a los 400°C existe mayor deshidratación y descomposición de la estructura del hormigón provocando que la porosidad del hormigón aumenta drásticamente, por otro lado, la resistencia a la compresión del hormigón a una temperatura elevada mayor a la de 400°C disminuyó rápidamente.

2.1.4 Métodos de evaluación de estructuras existentes

Actualmente, existen distintos tipos de análisis de inspección de una estructura después de haber sido expuesta a altas temperaturas, entre ellas, el análisis in-situ visual, Esta técnica se caracteriza por valorar el daño aparente así como identificar las zonas de hormigón que se encuentran deterioradas tras una explosión. Se reconocen de manera visual tanto en vigas como en las losas de hormigón así como explosiones superficiales. In situ se pueden identificar sí los miembros estructurales han perdido confinamiento del hormigón a través de la visualización de varillas expuestas (Alonso y Flor Laguna 2013).

Figura 4: Elementos de hormigón tras la exposición a altas temperaturas Fuente: Alonso y Flor Laguna (2013)

Los métodos de ensayo in situ no destructivos también son muy conocidos a nivel mundial como un método de evaluación a estructuras que han sido expuestas a altas temperaturas. Estos métodos se caracterizan por utilizar la velocidad de ultrasonidos como la principal fuente de evaluación, logrando percibir la presencia de fisuras y grietas, la distribución heterogénea de daños, y la distancia entre la superficie a las grietas (Alonso y Flor Laguna 2013).

Figura 5: Relación entre la velocidad de ultrasonido, la altura de una columna y la distancia de la fisura. Fuente: Alonso y Flor Laguna (2013)

Finalmente, existe la evaluación del hormigón a través de extracción de los núcleos tomados de los miembros estructurales; dichos miembros pueden llegar a proporcionar información sobre las propiedades mecánicas como el módulo de elasticidad dinámica de Young, así como la capacidad estructural existente, el grado de deterioro, la presencia de contenido de aire atrapado y las transformaciones químicas presente en la pasta de cemento y los áridos.

2.2 Plan Experimental

2.2.1 Matriz Experimental

Para este trabajo de titulación se optaron por considerar tres mezclas de hormigón y cada una de estas mezclas consta de tres losas de 200 x 400 x 200 milímetros. La primera mezcla denominada M3 tiene una relación agua/ cemento de 0,35; la segunda mezcla denominada M4 tiene una relación agua/cemento de 0,45 y finalmente una mezcla denominada M5 con una relación agua/cemento de 0,60.

Figura 6: Especímenes para fase experimental

A las losas se las dividió en 10 puntos, en los cuales se harán las distintas mediciones tanto antes como después de la exposición a altas temperaturas. Es quema se muestra en la figura 7.

Figura 7: División de las losas en los puntos experimentales

A cada una de las losas se la expuso a distintas condiciones tanto antes de la exposición a altas temperaturas como después de la exposición a altas temperaturas a continuación la Tabla 1 describe la matriz experimental de las losas, mientras que la Taba 2 expone los trabajos preliminares a realizarse en las losas.

		Previo a la exposición a 450°C				
Mezcla Losa		Velocidad de Pulso (Vp)	Velocidad de Corte (Vs)	Número de Rebote (NR)		
	1	Si	Si	Si		
M3	2	Si	Si	Si		
	3	Si	Si	Si		
	1	Si	Si	Si		
M4	2	Si	Si	Si		
	3	Si	Si	Si		
	1	Si	Si	Si		
M5	2	Si	Si	Si		
	3	Si	Si	Si		

Tabla 2: Plan de ensayos preliminares

		Durante la exposición a 450°C			Después de la exposición a 450°C			
Mezcla	Losa	Velocidad de Pulso (Vp)	Velocidad de Corte (Vs)	Número de Rebote (NR)	Velocidad de Pulso (Vp)	Velocidad de Corte (Vs)	Número de Rebote (NR)	Profundidad de daño (D)
	1	No	No	No	No	No	No	No
M3	2	No	No	No	No	No	No	No
	3	No	No	No	No	No	No	No
	1	No	No	No	No	No	No	No
M4	2	No	No	No	No	No	No	No
	3	Si	Si	Si	Si	Si	Si	Si
	1	Si	Si	Si	Si	Si	Si	Si
M5	2	Si	Si	Si	Si	Si	Si	Si
	3	Si	Si	Si	Si	Si	Si	Si

2.3 Metodología

2.3.1 Fabricación de Especímenes

Como se mencionó anteriormente se utilizaron 3 losas de 3 distintas mezclas. Estos especímenes fueron elaborados por el equipo de apoyo del laboratorio de materiales de la Universidad San Francisco de Quito. Estos especímenes se fundieron a la par con 13 cilindros de distintas dimensiones para realizar estudios paralelos. Las losas fueron desencofradas después de 24 horas de su fundición y estuvieron expuestas por 7 días a curado a estándar. En la Tabla 3, se observa la resistencia a la compresión de cada una de las mezclas, así como su relación agua cemento.

No. De Mezcla	Relación agua/cemento	Resistencia a la compresión [MPa]
M3	0,35	55
M4	0,45	35
M5	0,60	30

Tabla 3: Especificaciones de las mezclas

2.3.2 Velocidad de Pulso

La velocidad de pulso se midió con base a la norma ASTM C597-09; y si midió en los 10 puntos descritos en la Figura 7. Las ondas longitudinales son generadas por un transductor electro acústico que se mantiene con la superficie del hormigón a prueba. Después de atravesar el hormigón, los pulsos son recibidos y convertidos en energía eléctrica por un segundo transductor situado a una distancia específica (L) del primer transductor transmisor. Finalmente se calcula la velocidad del pulso (Vp) se calcula dividiendo L por tiempo que recorre la onda (T).

Figura 8: Esquema experimental de la velocidad de pulso Fuente: ASTM C597-09

Figura 9: Configuración de velocidad de pulso en laboratorio

2.3.3 Velocidad Corte

La velocidad de corte se midió en consideración de la norma ASTM C215-08. Al igual que la velocidad de pulso, la velocidad de corte fue medida en los 10 puntos especificados en la Figura 7. Para velocidad de corte se utilizó un circuito de conducción

conformado por un Oscilador de frecuencia variable y rango de frecuencia entre 100 a 10000 Hz. El oscilador se debe combinar con un amplificador con la finalidad de generar una potencial de salida capaz de inducir vibraciones produciendo un voltaje que no puede ser mayor a 620% el rango de frecuencia. Por otro lado, para generar la resonancia de ondas transversales se utilizaron transductores capaces de enviar y recibir señal, con una frecuencia de resonancia en el rango de 54 kHz; el generador de impulsos genera además impulsos repetitivos a una velocidad de 3 pulsos por segundo.

Figura 10: Esquema experimental de la velocidad de corte Fuente: ASTM C215-08

Figura 11: Configuración de velocidad de corte en laboratorio

2.3.4 Número de Rebote

Para la obtención del número de rebote se consideró la norma ASTM C805-02. Se utilizó un esclerómetro Schmidt PCE-HT, el mismo que considera la energía de impacto de aproximadamente 2,207 joules (J) a través de un resorte. El número de rebote se midió en 12 puntos de la losa, 3 puntos por cada una de las caras laterales de la losa. Se consideró que los datos obtenidos no excedan \pm 6 unidades del promedio de los datos, tal y como se especifica en la norma.

a) Posición Inical del Esclerómetro

b) Posición Final del Esclerómetro

Figura 12: Obtención de Número de Rebote en Laboratorio

2.3.5 Profundidad de Daño

La prueba se lleva a cabo midiendo el tiempo de viaje en función de la separación X entre el transmisor y receptor. El método supone que la onda de estrés llega al receptor considerando dos caminos, como se observa en la Figura 13. El primer camino pasa directamente a través del hormigón dañado, y el segundo camino, atraviesa el hormigón dañado través de lo dañado. Se considera que el tiempo de viaje es más corto para el primer camino, y el segundo camino el tiempo de viaje es más corto. Se utilizó la misma configuración de la velocidad de pulso, considerando que el tiempo de viaje en función de la distancia X, distingue la presencia de una capa superficial dañada se indica por un cambio en la pendiente de los datos (Chung y Law, 1985).

Figura 13: Método en campo para obtención de la profundidad de daño. Fuente (ACI 228.2R, 2013)

Para obtener la profundidad de daño en laboratorio se dividió a la losa en dos ejes, el eje A-A y el eje B-B, y se obtuvieron los datos preliminares de velocidad considerando que el transductor que genera la onda se mantenga en una sola posición y el receptor se pueda movilizar a través de los puntos en cada eje. La división de los puntos en la losa se observa en la Figura 14.

Figura 14: Configuración de losas para obtener los datos en laboratorio de la profundidad de daño

2.3.6 Exposición Alta Temperatura

La exposición a altas temperaturas se realizó a través de un horno no industrial compuesto por una hornilla y una conexión de gas a través de una manguera de aire. El horno fue cubierto por ladrillos de cerámica refractarios y por lana de vidrio que permiten aislar en el calor del horno. La exposición se la realizó a una temperatura de $450^{\circ}C \pm 25^{\circ}C$ durante dos horas. Se realizó el control de la temperatura a través de la adaptación de una termocupla a la base del horno y la programación de arduino que permitió observar la temperatura en una pantalla LCD de 10 x 2 centímetros.

Figura 15: Armado de horno no industrial para exposición a altas temperaturas

2.3.7 Métodos de Condicionamiento

Se consideraron dos tipos de condicionamiento para las losas, el primero es la condición de mojado el mismo que se observa en la Figura 16; las losas se ingresaron a una piscina de laboratorio donde se dejó la cara superior de la losa en exposición al aire por 48 horas, con la finalidad de que los poros dentro de la losa se llenen de agua y las burbujas de aire puedan emerger hacia la superficie libre de la losa y se liberen al ambiente. Después de que se cumplieron las 48 horas con una cara expuesta al aire como se observar en la Figura 16 a), se procedió a sumergir la losa completamente durante 5 días como se observa en Figura 16 b), logrando un tiempo de exposición a mojado de 7 días en total.

a) Condición de Mojado con una cara expuesta al aire b) Losas completamente sumergidas

Figura 16: Condicionamiento de mojado de las losas

El segundo estado de condición fue en Seco al Aire. Las losas fueron extraídas de la piscina de laboratorio y se quedaron secándose durante 11 días. Se consideró que 11 días las losas alcanzaban un peso estable y dejaban de perder agua, este condicionamiento se observa en la Figura 17.

Figura 17: Secado al Natural de las losas en laboratorio

2.4 Resultados

2.4.1 Resultados de ensayos en condiciones iniciales

En la tabla 4 se observa los datos obtenidos para el peso de los especímenes en condiciones iniciales en el estado de secado al natural, por otro lado en la tabla 5 se observa los datos obtenidos para el peso de las losas en estado condicional de mojado.

Mezcla	No. De Losa	Peso final [kg]
	1	76,8
M3	2	76,6
	3	76,7
	1	74,7
M4	2	74,0
	3	74,9
	1	75,7
M5	2	75,8
	3	75,7

Tabla 4: Pesos de las losas en condiciones de Seco al Aire en condiciones iniciales

Tabla 5: Pesos de las losas en condiciones de mojado en condiciones iniciales

Mezcla	No. De Losa	Peso final [kg]
	1	81,0
M3	2	80,6
	3	80,2
	1	77,7
M4	2	78,7
	3	77,9
	1	77,6
M5	2	77,5
	3	77,5

En la tabla 6 se observa el resumen de los resultados para condiciones iniciales; sin embargo los datos de velocidad de pulso, velocidad de corte y número de rebote fueron obtenidos a través del promedio de los datos obtenidos en laboratorio de cada losa se pueden observar en el ANEXO A.

Mezcla	No. De Losa	Número de Rebote Seco al Aire	Vp Seco al Aire [m/s]	Vs Seco al Aire [m/s]	Número de Rebote Mojado	Vp Mojado [m/s]	Vs Mojado [m/s]
	1	42	4002	2396	42	4157	2582
M3	2	41	3952	2333	39	4121	2501
	3	42	3991	2329	41	4151	2511
	1	37	3698	2228	35	3776	2226
M4	2	36	3726	2200	34	3841	2250
	3	37	3683	2172	36	3782	2244
	1	39	3662	2276	41	3824	2203
M5	2	40	3610	2261	39	3782	2234
	3	41	3676	2271	40	3898	2313

Tabla 6: Resultados de ensayos condicionales sin daño de las losas

2.4.2 Resultados preliminares tras exposición a altas temperaturas

En la tabla 7 se observa los datos obtenidos para el peso de los especímenes en exposición a altas temperaturas.

Tabla 7: Pesos de las losas en exposición a altas temperaturas

Mezcla	No. De Losa	Peso final [kg]
M4	3	67,2
	1	70,3
M5	2	69,5
	3	71,4

En la tabla 8 se observa el resumen de los resultados exposición a altas temperaturas; sin embargo los datos de velocidad de pulso, velocidad de corte y número de rebote fueron obtenidos a través del promedio de los datos obtenidos en laboratorio, los datos en cada punto de la losa se pueden observar en el ANEXO B.

Mezcla	No. De Losa	Número de Rebote	Vp [m/s]	Vs [m/s]
M4	3	36	3681	3513
	1	39	3597	2729
M5	2	40	3669	2457
	3	41	3659	2719

Tabla 8: Resultados de las losas en exposición a altas temperaturas

En la tabla 9 se observa los datos obtenidos para el peso de los especímenes tras la exposición a alta temperatura en el estado de mojado, por otro lado en la tabla 10 se observa los datos obtenidos para el peso de las losas tras la exposición a altas temperaturas en el estado condicional de mojado.

Tabla 9: Pesos de las losas en condiciones de mojado en condiciones iniciales

Mezcla	No. De Losa	Peso final [kg]
M4	3	81,7
	1	78,4
M5	2	78,1
	3	78,4

Tabla 10: Pesos de las losas en condiciones de Seco al Aire en condiciones iniciales

Mezcla	No, Cilindro	Peso final [kg]
M4	3	76,3
	1	73,5
M5	2	74,0
	3	74,8

En la tabla 11 se observa el resumen de los resultados preliminares para los especímenes tras la exposición a altas temperaturas; sin embargo los datos de velocidad de pulso, velocidad de corte y número de rebote fueron obtenidos a través del promedio de los datos obtenidos en laboratorio, los datos en cada punto de la losa se pueden observar en el ANEXO C.

Mezcla	No. De Losa	Número de Rebote Mojado	Vp Mojado [m/s]	Vs Mojado [m/s]	Número de Rebote Seco al Aire	Vp Seco al Aire [m/s]	Vs Seco al Aire [m/s]
M4	3	35	3742	4377	37	3655	3754
	1	39	3688	3993	39	3650	3667
M5	2	39	3743	3488	39	3608	3664
	3	40	3800	3564	40	3669	3444

Tabla 11: Resultados de ensayos preliminares tras exposición a altas temperaturas

2.4.2.1 Profundidad de daño

En la tabla 12, se observan los resultados obtenidos para el tiempo recorrido en microsegundos por la onda a través de la superficie dañada.

Tabla 12: Resultados de profundidad de daño

							Vp	
	NO. De		Vp	Tiempo	Vp Moiado	Tiempo	Seco al	Tiempo
Mezcla	Losa	Punto	[m/s]	[microsegundos]	[m/s]	[microsegundos]	[m/s]	[microsegundos]
		A-A1	1747	37	9155	7	4452	15
		A-A2	3562	36	4872	27	2305	56
		A-A3	2491	78	3552	55	2597	75
N/4	2	A-A4	2543	102	3891	67	1668	156
11/14	5	B-B1	1533	42	7065	9	2610	25
		B-B2	2606	50	3585	36	1194	109
		B-B3	2531	77	2037	96	946	206
		B-B4	1027	253	3473	75	2778	94
		A-A1	7471	9	7558	9	5462	12
		A-A2	2173	60	4193	31	2412	54
		A-A3	2954	66	2138	91	2025	96
	1	A-A4	3350	78	3252	80	3383	77
		B-B1	7927	8	5508	12	2330	28
		B-B2	2298	57	2305	56	3523	37
		B-B3	3599	54	4207	46	1568	124
		B-B4	3030	86	2915	89	1133	229
M5		A-A1	2030	32	10000	7	3560	18
		A-A2	1291	101	5039	26	2955	44
		A-A3	1923	101	4298	45	3379	58
	2	A-A4	2260	115	3750	69	623	417
	2	B-B1	814	80	6796	10	4636	14
		B-B2	1692	77	4539	29	1089	119
		B-B3	2595	75	4024	48	1544	126
		B-B4	2778	94	3780	69	3591	72
	3	A-A1	919	71	3757	17	3125	21

	A-A2	945	138	2340	56	1546	84
	A-A3	1487	131	2946	66	3976	49
	A-A4	2637	99	3057	85	1170	222
	B-B1	1929	34	4248	15	4221	15
	B-B2	1888	69	1563	83	1446	90
	B-B3	2217	88	989	197	1211	161
	B-B4	2896	90	753	345	2738	95

Por otro lado, en la Figura 18 se observa un de los gráficos modelo obtenido a través de la tabla 12; sin embargo, todos los gráficos según la condición se encuentran en

el ANEXO D

Figura 18: Profundidad de daño para mezcla M5, Losa 1 tras 24 horas de ser expuesta a altas

temperaturas.

2.5 Análisis de Resultados

2.5.1 Condiciones sin daño

2.5.1.1 Módulo de elasticidad dinámico (Ed)

El módulo de elasticidad dinámico se lo obtuvo en base de la relación entre la velocidad de pulso y la velocidad de corte. Esta relación se encuentra descrita a través de la siguiente ecuación:

$$Ed_{(Vs,Vp)} = \rho \times \left[\frac{Vs^2 \times (3Vp^2 - 4Vs^2)}{Vp^2 - Vs^2}\right]$$
(2-6)

Donde,

Vp: Velocidad de pulso [m/s]

Vs: Velocidad de corte [m/s]

ρ: Densidad del hormigón [kg/m3]

A continuación en la Tabla 13 se presentan los resultados del módulo de

elasticidad dinámico para los especímenes sin daño.

Mezcla	No. De Losa	Ed Seco al Aire [GPa]	Ed Mojado [GPa]
	1	33,6	40,0
M3	2	32,1	38,1
	3	32,3	38,3
	1	28,2	29,7
M4	2	27,6	30,8
	3	27,2	30,1
	1	29,1	29,4
M5	2	28,5	29,8
	3	29,1	31,8

Tabla 13: Resultados del módulo de elasticidad dinámico para condiciones iniciales

2.5.1.2 Densidad de fisuras (ε)

El parámetro de densidad de fisuras (ε), se lo obtuvo a través de la relación existente entre la velocidad de pulso y la velocidad de corte en cada uno de los puntos de cada una de las losas para cada una de las mezclas. Los resultados para cada losa se observan en la tabla 14; así como, el promedio del parámetro de densidad de fisuras para cada una de las mezclas.

Tabla 14: Resultados del parámetro de densidad de fisuras

No. De Mezcla	No. De Losa	Parámetro de densidad de fisuras por losa	Parámetro de densidad de fisuras por mezcla
M3	1	0,125	0,146

	2	0,168	
	3	0,146	
	1	0,050	
M4	2	0,098	0,075
	3	0,076	
	1	0,109	
M5	2	0,095	0,102
	3	0,102	

2.5.2 Resultados preliminares de exposición a altas temperaturas

2.5.2.1 Módulo de elasticidad dinámico (Ed)

El módulo de elasticidad dinámico se lo obtuvo en base de la relación entre la velocidad de pulso y la velocidad de corte. Esta relación se encuentra descrita a través de la siguiente ecuación 2-6. En la Tabla 15 se observan los resultados del módulo de elasticidad dinámico para los ensayos preliminares a altas temperaturas.

Tabla 15: Resultados preliminares del módulo de elasticidad dinámico para exposición a altas temperaturas

Mezcla	Ed [GPa]
M4	-187,4
	26,9
M5	28,7
	29,2

En la Tabla 16 se observan los resultados del módulo de elasticidad dinámico para los ensayos preliminares tras la exposición de los especímenes a altas temperaturas.

Tabla 16: Resultados del módulo de elasticidad dinámico tras la exposición a altas temperaturas

Mezcla	Ed Mojado [GPa]	Ed Seco al Aire [GPa]
M4	328,3	742,7
	382,8	3388,4
M5	-106,7	1110,1
	-134,1	-122,0

Como se puede observar en la tabla 15 y la tabla 16 los módulos de elasticidad dinámicos son extremadamente grandes; esto se debe a que considerando la ecuación 2-6, los módulos de elasticidad dependen tanto de la velocidad de corte. En las tablas 8 y 11 se observa que la velocidad de corte es mayor a la velocidad de pulso, por lo tanto, se puede deducir que el método utilizado para la obtención de las velocidades de corte después de la exposición a altas temperaturas es muy sensible y el impacto inicial para la creación del impulso de la onda transversal no es constante.

2.5.3 Cambios en las propiedades

2.5.3.1 Variación en peso

A continuación se presentan los gráficos correspondientes a la variación de peso en kilogramos para cada una de las mezclas. En la Figura 19 se encuentra la variación en peso para la mezcla M3, en la Figura 20 se encuentra la variación en peso para la mezcla M4 y finalmente en la Figura 21 se observa la variación en peso para la mezcla M5.

Figura 19: Variación en peso de la mezcla M3

Figura 20: Variación en peso de la mezcla M4

Figura 21: Variación en peso de la mezcla M5

46

2.5.3.2 Variación en velocidad de pulso

A continuación se presentan los gráficos correspondientes a la variación de la velocidad de pulso en metros por segundo para cada una de las mezclas. En la Figura 22 se encuentra la variación en peso para la mezcla M3, en la Figura 23 se encuentra la variación en peso para la mezcla M4 y finalmente en la Figura 24 se observa la variación en peso para la mezcla M5.

Figura 22: Variación en velocidad de pulso para la mezcla M3

Figura 23: Variación en velocidad de pulso de la mezcla M4

Figura 24: Variación en velocidad de pulso de la mezcla M5

2.5.3.3 Variación en velocidad de corte

A continuación se presentan los gráficos correspondientes a la variación de la velocidad de corte en metros por segundo para cada una de las mezclas. En la Figura 25 se encuentra la variación en peso para la mezcla M3, en la Figura 26 se encuentra la variación en peso para la mezcla M4 y finalmente en la Figura 27 se observa la variación en peso para la mezcla M5.

Figura 25: Variación en velocidad de corte de la mezcla M3

Figura 26: Variación en velocidad de corte de la mezcla M4

Figura 27: Variación en velocidad de corte de la mezcla M5

2.5.3.4 Variación en número de rebote

A continuación se presentan los gráficos correspondientes a la variación del número de rebote para cada una de las mezclas. En la Figura 28 se encuentra la variación en peso para la mezcla M3, en la Figura 29 se encuentra la variación en peso para la mezcla M4 y finalmente en la Figura 30 se observa la variación en peso para la mezcla M5.

Figura 28: Variación número de rebote mezcla M3

Figura 29: Variación número de rebote mezcla M4

Figura 30: Variación número de rebote mezcla M5

2.5.3.5 Variación en el módulo de elasticidad dinámico

En la tabla 17 se puede observar que para obtener los módulos de elasticidad de cada una de las mezclas, se realizó un promedio de los módulos de elasticidad obtenidos en la tabla 13. Por otro lado, esta comparación se la realizó en consideración de módulos de elasticidad obtenidos en laboratorio de las mismas mezclas pero en cilindros.

Tabla 17: Variación en el módulo de elasticidad dinámico

Mezcla	Ed Seco al Aire (en losas)	Ed Mojado (en losas)	Ed Seco al Aire (método en cilindros)	Ed Mojado (método en cilindros)	∆ Seco al Aire	Δ Mojado
M3	32,7	38,8	24,6	25,9	6,8	12,9
M4	27,7	28,8	15,2	19,8	7,9	9,0
M5	28,9	30,3	16,6	18,6	9,3	11,7

2.5.4 Factibilidad para uso de ensayos no destructivos para determinar (ε)

Después de analizar los resultados obtenidos en la tabla 13, se observó que es posible determinar el parámetro de densidad de fisuras a través de ensayos no destructivos mediante de ondas de esfuerzo de velocidad de corte y velocidad de pulso. Sin embargo, después de obtener los resultados preliminares de la velocidad de corte tras la exposición a altas temperaturas se observó que no es posible determinar un módulo de elasticidad dinámico, debido a que la onda de corte proporcionó valores mayores a la onda de velocidad de pulso. Por lo que se puede decir que los valores de la velocidad de corte tras la exposición a altas temperaturas no son confiables.

3 CONCLUSIONES Y RECOMENDACIONES

3.1 Conclusiones

Tras la realización del presente trabajo de titulación, se obtuvieron las siguientes conclusiones:

- Se lograron medir las velocidades de pulso, velocidades de corte y número de rebote en las losas en estado normal (sin daño), en condiciones seco al aire y mojado.
- Se lograron obtener diferencias para estado seco como para estado mojado en la velocidad de pulso. En la mezcla M3 para condición en seco fue de 3928 m/s y para la condición de mojado fue de 4143 m/s; para la mezcla M4 para condición en seco fue de 3702 m/s y para la condición de mojado fue de 3780 m/s; finalmente, para la mezcla M5 para condición en seco fue de 3650 m/s y para la condición de mojado fue de 3834 m/s.
- Se lograron obtener diferencias para estado seco como para estado mojado en la velocidad de onda de corte. Para la mezcla M3 para condición en seco fue de 2353 m/s y para la condición mojado fue de 2531 m/s; para la mezcla M4 para condición en seco fue de 2200 m/s y para la condición mojado fue de 2240 m/s; finalmente, para la mezcla M5 para condición en seco fue de 2270 m/s y para la condición de mojado fue de 2250 m/s.
- El número de rebote de la mezcla M3 para condición en seco fue de 42 y para la condición de mojado fue de 41; para la mezcla M4 para condición en seco fue de 37 y para la condición mojado fue de 35; finalmente, para la mezcla M5 para condición en seco fue de 40 y para la condición de mojado fue de 39.
- Se logró obtener el módulo de elasticidad dinámico a través de las ondas de velocidad de pulso y velocidad de corte.

- A partir de los datos de módulo de elasticidad dinámico en estado seco y mojado, se pudo determinar el parámetro de densidad de fisuras. El parámetro de densidad de fisuras para la mezcla M3 fue de 0,146; para la mezcla M4 fue de 0,075 y para la mezcla M5 fue de 0,102.
- Se logró exponer 4 losas a exposiciones de 450 °C por 2 horas, y evaluar velocidad de pulso y número de rebote, sin embargo, la velocidad de onda de corte no fue posible obtener utilizando transductores.
- En las losas dañadas se midió velocidad de pulso mediante el método de Chung & Law, sin embargo la resolución no permitió obtener una estimación de la profundidad de daño.
- Sí es factible estimar el parámetro de densidad de fisuras en hormigón sano, midiendo la velocidad de pulso y la velocidad de onda de corte en estado seco y mojado.

3.2 Recomendaciones

Tras la realizar el análisis del presente trabajo de titulación, se proveen las siguientes recomendaciones:

- Buscar otro método para obtener las mediciones de velocidad de onda corte, ya que el método de los transductores fue insuficiente. Se recomienda considerar un método que proporcione mayor energía de impacto con mayor longitud de onda.
- Se recomienda terminar de dar exposición a altas temperaturas a las losas restantes.
- Se recomienda en la profundidad de daño considerar más puntos intermedios de toma de datos en cada eje estudiado, con la finalidad de que el modelo obtenido se asemeje de mejor manera al modelo de Chung y Law.

- Se recomienda realizar extracción de núcleos para poder obtener el módulo de elasticidad dinámico de cilindros y estimar el parámetro de densidad de fisuras.
- Se recomienda realizar extracción de núcleos, con la finalidad de obtener discos que permitan determinar la profundidad de daño.

- Bazant Z.P., Kaplan M.F.; "Concrete at High Temperatures. Material properties and mathematical models".Concrete Design and Construction Series, Longman, 1996, p. 412.
- Carcaño, R. G. S., Moreno, E. I., & Pak, W. R. C. (2004). Predicción de la resistencia del concreto con base en la velocidad de pulso ultrasónico y un índice de calidad de los agregados. *Ingeniería*, 8(2), 41-52.
- Castillo, C., and Durrani, A. J., "Effect of Transient High Tempera-ture on High Strength Concrete," ACI Materials Journal, V. 87, No. 1, Jan.-Feb. 1990, pp. 47-53.
- Chan, Y.; Peng, G.; and Anson, M., "Residual Strength and Pore Structure of High-Strength Concrete and Normal Strength Concrete after Exposure to High Temperatures," Cement and Concrete Composites, V. 21, No. 1, 1999, pp. 23-27. doi: 10.1016/S0958-9465(98)00034-1.
- Cheng, F.-P.; Kodur, V.; and Wang, T.-C., "Stress-Strain Curves for High Strength Concrete at Elevated Temperatures," Journal of Materials in Civil Engineering, ASCE, V. 16, No. 1, 2004, pp. 84-90. doi: 10.1061/(ASCE)0899-1561(2004)16:1(84).
- Chung, H.W. and K.S, Law, (1985), *Diagnosing In Situ Concrete by Ultrasonic Pulse Tecnique*, Concrete Internation, American Concrete Institute, Detroit, Michigan, pp 42-49.
- Ercolani, G. D., Ortega, N. F., & Señas, L. (2007, October). Empleo de Ultrasonidos y Esclerometría en el diagnóstico de estructuras de hormigón afectadas por elevadas temperaturas. In *Proceedings IV Conferencia Panamericana de END* (pp. 1-10).
- Giaccio G., Tobes J.M., Torrijos M.C., Zerbino R.; "Comportamiento Mecánico de Hormigones Dañados por Temperatura", Proceeding VIII Congreso Latinoamericano de Patología de la Construcción CONPAT 2005, Cap. II, 17-24. 2.
- Hilal, A. A. (2016). Microstructure of Concrete. In *High Performance Concrete Technology and Applications*. InTech
- Huo, J.; Jin, B.; Yu, Q.; He, Y.; and Liu, Y., "Effect of Microstructure Variation on Damage Evolution of Concrete at High Temperatures," ACI Materials Journal, V. 113, No. 5, Sept.-Oct. 2016, pp. 547-558.
- Kalifa, P.; Chéné, G.; and Gallé, C., "High-Temperature Behaviour of HPC with Polypropylene Fibres from Spalling to Microstructure," Cement and Concrete Research, V. 31, No. 2001, pp. 1487-99.

- Khaliq, W., and Kodur, V., "Thermal and Mechanical Properties of Fiber Reinforced High Performance Self-Consolidating Concrete at Elevated Temperatures," Cement and Concrete Research, V. 41, No. 11, 2011, pp. 1112-1122. doi: 10.1016/j.cemconres.2011.06.012.
- Khaliq, W., and Kodur, V., "High Temperature Mechanical Properties of High-Strength Fly Ash Concrete with and without Fibers," ACI Mate-rials Journal, V. 109, No. 6, Nov.-Dec. 2012, pp. 665-675.
- Lee, Y. H., & Oh, T. (2016). The measurement of P-, S-, and R-wave velocities to evaluate the condition of reinforced and prestressed concrete slabs. Advances in Materials Science and Engineering, 2016.
- Miretti, R. E., Grether, R. O., Passerino, C. R., & María, C. (2012). EVALUACIÓN DE HORMIGONES MEDIANTE ULTRASONIDO/ESCLEROMETRIA. *Revista Ingeniería de Construcción*, (17), 47-59.
- Phan, L; Lawson, J; amd Davis,F., "Effects of Elevated Temperature Exposure on Heating Characteristics, Spalling, and Residual Properties of High Performance Concrete" Materials and Structures,V*34 No.2, 2001, pp. 83-91. doi:10.1007/BF02481556.
- Poon, C.-S.; Azhar, S.; Anson, M.; and Wong, Y.-L., "Comparison of the Strength and Durability Performance of Normal- and High-Strength Pozzo-lanic Concretes at Elevated Temperatures," Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1291-1300. doi: 10.1016/S0008-8846(01)00580.
- Vallejo García, T. I. (2017). Análisis Comparativo de Ensayos Destructivos y no Destructivos de Hormigones de Alta Resistencia (Bachelor's thesis, Universidad de Guayaquil. Facultad de Ciencias Matemáticas y Físicas. Carrera de Ingeniería Civil.).
- Watanabe, K.; Bangi, M. R.; and Horiguchi, T., "The Effect of Testing Conditions (Hot and Residual) on Fracture Toughness of Fiber Reinforced High-Strength Concrete Subjected to High Temperatures," Cement and Concrete Research, V. 51, No. 2013, pp. 6-13.

ANEXO A

Ensayos Condicionales Previos al Daño A continuación se presenta los datos obtenidos para los ensayos condicionales iniciales de los datos obtenidos en laboratorio de cada losa.

		NÚME	ERO DE F	REBOTE	EN SECC) AL AIRE	
No. de	No. de						
Mezcla	Losa	Cara 1	Cara 2	Cara 3	Cara 4	Promedio	No. de Rebote
		42	42	42	42		
		42	40	42	42	41.67	42
	1	42	42	40	42		
		42	42	42	40		
M3		40	42	42	42	41,00	41
	2	38	38	42	42		
		42	42	41	42		
		42	42	42	42	42,00	42
	3	42	41	42	44		
		38	38	36	36		
		36	38	36	36	36,83	37
	1	36	36	38	38		
		36	38	38	36		
M4		36	38	34	34	36,17	36
	2	40	36	34	34		
		36	36	34	40		
		36	38	36	38	37,00	37
	3	38	36	38	38		
		38	38	38	40		
		36	38	38	42	39,17	39
	1	36	42	40	44		
		38	38	38	42		
M4		38	40	38	42	40,00	40
	2	40	42	42	42	•	
		42	44	38	38		
		42	38	44	40	40,67	41
	3	40	38	42	42	•	

NÚMERO DE REBOTE EN MOJADO											
No, de Mezcla	No. de Losa	Cara 1	Cara 2	Cara 3	Cara 4	Promedio	No. de Rebote				
		40	42	44	40						
	1	40	42	44	42	42,00	42				
		42	44	40	44						
		34	40	38	40						
M3	2	34	42	38	40	38,83	39				
		36	40	42	42						
		40	40	40	44						
	3	40	38	40	44	40,83	41				
		42	38	42	42						
		38	40	36	38						
	1	34	36	32	32	35,00	35				
		32	36	34	32						
	2	32	38	32	36	34,33					
M4		36	38	34	32		34				
		32	36	32	34						
		36	32	34	38						
	3	32	36	32	38	35,67	36				
		38	36	38	38						
		42	38	38	44						
	1	40	42	40	42	41,00	41				
		40	42	44	40						
		34	46	38	38						
M5	2	40	38	38	36	39,00	39				
		36	38	46	40						
		34	38	44	40						
	3	40	40	40	44	39,83	40				
		34	42	40	42						

	VELOCIDAD DE PULSO Y DE CORTE EN SECO AL AIRE										
No, de Mezcla	No, de Losa	No, de Punto	Distancia [cm]	Vp en cada punto [m/s]	Vp [m/s]	Tiempo de viaje de la onda [µs]	Vs en cada punto [m/s]	Vs [m/s]			
		1	20,2	3988		92	2190				
		2	20,1	4028		88	2278	2222			
		3	20,2	3983		90	2239	2222			
		4	20,1	3968		92	2179				
	1	5	40,0	4016	4000	162	2469				
1	1	6	40,0	4004	4002	164	2439				
		7	40,0	4024		154	2597	2206			
		8	40,0	4016		174	2299	2396			
		9	40,0	3988		174	2299				
		10	40,0	4004		176	2273				
		1	20,1	3988		88	2284	2220			
		2	20,2	4008		92	2196				
		3	20,3	3953		92	2201	2220			
		4	20,3	4008		92	2201				
	n	5	40,0	3976	2052	172	2326				
1015	Z	6	40,0	4004	3932	168	2381				
		7	40,0	3964		160	2500	2222			
		8	40,0	3984		178	2247	2335			
		9	40,0	3976		174	2299				
		10	40,0	3656		178	2247				
		1	20,0	3992		86	2326				
		2	20,1	4012		86	2337	2221			
		3	20,1	4008		88	2278	2321			
		4	20,2	4028		86	2343				
	2	5	40,0	3984	2001	174	2299				
	5	6	40,0	3949	3991	168	2381				
		7	40,0	3984		160	2500	2220			
		8	40,0	3996		176	2273	2329			
		9	40,0	3984		176	2273				
		10	40,0	3976		178	2247				
		1	20,1	3776		88	2278				
NT 4	1	2	20,3	3734	3608	91	2225	2257			
1014	1	3	20,1	3676	3098	89	2253	2237			
		4	20,2	3748		89	2270				

1 5 40,0 36/3 172 2326 2228 7 40,0 3707 175 2286 175 2286 179 2235 182 2198 186 2151 184 2174 186 2151 184 2174 186 2151 184 2174 186 2151 184 2174 186 2151 186 2151 184 2174 199 2235 179 2235 179 2216 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 181 2210 186 2151 181 2210 183 2186 183 2186 183 2185 183 2185 183 2185 183 2186 183 2186 183 2185 183 2186			_	10.0	0.770	1	1 = 0		
$\mathbb{M5} = \begin{bmatrix} 6 & 40,0 & 3646 \\ \hline 7 & 40,0 & 3707 \\ \hline 8 & 40,0 & 3690 \\ \hline 9 & 40,0 & 3673 \\\hline 10 & 40,0 & 3656 \\\hline 9 & 40,0 & 3675 \\\hline 9 & 40,0 & 3676 \\\hline 12 & 20,1 & 3766 \\\hline 2 & 20,1 & 3764 \\\hline 3 & 20,1 & 3764 \\\hline 4 & 20,1 & 3764 \\\hline 6 & 40,0 & 3752 \\\hline 7 & 40,0 & 3777 \\\hline 8 & 40,0 & 3752 \\\hline 7 & 40,0 & 3777 \\\hline 8 & 40,0 & 3752 \\\hline 7 & 40,0 & 3777 \\\hline 8 & 40,0 & 3754 \\\hline 10 & 40,0 & 3451 \\\hline 10 & 40,0 & 3451 \\\hline 12 & 20,1 & 3661 \\\hline 2 & 20,1 & 3661 \\\hline 4 & 20,3 & 3713 \\\hline 5 & 40,0 & 3724 \\\hline 6 & 40,0 & 3724 \\\hline 7 & 40,0 & 3707 \\\hline 8 & 40,0 & 3757 \\\hline 18 & 2185 \\\hline 183 & 2186 \\\hline 184 & 2151 \\\hline 10 & 40,0 & 3575 \\\hline 186 & 2151 \\\hline 10 & 40,0 & 3640 \\\hline 3 & 20,2 & 3713 \\\hline 4 & 20,1 & 3661 \\\hline 5 & 40,0 & 3640 \\\hline 7 & 40,0 & 3750 \\\hline 8 & 40,0 & 3650 \\\hline 8 & 40,0 & 3650 \\\hline 8 & 40,0 & 3650 \\\hline \end{bmatrix}$			5	40,0	3673	-	172	2326	
1 1 20,1 3707 366 182 2198 2228 2228 2228 2228 2228 2228 2228 2228 2228 2228 2228 2228 2219 2219 2219 2219 2219 2170 22180 2218 221			6	40,0	3646	-	175	2286	
8 40,0 3690 182 2198 100 9 40,0 3673 186 2151 184 2174 1 20,1 3766 92 2179 92 2185 2 20,1 3764 93 2166 93 2161 3 20,1 3764 93 2161 93 2166 4 20,1 3742 6 40,0 3752 7 93 2166 7 40,0 3777 8 40,0 3752 179 2235 7 7 40,0 3772 181 2210 186 2151 93 2166 10 40,0 3451 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 184 2172 186 2151 186 2151 186 2151 186 2151 186			7	40,0	3707	-	179	2235	2228
9 40,0 3673 186 2151 10 40,0 3656 184 2174 1 20,1 3766 92 2179 2 20,1 3764 93 2161 3 20,1 3764 93 2161 4 20,1 3745 93 2161 5 40,0 3752 7 93 2156 7 40,0 3777 8 40,0 3759 9 40,0 3759 93 2161 9 40,0 3752 179 2235 10 40,0 3451 183 2186 12 20,1 3661 183 2186 13 20,3 3614 92 2185 92 2201 3683 187 2139 183 2186 183 2186 12 20,1 3640 320,2 3713 4 </td <td></td> <td></td> <td>8</td> <td>40,0</td> <td>3690</td> <td>-</td> <td>182</td> <td>2198</td> <td></td>			8	40,0	3690	-	182	2198	
10 40,0 3656 184 2174 1 20,1 3766 92 2179 2 20,1 3764 93 2161 3 20,1 3745 93 2161 4 20,1 3745 93 2161 5 40,0 3722 7 40,0 3777 8 40,0 3759 93 2156 7 40,0 3742 183 2186 9 40,0 3742 183 2186 10 40,0 3451 183 2186 10 40,0 3661 87 2310 92 2185 92 2201 3 20,3 3614 93 2177 4 20,3 3713 93 2177 187 2139 187 2139 16 40,0 3724 93 2177 10 40,0 3575 <td></td> <td></td> <td>9</td> <td>40,0</td> <td>3673</td> <td>-</td> <td>186</td> <td>2151</td> <td></td>			9	40,0	3673	-	186	2151	
1 20,1 3766 92 2179 92 2179 92 2185 93 2161 93 2161 93 2161 93 2161 93 2156 11 20 3745 93 2156 179 2235 179 2235 179 2235 179 2235 181 2210 3164 3216 3164 3216 3164 3216 3164 3216 3216 3200 3164 3216 3216 3200 3164 3216 3216 3216 3200 3216 3200 3216 3200 3216 3200 3216 3200 3216 3200 3200 3216 3200 3216 3200 3216 3200 3200 3216 3200 3216 3200 3217 3316 3200 3217 3218 3218 3218 3218 3218 3218 3218 3218 3218 3218 3218 3217 3217 3318 3218 <td></td> <td></td> <td>10</td> <td>40,0</td> <td>3656</td> <td></td> <td>184</td> <td>2174</td> <td></td>			10	40,0	3656		184	2174	
2 20,1 3764 92 2185 2170 3 20,1 3764 93 2161 93 2161 93 2161 93 2161 93 2156 93 2156 179 2235 179 2235 179 2235 179 2235 181 2210 186 2151 183 2186 184 2172 186 2172 186			1	20,1	3766		92	2179	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	20,1	3764		92	2185	2170
4 20,1 3745 93 2156 5 40,0 3742 3726 179 2235 179 2235 179 2235 179 2235 179 2235 179 2235 181 2210 200 186 2151 183 2186 100 40,0 3742 183 2186 110 40,0 3777 181 2210 183 2186 110 40,0 3451 183 2186 110 40,0 3451 183 2186 110 40,0 3695 3 20,3 3614 92 2201 218 2218 2218 2218 2218 2218 16 160 32177 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 186 2151 180 2222 185 166 2151 186 2151 186 2151 186 2151 186 216			3	20,1	3764		93	2161	2170
2 5 40,0 3742 3726 179 2235 2200 7 40,0 3777 3726 179 2235 179 2235 179 2235 179 2235 181 2210 2200 200 200 186 2151 183 2186 200 <td< td=""><td></td><td></td><td>4</td><td>20,1</td><td>3745</td><td></td><td>93</td><td>2156</td><td></td></td<>			4	20,1	3745		93	2156	
2 6 40,0 3752 5720 179 2235 2200 7 40,0 3777 18 40,0 3759 181 2210 2200 186 2151 183 2186 183 2185 2200 2218 2200 2185 2218 2172 3683 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 2172 2172 2172 2172 2172 2172 2235 2172 2235 2172 2235 2172 2172 2235 2172 2172 2235 2172 2235 21		n	5	40,0	3742	2726	179	2235	
1 201 3661 3777 181 2210 2200 9 40,0 3759 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2185 2218 2172 3683 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2186 183 2161 183 2161 183 2161 183 2161 183 2172 172 164 2235 2172 2235 2172 164		Z	6	40,0	3752	5720	179	2235	
M5 = M5			7	40,0	3777		181	2210	2200
9 40,0 3742 183 2186 10 40,0 3451 183 2186 1 20,1 3661 2 20,1 3695 3 20,3 3614 92 2185 2218 4 20,3 3713 93 2177 218 5 40,0 3724 93 2177 187 2139 5 40,0 3707 8 40,0 3707 183 2186 7 40,0 3707 1883 2186 183 2186 10 40,0 3575 186 2151 2172 186 2151 186 2151 2235 1 20,1 3643 2 22179 2235 3 20,2 3713 4 20,1 3661 92 2179 3 20,2 3713 4 20,1 3661 92 2185 164		8	40,0	3759		186	2151	2200	
10 40,0 3451 183 2186 1 20,1 3661 87 2310 2218 3 20,3 3614 92 2185 2218 4 20,3 3713 93 2177 2139 2172 6 40,0 3724 9 3083 183 2186 2172 6 40,0 3707 8 40,0 3724 93 2177 2172 8 40,0 3707 183 2186 183 2186 2172 9 40,0 3690 186 2151 2172 2172 10 40,0 3575 186 2151 2172 2235 3 20,2 3713 4 20,1 3643 92 2179 2235 3 20,2 3713 4 20,1 3661 92 2185 2235 1 5 40,0 3640 3662			9	40,0	3742		183	2186	-
1 20,1 3661 87 2310 2218 3 20,3 3614 92 2185 2218 2218 4 20,3 3713 93 2177 93 2177 5 40,0 3724 3683 187 2139 2185 6 40,0 3707 3683 183 2186 2177 8 40,0 3707 3683 183 2186 2172 9 40,0 3575 186 2151 2172 2172 10 40,0 3575 186 2151 2172 2235 1 20,1 3643 92 2179 2235 3 20,2 3713 4 20,1 3661 92 2179 2235 1 2 20,1 3664 92 2185 2235 2235 3 2 20,1 3661 5 92 2185 164			10	40,0	3451		183	2186	
$ M5 \qquad \qquad$			1	20,1	3661		87	2310	
M5			2	20,1	3695		92	2185	2218
4 20,3 3713 93 2177 5 40,0 3724 187 2139 6 40,0 3724 183 2186 7 40,0 3707 183 2186 9 40,0 3690 183 2186 10 40,0 3575 186 2151 10 40,0 3575 186 2331 2 20,1 3643 92 2179 3 20,2 3713 90 2244 92 2179 2235 2235 1 20,1 3661 92 2185 164 2439 2235 2235 3662 166 2410 2276		3	20,3	3614		92	2201	2218	
M5			4	20,3	3713		93	2177	
3 6 40,0 3724 3683 183 2186 2172 7 40,0 3707 183 2186 183 2186 2172 9 40,0 3724 180 2222 1866 2151 2172 9 40,0 3575 186 2151 2172 2172 10 40,0 3575 186 2151 2172 2172 1 20,1 3643 2 20,1 3643 92 2179 2235 1 20,1 3640 92 2179 2235 2235 1 5 40,0 3640 92 2185 2235 90 2244 92 2185 164 2439 2235 166 40,0 3660 164 2439 2276 2276		2	5	40,0	3724	2692	187	2139	
7 40,0 3707 183 2186 2172 8 40,0 3724 180 2222 2172 9 40,0 3690 186 2151 2172 10 40,0 3575 186 2151 2172 1 20,1 3643 866 2331 2235 3 20,2 3713 90 2244 2235 3 20,2 3713 90 2244 2185 1 5 40,0 3640 3662 164 2439 2235 3662 166 2410 174 2299 2276 2276		3	6	40,0	3724	3083	183	2186	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	40,0	3707		183	2186	0170
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	40,0	3724		180	2222	2172
10 40,0 3575 186 2151 1 20,1 3643 86 2331 2235 2 20,1 3640 92 2179 2235 3 20,2 3713 90 2244 2235 4 20,1 3661 92 2185 2235 5 40,0 3640 164 2439 2439 6 40,0 3640 166 2410 174 2299 2276 M5 8 40,0 3650 183 2186 2276			9	40,0	3690		186	2151	
1 20,1 3643 86 2331 2235 1 2 20,1 3640 92 2179 2235 3 20,2 3713 90 2244 92 2185 4 20,1 3661 92 2185 164 2439 5 40,0 3640 166 2410 166 2410 7 40,0 3750 183 2186 2276			10	40,0	3575		186	2151	
$M5 \qquad M5 \qquad$			1	20,1	3643		86	2331	
$M5 \qquad M5 \qquad$			2	20,1	3640		92	2179	2225
$M5 \qquad M5 \qquad$			3	20,2	3713		90	2244	2255
M5 1 5 40,0 3640 6 40,0 3640 7 40,0 3750 8 40,0 3650 M5 2276			4	20,1	3661		92	2185	
M5 1 6 40,0 3640 3640 166 2410 174 2299 2276		1	5	40,0	3640	2662	164	2439	
M5 7 40,0 3750 8 40,0 3650 174 2299 183 2186 2276		1	6	40,0	3640	3002	166	2410	
M5 8 40,0 3650 183 2186 2276			7	40,0	3750		174	2299	2276
MD I I I I I I I I I I I I I I I I I I I	145		8	40,0	3650		183	2186	2276
9 40,0 3640 184 2174	MS		9	40,0	3640		184	2174	
10 40,0 3640 186 2151			10	40,0	3640		186	2151	
1 20,1 3610 88 2278			1	20,1	3610		88	2278	
2 20,1 3661 96 2094 2127			2	20,1	3661	1	96	2094	0107
2 3 20,1 3676 2610 96 2089 2137		~	3	20,1	3676	3610	96	2089	- 2137
² 4 20,1 3578 ³⁶¹⁰ 96 2089		2	4	20,1	3578		96	2089	
5 40,0 3597 164 2439			5	40,0	3597		164	2439	-
<u>6 40,0 3549 176 2273 2261</u>			6	40,0	3549	1	176	2273	2261

		7	40,0	3633		176	2273	
		8	40,0	3600		179	2235	
		9	40,0	3623		184	2174	
		10	40,0	3575		184	2174	
		1	20,1	3724		93	2156	
	2	20,1	3729		93	2161	2192	
		3	20,1	3676	2676	89	2253	2102
		4	20,1	3676		93	2156	
	2	5	40,0	3690		174	2299	
	3	6	40,0	3690	3070	176	2273	
	7	40,0	3707		172	2326	2271	
	8	40,0	3714		177	2260		
		9	40,0	3378		179	2235	
		10	40,0	3777		179	2235	

VELOCIDAD DE PULSO Y DE CORTE EN MOJADO											
No, de Mezcla	No, de Losa	No, de Punto	Distancia [cm]	Vp en cada punto [m/s]	Vp [m/s]	Tiempo de viaje de la onda [µs]	Vs en cada punto [m/s]	Vs [m/s]			
		1	20,2	4149		47	4289				
		2	20,1	4141		47	4277	1330			
		3	20,2	4149		46	4383	4330			
		4	20,1	4132		46	4370				
	1	5	40,1	4167	4157	150	2673				
	1	6	40,0	4145	4137	158	2532				
		7	40,0	4158		160	2500	2582			
		8	40,1	4175		155	2587	2382			
		9	40,0	4162		144	2778				
M3		10	40,0	4195		165	2424				
IVIS		1	20,2	4132		75	2693				
		2	20,2	4184		75	2693	2601			
		3	20,3	4115		75	2707	2091			
		4	20,3	4141		76	2671				
	2	5	40,1	4065	4121	165	2430				
	2	6	40,1	4061	4121	165	2430				
		7	40,1	4115		165	2430	2501			
		8	40,1	4137		158	2538	2301			
		9	40,0	4119		154	2597				
	ŀ	10	40,0	4141		155	2581				

		1	20,1	4175		78	2577	
		2	20,2	4193		78	2590	2502
		3	20,1	4184		78	2571	2382
		4	20,2	4184		78	2590	
	2	5	40,0	4145	4151	150	2667	
	3	6	40,1	4137	4131	158	2538	
		7	40,1	4119		158	2538	2511
		8	40,1	4141		164	2445	
		9	40,0	4132		164	2439	
		10	40,0	4103		164	2439	
		1	20,1	3817		56	3589	
		2	20,3	3819		56	3625	2226
		3	20,1	3800		58	3466	
		4	20,2	3819		57	3544	
	1	5	40,1	3759	2776	179	2240	
	1	6	40,0	3759	5770	179	2235	
		7	40,1	3788		181	2215	
		8	40,0	3724		181	2210	
		9	40,1	3724		180	2228	
		10	40,1	3752		180	2228	
		1	20,1	3836		58	3466	
		2	20,1	3895		60	3350	2274
		3	20,1	3836		61	3274	3374
		4	20,1	3873		59	3407	
N / 4	2	5	40,0	3831	2041	178	2247	-
W 14	Z	6	40,0	3831	3841	178	2247	
		7	40,1	3850		177	2266	
		8	40,1	3813		181	2215	2250
		9	40,0	3813		177	2260	
		10	40,1	3831		177	2266	
		1	20,1	3778		51	3941	
		2	20,1	3800		51	3941	2005
		3	20,1	3766		53	3792	3895
		4	20,3	3801		52	3904	
	2	5	40,1	3777	2702	178	2253	
	3	6	40,0	3766	3782	178	2247	
		7	40,1	3813		179	2240	2244
		8	40,1	3777		178	2253	2244
		9	40,0	3784		179	2235	
		10	40,0	3759	-	179	2235	-
	1	20,1	3831	2024	83	2422	0.4.00	
M5	1	2	20,1	3839	3824	79	2538	2469

		3	20,2	3868		83	2434	
		4	20,1	3868		81	2481	
		5	40,1	3806		182	2203	
		6	40,1	3795		182	2203	
		7	40,0	3806		182	2198	2203
		8	40,0	3810		183	2186	
		9	40,0	3817		181	2210	
		10	40,1	3795		181	2215	
2		1	20,1	3817		88	2284	
		2	20,1	3831		85	2365	2345
		3	20,1	3861		85	2365	
		4	20,1	3868		85	2365	
	2	5	40,1	3687	2792	181	2215	
	Z	6	40,1	3735	3782	178	2253	
		7	40,0	3774		178	2247	0024
		8	40,0	3763		179	2235	2234
		9	40,1	3745		179	2240	
		10	40,1	3738		181	2215	
		1	20,1	3945		85	2365	
		2	20,1	3891		85	2365	2262
		3	20,1	3953		85	2359	2363
		4	20,1	3945		85	2365	
	2	5	40,1	3883	2000	178	2253	
	3	6	40,1	3876	3898	175	2291	
		7	40,0	3861		175	2286	0212
		8	40,0	3883		162	2469	2313
		9	40,0	3880	-	175	2286	
		10	40,1	3865		175	2291	

ANEXO B

Datos obtenidos preliminares de exposición a altas temperaturas

NÚM	NÚMERO DE REBOTE PARA LOSAS EXPUETAS A ALTAS TEMPERATURAS											
No, de Mezcla	No, de Losa	Cara 1	Cara 2	Cara 3	Cara 4	Promedio	No, de Rebote					
		38	46	38	36							
M4	3	34	38	32	38	36,17	36					
		34	36	32	32							
	1	40	38	40	38		39 40					
		38	38	40	38	39,17						
		42	40	38	40							
		38	44	36	40							
M5	2	44	38	40	36	39,50						
		40	44	36	38							
		42	42	44	40							
	3	40	40	38	42	40,50	41					
		40	38	40	40							

VELC	VELOCIDAD DE PULSO Y DE CORTE EN EXPOSICIÓN A ALTAS TEMPERATURAS										
No, de Mezcla	No, de Losa	No, de Punto	Distancia [cm]	Vp en cada punto [m/s]	Vp [m/s]	Tiempo de viaje de la onda [µs]	Vs en cada punto [m/s]	Vs [m/s]			
		1	20,0	3558		88	2273				
		2	20,0	3610		42	4762	4012			
		3	20,1	3472		38	5289	4012			
		4	20,1	3559		54	3722				
M4	3	5	39,9	3837	3681	96	4156	3513			
141-	5	6	39,9	3782		110	3627				
		7	40,0	3865		110	3636				
		8	40,0	3865		130	3077				
		9	40,0	3431		142	2817				
		10	39,9	3827		106	3764				
		1	20,0	3636		72	2778				
		2	20,0	3604		72	2778	20.42			
		3	19,9	3449		84	2369	2943			
M5	1	4	20,0	3454	3597	52	3846				
		5	39,8	3734		140	2843	2729			
		6	39,9	3646		150	2660				
		7	39,9	3786		144	2771				

	8	39,9	3684		148	2696	
	9	39,9	3322		144	2771	
	10	40,0	3653		152	2632	
	1	20,0	3630		70	2857	
	2	20,0	3540		64	3125	2868
	3	20,0	3704		70	2857	2000
	4	20,0	3503		76	2632	
2	5	39,9	3694	3669	160	2494	
-	6	39,9	3729	5007	156	2558	2457
	7	39,9	3743		160	2494	
	8	40,0	3699		170	2353	
	9	40,0	3709		170	2353	
	10	39,9	3741		160	2494	
	1	20,0	3670		90	2222	2249
	2	20,0	3656		92	2174	
	3	20,0	3431		89	2247	
	4	20,0	3472		85	2353	
3	5	40,0	3707	3659	144	2778	
_	6	40,0	3707		132	3030	
7	40,0	3842		144	2778	2710	
	8	40,0	3711		152	2632	2719
	9	40,0	3653		156	2564	
	10	40,0	3742		158	2532	

ANEXO C

Datos obtenidos preliminares tras la exposición a altas temperaturas

NÚMERO DE REBOTE EN SECO AL AIRE												
No, de	No, de						No, de					
Mezcla	Losa	Cara 1	Cara 2	Cara 3	Cara 4	Promedio	Rebote					
		40	38	36	38							
M4		36	36	38	38	36,83	37					
	3	36	32	34	40							
		40	38	42	40		39					
		36	36	38	40	<u>.0</u> 39,00						
	1	42	36	38	42							
		40	40	38	36							
M5		40	42	38	38	39,17	39					
	2	38	40	40	40							
		40	40	40	40							
		44	40	38	42	40,33	40					
	3	40	44	40	36							

NÚMERO DE REBOTE EN MOJADO												
No, de Mezcla	No, de Losa	Cara 1	Cara 2	Cara 3	Cara 4	Promedio	No, de Rebote					
		38	36	38	36							
M4	3	32	34	36	32	35,00	35					
		32	36	32	38							
	1	40	38	38	38	39,33	39					
		40	40	40	36							
		40	42	40	40							
		40	40	38	40							
M5	2	36	38	38	40	38,50	39					
		40	36	36	40							
		38	40	42	40							
	3	40	40	38	38	39,67	40					
		46	34	40	40							

VELOCIDAD DE PULSO Y DE CORTE EN SECO AL AIRE									
No				Vp en		Tiempo			
No, de	de	No, de	Distancia	cada	Vp	de viaje	Vs en cada	Vs [m/s]	
Mezcla	Losa	Punto	[cm]	punto	[m/s]	de la onda	punto [m/s]	• 5 [m/5]	
		1	20.0	[m/s]		[µs]	2770		
		1	20,0	3676		12	2778		
		2	20,0	3745		64	3125	3132	
		3	20,0	3643	·	52	3846		
		4	20,0	3063		72	2778		
M4	3	5	40,0	3777	3655	100	4000		
	-	6	40,0	3724		104	3846		
		7	40,0	3788		104	3846	3754	
		8	40,0	3763		108	3704	0,01	
		9	40,0	3777		100	4000		
		10	40,0	3591		128	3125		
		1	20,0	3610		70	2857		
		2	20,0	3515	2650	68	2941	2700	
		3	20,0	3676		80	2500		
	1	4	20,0	3643		80	2500		
		5	40,0	3666		108	3704		
		6	40,0	3707	3650	104	3846		
		7	40,0	3707		120	3333	2667	
		8	40,0	3656		112	3571	3667	
		9	40,0	3633		104	3846		
		10	40,0	3690		108	3704		
		1	20,0	3604		64	3125		
		2	20,0	3584		64	3125	2104	
		3	20,0	3611		68	2941	3104	
M5		4	20,0	3584		62	3226		
	_	5	40,0	3683		92	4348		
	2	6	40,0	3607	3608	100	4000		
		7	40,0	3577		108	3704		
		8	40.0	3616		110	3636	3664	
		9	39.9	3611		110	3627		
		10	40.0	3600		150	2667		
		1	20.0	3831		69	2899		
		2	20.0	3676		88	2273		
		3	20.0	3697		88	2273	2823	
	3	4	20,0	3631	3669	52	3846		
		5	39.9	3643		120	3325		
		6	<u> </u>	3/157		02	/3/8	3444	
		U	40,0	3437		74	4340		

7	39,8	3658	116	3431
8	39,9	3769	124	3218
9	39,9	3765	124	3218
10	40,0	3559	128	3125

VELOCIDAD DE PULSO Y DE CORTE EN MOJADO										
No, de Mezcla	No, de Losa	No, de Punto	Distancia [cm]	Vp en cada punto [m/s]	Vp [m/s]	Tiempo de viaje de la onda [µs]	Vs en cada punto [m/s]	Vs [m/s]		
		1	20,0	3839		40	5000			
		2	20,0	3661		40	5000	4700		
		3	20,0	3624		53	3774	4700		
		4	20,1	3690		40	5025			
24	2	5	40,2	3640	2740	104	3865			
M4	3	6	40,2	3700	3742	100	4020			
		7	40,2	3869		84	4786	4077		
		8	40,0	3813		108	3704	4377		
		9	39,9	3782		72	5542			
		10	40,0	3799		92	4348			
		1	20,0	3344		36	5556	4130		
		2	20,0	3766	3688	36	5556			
		3	20,0	3795		76	2632			
		4	20,0	3738		72	2778			
	1	5	39,9	3688		116	3440			
	1	6	39,8	3706		104	3827			
		7	39,9	3688		96	4156			
		8	40,0	3690		88	4545			
		9	39,9	3722		100	3990			
M5		10	40,0	3742		100	4000			
IVI J		1	20,0	3788		48	4167			
		2	20,0	3795		42	4762	4020		
		3	20,0	3824		60	3333	4029		
		4	20,0	3785		52	3856	1		
	2	5	40,0	3704	2742	112	3571	3488		
	Z	6	40,0	3704	3743	124	3226			
		7	39,7	3690		122	3254			
		8	39,8	3685		134	2970			
		9	40,0	3738		104	3846			
		10	39,8	3720		98	4061			

		1	19,9	3849		44	4523	
		2	20,0	3868		48	4167	4200
		3	19,9	3738		42	4738	2564
		4	20,0	3802		48	4167	
	2	5	40,1	3796	2000	108	3713	
	3	6	40,1	3771	3800	116	3457	
		7	40,0	3826		124	3226	
		8	40,0	3813		104	3846	5504
		9	39,9	3744		116	3440]
		10	40,0	3795		108	3704	

ANEXO D

Profundidad de daño para losas en condiciones dañadas, dañadas mojadas y dañadas en Seco al Aire

28

5.00

0.00

10.00

15.00

Distancia [cm]

── Eje A ── Eje B

20.00

25.00

30.00

