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RESUMEN 

Momentos torsionales críticos, los cuales necesitan ser considerados dentro de un diseño, 
pueden resultar en estructuras que presentan una distribución espacial asimétrica o 
posicionamiento de cargas irregulares. Para hallar el refuerzo longitudinal y transversal 
requerido para resistir estos momentos torsionales, el vínculo entre la acción tridimensional de 
los momentos torsionales y el análisis seccional es necesario. Este artículo revisa las existentes 
normas para el diseño a torsión. Primero, un resumen de los principios de la torsión desde la 
perspectiva de la mecánica es dada. Después, una síntesis de los modelos mecánicos para la 
torsión disponibles es presentada. Finalmente, las normas de los códigos para torsión de ACI 
318-14, CSA-A23.3-04, AASHTO-LRFD-17, EN 1992-1-1:2004, y el fib Model Code 2010 
son dadas. Adicionalmente, varios temas de investigación actuales sobre la torsión en hormigón 
estructural son resumidos.  Se espera que con este artículo, los ingenieros tengan una visión 
general y un conocimiento esencial para el diseño y evaluación de elementos bajo torsión 
crítica 
 
El segundo documento provee un ejemplo práctico del diseño a torsión de una viga-T invertida 
de un puente de tres vanos. Un completo diseño bajo torsión siguiendo las normas de ACI 318-
14 es dado y los resultados son comparados con los obtenidos de las normas CSA-A23.3-04, 
AASHTO-LRFD-17 y EN 1992-1-1:2004. Consecuentemente, un resumen del detallamiento 
de la sección transversal considerando los requisitos del refuerzo de acero es presentado. El 
objetivo de este documento es proveer a los ingenieros una herramienta útil para el diseño de 
un elemento estructural sometido a grandes momentos torsionales. 
 
 
Palabras clave: códigos, concreto, cortante, diseño, puente, refuerzo, torsión, viga-T invertida 
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ABSTRACT 

Large torsional moments, which need to be considered in a design, can occur among others, in 
structures with an asymmetric layout or loading. To find the required longitudinal and transverse 
reinforcement to resist these torsional moments, the link between the three-dimensional action of 
the torsional moment and sectional analysis methods is necessary. This paper reviews the existing 
methods and code provisions for torsion. First, an overview of the principles of torsion from the 
mechanics perspective is given. Then, a survey of the available mechanical models for torsion is 
presented. Finally, the code provisions for torsion of ACI 318-14, CSA-A23.3-04, AASHTO-
LRFD-17, EN 1992-1-1:2004, and the fib Model Code 2010 are summarized. Additionally, current 
research topics on torsion in structural concrete are summarized. It is expected that with this paper, 
engineers will have an overview and the essential background knowledge for the design and 
assessment of torsion-critical elements.  
 
The second paper provides a practical example of the torsion design of an inverted tee bent cap of 
a three-span bridge. A full torsional design following the guidelines of the ACI 318-14 building 
code is carried out and the results are compared with the outcomes from CSA-A23.3-04, 
AASHTO-LRFD-17, and EN 1992-1-1:2004 codes. Then, a summary of the detailing of the cross-
section considering the reinforcement requirements is presented. The objective of this paper is to 
provide engineers a useful tool for designing a structural element subjected to large torsional 
moments. 
 
 
Key words: bridge, codes, concrete, design, inverted tee bent cap, reinforcement, shear, torsion. 
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Synopsis: Large torsional moments, which need to be considered in a design, can occur among others, in structures 
with an asymmetric layout or loading. To find the required longitudinal and transverse reinforcement to resist these 
torsional moments, the link between the three-dimensional action of the torsional moment and sectional analysis 
methods is necessary. This paper reviews the existing methods and code provisions for torsion. First, an overview of 
the principles of torsion from the mechanics perspective is given. Then, a survey of the available mechanical models 
for torsion is presented. Finally, the code provisions for torsion of ACI 318-14, CSA-A23.3-04, AASHTO-LRFD-17, 
EN 1992-1-1:2004, and the fib Model Code 2010 are summarized. Additionally, current research topics on torsion in 
structural concrete are summarized. It is expected that with this paper, engineers will have an overview and the 
essential background knowledge for the design and assessment of torsion-critical elements. 
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INTRODUCTION 
In general, concrete structures are subjected to four principal actions: axial force, shear, bending moment, and torsion. 
Engineers and researchers focused on the understanding of the first three phenomena in concrete structures because 
these usually control the design of a member, i.e. they control the resulting reinforcement layout. For example, beams 
are typically designed for sectional moment and shear. Columns work as flexion-compression elements, around both 
axes of the cross-section. Nevertheless, torsion is a special topic. It was left apart because generally its influence on 
the resulting design is limited. For this reason, building codes accounted for torsion’s small influence in the safety 
factors [1]. Throughout the 1960s, extensive research on torsion was made. As a result, the first design 
recommendations for torsion made by the American Concrete Institute (ACI) were formulated in 1969 [2]. These 
recommendations led to the inclusion of provisions for torsion in the 1971 edition of the ACI Building Code, ACI 
318-71 [3]. The research carried out over the past decades led to a better understanding of the behavior of concrete 
members subjected to a torsional moment. The Space Truss Analogy, the Skew-Bending Theory, and other theories 
provided mechanical models to predict the behavior of concrete structures under torsion after cracking.  
 
Torsion can be defined as the moment that twists an element around its axis. This torsional moment causes shearing 
stresses at each point of the cross-section of an element. These stresses change according to the proximity to the 
member’s axis [4]. In circular cross-sections, the stress caused by a torsional moment is zero at the neutral axis and 
reaches the maximum value on the outermost fiber, see Figure 1(a). For rectangular cross-sections, the shear stress is 
also zero at the neutral axis and at the corners. It increases towards its maximum value at the surface of the longest 
side, see Figure 1(b).  

 
(a)      (b) 

Figure 1—Shear stresses (τ) due an applied torsional moment (T) on a circular (a) and rectangular solid (b) element 
 
Torsion can be a result of primary or secondary actions. The primary action occurs when the member can only support 
the action of an external load by generating a torsional moment. This is also called equilibrium torsion and is common 
in statically determinate structures. Equilibrium torsion is important for the stability of the structure. This occurs, for 
example, when a load acts on a fixed-end beam, but it is applied eccentric with respect to the z-axis, like in Figure 2.  
As a result, torsional moment is generated around this axis.  
 

 
Figure 2—Equilibrium torsion at the ends of the beam, generated by the action of a point load 
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Torsion can also be found as a result of secondary actions in statically indeterminate structures. This happens because 
the structure needs to satisfy compatibility requirements. In this case a twist is required to maintain the compatibility, 
not a torsional moment [5]. Spandrel continuous beams supporting other secondary beams or slabs are often subjected 
to this phenomenon, as shown in Figure 3. 

 
Figure 3—3D Frame system where spandrel beams AB and CD are subjected to compatibility torsion due to the 

load on the secondary beams 
 
More complex and asymmetric concrete structures are designed every year around the world thanks to the reduction 
times in analysis and design when using structural software. As a result, the effect of torsion on concrete structures 
has become more important. For example, horizontally curved bridges and cantilever members should be designed for 
torsion. Institutions like American Concrete Institute (ACI) [6], Canada Standards Association (CSA) [7], American 
Association of State Highway and Transportation Officials (AASTHO) [8], the European Normalization Committee 
(CEN) [9], and the International Federation for Structural Concrete (fib) [10] have developed provisions for situations 
when torsion needs to be considered. The design philosophy that each code uses is:  
 

 ACI 318-14 [6] uses a thin-walled tube and a space truss analogy. 
 CSA-A23.3-04 [7] uses a General Design Method for torsion derived from the Modified Compression Field 

Theory (MCFT); it includes the tensile contribution of concrete. 
 AASHTO-LRFD-17 [8] code provisions for torsion are obtained from the MCFT. The torsion equations on 

this code are similar to the CSA-A23.3-04 ones. A Strut and Tie Model can also be used as an alternative for 
design. 

 Eurocode (EN 1992-1-1:2004) [9] uses a spatial truss model with an equivalent thin-walled tube and wall 
thickness for the torsion design. 

 The fib Model Code 2010 [10] uses a variable angle truss model, generalized stress field approach, or a 
simplified modified compression field theory, depending on the Level of Approximation. 
 

The assumptions that lie at the basis of each of these models, and the resulting mechanics, will be discussed in the 
section about the mechanical models. The resulting code provisions will be given in the section with the code 
provisions. 
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BRIEF HISTORY OF TORSION RESEARCH 
 

Mechanics of torsion 
In this section, an overview of the history of torsion mechanics is given. Kurrer in “The History of the Theory of 
Structures” shows various important investigations on this topic [11]. The first known person to study the effect of 
torsion on materials, as a consequence of his research on electric charges, was Coulomb. Using his torsion balance, 
he deduced that the torsional moment is proportional to the torsional angle [12]. About 40 years later, Navier was the 
first to postulate a theoretical equation to compute the torsional moment on shafts with a circular cross-section. The 
two assumptions that he made were: 1) the shape of the cross-section cannot change after twist, and 2) plane sections 
remain plane. The latter assumption implies that warping does not occur [13].  
 
Later, it was found that there are two possible ways in which a structural member can resist torsion: by circulatory 
torsion or by warping torsion. Saint-Venant developed in 1847 the first theory, in which he stated that the cross-section 
of an element counters the effect of torsion by producing a circulatory shear flow (torsional shear multiplied by the 
wall thickness) on its plane. This means that the shear stress resisting the external torsional moment is constant within 
the flow area, see Figure 4(a). This effect usually occurs in solid and hollow members, which are free to bend around 
their axis [4]. The second way in which structural members can withstand torsion is warping torsion. It was first 
investigated by Timoshenko in 1905 and further researched by Vlasov in 1940 [14]. Warping torsion produces 
different shear stresses along the same circumference, see Figure 4(b). Consequently, the planar sections do not remain 
plane due to the changing strain at points over a determined circumference. Longitudinal bending results from these 
strains. Warping torsion arises when the entire section or part of it is restrained, for example, by end conditions [4]. 
This is usually expected in members formed by at least three connected walls, or with a fixed-end support.  
 

 
(a)       (b) 

Figure 4—Circulatory torsion (a) and warping torsion (b) shear stresses on C-shaped members 
 
Both resisting torsional moments need to be in equilibrium with the applied torsional moment (T) on the member. 
This means that T=Ts +Tw where Ts is the Saint-Venant torsion and Tw is the warping torsion. Both happen at the same 
time, consequently; there is not a clear way to classify sections according to how they resist torsion. Some practical 
examples have demonstrated that the action of one of the resisting methods can be neglected compared to the effect 
of the other. Nevertheless, there are other cases where neither of them is predominant over the other; this case is called 
mixed torsion [15]. One example of mixed torsion is an I-shaped simply supported beam. If the torsional moment is 
applied at midspan, the cross-sections at the left and right of it experience warping torsion. Close to the ends, the beam 
can twist freely, therefore Saint-Venant torsion occurs. 
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In 1890 Bach, in his book, “Elasticität und Festigkeit” presented all the torsion cases proposed by Saint-Venant and 
interpreted them theoretically. Bach tested numerous cast-iron and hard lead bars under torsion. Using the results of 
the proposed theory and the experiments, Bach developed a simple equation to check the shear stress for the Saint-
Venant torsion in bars, equilateral triangles, and regular hexagons [11]. In 1896, Bredt offered a promising solution 
to the Saint-Venant torsion problem. His solution equation states that the sum of the tangential shear forces (τ) per 
unit area (ds) on a closed curve within the cross-section under the effect of an external torsional moment is equal to 
two times the area enclosed by the forces (Am), shear modulus (G) and the product of rotation (θr) [11], i.e.: 
 

2 m rds A G    (1) 

 

Torsion in reinforced concrete 
Graf and Mörsch were the first researchers to study torsion in plain and reinforced concrete. They tested different 
circular, square, and rectangular beams to study the effect of the reinforcement on the ultimate strength for elements 
under torsion [16]. In 1929, Rausch presented the 3D-truss analogy for torsion. Rausch provided an equation to predict 
the torsional resistance of reinforced concrete members based on the space truss model [17,18]. This method lies at 
the basis for the current torsion design provisions. 
 
More researchers started to study torsion in structural concrete at the beginning of the second half of the twentieth 
century. In 1959, Lessig used equilibrium equations to propose a skew-bending theory for the failure mechanism of 
torsion. [4]. This theory assumes that a beam under torsion will have a skewed failure surface. Lessig proposed two 
failure modes. The first one has a compression zone near the top face of the beam, while the second failure mode uses 
a compression zone along the side face. In 1962, Yudin [19] realized that the skew-bending theory proposed by Lessig 
was not able to determine three unknows: the longitudinal reinforcement area, the web steel area, and the depth of the 
compression zone. To solve this, Yudin proposed three equilibrium equations, while Lessig’s analysis only used two: 
the equilibrium of moments about the neutral axis of the member, and the equilibrium of forces along the normal to 
the compression zone. Yudin’s equations were: equilibrium of moments about an axis through the centroid of the 
compression zone and parallel to the longitudinal axis of the beam, equilibrium of moments about an axis through the 
centroid of the compression zone and perpendicular to the longitudinal axis, and equilibrium of forces along the normal 
to the compression zone. Nevertheless, this analysis is limited to only symmetrically reinforced elements. 
 
Elfgren developed a method to determine the capacity of elements under combined shear, moment and torsion [14]. 
He used a truss analogy to predict the ultimate load carried by multiple sets of reinforced beams and tested these at 
Chalmers University of Technology. Elfgren established an interaction equation which can be used to plot an 
interaction surface. This model predicts accurately the strength of reinforced concrete beams subjected to torsional 
moment, shear force and bending moment. 
 
Collins and Mitchell introduced another approach to study torsion in structural concrete in 1973 [20]. They presented 
the diagonal compression field theory for beams under pure torsion. They considered equilibrium equations, geometry 
of deformations, and stress-strain relationships of the concrete and steel to propose their theoretical model. The basis 
of their approach is a truss analogy model, and their main assumption is that after cracking the concrete will not carry 
tension, therefore, the torsion will be resisted by a field of diagonal compression in the concrete. Later, Vecchio and 
Collins developed the Modified Compression Field Theory [21] which considered that the tension in the cracked 
concrete contributes to the torsional strength. Afterwards, in 1985, Hsu and Mo developed a variation of the 
compression field theory. In this case, they softened the concrete stress-strain curve and called the new model the 
softened truss model (STM) [17]. In the STM equilibrium, compatibility and softened stress-strain relationships are 
combined to develop a theory that has shown good results in predicting the test results of reinforced concrete structures 
subjected to shear and torsion [22]. Rahal and Collins have developed analytical computational models to calculate 
the response of concrete members subjected to combined torsion and bending [23] and to combined torsion and shear 
[24]. 
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MECHANICAL MODELS FOR TORSION 
 

Reinforced concrete before and after cracking under torsion 
Prior to cracking, reinforced concrete members subjected to torsion can be analyzed as homogenous plain concrete 
sections. Therefore, their behavior can be predicted using Saint-Venant’s theory [25]. After the element cracks, the 
study of its behavior becomes more complicated. From now on, the structural member acts as a composite section, 
and Saint-Venant’s theory can no longer be used because cracking violates the material homogeneity premise of the 
elastic theory. When the web of the beam cracks, its capacity to transmit diagonal tension forces is reduced. The load 
is then carried by diagonal compression members between the cracks and by the steel reinforcement resisting tension. 
Together, they form a truss-like mechanism [4]. 
 

Shear truss analogy  
The shear truss analogy was first proposed by Ritter at the end of the twentieth century [26]. It is a strut-and-tie model 
and considers that a cracked reinforced concrete beam under shear will have diagonal cracks which separate the 
concrete into multiple struts. Ritter modeled the beam as a plane truss consisting of longitudinal and transverse 
reinforcement to carry the load. In this assumption, the top and bottom longitudinal bars act as the top and bottom 
chords of the truss, while the transverse reinforcement and concrete struts work as the web members. To simplify this 
model, the strut’s inclination is assumed to be 45° [27].  
 

3D space truss analogy 
To apply the concept of a truss model to members subjected to torsion, the truss model needs to be extended to a three-
dimensional model, i.e. a space truss analogy. A member subjected to torsion is treated as a space truss formed by a 
series of joined planar trusses [18]. The concrete member reinforced with longitudinal and transverse reinforcement 
resists torsion by producing a circulatory shear flow at the outermost part of the cross-section. Each straight segment 
of the tube walls behaves like a planar truss in which the shear stresses are resisted as in the shear truss analogy. Struts 
only carry axial compression; longitudinal and transverse reinforcement carries the tension forces, see Figure 5.  

 
Figure 5—Space truss analogy for an asymmetrical beam under torsion. The tension forces are supported by the 

longitudinal and transverse reinforcement (black and blue) and the concrete struts resist compression (red) 
 

Skew-bending theories 
This theory is characterized by the assumption of a skewed failure surface. This surface is generated by a helically-
shaped crack on three faces of a rectangular beam. On the fourth face, the helical crack is connected by a compression 
zone. The failure surface intersects the longitudinal and transverse reinforcement. The forces in the steel reinforcement 
generate the required internal forces and moments to carry external loads. Failure occurs when the steel starts to yield 
[28]. At failure, the two parts of the member separated by the failure surface rotate against each other about a neutral 
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axis on the inside edge of the compression zone. Then, the associated equilibrium equations at the ultimate limit state 
can be derived [25]. 
 

Thin-walled tube analogy 
The most efficient cross-section to resist torsion is a thin tube. The thin-walled tube analogy states that the shear 
stresses and shear flow are constant around the cross-section of a member enclosed by an area of pre-determined 
thickness. Therefore, solid and hollow sections can be calculated in the same way as tubes [29], see Figure 6. Concrete 
members can be modelled as tubes because the concrete core does not contribute to the element’s torsional strength 
[25]. Within the walls of the tube, the external torsion is resisted by a shear flow, defined as the torsional shear 
multiplied by the thickness of the tube. 

 
(a)          (b) 

Figure 6—Original section (a) and the same member after the thin-walled tube analogy is applied (b) 
 

Compression Field Theory (CFT) 
The CFT is a model developed by Mitchell and Collins [20] that considers equilibrium conditions, geometry of 
deformation and the strain-stress characteristics of the steel and concrete to predict the shear strength of a concrete 
member after it cracks. This theory, based on the truss analogy, assumes that after cracking, the torsion shear stresses 
are carried by a field of diagonal compression in the concrete and balanced by the tension developed in the longitudinal 
and transverse reinforcement. In 1986, Vecchio and Collins expanded the CFT to the Modified Compression Field 
Theory (MCFT). The CFT assumed that the cracks of the diagonal field compression in the concrete were only able 
to withstand shear and compression. Nevertheless, between the concrete’s cracks tension stresses exist. To have a 
more accurate answer of the reinforced concrete element’s capacity under shear and torsion, the MCFT uses 
experimentally verified average stress-strain relationships instead of assuming them. Also, it considers the tension in 
the cracked concrete [21]. Although the MCFT can predict the shear and torsional strength with great precision, the 
process of solving the equations of this theory by hand is complex. For this reason, Bentz, Vecchio and Collins 
developed a simplified MCFT using the Membrane-2000 computer program to get more practical expressions. This 
method showed excellent predictions of the shear strength. The accuracy between the simplified MCFT and the full 
theory is almost the same [30]. 
 

CODE PROVISIONS FOR TORSION 
All the equations in this section are expressed in SI units. The conversion factors are: 1 kN = 0.225 kip, 1 kN·m = 
8.849 kip·in, 1 mm = 0.0394 in and 1 MPa = 145 psi. 

 

ACI 318-14 
ACI 318-14 [6] first checks if torsion can be neglected. If the following expression from §9.5.4.1 is satisfied, torsional 
effects do not need to be considered:  
 

u thT T   (2) 

 
Tu is the factored torsional moment. ϕ, the reduction factor for the nominal capacity of torsion, is equal to 0.75. Tth is 
the threshold torsional moment given by §22.7.4. For solid sections it is: 
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In statically indeterminate structures where Tu ≥ ϕTcr, it is permitted to reduce Tu to ϕTcr due to redistribution of internal 
forces after cracking. This applies to typical and regular framing conditions.  ϕTcr is the cracking torsional moment 
and is defined in §22.7.5.1. Equation (3) is valid for solid cross-sections. For hollow cross-sections, all the Acp terms 
in Equation (3) are substituted with Ag, the gross area of the concrete cross-section. f′c [MPa] is the specified 
compressive strength of the concrete, Acp is the area enclosed by the outside perimeter of the concrete cross-section, 
pcp is the outside perimeter of concrete’s cross-section, fpc [MPa] is the compressive stress in the concrete, after 
allowance for all prestress losses, at the centroid of the cross-section resisting the externally applied loads or at the 
junction of the web and flange where the centroid lies within the flange. In a composite member, it is the resultant 
compressive stress at the centroid of the composite section, or at the junction of the web and flange, when the centroid 
lies within the flange, due to both prestress and moments resisted by the precast member acting alone, Nu is the factored 
axial force, taken as negative for tension and positive for compression, λ is a coefficient which accounts for the 
properties of lightweight concrete (see §19.2.4.2). 
 
The shear strength provided by the concrete Vc according to §22.5.5.1 is determined as: 
 

0.17   with  in [MPa]c c w cV f b d f     (4) 

 
bw is the web width or diameter of a circular section and d is the effective depth. The last expression applies to 
reinforced concrete members without axial force. For other cases, §22.5.6, §22.5.7, §22.5.8, and §22.5.9 are governing. 

 
The next expression from §22.7.7.1 checks if the dimensions of the member are large enough to avoid crushing of the 
concrete: 
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 (5) 

 
If Equation (5) is fulfilled, the reinforcement for torsion can be designed. For hollow sections with a variable wall 
thickness, the maximum value of the left side of Equation (5) should be evaluated, which is often at the point of the 
cross-section where shear and torsional stresses can be added. Vu  is the factored shear force, ph is the perimeter of the 
centerline of the outermost closed transverse torsional reinforcement, Aoh is the area enclosed by ph. §22.7.7.1.1 
mentions that for prestressed members the value of d in Equation (5) should be greater than 0.8h, where h is the overall 
height of the element. 
 
According to §22.7.6.1, θ, the angle between the struts and the tension chord, can be taken as any value between 30 
and 60 degrees. §22.7.6.1.2 states that θ is usually 45° for reinforced concrete members with Apsfse < 0.4(Apsfpu + Asfy) 
and 37.5° for prestressed elements with Apsfse ≥ 0.4(Apsfpu + Asfy). Aps is the area of the prestressed longitudinal tension 
reinforcement, As is the area of the non-prestressed longitudinal tension reinforcement, fse is the effective stress in 
prestressing reinforcement after allowance for all prestress losses, fpu is the specified tensile strength of prestressing 
reinforcement, and fy is the yield strength for non-prestressed longitudinal reinforcement. The required area of 
transverse reinforcement of one leg of a closed stirrup At for torsion is: 
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s is the spacing between the stirrups, fyt is the specified yield strength of the transverse reinforcement. 
 
The next step is to calculate the required area of longitudinal steel for torsion Al: 
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§9.5.4.3 mentions that the longitudinal and transverse reinforcement required for torsion need to be added to the 
reinforcement demanded by shear force, bending moment and axial force actions. 
For the transverse reinforcement limit, §9.6.4.2 states that for members under torsion and shear, the stirrups for torsion 
and shear effects cannot be less than: 
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  (8) 

 
Av is the required area of two legs of a closed stirrup for shear. If the analyzed element is only subjected to torsion, the 
value of the Av term in Equation (8), is equal to zero. The minimum area of longitudinal steel reinforcement Al,min for 
torsion can be calculated with §9.6.4.3 as: 
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  (9) 

 
According to §9.7.6.3.3 the limits to the stirrup spacing are: 
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  (10) 

 
§9.5.4.3 states that the final amount of longitudinal and transverse reinforcement needs to be added to the required 
reinforcement for shear force, bending moment and axial effects.  
 
When the cross-section and the reinforcement of the member are designed, the ACI 318-14 [6] §22.7.6.1 gives two 
equations to analyze the torsional strength Tn. Once the member cracks under the effect of a torsional moment, the 
strength is provided primarily by the transverse and longitudinal reinforcement. The concrete contribution to the 
torsional strength is neglected: 
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Finally, the torsional strength should be greater than or equal to the factored applied torsional moment: 
 

n uT T    (12) 

 

CSA-A23.3-04 
According to §11.2.9.1, reinforcement for torsion should be provided when the factored torsional moment Tf exceeds 
¼ of the pure torsional cracking resistance Tcr, given in CSA-A23.3-04 [7] Eq. 11-2 as:  
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  (13) 

 
In statically indeterminate structures, where redistribution of torsional moments can occur, §11.2.9.2  specifies that Tf 
can be reduced to 0.67Tcr at the face of the support. For hollow sections, Ac is the area enclosed by the outside perimeter 
of the concrete cross-section, including the area of holes. In Equation (13), for hollow cross-sections, Ac can be 
replaced with 1.5Ag (gross concrete area) if the wall thickness is less than 0.75Ac / pc. pc is the outside perimeter of the 
cross-section, fcp [MPa] is the average compressive stress in the concrete due to the effective prestress force only (after 
allowance for all prestress losses), f′c [MPa] is the specified compressive strength of concrete, ϕc = 0.65 is the material 
factor for concrete, ϕp = 0.9 is the material factor for prestressing tendons, and λ is the factor that accounts for 
lightweight concrete, see §8.6.5.  
 
Equations 11-18 and 11-19 in the CSA-A23.3-04 [7] code give minimum dimensions to avoid concrete crushing: 
  

2

22

2

0.25                     for hollow sections
1.7

   

0.25        for other sections
1.7

f p f h

c c

w v oh

f p f h

c c

w v oh

V V T p
f

b d A

V V T p
f

b d A





 
    
 
                   

 (14) 

 
Vf is the factored shear, Vp is the component in the direction of the applied shear of the effective prestressing force 
factored by ϕp, dv is the effective shear depth, taken as the greater of 0.9d or 0.72h, where h is the overall height of the 
member, and d is the effective depth (d cannot be less than 0.8h for prestressed members and circular sections), bw is 
the minimum web width within d or the diameter of a circular cross-section, Aoh is the area enclosed by the centerline 
of the exterior closed transverse torsion reinforcement, including the area of holes, ph is the perimeter of the centerline 
of the closed transverse torsion reinforcement. If the wall thickness of the box section is less than Aoh / ph, the second 
term on the left side of Equation (14) should be replaced by Tf / (1.7Aoht), where t is the wall thickness at the location 
where the stresses are checked. 
 
Next, it is needed to compute the longitudinal strain εx at mid-depth of the member due to the factored loads. With this 
variable, the angle of the diagonal compression field, θCSA, can be obtained to calculate the required transverse 
reinforcement. The longitudinal strain is computed substituting Equation 11-20 on Equation 11-13 of §11.3.6.4, which 
leads to: 
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  (15) 

 
If the value of Equation (15) is negative, εx can be taken as zero. Mf is the factored moment and cannot be less than 
(Vf -Vp)dv, Ao is the area enclosed by the shear flow path including the area of holes, which can be taken as 0.85Aoh 
according to §11.3.10.3, Nf is the factored axial load, positive for tension and negative for compression. Ap is the area 
of prestressing tendons, fpo is the stress in the prestressing tendons when the strain in the surrounding concrete is zero 
(may be taken as 0.7fpu for bonded tendons outside the transfer length and fpe for unbonded tendons), fpu [MPa] is the 
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specified tensile strength of the prestressing tendons,  fpe [MPa] is the effective stress in the prestressing tendons after 
allowance for all prestress losses, Es is the modulus of elasticity of non-prestressed reinforcement, Ep is the modulus 
of elasticity of prestressing tendons, and As is the area of non-prestressed tension reinforcement. The bending moment 
and shear force on Equation (15) are absolute values. Once the longitudinal strain is computed, the angle of inclination 
of the diagonal compressive stresses, θCSA, is defined in §11.3.6.4, Eq. 11-12 as: 
 

29 7000    CSA x     (16) 

 
For special members like slabs or footings with an overall thickness less than 350 mm, footings in which the distance 
from the point of zero shear to the face of the column, pedestal, or wall is less than three times the effective shear 
depth of the footing, beams with an overall thickness less than 250 mm, beams cast integrally with slabs where the 
depth of the beam below the slab is not greater than one-half the width of web or 350 mm, and concrete joist 
construction defined in §10.4, the angle of the struts can be taken as 42°. §11.3.6.3 also mentions that if the yield 
strength of the longitudinal reinforcement does not exceed 400 MPa and f′c is smaller than 60 MPa, θCSA can be taken 
as 35°.  
The next step is to find the required area of transverse reinforcement for torsion, At, using Equation (17): 
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s  is the spacing between stirrups for torsion, fyt is the specified yield strength of transverse reinforcement, and ϕs = 
0.85 is the material factor for non-prestressed reinforcement. Combining Equations 11-14 and 11-21, the longitudinal 
reinforcement area Ast needed to withstand a torsional moment is given by: 
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fy is the specified yield strength of non-prestressed longitudinal reinforcement for torsion and Vs is the shear resistance 
provided by the transverse reinforcement.  
 
The maximum spacing s between stirrups follows the expression described in §11.3.8.1: 
 

0.7
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  (19) 

 
The CSA-A23.3-04 [7] code provisions for torsion do not specify any minimum longitudinal or transverse 
reinforcement for torsion. §11.2.7 indicates that a longitudinal reinforcing bar or bonded prestressing tendon shall be 
placed in each corner of closed transverse reinforcement required for torsion. The nominal diameter of the bar or 
tendon shall be not less than s/16. 
 
The torsional moment resistance Tr is only provided by the transverse reinforcement and is defined in §11.3.10.3 as: 

1.7 cot   t
r s oh yt CSA

A
T A f

s
    (20) 

 
The torsional strength Tr should be greater than or equal to the applied torsional moment: 
 

r fT T   (21) 
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AASHTO-LRFD-2017 
Torsion must be considered, according to §5.7.2.1 Eq. 5.7.2.1-3, if: 
 

0.25u crT T   (22) 

 
Tu is the applied factored torsional moment. ϕ, the resistance factor is given in §5.5.4.2 and is equal to 0.90 for normal 
and lightweight concrete. To determine the torsional cracking moment, Tcr, first K, the effective length factor for 
compression members, must be computed according to Eq. 5.7.2.1-6: 
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fpc,AAS [MPa] is the unfactored compressive stress in concrete after prestress losses have occurred, taken either at the 
centroid of the cross-section resisting transient loads or at the junction of the web and flange where the centroid lies 
in the flange. f′c [MPa] is the design compressive strength of concrete, λAAS is the concrete density modification factor 
given in §5.4.2.8. Tcr is provided in Eq. 5.7.2.1-4 and 5.7.2.1-5 as: 
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  (24) 

 
Ao is the area enclosed by the shear flow path, including inner holes, Acp is the area enclosed by the outside perimeter 
of the concrete cross-section, pc is the outside perimeter of the concrete cross-section, be is the effective width of the 
shear flow path taken as the minimum thickness of the exterior webs or flanges comprising the closed box section. be 
should account for the presence of ducts; the diameters of ungrouted ducts or one-half the diameters of grouted ducts 
need to be subtracted from the web or flange thickness at the location of these ducts. be cannot exceed Acp / pc unless 
a more refined analysis is used. 
 
To compute the required transverse reinforcement, εs needs to be determined, which is the net longitudinal tensile 
strain in the section at the centroid of the tension reinforcement. It can be obtained from §5.7.3.4.2, Eqs. 5.7.3.4.2-4, 
5.7.3.4.2-5 and 5.7.3.4.2-6: 
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§5.7.2.1 mentions that in statically indeterminate structures where redistribution of torsional moment can occur over 
a determined element, Tu can be taken as ϕTcr. Mu is the factored applied moment and cannot be less than |Vu-Vp,AAS|dv, 
Nu,AAS is the factored applied axial load, taken as positive for tension and negative for compression, Vu is the factored 
sectional shear, Vp,AAS is the component of prestressing force in the direction of the shear force, Aps is the area of 
prestressing steel on the flexural tension side of the member, As is the area of non-prestressed tension reinforcement, 
ds is the distance from the extreme compression fiber to the centroid of the non-prestressed tensile reinforcement 
measured along the centerline of the web, dv is the effective shear, ph,AAS is the perimeter of the centerline of the closed 
transverse torsion reinforcement for solid members, or the perimeter of the centroid of the transverse torsion 
reinforcement in the exterior webs and flanges for hollow members, and fpo,AAS is a parameter taken as the modulus of 



21 
 

 
 

elasticity of prestressing steel multiplied by the locked-in difference in strain between the prestressing steel and the 
surrounding concrete. For usual levels of prestressing, fpo,AAS can be taken as 0.7fpu for both pretensioned and post-
tensioned members. fpu is the specified tensile stress of prestressing steel. Es is the modulus of elasticity for steel 
reinforcement and Ep is the modulus of elasticity of prestressing steel. Now, with the longitudinal tensile strain εs, the 
angle of inclination of diagonal compressive stresses, θAAS is defined by §5.7.3.4.2, Eq. 5.7.3.4.2-2: 
 

29 3500AAS s     (26) 

 
According to §5.7.3.4.1 θAAS can be taken as 45° for the following cases: concrete footings with a distance less than 
3dv from the point of zero shear to the face of the column, piers or walls with or without transverse reinforcement, and 
other non-prestressed concrete sections not subjected to axial tension, containing at least the minimum transverse 
reinforcement specified in §5.7.2.5 or having an overall depth of less than 400 mm.  
 
To design the transverse reinforcement for torsion At Eq. 5.7.3.6.2-1 is used: 
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The required stirrups for torsion should be added to those needed for shear. The total provided transverse 
reinforcement should not be less than the sum of the required transverse reinforcement for shear and torsion. s is the 
spacing between stirrups and fyt is the yield strength of transverse reinforcement.  
 
The required area of longitudinal reinforcement for torsion Al is given by Eq. 5.7.3.6.3-1 and 5.7.3.6.3-2. The 
longitudinal reinforcement for torsion should be added to the required reinforcement for bending moment: 
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Vs is the shear resistance provided by the transverse reinforcement, fy is the yield strength for the longitudinal 
reinforcement, fps is the average stress in the prestressing steel at the time for which the nominal resistance of the 
member is required. The longitudinal steel reinforcement for solid sections should be distributed uniformly around 
the perimeter. For box sections, interior webs should not be considered in the calculation of the longitudinal torsional 
reinforcement. The values of ph,AAS and Al should be for the box shape defined by the outermost webs and the top and 
bottom slabs of the box girder. Also, Al needs to be distributed around the outermost webs and top and bottom slabs 
of the box girder. 
  (29) 
To compute the maximum stirrup spacing, the shear stress vu stated in §5.7.2.8, Eq. 5.7.2.8-1 is required: 
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bv is the web width adjusted for the presence of ducts as specified in §5.7.2.8. For circular cross-sections, bv is the 
diameter of the cross-section, modified for the presence of ducts where applicable. The maximum spacing of the 
stirrups is provided in §5.7.2.6, Eq. 5.7.2.6-1 and 5.7.2.6-2: 
 



22 
 

 
 

0.8 600 mm     if 0.125
   

0.4 300 mm     if 0.125

v u c

v u c

d v f
s

d v f

  
   

  (31) 

 
The AASHTO-LRFD-2017 [8] code does not give any equation to compute the minimum longitudinal or transverse 
reinforcement for torsion.  
 
Tn is the nominal torsional resistance, specified in Eq. 5.7.3.6.2-1 as: 
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The factored capacity of the element, ϕTn, should be greater or equal than the factored demand Tu: 
 

n uT T    (33) 

 

EN 1992-1-1:2004 
If the static equilibrium of the structure depends on the torsional resistance of some members of the structure, a full 
torsion design that fulfills both ultimate and serviceability provisions is necessary. However, if torsion is acting in 
statically indeterminate structures and it is present as a secondary effect, i.e. due to compatibility requirements, it may 
be neglected if the structure does not depend on the torsional resistance for its stability. In the last case, a minimum 
amount of longitudinal and transverse torsion reinforcement is needed to control excessive cracking. The minimum 
amounts are given in EN 1992-1-1:2004 [9], §7.3.2, 9.2.1 and §9.2.2  
 
The first step of a torsion design is to check if the cross-sectional dimensions are adequate. For this, the effective wall 
thickness tef expressed in §6.3.2 is required:   
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If the analyzed member has a hollow cross-section, the effective wall thickness should be less than the actual wall 
thickness. A is the total area of the cross-section, including inner hollow areas, u is the perimeter of the cross-section, 
and c is the distance between the edge of the member and the centroid of the longitudinal reinforcement. The next step 
is to determine the torsional shear stress within the equivalent thin-walled tube, τt, according to Eq. 6.3.2 (6.26): 
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TEd is the design torsional moment and Ak is the area enclosed by the centerlines of the connecting walls, including 
inner hollow areas. The applied shear force, VEd, caused by the design torsional moment TEd obtained from Eq. 6.3.2 
(6.27) is: 
 

   Ed t efV t z    (36) 

 
z is the distance along the centerline between the intersection points of the adjacent walls of the equivalent thin-walled 
tube, usually taken as the height of the element. The strength reduction factor for cracked concrete in shear, ν, is 
provided in EN 1992-1-1:2004 [9], §6.2.2 (6), Eq. (6.6N): 
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  (37) 

 
fck [MPa] is the characteristic compressive cylinder strength of concrete at 28 days. Subsequently, αcw, which is a 
coefficient that takes account the state of the stress in the compression chord, is computed using EN 1992-1-1:2004 
[9], §6.2.3 (3), Eq. (6.11.aN), (6.11.bN), and (6.11.cN): 
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  (38) 

 
σcp is the mean compressive stress in the concrete due to the design axial force or prestressing. The value of σcp does 
not need to be calculated at a distance less than 0.5cotθEN from the edge of the support. fcd is the design value of the 
concrete compressive strength. θEN is the angle of the strut inclination given in EN 1992-1-1:2004 [9], §6.2.3 (4), Eq. 
(6.7N). The effects of torsion and shear may be added if the angle of the strut inclination is the same. The limits of the 
angle are 21.8° ≤ θEN ≤ 45°. The upper limit of the torsional strength, TRd,max is given in Eq. (6.30) as: 
 

,max 12 sin cos    Rd cw cd k ef EN ENT f A t      (39) 

 
The recommended value of ν1 is ν, see Equation (37). If the design yield strength of the transverse reinforcement, fywd, 
is below 80% of the characteristic yield strength of reinforcement fyk, ν1 can be taken according to Eq. 6.2.3 (6.10.aN) 
and 6.2.3 (6.10.bN) as: 
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  (40) 

 
VRd,max, the upper limit of the shear strength, is calculated using Eq. (6.9) of EN 1992-1-1:2004 [9], §6.2.3 (2): 
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bw is the width of the cross-section and for T, I or L beams it is the width of the web. If the web width contains ducts, 
the web width should be calculated according to §6.2.3 (6). Once TRd,max and VRd,max are obtained, the maximum 
combined shear and torsion capacity should be checked according to Eq. (6.29) to check if crushing of the concrete 
occurs: 
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If the inequality is not satisfied, fcd or A need to be increased.  
 
The first step for the torsion design is to compute the required amount of transverse reinforcement Asw. The stirrups 
for torsion must be added to the calculated reinforcement for shear. The code does not specify an equation to calculate 
the required number of stirrups for torsion. EN 1992-1-1:2004 [9] mentions that the required area of transverse torsion 
reinforcement Asw should be obtained using the same method as for shear stirrups, therefore:  
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s is the spacing of the stirrups. The longitudinal reinforcement, Asl, for torsion needs to be added to the computed 
reinforcement required for flexure. The longitudinal reinforcement for torsion should generally be distributed over the 
length of the side, z. EN 1992-1-1:2004 [9], §9.2.3 (3) states that the longitudinal reinforcement bars required for 
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torsion Asl need to be organized to have at least one bar at each corner of the stirrups. The remaining steel bars can be 
distributed uniformly around the stirrups’ perimeter inner face. Using Eq. 6.3.2 (6.28) the required longitudinal 
reinforcement for torsion Asl is: 
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A f
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uk is the perimeter of the Ak area and fyd is the design yield strength of the longitudinal reinforcement. 
 
The transverse reinforcement ratio, ρw, to compute the minimum transverse reinforcement for torsion is given in Eq. 
9.2.2 (9.5N) as: 
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If torsion arises from compatibility in statically indeterminate structures, then it is unnecessary to consider torsion as 
an ultimate limit state. In this case, minimum longitudinal and transverse reinforcement should be provided to prevent 
excessive cracking. According to Eq. 9.2.2 (9.4) and the value found in Equation (45), The minimum area of transverse 
reinforcement Asw,min  is calculated as: 
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ρw,min is the minimum transverse reinforcement ratio and α is the angle between the transverse reinforcement and the 
longitudinal axis. The maximum spacing of the stirrups, s, is defined by EN 1992-1-1:2004 [9], §9.2.3 (3) as: 
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d is the effective depth of the cross-section. To find the minimum amount of longitudinal reinforcement, which is 
based on a requirement to control excessive cracking, first h*, which is the overall height of the cross-section within 
the tensile zone, needs to be determined according to §7.3.2 as: 
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h is the overall depth of the cross-section. The next step is to calculate k1, which is a coefficient given in §7.3.2 that 
considers the effects of axial forces on the stress distribution: 
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NEd is the axial force at the serviceability limit state acting on the part of the cross-section under consideration 
(compressive force positive), resulting from the characteristic values of prestress and axial forces under the relevant 
load combination.  
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kc is a coefficient which takes into account the stress distribution within the section immediately prior to cracking and 
of the change of the lever arm. It is defined by Eq. 7.3.2 (7.2) and (7.3) as: 
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 (50) 

 
Act is the area of concrete within the tension zone before the formation of the first crack, b is the overall width of the 
cross-section, or the actual flange width in a T- or L-shaped beam. Fcr is the absolute value of the tensile force within 
the flange immediately prior to cracking due to the cracking moment calculated with fct,eff. fct,eff is the mean value of 
the tensile strength of the concrete, effective at the time when the cracks are first expected to occur. 
 
 k, given in §7.3.2 is a coefficient which accounts for the effect of non-uniform self-equilibrating stresses, which lead 
to a reduction of restraint forces.  
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For other intermediate values of height and width, interpolation is allowed. With these parameters, the minimum area 
of longitudinal steel for torsion Asl,min is given by Eq. 7.3.2 (7.1) and 9.2.1.1 (9.1N): 
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  (52) 

σs is the absolute value of the maximum stress permitted in the reinforcement immediately after formation of the crack. 
σs is often taken as the yield strength of the reinforcement, fyk. A lower value may however, be needed to satisfy the 
crack width limits according to the maximum bar size or spacing, see §7.3.3 (2). bt denotes the mean width of the 
tension zone, for a T-beam with the flange in compression, only the width of the web is considered for calculating the 
value of bt, fctm is the mean value of the axial tensile strength of the concrete, and Ac,EN is the gross area of the concrete. 
 
Next, the torsional capacity TRd of the element is computed: 
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   (53) 

 
Finally, the torsional capacity needs to be larger than or equal to TEd: 

 

Rd EdT T    (54) 

 
When the cross-section of the shape is irregular, like a T-section, it can be divided into rectangular subsections. Each 
of these needs to be modeled using the space truss, thin-walled tube analogy to obtain the torsional resistance. The 
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overall resistance of the irregular section will be the sum of the subdivisions. The external torsional moment applied 
to each individual subsection is proportional to each uncracked torsional stiffness. The maximum resistance of an 
element under torsion is limited by the capacity of the concrete struts [9].  
 
If torsion is not as important as other actions, a minimum longitudinal and transverse reinforcement for torsion must 
be provided. Warping torsion can be neglected in hollow thin-walled and solid sections. In open thin-walled shapes 
(like T-, I- or L-shapes) the calculation of the effect of warping torsion should be made for every slender cross-section 
using a beam-grid model. For other cases, the analysis can be carried out by a truss model. 
 

MC2010 
This code establishes that if static equilibrium depends on the torsional resistance of the elements of the structure, a 
full torsional design must be provided. On the other hand, if torsion arises due to compatibility, generally a torsion 
design is not needed. In cases where compatibility torsion occurs, minimum longitudinal and transverse reinforcement 
for torsion should be provided. 
 
The first step is to check if the dimensions of the cross-section are adequate. For this, the longitudinal strain εx,MC at 
mid-depth of the effective shear depth, needs to be computed. It is defined in §7.3.3.1, Eq. 7.3-14 and 7.3-16 as: 
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(55) 

 

 
Figure 7—Definition of the variables used in Equation (55) 

 
MEd is the design bending moment, VEd is the design shear force (MEd and VEd are positive), NEd,MC is the applied axial 
force (positive for tension and negative for compression), zMC is the effective shear depth which cannot be less than 
0.9d for non-prestressed members, and d is the effective depth. In case of a support that penetrates the beam or slab, 
zMC is replaced with dv,MC, which is the distance from the centroid of the reinforcement layers to the supported area. 
Δe  is the difference between the position of the applied axial load and the centroid of the cross-section, Es is the 
modulus of elasticity of the reinforcing steel, Ep is the modulus of elasticity of the prestressing steel, As is the area of 
longitudinal reinforcement, and Ap,MC is the area of prestressing reinforcement. MEd0, VEd0, and NEd0 are the bending 
moment, shear and normal force without the effect of prestressing. Mp,ind is the secondary moment caused by 
prestressing, Fp is the prestressing force, ep is the eccentricity of prestressing, δp is the tendon angle, zs is the distance 
between the centerline of the compressive chord and the centroid of the non-prestressed reinforcement, and zp is the 
distance between the prestressing tendon axis and the compressive chord. 
 
The design approach of the MC2010 [10] code is by Levels of Approximation. Level I represents the simplest and 
quickest approach, valid for standard design cases. The use of higher Levels of Approximation means more 
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computational effort and time but will result in a more accurate solution. For the value of the minimum compressive 
stress field inclination θmin, four levels of approximation can be used. The angle θMC selected to make the calculations 
can be chosen according to §7.3.3.3, Eq. 7.3-35 between: 
 

min 45MC      (56) 

  

The Level of Approximation I for min , using a variable angle truss model approach, states: 
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 (57) 

 
§7.3.3.3, Eq. 7.3-39 in the MC2010 [10] gives a definition for the minimum angle for a Level of Approximation II 
(based on a generalized stress field approach) and III (represents a general form of sectional shear equations and is 
based on the simplified modified compression field theory), defined as: 
 

min ,20 10, 000 x MC     (58) 

 
The Level of Approximation IV states that the angle can be determined using a finite element method. Appropriate 
stress-strain models for the steel and for diagonally cracked concrete should be used. 
 
 Now, the parameter ε1 is required to calculate the strength reduction factor, which will be used later to check if the 
cross-sectional dimensions are adequate. It is defined in §7.3.3.3, Eq. 7.3-41 as: 
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Consequently, kε, a factor that considers the influence of the state of strain in the web, is computed according to Eq. 
7.3-37 or 7.3-40: 
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Eq. (7.3-28) defines ηfc as:   
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fck [MPa] is the characteristic value of the compressive strength of concrete. The strength reduction factor, kc,MC is 
calculated according to Eq. 7.3-27: 
 

,c MC fck k   (62) 

 
The next step is to compute the maximum shear resistance VRd,max, using θmin found in Equation (57) or (58). VRd,max is 
defined by Eq. 7.3-26 as:  
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§7.2.3.1.4 specifies that γc is the partial safety factor for concrete. γc = 1.5 for standard loading and 1.2 for incidental 
loading. bw is the width of the web. The effective panel thickness tef is according to §7.3.4.1, Eq. 7.3-54: 
 

   
8

k
ef

d
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dk is the diameter of the circle that can be inscribed at the narrowest part of the cross-section. The effective panel 
thickness should have at least a value of twice the distance between the concrete surface and the center of the closest 
layer of longitudinal reinforcement. In the case of box-girders, the effective panel thickness corresponds to the wall 
thickness, if the wall is reinforced on all sides. The upper bound of the torsional resistance TRd,max can be obtained 
from §7.3.4.1, Eq. 7.3-56: 
 

,max 2 sin cos  ck
Rd c ef k MC MC

c

f
T k t A  


   (65) 

 
Ak is the area enclosed by the centerlines of the connecting walls, including inner hollow areas. With VRd,max and TRd,max 
known, the dimensions of the cross-section can be checked according to §7.3.4.1, Eq. (7.3-55)  
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Where TEd is the applied torsional moment.  
 
The required amount of transverse reinforcement for torsion Asw is obtained by assuming that the torsional moment 
will be resisted only by the stirrups. For this, Eq. 7.3-53 was substituted into Eq. 7.3-29: 
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fywd is the yield strength of the transverse reinforcement and sw is the spacing of the stirrups.  
 
The required longitudinal reinforcement for torsion, Ast results from substituting Eq 7.3-53 into 7.3-34: 
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fyk is the characteristic value of the yield strength of reinforcing steel in tension.  
 
The minimum area of transverse reinforcement Asw,min required for torsion should also fulfill §7.13.5.2, Eq. 7.13-9. 
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The maximum spacing between stirrups sw is defined in §7.13.5.2 as: 
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d is the effective depth. The minimum longitudinal reinforcement for torsion Ast,min according to §7.13.5.2, Eq. 7.13-
8 is: 
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bt,MC is the width of the tension zone and fctm is the mean value of the axial tensile strength of concrete.  
 
The torsional capacity TRd is computed as: 
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Finally, the torsional capacity TRd needs to be larger than the applied torsional moment TEd. 
  

Rd EdT T    (73) 

 

DISCUSSION 
The previous sections showed that there are two major philosophies for determining the torsional capacity of structural 
concrete members: 1) skewed-bending analysis, and 2) truss analogy (with or without the consideration of the 
concrete’s contribution). All the building codes presented in this document use a 3D-truss model and the thin-walled 
tube analogy to predict the failure of the members. According to Hsu [25], the advantages of this theory are: the 
interaction of shear and torsion with bending and axial load is well-described, the effect of prestress can be included 
in a logical way, it provides a reasonable accuracy between the model and the experimental tests, and the distinct 
advantage over the skewed-bending theory is that the truss analogy can predict the deformation of a member through-
out the loading history. Within the space truss model, the codes presented here use either a variable angle truss or a 
MCFT method to predict the behavior of concrete members under torsion. One of the differences between them is 
how each one obtains the angle of inclination of the concrete struts or compressive field. The variable angle truss 
method fixes an assumed angle for the inclination of the struts, while the MCFT considers compatibility and 
equilibrium conditions to determine the angle of the compression field. The other difference is that the first method 
does not contemplate the tensile contribution of the concrete to the torsional strength, whereas the MCFT does. 
Nevertheless, other models have shown to predict the behavior of structural members with good accuracy. One of the 
them is the Softened Membrane Model for Torsion [31] which is an extension of the Softened Membrane Model for 
Shear [32]. Another new model [33] that follows the skew-bending theory has shown better prediction results on the 
shear strength of hollow circular structural concrete cross-sections compared to the methods used in EN 1992-1-
1:2004 [9]  and fib Model Code 2010 [10], based on the experimental testing of 45 specimens [34]. However, this 
model still needs to be extended to other types of cross-sections. 
 
Several subjects of discussion remain concerning torsion in structural concrete. The first topic is the capacity of the 
members resisting loads by warping torsion. All five codes listed here assume that the external torsional moment will 
be resisted by circulatory torsion. Nevertheless, box-, T-, or I-shaped concrete beams tend to produce differential shear 
stresses on their cross-sectional planes to resist torsion, due to the characteristic restriction of their connected flanges 
and webs. None of the codes give clear provisions on how to deal with members resisting torsional moments by 
warping torsion. A second important subject is the torsion effect in slabs. Point loads on slabs close to the edges 
produce large torsional moments [35]. None of the codes presented in this document give clear provisions on how to 
address the effect of torsion on the shear capacity of concrete slabs loaded close to the edges. 
 
One topic of recent research is the torsional behavior of structural concrete members under different physical and 
geometric conditions. Examples include the analysis of limitations of torsional reinforcement to prevent a brittle 
failure [36]. Based on the experiments of 15 beams with the maximum torsional reinforcement ratio and 99 existing 
tests obtained from the literature, it was observed that the ACI 318-14 [6] and JSCE-07 [37] codes predicted the torsion 
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failure with good accuracy when having the maximum ratio of torsional reinforcement. On the other hand,  EN 1992-
1-1:2004 [9] and CSA-A23.3-04 [7] building codes overestimated the limit between a brittle and ductile failure. 
Another research topic is the torsional performance of beams subjected to pure torsion with low levels of torsional 
reinforcement [38]. In this research it was found that high strength concrete beams (HSC) with a total torsional 
reinforcement ratio of less than 0.95% presented a brittle failure. On the other hand, HSC and normal strength concrete 
(NSC) specimens with a total torsional reinforcement larger than 0.95% and 0.87%, respectively, showed a ductile 
torsional failure. Moreover, an experimental study [39] on the comparison of HSC and NSC beams under torsion with 
the same amount of reinforcement concluded that HSC elements provided a higher torsional strength than NSC. The 
uncracked torsional stiffness and the cracked stiffness of HSC beams was approximately 2 times and 1.4 times, 
respectively, larger than those of the NSC elements. Another example is the torsional behavior of concrete elements 
using CTR (continuous transverse reinforcement) [40]. In summary, it was demonstrated that the pure torsional 
resistance using CTR sometimes exceeds the strength obtained with conventional stirrups. Nevertheless, if the cracks 
due to torsion have the same direction as the CTR, the strength is decreased. Experimental  tests of the torsional 
behavior of high-strength reinforced concrete under-reinforced beams showed that torsional strength of these elements 
is independent of the concrete strength as long as the beam is under-reinforced [41]. 
 
A second topic of research is the use of innovative materials. An example includes beams with glass fiber-reinforced 
polymer (GFRP) bars and stirrups. The advantage of such bars is the superior performance from a durability point of 
view. These bars cost less than carbon fiber-reinforced polymer bars and offer a different solution to the corrosion 
problem. Investigation on this topic concluded that the GFRP-reinforced concrete beams under torsion exhibited a 
similar strength and cracking behavior compared to the counterpart steel reinforced concrete (RC) beams [42]. Waste 
materials like oil palm shell have been tested as a substitute to granite aggregate to produce a lightweight concrete. 
Experimental analysis [43] on the torsional behavior of oil palm shell concrete (OPSC) compared to normal weight 
concretes (NWC) demonstrated that the OPSC had a 280% larger twist at failure than the NWC and a better ductility. 
Another application is the use of steel fiber reinforced concrete (SFRC). Abundant research has been carried out on 
rectangular SFRC beams [44-49]. However, most beams in real structures have T- or L-shaped cross-sections. 
Therefore, it is important to understand how steel fibers influence the torsional behavior of non-rectangular beams.  
Experimental investigation [50] on this topic showed that steel fibers can increase the torsional strength after cracking 
and are very effective in preventing a sudden brittle failure in flanged beams that presented a steel fiber volume of at 
least 1%. 
 
A third topic of current research on torsion is the strengthening of structures that are subjected to torsional moments. 
Experiments using various types of wrapping using carbon fiber-reinforced polymer (CFRP) fabrics [51] showed that 
the full-wrapping technique most enhances the torsional behavior, however its practical application is limited because 
the access to the sides of the beam is restricted. On the other side, the U-jacket technique is the most achievable and 
practical wrapping, although it showed less effectiveness in strengthening for torsion compared to the extended U-
jacket and the full wrapping technique. CFRP sheets are also used to repair damaged RC elements under torsion. Tests 
[52] showed that the torsional capacity of columns with CFRP was larger than the original torsional strength. An 
analytical model [52] which uses a smeared crack analysis for plain concrete in torsion for the pre-cracking behavior 
and a softened truss theory for the post-cracking performance has shown good prediction of the torsional capacity of 
beams retrofitted with CFRP.  
 

SUMMARY OF CONCLUSIONS 
This study summarizes the provisions for torsion design in structural concrete. All the required provisions given in 
ACI 318-14 [6], CSA-A23.3-04 [7], AASHTO-LRFD-17 [8], EN 1992-1-1:2004 [9], and the fib Model Code 2010 
[10] are listed. A short literature review on the early stages of torsion research plus brief descriptions of the mechanical 
models used to describe the torsional behavior are given. The two major philosophies, 1) space truss analogy and 2) 
skew-bending theory are summarized. All the codes listed here use a 3D truss analogy. The ACI 318-14 [6], EN 1992-
1-1:2004 [9] and Level I of Approximation of the fib Model Code 2010 [10] do not consider the contribution of the 
concrete to the torsional strength. On the contrary, the CSA-A23.3-04 [7], AASHTO-LRFD-17 [8] and Levels II and 
III of approximation in the fib Model Code 2010 [10] include the concrete contribution in the determination of the 
torsional capacity. 
 
Furthermore, topics outside the scope of current provisions such as how to design structural concrete elements under 
warping torsion or the effect of torsion on the shear capacity of concrete slabs at the edges are discussed. Finally, an 
overview of recent topics in torsion research was presented. 
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LIST OF NOTATIONS 
b = overall width of the cross-section, or the actual flange width in a T-or L-shaped beam, 
be = effective width of the shear flow path taken as the minimum thickness of the exterior webs or flanges  

comprising the closed box section or flanges comprising the closed box section, 
bt = mean width of the tension zone; for a T-beam with the flange in compression, only the width of the web is  

considered for calculating the value of bt, 
bt,MC = width of the tension zone, 
bv = web width adjusted for the presence of ducts, 
bw = web width or diameter of a circular section, 
c = distance between the edge of the member and the centroid of the longitudinal reinforcement, 
d = effective depth, 
ds = unit area, 
ds = distance from extreme compression fiber to the centroid of the non-prestressed tensile reinforcement  

measured along the centerline of the web, 
dk = diameter of the circle that can be inscribed at the narrowest part of the cross-section, 
dv = effective shear depth, 
dv,MC = effective shear depth; in case of a support that penetrates the beam or slab, it is the distance from the  

centroid of the reinforcement  
layers to the supported area, 

ep = eccentricity of prestressing, 
f′c = specified compressive strength of concrete, 
fcd = design value of concrete compressive strength, 
fck = characteristic compressive cylinder strength of concrete at 28 days, 
fcp = average compressive stress in concrete due to the effective prestress force only, after allowance for all 

prestress losses, 
fct,eff = mean value of the tensile strength of concrete, effective at the time when the cracks may first be expected  

to occur, 
fctm = mean value of axial tensile strength of concrete, 
fpc = compressive stress in concrete, after allowance for all prestress losses, at centroid of cross-section 

resisting externally applied loads or at junction of web and flange where the centroid lies within the flange. 
In a composite member, it is the resultant compressive stress at centroid of composite section, or at junction 
of web and flange where the centroid lies within the flange, due to both prestress and moments resisted by 
precast member acting alone, 

fpc,AAS = unfactored compressive stress in concrete after prestress losses have occurred either at the centroid of the  
cross-section resisting transient loads or at the junction of the web and flange where the centroid lies in the  
flange, 

fpe = effective stress in prestressing tendons after allowance for al prestress losses, 
fpo = stress in prestressing tendons when the strain in the surrounding concrete is zero, 
fpo,AAS = parameter taken as modulus of elasticity of prestressing steel multiplied by the locked-in difference in strain  

between the prestressing steel and the surrounding concrete, 
fps  = average stress in prestressing steel at the time for which the nominal resistance of member is required 
fpu = specified tensile strength of prestressing reinforcement, 
fse = effective stress in prestressing reinforcement, after allowance for all prestress losses, 
fy = specified yield strength for non-prestressed longitudinal reinforcement, 
fyd = design yield strength of the longitudinal reinforcement, 
fyk = characteristic yield strength of reinforcement, 
fyt = specified yield strength of transverse reinforcement, 
fywd = design yield strength of the transverse reinforcement, 
h = overall height of the member, 
h* = overall height of the cross-section to calculate the minimum longitudinal reinforcement to control excessive  

cracking, within the tensile zone, 
k = coefficient which accounts for the effect of non-uniform self-equilibrating stresses, 
k1 = coefficient that considers the effects of axial forces on the stress distribution, 
kc = coefficient which accounts the stress distribution within the section immediately prior to cracking  

and of the change of the lever arm, 
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kc,MC = strength reduction factor, 
kε = factor which considers the influence of the state of strain in the web, 
nfc = coefficient needed to compute kc, 
pc = outside perimeter of the cross-section, 
pcp = outside perimeter of concrete cross-section, 
ph = perimeter of the centerline of outermost closed transverse torsion reinforcement, 
ph,AAS = perimeter of the centerline of the closed transverse torsion reinforcement for solid members, or the  

perimeter of the centroid of the transverse torsion reinforcement in the exterior webs and flanges for hollow  
members, 

s = center-to-center spacing of stirrups, 
sw = spacing of the stirrups for torsion, 
t = wall thickness at the location where the stresses are being checked, 
tef = effective wall thickness, 
u = perimeter of the cross-section, 
uk = perimeter of the Ak area, 
z = distance along the centerline, between the intersection points of the adjacent walls of the equivalent thin- 

walled tube, usually taken as the height of the element, 
zMC = effective shear depth, 
zp = distance between the prestressing tendon axis and the compressive chord, 
zs = distance between the centerline of the compressive chord and the centroid of non-prestressed reinforcement, 
A = total area of the cross-section, including inner hollow areas, 
Ac = area enclosed by outside perimeter of concrete cross section, including area holes, 
Acp = area enclosed by the outside perimeter of concrete cross-section, 
Act = area of concrete within tensile zone before the formation of the first crack, 
Ac,EN = cross-sectional area of the concrete, 
Ag = gross area of the concrete cross-section, 
Ak = area enclosed by the centerlines of the connecting walls, including inner hollow areas, 
Al = required area of longitudinal reinforcement to resist torsion, 
Al,min = minimum area of longitudinal reinforcement to resist torsion, 
Am = area enclosed by the shear forces, 
Ao = area enclosed by the shear flow path including area of holes, 
Aoh = area enclosed by centerline of the outermost closed transverse torsional reinforcement, including area holes, 
Ap = area of tendons on the flexural tension side of the member, 
Aps = area of prestressed longitudinal tension reinforcement, 
As = area of non-prestressed longitudinal tension reinforcement, 
Asl = area of longitudinal reinforcement bars required for torsion, 
Asl,min = minimum area of longitudinal reinforcement bars required for torsion, 
Ast = area of longitudinal reinforcement for torsion, 
Ast,min = minimum longitudinal reinforcement for torsion,  
Asw = area of transverse torsion reinforcement, 
Asw,min = minimum area of transverse torsion reinforcement, 
At = area of one leg of a closed stirrup resisting torsion, 
Av = required area of two legs of a closed stirrup for shear, 
Ep = modulus of elasticity of prestressing tendons, 
Es = modulus of elasticity of non-prestressed reinforcement, 
Fcr = absolute value of the tensile force within the flange immediately prior to cracking due to the cracking  

moment calculated with fct,eff, 
Fp = the prestressing force, 
G = shear modulus, 
K = the effective length factor for compression members, 
Mf = moment due to factored loads, 
Mp,ind = secondary moment caused by prestressing, 
Mu = factored applied moment, 
MEd = design bending moment, 
MEd0 = bending moment without the effect of prestressing, 
NEd = axial force at the serviceability limit state acting on the part of the cross-section under consideration  
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(compressive force positive), resulting from the characteristic values of prestress and axial forces under  
the relevant load combinations, 

NEd,MC = applied axial force, positive for tension and negative for compression, 
NEd0 = normal force without the effect of prestressing,  
Nf = factored axial load normal to the cross-section. Taken as positive for tension or negative for compression 
Nu = factored axial force, taken as negative for tension and positive for compression, 
Nu,AAS = factored applied axial load, taken as positive for tension and negative for compression, 
T = applied torsional moment, 
Tcr = torsional cracking moment, 
Tf = factored torsional moment, 
Tn = nominal torsional resistance, 
Tr = factored torsional resistance, 
Ts = Saint-Venant torsion, 
Tth = threshold torsional moment, 
Tu = applied factored torsional moment, 
Tw = warping torsion, 
TEd = applied torsional moment, 
TRd = factored torsional strength, 
TRd,max = upper limit of the torsional strength, 
Vc = shear strength provided by concrete,  
Vf = factored shear force, 
Vp = component in the direction of the applied shear of the effective prestressing force factored by ϕp, 
Vp,AAS = component of prestressing force in the direction of the shear force, 
Vs = shear resistance provided by transverse reinforcement, 
Vu = factored shear force, 
VEd = applied shear force, 
VEd0 = applied shear force without the effect of prestressing, 
VRd,max = maximum shear resistance, 
α = angle between the transverse reinforcement and the longitudinal axis, 
αcw = coefficient that takes into account the state of the stress in the compression chord, 
γc  = partial safety factor for concrete, 
δp = tendon angle, 
ε1 = coefficient required to compute kε, 
εs = net longitudinal tensile strain in the section at the centroid of the tension reinforcement, 
εx = longitudinal strain at mid-depth of the member due to factored loads, 
εx,MC = longitudinal strain at mid-depth of the effective shear depth, 
θ = angle between the struts and the tension chord, 
θmin = minimum value of the compressive stress field inclination, 
θr = angular rotation, 
θAAS = angle of inclination of diagonal compressive stresses, 
θCSA = angle of inclination of diagonal compressive stresses, measured from the longitudinal axis of the member, 
θEN = assumed angle of the strut inclination, 
θMC = assumed angle of the compression field, 
λ = modification factor which accounts for the properties of lightweight concrete, 
λAAS = concrete density modification factor, 
v = strength reduction factor for cracked concrete in shear, 
v1 = strength reduction factor for cracked concrete in shear when the design yield strength of  

the transverse reinforcement, fywd, is below 80% of the characteristic yield strength of reinforcement fyk, 
vu = shear stress, 
ρw = transverse reinforcement ratio, 
ρw,min = minimum transverse reinforcement ratio, 
σcp = mean compressive stress in the concrete, due to the design axial force or prestressing, 
σs = absolute value of the maximum stress permitted in the reinforcement immediately after formation of the  

crack, 
τ = tangential shear forces, 
τt = torsional shear stress, 
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ϕ = resistance factor, 
ϕc = material factor for concrete, 
ϕp = material factor for prestressing tendons, 
ϕs = material factor for non-prestressed reinforcement, 
Δe = difference between the position of the applied axial load and the centroid of the cross-section, 
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Torsion Design Example: Inverted Tee Bent Cap 
 

Camilo Granda and Eva Lantsoght 
 
 
 

Synopsis: This paper provides a practical example of the torsion design of an inverted tee bent cap of a three-span 
bridge. A full torsional design following the guidelines of the ACI 318-14 building code is carried out and the results 
are compared with the outcomes from CSA-A23.3-04, AASHTO-LRFD-17, and EN 1992-1-1:2004 codes. Then, a 
summary of the detailing of the cross-section considering the reinforcement requirements is presented. The objective 
of this paper is to provide engineers a useful tool for designing a structural element subjected to large torsional 
moments. 
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DESCRIPTION OF DESIGN TASK 
 

Geometry and loads 
The inverted tee bent cap is part of the substructure of a three-span bridge. The geometry was taken from the Texas 
Department of Transportation (TxDOT), LRFD Inverted Tee Bent Cap Design Example [1]. Both end-spans have a 
length of 54 ft (16.50 m) and the middle-span has a length of 112 ft (34.10 m). The deck has a width of 46 ft (14.00 
m) with two external lanes of 15 ft (4.60 m), one middle lane of 14 ft (4.20 m) and two external rails of 1 ft (0.30 m), 
see Figure 1. The bridge has an overlay of 2 in (0.05 m) and a slab of 8 in (0.20 m). The deck is supported by a set of 
six beams spaced o.c. @ 8 ft (2.44 m) and each beam weighs 0.851 kip/ft (12.42 kN/m). The rails provide a load of 
0.382 kip/ft (5.573 kN/m). The inverted tee bent cap is supported by four 36 in (0.90 m) diameter columns spaced @ 
12 ft (3.65 m) each.  
 
The bridge is subjected to the factored dead load of structural and nonstructural components, the factored dead load 
of the wearing surface, and the factored vehicular live load consisting of the distributed lane load of 0.64 kip/ft (0.868 
kN/m) and the design truck specified by the AASHTO-LRFD-17 code. The design truck includes the multiple presence 
and dynamic allowance factor. The way the factored loads are applied on the inverted tee bent cap are shown in Figure 
2. The most critical configuration of the loads is sought for the torsion design, which results in placing the live loads 
only on the longest span. The cross-sectional dimensions of the stem are controlled by the diameter of columns, the 
distance from the slab to the ledge, the slab thickness, and haunch. The cross-sectional dimensions of the ledge are 
obtained by knowing the required development length of the reinforcement. The elevation dimensions are governed 
generally by the girders’ spacing and the distance from the centerline of the exterior girder to the end of the bent cap. 
The geometry of the inverted tee bent cap can be seen on Figures 3 and 4. 

 
Figure 1—Cross-section of the middle span of the bridge 

 

 
Figure 2—Point loads applied at the ledge of the inverted tee bent cap which produce torsional moments 
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Figure 3—Cross-sectional dimensions of the inverted tee bent cap 

 

 
Figure 4—Elevation dimensions of the inverted tee bent cap 

 

Materials 
 
Concrete: f′c = 3,600 psi (25 MPa) 
  γc = 150 pcf (23.56 kN/m3) 
 
Reinforcement: fy = fyt = 60,000 psi (415 MPa) 
 



42 
 

 
 

Statement of design problem 
The torsional design of a structural element is often disregarded because usually it does not control the final layout of 
the cross-section. Nevertheless, if the appropriate conditions of loading occur, certain elements like this inverted tee 
bent cap will experience an important torsional moment. In this example, the lane load plus the design truck were 
placed on the midspan of the bridge at all lanes. The vertical reaction of all the six beams transmitted to the ledge of 
the inverted tee bent cap produces important torsional moments around this member because the loads are applied out 
of the axis. There is only one inverted tee bent cap to support torsion, therefore redistribution of torsional moment is 
not possible, and the torsion design is needed to maintain the equilibrium of this member. To analyze this, the 
provisions for torsion given by the ACI 318-14 [2] code are used. Although the bridge structures do not fall under the 
scope of the ACI 318-14 [2] building code, the design steps are given here for illustrative purposes. The provisions 
that cover the bridge structures design are usually given by the AASHTO-LRFD-17 code. The AASHTO-LRFD-17 
results on the required transverse and longitudinal for torsion on this example are given by the end of this document.  
 
ACI 318-14 [2] assumes all cross-sections as hollow sections. After cracking, each straight segment of the hollow 
section will act as a planar truss and the whole member will behave like a space truss where the torsional strength is 
mainly provided by the transverse and longitudinal reinforcement acting in tension and the compression diagonals 
will withstand the compression forces. All the steps of the torsion design are listed and explained in order to obtain 
the required transverse and longitudinal reinforcement to resist the applied torsional moment. 
 

DESIGN PROCEDURE 
The torsional design is a complement of the moment and shear design i.e. the transverse and longitudinal reinforcement 
obtained for torsion will be added to the values previously computed to provide flexural and shear resistance. The 
torsion design consists of the following steps: 
 

Step 1: Determine the factored bending moment, shear force and torsional moment on the inverted tee bent  
cap. 

 Step 2: Compute the required longitudinal and transverse reinforcement for bending moment and shear  
effects. 

 Step 3: Analyze if torsion can be neglected. 
 Step 4: Check if the current dimensions of the cross-section are adequate. 
 Step 5: Limit the maximum spacing of torsion stirrups. 
 Step 6: Determine the required transverse reinforcement for torsion. 
 Step 7: Check the minimum transverse reinforcement for torsion and shear. 
 Step 8: Determine the spacing required for both torsion and shear. 
 Step 9: Calculate the required longitudinal reinforcement for torsion. 
 Step 10: Compute the minimum longitudinal reinforcement required for torsion. 
 Step 11: Check the torsional capacity. 
 

DESIGN CALCULATIONS 
 

Step 1: Determine the factored bending moment, shear force and torsional moment on the inverted tee bent 
cap 
With the dead load of structural and nonstructural components, the dead load of the wearing surface, and the vehicular 
live load consisting of the distributed lane load and the design truck including the multiple presence and dynamic 
allowance factor the loads applied on the inverted tee bent cap were obtained. The load combination U = 1.2D + 1.6L 
of ACI 318-14 [2] was used to compute the factored loads for the ultimate limit state. D is the effect of service dead 
load and L is the effect of service live load. To find the load effects on the inverted tee bent cap, the CSiBridge [3] 
software was used. 
 

Mu
+  = 948 kip·ft (1286 kN·m) 

 Mu
-  = 1010 kip·ft (1369 kN·m) 

 Vu  = 472 kip (2101 kN) 
 Tu = 687 kip·ft (931 kN·m) 
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Mu
+ is the factored sagging moment, Mu

- is the factored hogging moment, Vu is the factored shear force and Tu is the 
factored torsional moment. 
 
 

Step 2: Compute the required longitudinal and transverse reinforcement for bending moment and shear  

effects 
The provided longitudinal reinforcement for bending moment and transverse reinforcement for shear that fulfill the 
code requirements are: 
 

As,prov
+  = 10.99 in2 (7094 mm2) 

As,prov
-   = 10.93 in2 (7054 mm2) 

Av,prov  = 1.23 in2 (792 mm2) @ 23 in (584 mm) 
 
As,prov

+ is the provided longitudinal reinforcement to resist the sagging moment, As,prov
- is the provided longitudinal 

reinforcement to resist the hogging moment, and Av,prov is the provided transverse reinforcement to resist the shear 
force. 
 

Step 3: Analyze if torsion can be neglected 
To check if torsion can be neglected, the threshold torsion is computed according to ACI 318-14 [2] §22.7.4. The 
equation for a solid non-prestressed cross-section is used. Torsion can be neglected when the factored threshold torsion 
exceeds the factored applied torsional moment. ϕ, the reduction factor for the nominal capacity of torsion, is equal to 
0.75. Normal weight concrete is used; λ = 1. 
 

   
24771 in

0.75 1.0 3600 psi 243 kip ft 329 kN m 687 kip ft 931 kN m
352 in

cp

th c

cp

A
T f

p
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The computed threshold torsion is smaller than factored torsional moment, therefore the torsion analysis is required. 

 

Step 4: Check if the current dimensions of the cross-section are adequate 
To prevent crushing of the concrete and excessive cracking, ACI 318-14 [2] §22.7.7.1 checks if the dimensions of the 
cross-section are large enough. The maximum value of the shear and torsion stresses need to be analyzed at their 
maximum value i.e. where they are added together. If this equation is not fulfilled, the dimensions of the inverted tee 
bent cap need to be increased and the bending moment and shear design should be repeated. Vc = 383 kip (1704 kN) 
is the shear strength provided by concrete according to ACI 318-14 [2] §22.5.5.1 
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The last expression is fulfilled, consequently the torsional design can be carried out. 

 

Step 5: Limit the maximum spacing of torsion stirrups 
The maximum spacing for torsion stirrups according to ACI 318-14 [2] §9.7.6.3.3 is: 
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  (76) 

 



44 
 

 
 

However, the spacing that will govern the design will be the s required for both shear and torsion. 
 
 

Step 6: Determine the required transverse reinforcement for torsion 
According to ACI 318-14 [2] §22.7.6.1, θ, the angle between the struts and the tension chord, can be taken as any 
value between 30 and 60 degrees. ACI 318-14 [2] §22.7.6.1.2 states that θ is usually 45° for reinforced concrete 
members with Apsfse < 0.4(Apsfpu+Asfy) and 37.5° for prestressed elements with Apsfse ≥ 0.4(Apsfpu+Asfy). Because the 
last expression for non-prestressed reinforced concrete members is satisfied, θ = 45°. The required transverse 
reinforcement for torsion is: 
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The provided transverse reinforcement is two #5 closed stirrups: one for the flange and the other for the stem. 
However, the number of legs of a stirrup resisting torsion is only one as stated in ACI 318-14 [2] §R9.6.4.2, 
consequently At,prov = 0.307 in2 (198 mm2). Taking the spacing of the torsion stirrups as 11 in (279 mm), the provided 
transverse reinforcement for torsion is: 
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  (78) 

 
The provided torsion stirrups spaced @ 11 in (279 mm) have a larger area per length than the required computed in 
Equation (77). The provided stirrups for torsion should have at least one leg at all sides of the analyzed member, see 
Figure 5. 
 

Step 7: Check the minimum transverse reinforcement for torsion and shear 
For the transverse reinforcement limit, ACI 318-14 §9.6.4.2 states that for members under torsion and shear, the 
stirrups for torsion and shear effects cannot be less than: 
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 (79) 
 

The required shear reinforcement, Av, is 0.050 in2 / in. Therefore, the total transverse required reinforcement is: 
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  (80) 

 
The minimum transverse reinforcement for both torsion and shear is less than the required, consequently it does not 
control the design. 
 

Step 8: Determine the spacing required for both torsion and shear 
The minimum spacing to control both shear and torsion effects is given by the effective area for shear Av,eff  and torsion 
At,prov resisting the external loads divided by the required area per unit length computed in Equation (80). For the 
stirrups resisting shear, only the legs that are adjacent to the sides of the inverted tee bent cap are considered to resist 
torsion. It can be seen in Figure 5 that from the vertical legs resisting one-way vertical shear only the legs 1 (blue) and 
2 (blue) will be activated when the point loads are applied on the ledge of the inverted tee bent cap, therefore, just 
these two legs will be included included into Av,eff. The inner legs will be ineffective to resist torsion according to ACI 
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318-14 [2] §R9.5.4.3. For the torsion area of stirrups, the effective area resisting the external forces is just the area of 
one leg of the #5 stirrups provided. 
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Consequently, the required spacing to resist shear and torsion stresses is at least 11 in (279 mm). 
 

 
Figure 5— General layout of transverse reinforcement 

 
The spacing computed only for the provided shear reinforcement is 23 in (580 mm), for both shear and torsion is 11 
in (279 mm) and the maximum spacing for torsion is 12 in (300 mm). With these values, the spacing that controls the 
transverse reinforcement is 11 in (279 mm). As shown in Figure 5, two #5 stirrups spaced @ 11 in. (279 mm) o.c. will 
be provided to resist shear, torsion and their combination of actions. 
 

Step 9: Calculate the required longitudinal reinforcement for torsion 
The equation used to compute the longitudinal reinforcement for torsion in terms of the provided transverse 
reinforcement for torsion is obtained by combining the equations presented in ACI 318-14 [2] §22.7.6.1: 
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The required longitudinal reinforcement for torsion will be compared to the minimum longitudinal reinforcement for 
torsion and the largest one will govern the design. 
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Step 10: Compute the minimum longitudinal reinforcement required for torsion 
The minimum area of longitudinal steel reinforcement for torsion Al,min can be calculated with ACI 318-14 [2] §9.6.4.3 
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  (83) 

In this example, the minimum longitudinal reinforcement for torsion is larger than Al according to Equation (82). 
Consequently, Al,min controls and the provided longitudinal reinforcement for torsion should be at least 14.55 in2 (9389 
mm2). When #6 bars are used, 33 bars are required. However, 34 bars will be used to have a symmetrical layout and 
the provided longitudinal reinforcement for torsion becomes Al,prov = 15.02 in2 (9691 mm2). ACI 318-14 [2] §9.7.5.1 
states that the longitudinal reinforcement for torsion needs to be distributed around the perimeter and inside the closed 
stirrups, the spacing between the longitudinal bars for torsion cannot exceed 12 in (300 mm), and at least one bar 
should be placed in each corner of the stirrups. 
 

Step 11: Check the torsional capacity 
ACI 318-14 [2] §22.7.6.1 gives two equations to analyze the torsional strength Tn. The final torsional capacity of the 
inverted tee bent cap will be the minimum value of: 
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  (84) 

 
The factored torsional nominal capacity is ϕTn = 689 kip·ft (934 kN·m) which is larger than Tu = 687 kip·ft (931 
kN·m). Therefore, the presented design fulfills the ACI 318-14 [2] code requirements. 
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DESIGN SUMMARY 
 

Final layout and detailing 

 
Figure 6—Final layout and detailing of the inverted tee bent cap according to ACI 318-14 [2] requirements. 

Conversion: 1ft = 304.8 mm and 1 in = 25.4 mm 
 

Comparison between other provisions for torsion found in other codes 
Other codes use different approaches and load combinations to solve the torsion problem. For example, the CSA-
A23.3-04 [4] code uses the Modified Compression Field Theory (MCFT) and includes the tensile contribution of 
concrete by considering aggregate interlock. AASHTO-LRFD-17 [5] also develops the provisions for torsion from 
the MCFT. The Eurocode EN 1992-1-1:2004 [6] uses a spatial truss model with an equivalent thin-walled tube and 
wall thickness for the torsion design. Tables 1 and 2 provide a comparison of, respectively, the required longitudinal 
and transverse reinforcement for torsion by each code. ρl is the longitudinal reinforcement ratio and considers the 
required longitudinal reinforcement for torsion and the required longitudinal reinforcement for bending moment that 
acts together with torsion, in this design example this is the longitudinal reinforcement for hogging moment. ρw is the 
transverse reinforcement ratio and considers the required transverse reinforcement for shear and torsion. 
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Table 1—Comparison of the longitudinal reinforcement required for torsion and hogging moment by each building 
code. Conversion: 1 in2 = 645.15 mm2 and 1 in = 25.4 mm 

Code 

Required 
longitudinal 

reinforcement 
for torsion 

(in2) 

Required 
longitudinal 

reinforcement 
for hogging 

moment (in2) 

Number of 
longitudinal 

bars 
provided for 

torsion 

Number of 
longitudinal 

bars 
provided for 

hogging 
moment 

ρl (%) 

ACI 318-14 14.53 10.64 34#6 11#9 0.789 
CSA-A23.3-04 7.58 7.99 26#5 11#8 0.487 

AASHTO-LRFD-17 5.52 3.94 30#4 13#5 0.296 
EN 1992-1-1:2004 10.38 5.20 34#5 12#6 0.488 

 
Table 2—Comparison of the transverse reinforcement required for both torsion and shear by each building code.  

Conversion: 1 in2 = 645.15 mm2 and 1 in = 25.4 mm 

Code 

Required 
transverse 

reinforcement for 
torsion and shear 

(in2) 

Transverse 
reinforcement provided 

for both torsion and 
shear 

 

ρw (%) 

ACI 318-14 1.16 @ 11 in 2#5 @ 11 in 0.271 
CSA-A23.3-04 1.40 @ 13 in 2#5 @ 13 in 0.275 

AASHTO-LRFD-17 1.13 @ 7.5 in 2#5 @ 7.5 in 0.386 
EN 1992-1-1:2004 0.86 @ 8 in 2#5 @ 8 0.276 

 
 
A point of discussion is the angle of the compression field obtained either by the direct (50°) or iterative method 
(36.4°) using the AASHTO-LRFD-2017 [5] code. Either method should give a similar inclination for the compressive 
stress field, nevertheless, for the presented example, different angles were found. One of the possible causes of this 
variation is the amount of longitudinal reinforcement for hogging moment. Moreover, the longitudinal reinforcement 
for hogging moment also causes the angle of the compressive field found from CSA-A23.3-04 [4] guidelines (43.725°) 
to differ from the AASHTO-LRFD-2017 code, even though both codes are based on the same theory (MCFT) and 
follow the same principles for finding the inclination of the compression field. 
 
The ratio of the required longitudinal reinforcement in CSA-A23.3-04 [4] and AASHTO-LRFD-2017 [5] is smaller 
compared to the ACI 318-14 [2] and EN 1992-1-1:2004 [6] codes. Both CSA-A23.3-04 [4] and AASHTO-LRFD-
2017 [5] codes consider the compressive torsional and the aggregate interlock contribution to the torsional strength. 
On the other hand, ACI 318-14 [2] and EN 1992-1-1:2004 [6] assume that the torsional stresses are carried only by 
the longitudinal and transverse reinforcement. The provisions based on the MCFT (CSA-A23.3-04 [4] and AASHTO-
LRFD-2017 [5]) require more computational time and effort than those based on a 3D-truss and thin-walled tube 
analogy (ACI 318-14 [2] and EN 1992-1-1:2004 [6]), but result in a more economic solution.  
 
From Table 1, the ACI 318-14 [2] building code presents the largest amount of longitudinal reinforcement for torsion. 
This is because it is the only code, among the other three, that provides a specific equation to compute the minimum 
longitudinal reinforcement for torsion. 
 
From Table 2, the AASHTO-LRFD-2017 [5] code is the one that requires the largest number of stirrups. However, it 
also requires the smallest area of longitudinal steel, see Table 1. From this, the AASHTO-LRFD-2017 [5] code 
balances out the final reinforcement layout of this design to fulfill the code requirements. 
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LIST OF NOTATIONS 
 
bledge = ledge width, 
bw = web width, 
d = effective depth, 
f′c = specified compressive strength of concrete, 
fse = effective stress in prestressing reinforcement, after allowance for all prestress losses, 
fpu = specified tensile strength of prestressing reinforcement, 
fy = specified yield strength for non-prestressed longitudinal reinforcement, 
fyt = specified yield strength of transverse reinforcement, 
pcp = outside perimeter of concrete cross-section, 
hstem = height of the stem, 
ph = perimeter of the centerline of outermost closed transverse torsion reinforcement, 
s = center-to-center spacing of stirrups, 
smax = maximum spacing for torsion stirrups, 
Acp = area enclosed by the outside perimeter of concrete cross-section, 
Al = required area of longitudinal reinforcement to resist torsion, 
Al,min = minimum area of longitudinal reinforcement to resist torsion, 
Al,prov = provided area of longitudinal reinforcement to resist torsion, 
Aps = area of prestressed longitudinal tension reinforcement, 
Aoh = area enclosed by centerline of the outermost closed transverse torsional reinforcement, including area holes, 
As = area of non-prestressed longitudinal tension reinforcement, 
As,prov

+
 = area of non-prestressed longitudinal reinforcement provided to withstand the factored sagging moment, 

As,prov
-
 = area of non-prestressed longitudinal reinforcement provided to withstand the factored hogging moment, 

At = area of one leg of a closed stirrup resisting torsion, 
At,prov = area of one leg of a closed stirrup provided to resist torsion, 
Av = required area of the total legs of a closed stirrup for shear, 
Av,eff = area of the legs, of the stirrups resisting shear, that are adjacent to the sides of the analyzed  

element that are considered to resist torsion, 
Av,prov = provided area of the total legs of a closed stirrup to resist shear, 
D = effect of service dead load, 
L = effect of service live load, 
Mu

+ = factored positive moment considered as the sagging moment, 
Mu

- = factored negative moment considered as the hogging moment, 
Tn = nominal torsional resistance, 
Tth = threshold torsional moment, 
Tu = applied factored torsional moment, 
U = factored effect of service loads, 
Vc = shear strength provided by concrete, 
Vu = factored shear force, 
γc = unit weight of reinforced concrete, 
θ = angle between the struts and the tension chord, 
λ = modification factor which accounts for the properties of lightweight concrete, 
ρl = longitudinal reinforcement for flexural tension steel and longitudinal torsion reinforcement ratio, 
ρw = transverse reinforcement ratio, 
ϕ = torsion resistance factor, 
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ANNEX 1: ACI 318-14 DESIGN COMPUTATIONS 

  

ACI 318-14 

Load Combinations 

Positive Moment Loads: 

Negative Moment Loads: 
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Shear Loads: 

Torsion Loads: 
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Moment Design 

Assumptions: 

[20.6.1.3.1] 

[No. 5 bars] 

[No. 8 bars] 

The height is given. 

Data: 

[Negative moment] 

[Positive moment] 

Effective depth: 

Variables for equivalent concrete stress distribution  
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  Required Longitudinal Reinforcement for Positive Moment 

[As a function longitudinal 
rebar] 
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  Required Longitudinal Reinforcement for NegativeMoment 

[As a function longitudinal 
rebar] 
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  Minimum reinforcement for Moment 

[9.6.1.2] states that 
for a statically 
determinate beam 
with a flange in 
tension bw is the 
lesser of 2bw or bf. 
N/A becuse beam is 
indeterminate. 
Therefore, choose 
bw=bstem 

Minimum reinforement for Positive Moment 
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Minimum reinforement for Negative Moment 

Moment Capacity Check 
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Shear Design 

Vu @ d from support 

[9.4.3.2] (b) is not fulfilled, therefore the factored shear cannot be calculated at a 
distance d from the support 

Check if transverse rebar is needed 

[22.5.5.1] 

Check adequate dimensions 
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Compute maximum and minimum spacing for shear 
 

Consider a 4 legs. 1 closed stirrup for the flange 
and one for the stem. 

CONTROLS 
At least 23 in. spacing 

Compute Av required for shear 
 

No.5 bars, 2 closed stirrups@23in 
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Minimum shear reinforcement 
 

Shear Capacity Check 
 

4 legs of 2 closed stirrups No.4 @12in. 1 
closed stirrup for the flange and the other 
for the stem. Where Vu>phi*Vc 
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Torsional Moment Design 

Can torsion effects be neglected? 
 

The factored torsional moment is larger 
than the factored torsion treshold. 
Torsion needs to be considered 

Check adequate dimensions of x-section 
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Required transverse reinforcement for torsion 
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Minimum transverse reinforcement 
 

Total transvrese reinforcement required 
 

The required transverse rebar 
is bigger than the minimum  

The set of stirrup for shear has 4 legs. Nevertheless, [R9.5.4.3] states that only 
the legs adjacent to the beam sides are used to compute the total transverse reinf. 
(Shear+Torsion). Therefore, only 2 legs are considered for Av and 1 leg for At to 
get the spacing. 

To get the spacing of the stirrups 
just  the area of two legs are used 
for shear and one leg for torsion.  

Check minimum spacing of transverse reinforcement Av+At 
 

Set the No. 5 stirrups @11in o.c 
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The No. 5 stirrups will be spaced @ 11 in. 
Both strength for shear and torsion is 
provided. 

Required longitudinal reinf. for torsion 
 

Minimum longitudinal reinf. for torsion 

 

The minimum long. rebar for 
torsion CONTROLS! 
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Torsional Capacity check 



66 
 

 
 

  

Detailing 

The extension of the stirrups and longitudinal rebar for torsion will be placed along 
bt+d [9.7.5.3] and [9.7.6.3.2] 

The maximum torsion moment occurs at x=28ft i.e. at the second column 

from 0 to 13ft and from 43 to 44ft the spacing of the 
stirrups will be 12in. becasue it is the maximum 
allowed [9.7.6.3.3] 

This is not a symmetrical arragement of the transverse reinforcemet. Besides this 
the effectivity to supply the sirrups at 12 in beyond bt+d is worthless. Place all the 
stirrups @11 in. so 46 stirrups will fit.  

Assuming a 0.75" of max. size of agregate the minimum spacing 
between bars for moment is 1" 

The maximum spacing of torsion bars in the inner part of the stirrups 
is 12 in. 

11 No. 9 bars at top of the beam for hogging moment 

14 No.  bars at bottom of the beam for sagging moment 

33 No. 6 bars around the inner perimeter of the stirrups spaced 
@ 11 in in for the long. reinforcement for torsion. Make it 34 to 
have  a symetrical layout 
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ANNEX 2: CSA-A23.3-04 DESIGN COMPUTATIONS 

 
  

CSA-A23.3-04 

Load Combinations 

Positive Moment Loads: 

Negative Moment Loads: 
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Shear Loads: 

Torsion Loads: 
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Moment Design 

Assumptions: 

[Table 17] 

[No. 4 bars] 

[No. 8 bars] 

The height is given. 

Use 25MPa for f'c 

Use 415MPa for fy 

Data: 

[Negative moment] 

[Positive moment] 

Effective depth: 
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  Variables for equivalent concrete stress distribution  

Required Longitudinal Reinforcement for Positive Moment 

[10.1.7] 
Concrete stress  

[As a function 
longitudinal rebar] 

Mr, has the reduction factor 
 set at a. 

No other reduction factor is 
applied 

[10.5.2] If this provision is 
satisfied the rebar is yielding 
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  Required Longitudinal Reinforcement for NegativeMoment 

[As a function longitudinal 
rebar] 
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  Minimum reinforcement for Positive Moment 

[10.5.1.2] Width of bt when flange is in tension 

Rebar yields 

Minimum reinforcement for Negative Moment 
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Rebar yields 

Moment Capacity Check 
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  Shear Design 

[8.4.3] 

Check adequate dimensions of x-section 
 



76 
 

 
 

  

Longitudinal strain  
 

Angle of diagonal compressive stresses and  
 

[11.3.6.4] Minimum transvrese reinforcement is gonna be 
provided =300mm 

Shear strength of concrete 
 

[11.3.4] 

The factored shear strength of concrete is not bigger than the 
applied shear. Stirrups needed  
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  Compute maximum and minimum spacing for shear 
 

Consider a 4 legs. 1 closed stirrup for 
the flange and one for the stem. 

At least18in. choose 14in as spacing 

s_max=23in. choose 14 

[11.3.8.3] Vf does not exceed 
Vf_check. No need to reduce 
s_max 
 

Compute Av required for shear 
 

No.5 bars, 2 closed stirrups@14 in 
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  Minimum shear reinforcement 
 

The req'd Av is bigger than 
the minimum. 

Check max Vr 
 

[11.3.] Vr_max is not 
exceeded. deisgn OK 

4 legs of 2 closed stirrups No.5 @14in. 1 closed stirrup for the 
flange and the other for the stem. Where Vf>Vc.  
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Torsional Moment Design 

Can torsion effects be neglected? 
 

The factored torsional moment  exceeds 
0.25 of the pure torsional cracking 
resistance. Torsion analysis is req'd 

Required transverse reinforcement for torsion 
 

Maximum spacing 
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  Provided A_t 
 

1 Leg of a No. 5 stirrup 

No. 5 stirrup @15in. o.c 

Shear spacing controls 

Transverse reinforcemnt ok. 
Put 1 No. 5 stirrup @ 13 in 

Required long. reinforcement for torsion 

Torsional Capacity check 
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ANNEX 3: AASHTO-LRFD-2017 DESIGN COMPUTATIONS 

 
  

AAHSTO LRFD-2017 

Load Combinations 

Positive Moment Loads: 



83 
 

 
 

  Negative Moment Loads: 

Shear Loads: 

Torsion Loads: 
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  Moment Design 

Assumptions: 

[Table 5.10.1-1] 

[No. 5 bars] 

[No. 8 bars] 

The height is given. 

[5.5.4.2] For all effects M, V and T 

[5.6.2.1] 

Data: 

[Negative moment] 

[Positive moment] 

Effective depth: 

Variables for equivalent concrete stress distribution  
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Required Longitudinal Reinforcement for Positive Moment 

[5.6.2.2] 
Concrete stress  

[As a function 
longitudinal rebar] 

Factor 1.33 
added to fulfille 
[5.6.3.3], not 
part of formula  

Rebar stress for positive  moment design 

[5.6.2.1-1] f_y replaces f_s 
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[5.6.2.1-1]-YIELDS 

Required Longitudinal Reinforcement for NegativeMoment 

[5.6.2.2] 
Concrete stress  

[As a function longitudinal 
rebar] 
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Rebar stress for negative moment design 

[5.6.2.1-1] f_y replaces f_s 

[5.6.2.1-1]-YIELDS 

Minimum reinforcement for Positive Moment Check 

[5.6.3.3] Other concrete structure 

[5.6.3.3] Gr. 60 Rebar assume ASTM615 

[5.4.2.6] 

[5.6.3.3] 
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 needs to be bigger than the lesser of   or  . 

This is not fulfilled, therefore more long rebar is required. Add 1 bar:  

The minimum reinforcement for positive moment is 
fulfilled. 5 No. 8 bars provided 

Minimum reinforcement for Negative Moment Check 

No. 7 bar 

The minimum reinforcement for positive moment is 
fulfilled. 7 No. 7 bars provided 
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Shear Design 

[5.7.2.8-2] 

Net Longitudinal Strain and angle of compressive field 
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[5.7.3.4.2] Mu cannot be less than Vu*dv 

[5.7.3.4.2-4] The longitudinal 
strain in the direct method cannot 
be less than 0.006. This is why it 
is set to 0.006 

[5.7.3.4.2]  

Shear concrete strength 

Shear rebar strength 

At least 10 in 
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4 lesg of a No. 5 stirrup @10in 

Minimum rebar for shear 

The req'd transverse 
reinforcement controls 

Shear capacity 
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Torsion Design 

Is torsion design needed? 

This expression is not fulfiled. Therefore torsion 
analysis is required. 

Req'd stirrups for torsion 

1 Leg of a No. 5 stirrup 
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Check if the sum of the req'd shear and torsion transverse reinforcement is fulfilled 

The provided is bigger than than the req'd. 
No. 5 stirrups @ 12 in 

Req'd longitudinal rebar for torsion 

Check torsion capacity 
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ANNEX 4: EN 1992-1-1:2004 DESIGN COMPUTATIONS 

 
  

EN 1992-1-1:2004 

Load Combinations 

Use  because it produces a more critical effect 

T[4.5-1] For this, the value can be taken either with the 0 or 1 subscript. 
(0.7 or 0.5) the one with the 0 subscript is more critical. 

T[4.5-6] has 2 sets of of factors. Set 2 does not use  for the variable action. Choose 

this because is more crtical. 

Positive Moment Loads: 

[4.5-14] 
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  Negative Moment Loads: 

Shear Loads: 

Torsion Loads: 
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  Moment Design 

Assumptions: 

[20.6.1.3.1] 

[No.5 bars] 

[No. 8 bars] 

The height is given. 

Data: 

[Negative moment] 

[Positive moment] 

Effective depth: 

Variables for equivalent concrete stress distribution  

[3.1.7] 
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  Required Longitudinal Reinforcement for Positive Moment 

[As a function longitudinal 
rebar] 

T[4.5-7] 

Rebar yields 
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  Required Longitudinal Reinforcement for NegativeMoment 

[As a function longitudinal 
rebar] 

Rebar yields 
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  Minimum reinforcement forPositive Moment 

T[3.1] 

[7.13.5.2] 
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  Minimum reinforement for Negative Moment 

T[7.2-1] 

[7.13.5.2] 

Moment Capacity Check 
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  Shear Design 

Check if transverse rebar is needed 

[7.3.3.1] 

Stirrups are needed 
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  Design stirrups for shear 

[6.2.3] 

4 legs of 1 No. 5 stirrup. Eq. 
[6.8]. At least 15 in spacing 

Eq. 9.6N 

Check minimum shear reinforcement 

9.4 &9.5N, Req'd controls 
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  Check Capacity 

4 legs of 1 No. 5 stirrup. Eq. 
[6.8]. At least 15 in spacing 

Check assumed angle 

1<cot <2.5 

The value of theta that converges is 
around 50 deg but the code only allows a 
theta value between 22 and 45 
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  Torsion Design 

Check if dimensions are adequate 

Inequality fulfilled dimensions OK 
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  Design transverse reinforcement for torsion 

Check minimum transverse reinforcemen for torsion 

Minimum controls 

1 No. 5 @8in 
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  Design long. rebar for torsion 

Check minimum long. reinforcement for torsion 

Minimum controls 
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 Check torsional capacity 


