## **UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ**

**Colegio de Posgrados** 

Theoretical study of the mechanism of 2,5-diketopiperazine formation during pyrolysis of proline

## **Cristian Cervantes Velásquez**

## José R. Mora, Ph.D. Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Magister en Química

Quito, 04 de diciembre de 2018

## UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

#### COLEGIO DE POSGRADOS

### HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN

## Theoretical study of the mechanism of 2,5-diketopiperazine formation during pyrolysis of proline

## **Cristian Cervantes V.**

|                                              | Firmas |
|----------------------------------------------|--------|
| José R. Mora, Ph.D.                          |        |
| Director del Trabajo de Titulación           |        |
| F. Javier Torres                             |        |
| Ph.D                                         |        |
| Director del Programa de Maestría en         |        |
| Química                                      |        |
| César Zambrano, Ph.D.                        |        |
| Decano del Colegio de Ciencias e Ingenierías |        |
| Hugo Burgos,                                 |        |
| Ph.D                                         |        |
| Decano del Colegio de Posgrados              |        |

Quito, 04 de diciembre 2018

#### © Derechos de Autor

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

| Firma del estudiante: |                                |  |  |  |
|-----------------------|--------------------------------|--|--|--|
|                       |                                |  |  |  |
| Nombre:               | Cristian Cervantes V.          |  |  |  |
|                       |                                |  |  |  |
| Código de estudiante: | 00140979                       |  |  |  |
| C. I.:                | 100348247-6                    |  |  |  |
|                       |                                |  |  |  |
| Lugar, Fecha          | Quito, 04 de diciembre de 2018 |  |  |  |

### DEDICATORIA

El presente trabajo lo dedico afectuosamente a mi esposa y a mi madre, cuyo apoyo

durante estos dos años de estudios fueron primordiales para cumplir con este reto.

#### AGRADECIMIENTOS

Agradezco humildemente a las personas e instituciones con cuya gestión directa o indirecta permitieron mi superación académica: A la Universidad San Francisco de Quito, el Colegio de Postgrados, el Colegio de Ciencias e Ingeniería con su Decano PhD César Zambrano, y al Programa de Maestría en Química con su Director del programa PhD F. Javier Torres; al Grupo de Química Teórica e Instituto de Simulación Computacional con todos sus investigadores miembros; y un especial agradecimiento a mi tutor PhD José R. Mora y coautores de la investigación PhD F. Javier Torres y PhD Luis Rincón.

### TABLA DE CONTENIDO

| The<br>pro | ore<br>line | etical study of the mechanism of 2,5-diketopiperazine formation during pyrolysis o            | of<br>7   |
|------------|-------------|-----------------------------------------------------------------------------------------------|-----------|
| A          | ٩bs         | tract                                                                                         | 8         |
| I          | ntr         | oduction                                                                                      | 9         |
| C          | Con         | nputational methodology                                                                       | 10        |
| F          | Res         | ults and discussion                                                                           | . 14      |
| C          | Con         | nclusions                                                                                     | 23        |
| A          | ٩ss         | ociated content                                                                               | 24        |
| A          | ٩ut         | hor information                                                                               | 24        |
| A          | ٩ck         | nowledgement                                                                                  | 24        |
| F          | Ref         | erences                                                                                       | 25        |
| Sup        | ро          | rting information                                                                             | .30       |
| A          | ۹.          | Development of the determination of degrees of rate control                                   | 30        |
| E          | 3.          | Cartesian coordinates for each of the optimized transition states                             | 33        |
| C<br>r     | 2.<br>neo   | Electronic energy through the intrinsic reaction coordinate (IRC) for each step of th chanism | e<br>. 35 |
| E          | Bibl        | liographic references                                                                         | 56        |

# Theoretical study of the mechanism of 2,5diketopiperazine formation during pyrolysis of proline

Cristian Cervantes<sup>a,b</sup>, José R. Mora<sup>a, b,\*</sup>, Luis Rincón<sup>a, b</sup>, Vladimir Rodríguez<sup>c</sup>

<sup>a</sup> Instituto de Simulación Computacional (ISM), Universidad San Francisco de Quito (USFQ), Quito, Ecuador; <sup>b</sup> Departamento de Ingeniería Química – Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito (USFQ), Quito, Ecuador; Departamento de Matemáticas, Universidad San Francisco de Quito (USFQ)

#### ABSTRACT

The mechanism of formation of 2,5-diketopiperazine upon pyrolysis of proline at 300°C was theoretically studied by means of DFT calculations (wB97XD/6-311g(d,p)). All transition states and minimum energy structures involved were optimized, and thermodynamic parameters were theoretically estimated. The reaction occurs through a mechanism of four steps where the second one, which consists in a dehydration process, contains the highest activation enthalpy. The latter step was analyzed by using the reaction force formalism, and an analysis of geometrical parameters, charge distributions and bond orders. The results show that the first intermediate (INT1) and its subsequent transition state (TS2) are the most important rate-controlling states. The energetic barrier is formed by a 75% of geometrical rearrangements while the proton transfer needed to form water and achieve the dehydration represents the remaining 25%. INT1 appears to be a very stable intermediate due to the high dominancy of geometrical rearrangements for both, the forward and the reverse reaction. Changes of less than  $\pm 0.1$  in the charges of atoms demonstrate that charge transfer is not an important factor for the analyzed reaction step. Finally, from the bond order analysis, it is determined that TS2 is an early transition state, and that the process is asynchronous.

#### **1. INTRODUCTION**

The pyrolysis of organic compounds is an important process in which a substrate thermally decomposes upon exposure to temperatures above 200°C. It involves changes in the chemical composition of a molecule that are irreversible, giving rise to stable products. Reactions based-on elimination mechanisms have been proposed as the main pathways during pyrolysis <sup>1</sup>. Therefore, this particular idea has been extensively explored, by theoretical and experimental means, for simple organic compounds such as: carboxylic acid derivatives <sup>2,3</sup>, alkyl halides <sup>4</sup>, ketals <sup>5</sup>, and amino acids <sup>6–8</sup>. In the particular case of the latter, their pyrolysis has been subject of intensive study due to the increasing interest in the thermal decomposition of biomass at high temperature <sup>6</sup>. Furthermore, it is important to point out that the biomass combustion leads to the production of environmentally harmful nitrogen containing polycyclic compounds <sup>9,10</sup> which differ in their identity and yield, depending on the temperature of the process, the residence time, and the chemical structure of the specific amino acids that are present in the protein composition of the biomass sample <sup>11</sup>.

The pyrolysis of amino acids form products based on reactions of dehydration, decarboxylation, or deamination, leading to common volatiles such as H<sub>2</sub>O, NH<sub>3</sub>, CO<sub>2</sub>, CO, HNCO, y HCN <sup>7,12</sup>. However, formation of higher molecular weight products like 2,5-diketopiperazine (DKPs) compounds <sup>7,11</sup>, maleimide. succinimide, glutaramide, pirrolidone, and others <sup>7,10</sup> have been also observed as products during pyrolysis of these substrates. It has to be indicated that the formation of high molecular weight products from the pyrolysis of small organic compounds is not common in literature due to the decomposition nature of pyrolysis, which commonly imply an elimination reaction as commented before. Thus, the pyrolysis of amino acids represents a special case on these regards. Among the amino acids for which the formation of DKPs has

been reported, proline shows the highest production after pyrolysis at 300°C, resulting in a yield ca. 80% of the corresponding DKP<sup>8,13</sup>. It is important to remark that, when pyrolysis is carried out for extended times, even the DKP is decomposed to form the aforementioned common volatile products<sup>14</sup>. In this sense, during the pyrolysis of proline, the final possible formation of ammonia and hydrogen cyanide, which are potentially toxic for human beings, has attracted the interest of the scientific community considering that this amino acid is commonly found in cigarettes<sup>15</sup>.

Previous theoretical studies of the proline pyrolysis mechanism have been centered on its unimolecular decomposition <sup>16</sup>. Results obtained at the B3LYP/6-311g(2d,p) level of theory suggested that dehydration and decarboxylation reactions are the dominant unimolecular processes at a wide range of temperatures and pressures <sup>16</sup>. However, the formation of DKP during the pyrolysis of proline at 300°C, has not been explored although the experimental results obtained from gas chromatography/mass spectrometry suggests its formation through a dimerization of proline <sup>8</sup>. The objective of this work is to theoretically study the reaction mechanism for 2,5-diketopiperazine formation during the pyrolysis of proline at 300°C <sup>17</sup> and determine whether the formation of DKP is more favorable or not over the unimolecular decomposition.

#### 2. COMPUTATIONAL METHODOLOGY

All the calculations were performed using the Gaussian 16 suit of programs <sup>18</sup>. Geometry optimizations for all stationary points along the proposed mechanism (reactive, product, intermediates, and transition states) were calculated at DFT level of theory, using the wB97XD functional <sup>19</sup>, and the 6-311g(d,p) basis set <sup>20,21</sup>. For the appropriate description of the transition state geometries, where differences of electronegativity and charge transfer could be important, a long-range dispersion-corrected functional was employed which has satisfactory accuracy for non-covalent

and non-bonded interactions<sup>19</sup>, while the selected basis set with polarization functions ensures to accurately describe the electronic configuration <sup>21</sup>. Frequency calculations at 300°C were performed on the optimized molecules at the same level of theory, ensuring the existence of a unique imaginary eigenvalue in the Hessian matrix for transition states, and no imaginary eigenvalues for minimum energy configurations. The correlation of the corresponding transition vectors to the reaction pathway were also verified.

In order to analyze the thermodynamic properties of the mechanism, values of absolute enthalpies (H) were collected from the frequency output files from DFT calculations, while absolute Gibbs free energies were obtained using the Goodvibes v 2.0.3 program <sup>22</sup> which applies the quasi-harmonic approximation to the vibrational entropy and leads to quasi-harmonic corrected Gibbs free energies. The program was used by setting the temperature at 573.15 K, the approach proposed by Grimme in Ref. <sup>23</sup>, and the rest of parameters as default.

Degrees of rate control ( $X_{RC}$ ) for all involved transition states were calculated according to the procedure described by Motagamwala <sup>24</sup> (See Supplementary Information for details). Equation (1) is used to calculate the degree of rate control of the *i-th* transition state on a generalized sequence of n steps:

$$X_{RC,i} = \frac{\prod_{j=1, j \neq i}^{n} r_{max,j}}{\sum_{j=k}^{n} (\prod_{j=1, j \neq k}^{n} r_{max,j})}$$
(1)

Where  $r_{max,i}$  is called the maximum rate of the *i-th* step, and is obtained according to equation (2):

$$r_{max,i} = \frac{k_B T}{h} K_{eq,A \to TS_i}^{\dagger} [CF]$$
(2)

Here,  $K_{eq,A \to TS_i}^{\dagger}$  is a condensed constant which contains a combination of rate constants (k<sub>j</sub>) and equilibrium constants (K<sub>eq,j</sub>) of any elemental step involved in the

reaction pathway from the reactive to a *i-th* transition state. [CF] is a "concentration factor" which contains a combination of molar concentrations (or partial pressures in gas-phase reactions) of any reactive, product or by-product involved in the process. Neither  $K_{eq,A\to TS_i}^{\dagger}$  nor [CF] have a general expression, and they have to be obtained for each particular case (check the Supplementary Information).  $k_B$  and h are the Boltzman's and Plank's constants, respectively, and T is the temperature of the process.

Additionally, the evolution of the DFT energy along the normalized reaction coordinate ( $\xi$ ) between each stationary point was determined by Intrinsic Reaction Coordinate (IRC) calculations, and the profiles resulting for the rate controlling step were selected to a further detailed analysis by means of the reaction force formalism.

Reaction force (F( $\xi$ )) profiles <sup>25,26</sup> were obtained numerically, according to equation (3):

$$F(\xi) = -\frac{dE}{d\xi}$$
(3)

By identifying the points on the reaction coordinates where critical points exist  $(F(\xi) = 0)$ , and the maximum and minimum of the reaction force, the reaction path can be divided in regions (j) in which geometrical and electronic rearrangements are dominant on each step (i) of interest. Upon region determination, values for works  $(w_j^{(i)})$  are numerically calculated, from critical point *a* to critical point *b*, according to equation (4).

$$w_j^{(i)} = -\int_a^b F(\xi)d\xi \tag{4}$$

In order to obtain more detailed information about the mechanism, data of some selected geometrical parameters over the reaction coordinate were extracted from the IRC calculation outputs, which contain all the geometrical coordinates of atoms in each of the points plotting the IRC profile. A Natural Bond Orbital (NBO) calculation <sup>27</sup> was also performed to gain additional insights on the process. Data associated to the charge on some selected atoms were extracted from NBO outputs of each of the corresponding stationary points involved in the determining reaction step. Subsequently, changes in the electronic distribution of each atom were quantified as a difference of charge, calculated for each of the atoms involved in the process, with equation (5).

$$\delta Q_{X \to Y}^{atom} = Q_Y^{atom} - Q_X^{atom} \tag{5}$$

Where  $\delta Q_{X \to Y}^{atom}$  (or  $\delta Q$  for simplicity) is the difference of charge between stationary point X to stationary point Y, while  $Q_X^{atom}$  and  $Q_Y^{atom}$  are the NBO charge in each corresponding stationary point.

Similarly, from the corresponding NBO outputs, changes in Wiberg bond indexes <sup>28</sup> were also analyzed to get more information. These changes were calculated as a fractional difference of bond order, using equation (6).

$$\delta B_{X \to Y}^{bond} = \frac{B_Y^{bond} - B_X^{bond}}{B_Z^{bond} - B_X^{bond}} \tag{6}$$

Where  $\delta B_{X \to Y}^{bond}$  (or  $\delta B$  for simplicity) is the fractional difference of bond order between minimum X to the transition state Y, while  $B_X^{bond}$ ,  $B_Y^{bond}$  and  $B_Z^{bond}$  are the Wiberg bond indexes in the corresponding stationary point: the minimum X, the transition state Y, and the following minimum Z.

Finally, the synchronicity <sup>29</sup> of the step of interest was computed by using equation (7).

$$Sy = 1 - \frac{\sum_{i=1}^{n} |\delta B_i - \delta B_{average}|}{\delta B_{average} (2n-2)}$$
(7)

Where *Sy* is the synchronicity of a specific step, n is the number of bonds (only those bonds that change significantly are taken into account),  $\delta B_i$  is the fractional difference

of bond order for the i-esime bond, and  $\delta B_{average}$  is the average of all  $\delta B_i$  taken into account.

#### 3. RESULTS AND DISCUSSION

#### 3.1. Mechanism of reaction and thermochemistry properties

Scheme 1 shows the mechanism for pyrolysis of proline studied in this work. This mechanism is based on the suggestion of Chiavari et al <sup>8</sup>, who mentioned that after the proline dimerization (step 1), a double dehydration process (steps 2 and 4) and cyclization (step 3) lead to the DKP product (P).



Scheme 1. Reaction mechanism proposed for proline pyrolysis

Each stationary point (reactant, transition states, intermediates and product) was separately optimized, and the differences of enthalpy between each pair of points were calculated using the absolute thermochemical values obtained from DFT frequency calculations (see Table 1). With these data, a reaction profile based on normalized enthalpies is shown in Figure 1.

 Table 1. Thermodynamic parameters calculated from absolute enthalpies and entropies

 obtained through the DFT calculation: wb97xd/6-311g(d,p)

| i  | X                     | Y                     | $\begin{array}{c} \Delta H_i \\ H_Y^{DFT} - H_X^{DFT} \\ (\text{kJ mol}^{-1}) \end{array}$ | Normalized<br>Enthalpy<br>$H_Y$<br>(kJ mol <sup>-1</sup> ) |
|----|-----------------------|-----------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------|
|    |                       | 2 R                   |                                                                                            | 0.0                                                        |
| 1  | 2 R                   | TS1                   | 129.2                                                                                      | 129.2                                                      |
| -1 | TS1                   | INT1                  | -145.2                                                                                     | -16.0                                                      |
| 2  | INT1                  | TS2                   | 174.2                                                                                      | 158.2                                                      |
| -2 | TS2                   | INT2+H <sub>2</sub> O | -153.8                                                                                     | 4.4                                                        |
| 3  | INT2+H <sub>2</sub> O | TS3                   | 113.8                                                                                      | 118.1                                                      |
| -3 | TS3                   | INT3                  | -133.7                                                                                     | -15.6                                                      |
| 4  | INT3                  | TS4                   | 108.2                                                                                      | 92.7                                                       |
| -4 | TS4                   | P+H <sub>2</sub> O    | -142.5                                                                                     | -49.9                                                      |
| N  | Inter Tan             | anaratura             | used for                                                                                   | the DET                                                    |

Note: Temperature used for the DFT calculations was 573.15 K



**Figure 1.** Enthalpy profile for the formation of 2,5-diketopiperazine product through a dimerization process. Structures of TS in the top of the figure are the optimized geometries.

Although INT1 and INT3 are more stable than the reactive (2R), all intermediates are unstable when compared with the product (P); therefore, the global reaction is exothermic ( $\Delta H_{reaction} = -49.9$  kJ/mol). Additionally, since the change in the Gibbs free energy for the global reaction is negative ( $\Delta G_{reaction} = -110.9$  kJ/mol), it can be stablished that the process is spontaneous.

From the differences of barriers of Figure 1, it can be assumed that the main processes of the reaction depends on the first two steps: the dimerization of proline, and the subsequent elimination of a molecule of water. After that, it appears that faster steps consisting in a less energy-demanding cyclization and a second elimination of water will finally form the 2,5-diketopiperazine product. In these regards, the details about the determination of the degree of rate control for this particular reaction mechanism are presented in the next section.

#### **3.2.Determination of the degrees of rate control**

In order to describe the kinetic properties of the proposed mechanism, the following reaction steps and rate constants are considered:

$$2R \xrightarrow[k_{-1}]{k_{-1}} INT1 \qquad (8)$$

$$INT1 \xrightarrow[k_{-2}]{k_{-2}} INT2 + H_2O \qquad (9)$$

$$INT2 \xrightarrow[k_{-3}]{k_{-3}} INT3 \qquad (10)$$

$$INT3 \xleftarrow[k_{-4}]{k_{-4}} P + H_2O \qquad (11)$$

Now, according to Motagamwala <sup>24</sup>, the degrees of rate control ( $X_{RC}$ ) for transition states can be calculated using equations (1) and (2) (See details in Supporting Information). Results are summarized in Table 2:

**Table 2.** Rate constants, equilibrium constants, maximum rates, and degrees of ratecontrol for elementary steps on the mechanism of formation of 2,5-diketopiperazine from pyrolysis of proline

| i  | $\frac{k_i}{\frac{k_B T}{h}} e^{-\frac{\Delta G_i^{qh}}{RT}}$ (s <sup>-1</sup> ) | $K_{eq,i} \ k_i/k_{-1}$ (dimensionless) | Expression for $r_{max,i}$                    | $r_{max,i}$<br>eq.(2)<br>(s <sup>-1</sup> ) | X <sub>RC,i</sub><br>eq.(1)<br>(dimensionless) |
|----|----------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|
| 1  | $1.10 \times 10^{-10}$                                                           | $4.59 \times 10^{-10}$                  | $k_1[R]^2$                                    | $1.10 \times 10^{-10}$                      | $4.14 \times 10^{-3}$                          |
| -1 | $2.39 \times 10^{-1}$                                                            |                                         |                                               |                                             |                                                |
| 2  | $9.94 \times 10^{-4}$                                                            | 9.81×10 <sup>6</sup>                    | $k_{eq,1}k_2[R]^2$                            | $4.56 \times 10^{-13}$                      | $9.96 \times 10^{-1}$                          |
| -2 | $1.01 \times 10^{-10}$                                                           |                                         |                                               |                                             |                                                |
| 3  | $1.82 \times 10^{-1}$                                                            | 5.03×10 <sup>0</sup>                    | $k_{eq,1}k_{eq,2}k_3 [R]^2 [H_2 O]^{-1}$      | $8.22 \times 10^{-2}$                       | 5.53×10 <sup>-12</sup>                         |
| -3 | $3.63 \times 10^{-0}$                                                            |                                         |                                               |                                             |                                                |
| 4  | $1.83 \times 10^{-3}$                                                            | 5.19×10 <sup>11</sup>                   | $k_{eq,1}k_{eq,2}k_{eq,3}k_4[R]^2[H_2O]^{-1}$ | $4.14 \times 10^{-1}$                       | $1.10 \times 10^{-14}$                         |
| -4 | $3.53 \times 10^{-9}$                                                            |                                         |                                               |                                             |                                                |

Note: For the determination of rate constants (k<sub>i</sub>), quasi-harmonic corrected Gibbs free energies ( $\Delta G_i^{qh}$ ) were obtained by using the Goodvibes v 2.0.3 program. The temperature (T) used in calculations was 573.15 K. k<sub>B</sub> and h are the Boltzman's and Plank's constants, respectively.

These degrees of rate control represent an indicator of how much influence has a transition state on the total reaction rate. The farther the  $X_{RC,i}$  from zero the more significant the influence in the rate of the reaction is higher. The sum of all  $X_{RC}$  must be the unity.

From the calculated values, TS2 corresponds to the most influent transition state on the reaction rate with a  $X_{RC,TS2} = 0.996$ , while the rest of  $X_{RC,i}$  are almost zero. Looking at the minimum configurations, INT1, which precedes TS2, represents the most stable intermediate in the profile. The energy barrier formed from INT1 to TS2 is the highest one. Therefore, the second elemental step of the mechanism, the dehydration process, can be suggested as the most important step on the rate of the process.

It is interesting to notice that the second dehydration (the fourth step), is not as important to the reaction rate as the first one. Considering that the molecule has lost a rotational degree of freedom when it becomes a cycle, the second dehydration should be less geometrically demanding, and therefore, more favored than the first dehydration.

#### **3.3.Determination of the overall activation energy**

Although the first dehydration process (from INT1 to TS2) contains the rate determinant states of the mechanism as indicated in the last section, due to the fact that formation of INT1 is exothermic and contributes with approximately 16 kJ/mol to the reaction energy, the net energetic barrier should be corrected by subtracting this value to the activation energy of the dehydration; in other words, the net energy of the reaction should be considered as the difference of enthalpy from 2R to INT2. Whit the last consideration, it can be stablished that the global reaction needs to overcome an activation enthalpy ( $\Delta H^{\ddagger}$ ) of 158.2 kJ/mol.

The dimerization mechanism presented in this work is compared with the unimolecular decomposition of this substrate, which was previously theoretically studied by Rawadieh et al <sup>16</sup>. According to Rawadieh, the unimolecular process during pyrolysis of proline involve a direct dehydration of this amino acid <sup>16</sup>, as depicted in Scheme 2.



**Scheme 2**. Reaction for the most favored unimolecular process during proline pyrolysis, according to Rawadieh et al.

An activation enthalpy of 315.7 kJ/mol was calculated by us for this reaction at the wB97XD/6-311G(d,p) level, which is in agreement with the reported value of 297.1 kJ/mol (71.0 kcal/mol) obtained by Rawadieh at the B3LYP/6-311G(2d,p) level <sup>16</sup>. By comparing this barrier against the DKP formation (158.2 kJ/mol), it is possible to conclude that the dimerization is favored, with a requirement of approximately half of

the energy needed for the mentioned unimolecular reaction. This difference in activation barrier allows us to explain why the DKP product is the main compound in low temperature pyrolysis  $^{8}$ .

## 3.4.Electronic energy through the intrinsic reaction coordinate (IRC), reaction forces (RF), and works (w)

The electronic energy over the reaction coordinate from 2R to INT2 is studied. Specifically, the barriers governed by  $k_2$  (INT1 $\rightarrow$ TS2) and  $k_{-1}$  (INT1 $\rightarrow$ TS1) are analyzed using the reaction force approach (see Figure 2). The involved works  $(w_j^{(i)})$ were calculated by numerical integration of the area under the curve for each region (j) of each reaction step (i) in the reaction force plot.



**Figure 2.** Total electronic energy through the reaction coordinate of the two elemental steps involved in the formation of the dipeptide of Proline: dimerization step (left) and dehydration step (right); and their corresponding Reaction Force plots (first derivative of the energy) and works (area under the curve). Work's values are in kJ/mol.

Due to the fact that absolute values of works corresponding to so-called geometrical interactions  $(w_{IV}^{(1)} \text{ and } w_{I}^{(2)})$  are higher than those corresponding to electronic ones  $(w_{III}^{(1)} \text{ and } w_{II}^{(2)})$ , the conversion of INT1 to whether INT2 or 2R, is predominantly dominated by the geometry rearrangement of the molecule, which in both cases represent approximately 75% of the energy needed to overcome the barrier. It could be related to the fact that INT1 is the most influent intermediate to the rate of the reaction as mentioned earlier.

#### 3.5.Geometrical parameters of INT1 through the reaction coordinate

For both, forward and reverse directions from INT1, the geometrical changes of the molecule are analyzed (see Figure 3).



**Figure 3.** Change in the bond angle between atoms N–C–O from TS1 to INT1 (left), and between atoms O–C–O from INT1 to TS2 (right).

In order to achieve TS2 to dehydrate the dimer, INT1 requires the approximation of the alcohol groups in order to obtain an oxygen-to-oxygen proton transfer. This is achieved by decreasing the O–C–O angle from 107° to 93°, and keeping this latter value during the proton transfer. C-O and O-H distances are practically kept constant upon completion of the proton transfer, then these bonds rapidly change from 1.40 to 1.62 Å, and from 0.96 to 1.34 Å, respectively. Notice that the C-O bond starts to break a few earlier than the O-H bond.

In the reverse path, the angle between the N–C–O in INT1 decreases from 109° to 93° in order to form the initial proline molecules; thus, the proton transfer (from oxygen to nitrogen), and the rupture of the dimer, can be achieved. Looking at the N-C and O-H distances, a similar behavior than in forward direction can be seen: the proton transfer occurs at the end changing O-H distance from 0.96 to 1.32 Å, while the N-O bond rupture starts a few earlier with a change from 1.47 to 1.66 Å.

#### 3.6. Charge distribution and bond order changes from INT1 to TS2

TS2 is a transition state of four members (see Figure 4) where the oxygen atoms are rich in electronic density while the carbon and hydrogen atoms are deficient.



**Figure 4.** Optimized structure of TS2, showing the four atoms involved in the process of dehydration. Oxygen atoms have been labelled as O(1) and O(2) to differentiate them.

Focusing on the differences between TS2 and INT1, the changes in electronic distribution were quantified as a difference of charge ( $\delta Q_{INT1 \rightarrow TS2}^{atom}$ , or  $\delta Q$  for simplicity), calculated for each of the four atoms involved in the process, with the

equation (5). All values obtained for  $\delta Q$  (see Table 3) belongs on the range between - 0.09 to 0.06; those relatively small values suggest that charge transfer is not an important parameter to achieve TS2, which is coherent with the reaction force analysis where geometric rearrangement is the most important factor.

**Table 3.** Electronic density for selected atoms and change in the charge

|                                          | <b>O</b> (1) | Η    | <b>O(2)</b> | С    |
|------------------------------------------|--------------|------|-------------|------|
| INT1                                     | -0.78        | 0.48 | -0.78       | 0.77 |
| TS2                                      | -0.87        | 0.54 | -0.80       | 0.80 |
| $\partial Q_{INT1 \rightarrow T}^{atom}$ | -0.09        | 0.06 | -0.03       | 0.02 |

By analyzing the changes in Wiberg bond indexes of TS2 respect to INT1 (see Table 4), the fractional difference of bond order ( $\delta B_{INT1\to TS2}^{bond}$ , or  $\delta B$  for simplicity) was calculated using the equation (6). When a bond is broken or formed between two intermediates,  $\delta B$  represents a measure of how much that bond have been transformed when the reaction reached the corresponding transition state; a  $\delta B = 0$  means that the bond has not changed during the process, while a  $\delta B = 1$  means a complete bond conversion. Additionally, Table 4 shows: the average of all  $\delta B$ , which lets estimate if the transition state is an early TS ( $\delta B_{average} < 0.5$ ), or a late TS ( $\delta B_{average} > 0.5$ ); and the synchronicity of the step, as defined by equation (7), which represents how synchronous is the process.

Table 4. Wiberg bond indexes for selected bonds and change in the charge distribution

|                                   | O(1) H       | <b>O</b> (2) – – C | O(2) H      | O(1) =-= C  | $\delta B_{average}$ | Sy    |
|-----------------------------------|--------------|--------------------|-------------|-------------|----------------------|-------|
| INT1                              | 0.752        | 0.943              | 0.003       | 0.897       | -                    | -     |
| TS2                               | 0.262        | 0.626              | 0.422       | 1.160       | -                    | -     |
| INT2                              | 0.005        | 0.006              | 0.778       | 1.646       | -                    | -     |
| $\partial B^{bond}_{INT1 	o TS2}$ | 0.656        | 0.339              | 0.541       | 0.352       | 0.472                | 0.821 |
|                                   | single- bond | single-bond        | single-bond | double-bond |                      |       |
|                                   | rupture      | rupture            | formation   | formation   |                      |       |

Values of  $\delta B$  in Table 4 show that the O(1)–H rupture and the O(2)–H formation are the principal electronic rearrangements that occur to achieve TS2, while C–O(2) rupture and C=O(1) formation are mainly completed after the TS. This observation proves that, due to the known instability of hydroxyl anions, water molecule is mostly formed first, and then it is separated from the molecule matrix. Additionally, the  $\delta B_{average} = 0.472$ means that TS2 is an early transition state, which corresponds well with the intrinsic coordinate (< 0.5) where TS2 is located (see Figure 2). Finally, the value for synchronicity (Sy = 0.821) express that the process is non synchronous, which represents a TS in a concerted slightly polar process.

#### 4. CONCLUSIONS

The dominancy of the geometrical type rearrangements needed to achieve weather TS2 or TS1, along with the high activation energies in both ways, makes INT1 a very stable intermediate. However, since INT1 is more energetic than P, it keeps as an intermediate in the process. With these information, it can be understood the fact that the dehydration step, which contains both rate controlling states (INT1 and TS2), is the most influent step on the rate of the mechanism. Here, the geometrical rearrangements needed to achieve TS2 are dominated by the approximation of the oxygen atoms involved in the proton transfer, while electronic rearrangements depend on the almost formation of the molecule of water just before its separation from the molecular matrix. Electronic rearrangements do not need a significant charge transfer, possibly because the process is slightly asynchronous because rupture and formation of bonds occur almost at the same time.

#### **ASSOCIATED CONTENT**

#### **Supporting Information**

Additional information is available free of charge. This material contains: A) A detailed development for the determination of degrees of rate control; B) The optimized geometries of each transition state of the profile; C) DFT energy through the intrinsic reaction coordinate (IRC) for each step of the mechanism.

#### **AUTHOR INFORMATION**

#### **Corresponding Author**

\* E-mail: jrmora@usfq.edu.ec

#### ACKNOWLEDGMENT

Calculations reported in the present study were performed by employing the computational resources of the USFQ's High Performance Computing System (HPC-USFQ). The authors express our gratitude to the institutions that supported this research: Universidad San Francisco de Quito through the Grupo de Química Teórica (QCT) and the Instituto de Simulación Computacional (ISC).

#### REFERENCES

DePuy, C. H.; King, R. W. Pyrolytic CIS eliminations. Chem. Rev. 1960, 60 (5),
 431–457. https://doi.org/10.1021/cr60207a001.

(2) Tosta, M. M.; Mora, J. R.; Cordova, T.; Chuchani, G. Quantum chemical calculations of the homogeneous, unimolecular, gas-phase elimination kinetics of primary alkyl acetates and (dimethylamino)alkyl acetates: Neighboring group participation in 4-(dimethylamino)-1-butyl acetate. J. Mol. Struct. THEOCHEM 2010, 952 (1–3), 46–55. https://doi.org/10.1016/j.theochem.2010.04.017.

(3) Mora, J. R.; Tosta, M.; Domínguez, R. M.; Herize, A.; Barroso, J.; Córdova, T.; Chuchani, G.; 1Centro. Joint theoretical and experimental study of the gas-phase elimination kinetics of tert-butyl ester of carbamic, N,N-dimethylcarbamic, N-hydroxycarbamic acids and 1-(tert-butoxycarbonyl)-imidazole. J. Phys. Org. Chem. 2007, 20, 1021–1031. https://doi.org/10.1002/poc.1248.

(4) Brea, O.; Loroño, M.; Marquez, E.; Mora, J. R.; Cordova, T.; Chuchani, G. Theoretical study of methoxy group influence in the gas-phase elimination kinetics of methoxyalkyl chlorides. Int. J. Quantum Chem. 2012, 112 (12), 2504–2514. https://doi.org/10.1002/qua.23244.

(5) Mora, J. R.; Domínguez, R. M.; Herize, A.; Tosta, M.; Chuchani, G. Kinetics and mechanisms of gas-phase elimination of 2,2-diethoxyethyl amine and 2,2-diethoxy-N,n-diethylethanamine. J. Phys. Org. Chem. 2008, 21 (5), 359–364. https://doi.org/10.1002/poc.1339.

(6) Wanjun, T.; Cunxin, W.; Donghua, C. An investigation of the pyrolysis kinetics of some aliphatic amino acids. J. Anal. Appl. Pyrolysis 2006, 75 (1), 49–53. https://doi.org/10.1016/j.jaap.2005.04.003. (7) Sharma, R. K.; Chan, W. G.; Wang, J.; Waymack, B. E.; Wooten, J. B.; Seeman,
J. I.; Hajaligol, M. R. On the role of peptides in the pyrolysis of amino acids. J. Anal.
Appl. Pyrolysis 2004, 72 (1), 153–163. https://doi.org/10.1016/j.jaap.2004.03.009.

(8) Chiavari, G.; Galletti, G. C. Pyrolysis-gas chromatography/mass spectrometry of amino acids. J. Anal. Appl. Pyrolysis 1992, 24 (2), 123–137. https://doi.org/10.1016/0165-2370(92)85024-F.

(9) Sharma, R. K.; Chan, W. G.; Hajaligol, M. R. Product compositions from pyrolysis of some aliphatic alfa-amino acids. J. Anal. Appl. Pyrolysis 2006, 75 (2), 69–81. https://doi.org/10.1016/j.jaap.2005.03.010.

(10) Kibet, J. K.; Khachatryan, L.; Dellinger, B. Molecular products from the thermal degradation of glutamic acid. J. Agric. Food Chem. 2013, 61 (32), 7696–7704. https://doi.org/10.1021/jf401846t.

(11) Li, J.; Wang, Z.; Yang, X.; Hu, L.; Liu, Y.; Wang, C. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR. J. Anal. Appl. Pyrolysis 2007, 80
(1), 247–253. https://doi.org/10.1016/j.jaap.2007.03.001.

(12) Hao, J.; Guo, J.; Ding, L.; Xie, F.; Xia, Q.; Xie, J. TG-FTIR, Py-twodimensional GC-MS with heart-cutting and LC-MS/MS to reveal hydrocyanic acid formation mechanisms during glycine pyrolysis. J. Therm. Anal. Calorim. 2014, 115 (1), 667–673. https://doi.org/10.1007/s10973-013-3214-0.

(13) Sharma, R. K.; Chan, W. G.; Seeman, J. I.; Hajaligol, M. R. Pyrolysis of α-Amino Acids. Fuel Chem. Div. Prepr. 2002, 47 (1), 398–399. (14) Ren, Q.; Zhao, C. Evolution of fuel-N in gas phase during biomass pyrolysis.
Renew. Sustain. Energy Rev. 2015, 50, 408–418.
https://doi.org/10.1016/j.rser.2015.05.043.

(15) Wang, H.; GUO, J.; XIA, Q.; XIE, Y.; GUO, J. Study on formation mechanisms of ammonia and hydrogen cyanide during pyrolysis of proline. Tob. Sci. Technol. 2015, 48 (1).

(16) Rawadieh, S.; Altarawneh, I.; Alateyat, H. B.; Altarawneh, M. Theoretical study on the unimolecular decomposition of proline. Comput. Theor. Chem. 2013, 1018, 45–49. https://doi.org/10.1016/j.comptc.2013.05.034.

(17) Jones, R. O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87 (3). https://doi.org/10.1103/RevModPhys.87.897.

(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;
Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.;
Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.;
Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.;
Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E.;
Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V.
N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant,
J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.;
Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.;
Fox, D. J. Gaussian 16, revision A. 03. Gaussian Inc., Wallingford CT 2016.

(19) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with improved dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. https://doi.org/10.1039/b810189b.

(20) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72
(1), 650–654. https://doi.org/10.1063/1.438955.

(21) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80
(7), 3265–3269. https://doi.org/10.1063/1.447079.

(22) Funes-Ardoiz, I.; Paton, R. S. GoodVibes: version 2.0.3. 2018. https://doi.org/10.5281/ZENODO.1435820.

(23) Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. - A Eur. J. 2012, 18 (32), 9955–9964. https://doi.org/10.1002/chem.201200497.

(24) Motagamwala, A. H.; Dumesic, J. A. Analysis of reaction schemes using maximum rates of constituent steps. Proc. Natl. Acad. Sci. 2016, 113 (21), E2879–E2888. https://doi.org/10.1073/pnas.1605742113.

(25) Jaque, P.; Toro-Labbé, A.; Politzer, P.; Geerlings, P. Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chem. Phys. Lett. 2008, 456 (4–6), 135–140. https://doi.org/10.1016/j.cplett.2008.03.054. (26) Martínez, J.; Toro-Labbé, A. The reaction force. A scalar property to characterize reaction mechanisms. J. Math. Chem. 2009, 45 (4), 911–927. https://doi.org/10.1007/s10910-008-9478-0.

(27) Foster, J. P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102 (24), 7211–7218. https://doi.org/10.1021/ja00544a007.

(28) Wiberg, K. B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968, 24
(3), 1083–1096. https://doi.org/10.1016/0040-4020(68)88057-3.

(29) Moyano, A.; Pericàs, M. A.; Valentí, E. A Theoretical Study on the Mechanism of the Thermal and the Acid-Catalyzed Decarboxylation of 2-Oxetanones (beta-Lactones). J. Org. Chem. 1989, 54 (3), 573–582.

## SUPPORTING INFORMATION

#### A. Development of the determination of degrees of rate control

According to Motagamwala<sup>1</sup>, degrees of rate control ( $X_{RC}$ ) for transition states can be calculated by the following procedure:

Considering the following four-step reaction scheme:

(1) 
$$2R \xrightarrow[k_{-1}]{k_{-1}} INT1$$
  
(2)  $INT1 \xrightarrow[k_{-2}]{k_{-2}} INT2 + H_2O$   
(3)  $INT2 \xrightarrow[k_{-3}]{k_{-3}} INT3$   
(4)  $INT3 \xrightarrow[k_{-4}]{k_{-4}} P + H_2O$ 

The reversibility of step i (Zi) is defined as the rate of the reverse reaction divided by the rate of the forward reaction:

$$Z_{1} = \frac{r_{-1}}{r_{1}} = \frac{k_{-1}[INT1]}{k_{1}[R]^{2}} = \frac{[INT1]}{K_{eq,1}[R]^{2}}$$

$$Z_{2} = \frac{r_{-2}}{r_{2}} = \frac{k_{-2}[INT2][H_{2}O]}{k_{2}[INT1]} = \frac{[INT2][H_{2}O]}{K_{eq,2}[INT1]}$$

$$Z_{3} = \frac{r_{-3}}{r_{3}} = \frac{k_{-3}[INT3]}{k_{3}[INT2]} = \frac{[INT3]}{K_{eq,3}[INT2]}$$

$$Z_{4} = \frac{r_{-4}}{r_{4}} = \frac{k_{-4}[P][H_{2}O]'}{k_{4}[INT3]} = \frac{[P][H_{2}O]'}{K_{eq,4}[INT3]}$$

From these equations, concentrations of the intermediates can be obtained:

$$[INT1] = Z_1 K_{eq,1} [R]^2$$
$$[INT2] = Z_2 K_{eq,2} \frac{[INT1]}{[H_2 O]} = Z_1 Z_2 K_{eq,1} K_{eq,2} \frac{[R]^2}{[H_2 O]}$$
$$[INT3] = Z_3 K_{eq,3} [INT2] = Z_1 Z_2 Z_3 K_{eq,1} K_{eq,2} K_{eq,3} \frac{[R]^2}{[H_2 O]}$$

The reversibility of the overall reaction ( $\beta$ ) is also obtained:

$$\begin{split} \beta &= Z_1 Z_2 Z_3 Z_4 = \frac{[INT1]}{K_{eq,1} [R]^2} \frac{[INT2] [H_2 O]}{K_{eq,2} [INT1]} \frac{[INT3]}{K_{eq,3} [INT2]} \frac{[P] [H_2 O]'}{K_{eq,4} [INT3]} \\ \beta &= \frac{[P] [H_2 O] [H_2 O]'}{K_{eq,1} K_{eq,2} K_{eq,3} K_{eq,4} [R]^2} \end{split}$$

After that, it is possible to write expressions for the net rate of each step, considering that the net rates of all elementary steps are equal to the net rate of the overall reaction:

$$r = r_{1} - r_{-1} = r_{1}(1 - Z_{1}) = k_{1}[R]^{2}(1 - Z_{1})$$

$$r = r_{2} - r_{-2} = r_{2}(1 - Z_{2}) = k_{2}[INT1](1 - Z_{2}) = K_{eq,1}k_{2}[R]^{2}Z_{1}(1 - Z_{2})$$

$$r = r_{3} - r_{-3} = r_{3}(1 - Z_{3}) = k_{3}[INT2](1 - Z_{3}) = K_{eq,1}K_{eq,2}k_{3}\frac{[R]^{2}}{[H_{2}O]}Z_{1}Z_{2}(1 - Z_{3})$$

$$r = r_{4} - r_{-4} = r_{4}(1 - Z_{4}) = k_{4}[INT3](1 - Z_{4}) = K_{eq,1}K_{eq,2}K_{eq,3}k_{4}\frac{[R]^{2}}{[H_{2}O]}Z_{1}Z_{2}Z_{3}\left(1 - \frac{\beta}{Z_{1}Z_{2}Z_{3}}\right)$$

Where the concentrations of the intermediates have been replaced by their corresponding expressions in terms of concentrations of reactive, product, and byproducts.  $Z_4$  was also replaced by the reversibility of the overall reaction ( $\beta$ ) and the reversibilities of steps 1, 2, and 3.

It can be noticed that the net rates are controlled by the four following lumped parameters, Ci:

$$C_{1} = k_{1} = \nu^{\dagger} k_{TS_{1}}^{\dagger} = \frac{k_{B}T}{h} K_{eqR \to TS_{1}}^{\dagger}$$

$$C_{2} = K_{eq,1} k_{2} = \nu^{\dagger} K_{eq,1} k_{TS_{2}}^{\dagger} = \frac{k_{B}T}{h} K_{eqR \to TS_{2}}^{\dagger}$$

$$C_{3} = K_{eq,1} K_{eq,2} k_{3} = \nu^{\dagger} K_{eq,1} K_{eq,2} k_{TS_{3}}^{\dagger} = \frac{k_{B}T}{h} K_{eqR \to TS_{3}}^{\dagger}$$

$$C_{4} = K_{eq,1} K_{eq,2} K_{eq,3} k_{4} = \nu^{\dagger} K_{eq,1} K_{eq,2} K_{eq,3} k_{TS_{4}}^{\dagger} = \frac{k_{B}T}{h} K_{eqR \to TS_{4}}^{\dagger}$$

Where the expression  $k_i = v^{\dagger} k_{TS_i}^{\dagger}$  has been used according to transition state theory: the rate constant of step i is expressed in terms of a frequency factor ( $v^{\dagger} = k_B T/h$ ) times the equilibrium constant for the formation of the transition state.

The condensation of all constants into  $K_{eqR \to TS_i}^{\dagger}$  represents the equilibrium constant for the formation of the transition state for step i from the reactant R.

To assess if an elementary step may contribute significantly to a reaction scheme, the maximum rate of this step can be estimated. This maximum rate corresponds to the case where the reversibility of step i is equal to the overall reversibility ( $\beta$ ), while the rest of reversibilities of the other steps are equal to zero. Thus, if  $Z_i = \beta$  and  $Z_{j \neq i} = 1$ :

$$r_{1} = \frac{k_{B}T}{h} K_{eqR \to TS_{1}}^{\dagger} [R]^{2} (1 - \beta) = r_{max,1} (1 - \beta)$$

$$r_{2} = \frac{k_{B}T}{h} K_{eqR \to TS_{2}}^{\dagger} [R]^{2} (1 - \beta) = r_{max,2} (1 - \beta)$$

$$r_{3} = \frac{k_{B}T}{h} K_{eqR \to TS_{3}}^{\dagger} \frac{[R]^{2}}{[H_{2}O]} (1 - \beta) = r_{max,3} (1 - \beta)$$

$$r_{4} = \frac{k_{B}T}{h} K_{eqR \to TS_{4}}^{\dagger} \frac{[R]^{2}}{[H_{2}O]} (1 - \beta) = r_{max,4} (1 - \beta)$$

Here, it can be generalized an expression for  $r_{max,i}$ , as follows:

$$r_{max,i} = \frac{k_B T}{h} K_{eq,A \to TS_i}^{\dagger} [CF] \tag{1}$$

Where [CF] represents the concentration factor which is different for each step, as can be seen above in each specific expression of  $r_{max,i}$ .

Now, in order to estimate the degrees of rate control for each step, it is necessary to solve the expressions of reversibilities ( $Z_i$ ) in terms of the maximum rates ( $r_{max,i}$ ).

Noticing that the net rates of all steps are equal to the net rate of the overall reaction, we have:

$$r = r_{max,1}(1 - Z_1)$$

$$r = r_{max,2}Z_1(1 - Z_2)$$

$$r = r_{max,3}Z_1Z_2(1 - Z_3)$$

$$r = r_{max,4}Z_1Z_2Z_3\left(1 - \frac{\beta}{Z_1Z_2Z_3}\right)$$

The following expressions for reversibilities can be obtained:

$$Z_{1} = \frac{r_{max,1}r_{max,2}r_{max,3} + \beta r_{max,2}r_{max,3}r_{max,4} + r_{max,3}r_{max,4}r_{max,1} + r_{max,4}r_{max,1}r_{max,2}}{r_{max,1}r_{max,2}r_{max,3} + r_{max,2}r_{max,3}r_{max,4} + r_{max,3}r_{max,4}r_{max,1} + r_{max,4}r_{max,1}r_{max,2}}$$

$$Z_{2} = \frac{r_{max,1}r_{max,2}r_{max,3} + \beta r_{max,2}r_{max,3}r_{max,4} + \beta r_{max,3}r_{max,4}r_{max,1} + r_{max,4}r_{max,1}r_{max,2}}{r_{max,1}r_{max,2}r_{max,3} + \beta r_{max,2}r_{max,3}r_{max,4} + r_{max,3}r_{max,4}r_{max,1} + r_{max,4}r_{max,1}r_{max,2}}$$

$$Z_{3} = \frac{r_{max,1}r_{max,2}r_{max,3} + \beta r_{max,2}r_{max,3}r_{max,4} + \beta r_{max,3}r_{max,4}r_{max,1} + \beta r_{max,4}r_{max,1}r_{max,2}}{r_{max,1}r_{max,2}r_{max,3} + \beta r_{max,2}r_{max,3}r_{max,4} + \beta r_{max,3}r_{max,4}r_{max,1} + r_{max,4}r_{max,1}r_{max,2}}$$

The next phase is to express the degree of rate control in terms of  $r_{max,i}$ . Considering the definition of the degree of rate control for step i ( $X_{RC,i}$ ):

$$X_{RC,i} = \left(\frac{\partial r}{\partial k_i}\right) \frac{k_i}{r} \Big|_{K_{eq,i}k_{j\neq i}}$$
(2)

While the sensitivity,  $s_i$ , for each step is defined as:

$$s_i = \left(\frac{\partial r}{\partial k_i}\right) \frac{k_i}{r} \Big|_{k_{j \neq i}} \tag{3}$$

Thus, the degree of rate control can be expressed as follows:

$$X_{RC,i} = s_i (1 - Z_i) \tag{4}$$

And, for each step of the reaction scheme, degrees of rate control in terms of the sensitivity can be written as:

$$\begin{aligned} X_{RC,1} &= s_1(1 - Z_1) \\ X_{RC,2} &= s_1 Z_1 (1 - Z_2) \\ X_{RC,3} &= s_1 Z_1 Z_2 (1 - Z_3) \\ X_{RC,4} &= s_1 Z_1 Z_2 Z_3 \left( 1 - \frac{\beta}{Z_1 Z_2 Z_3} \right) \end{aligned}$$

Finally, the values of  $Z_i$  can then be expressed in terms of  $r_{max,i}$ , and the value of  $s_1$  is obtained by requiring that the sum of  $X_{RC,i}$  be equal to unity, leading to the following result:

$$X_{RC,1} = \frac{r_{max,2}r_{max,3}r_{max,4}}{r_{max,2}r_{max,3}r_{max,4} + r_{max,1}r_{max,3}r_{max,4} + r_{max,1}r_{max,2}r_{max,4} + r_{max,1}r_{max,2}r_{max,3}r_{max,3}}$$
$$X_{RC,2} = \frac{r_{max,1}r_{max,3}r_{max,4}}{r_{max,2}r_{max,3}r_{max,4} + r_{max,1}r_{max,2}r_{max,4} + r_{max,1}r_{max,2}r_{max,3}r_{max,4}}$$

Which can be generalized as follows:

$$X_{RC,i} = \frac{\prod_{j=1,j\neq i}^{n} r_{max,j}}{\sum_{j=k}^{n} (\prod_{j=1,j\neq k}^{n} r_{max,j})}$$
(5)

Therefore, by determining the rate constants from values of enthalpy and entropy from DFT calculations, and using the presented equations, results for degrees of rate control for the present reaction scheme are shown in Table 1. Due to the fact that the process is carried oud in gas-phase, concentrations [R] and [H<sub>2</sub>O] are replaced by the partial pressures  $P_R$  and  $P_{H2O}$ , and both are considered as 1 atm.

 Table 1. Rate constants, equilibrium constants, maximum rates, and degrees of rate-control for elementary steps on the mechanism of formation of 2,5-diketopiperazine from pyrolysis of proline

| i  | $\frac{k_i}{\frac{k_B T}{h}} e^{-\frac{\Delta G_i^{qh}}{RT}}$ (s <sup>-1</sup> ) | $K_{eq,i}$<br>$k_i/k_{-1}$<br>(dimensionless) | Expression for $r_{max,i}$                    | $r_{max,i}$<br>eq.(2)<br>(s <sup>-1</sup> ) | X <sub>RC,i</sub><br>eq.(1)<br>(dimensionless) |
|----|----------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|
| 1  | $1.10 \times 10^{-10}$                                                           | $4.59 \times 10^{-10}$                        | $k_1[R]^2$                                    | $1.10 \times 10^{-10}$                      | $4.14 \times 10^{-3}$                          |
| -1 | $2.39 \times 10^{-1}$                                                            |                                               |                                               |                                             |                                                |
| 2  | $9.94 \times 10^{-4}$                                                            | 9.81×10 <sup>6</sup>                          | $k_{eq,1}k_2[R]^2$                            | 4.56×10 <sup>-13</sup>                      | 9.96×10 <sup>-1</sup>                          |
| -2 | $1.01 \times 10^{-10}$                                                           |                                               |                                               |                                             |                                                |
| 3  | $1.82 \times 10^{-1}$                                                            | $5.03 \times 10^{0}$                          | $k_{eq,1}k_{eq,2}k_3 [R]^2 [H_2 O]^{-1}$      | $8.22 \times 10^{-2}$                       | 5.53×10 <sup>-12</sup>                         |
| -3 | $3.63 \times 10^{0}$                                                             |                                               |                                               |                                             |                                                |
| 4  | 1.83×10 <sup>3</sup>                                                             | 5.19×10 <sup>11</sup>                         | $k_{eq,1}k_{eq,2}k_{eq,3}k_4[R]^2[H_2O]^{-1}$ | 4.14×10 <sup>1</sup>                        | $1.10 \times 10^{-14}$                         |
| -4 | 3.53×10 <sup>-9</sup>                                                            |                                               |                                               |                                             |                                                |

Note: For the determination of rate constants  $(k_i)$ , quasi-harmonic corrected Gibbs free energies  $(\Delta G_i^{qh})$  were obtained by using the Goodvibes v 2.0.3 program. The temperature (T) used in calculations was 573.15 K.  $k_B$  and h are the Boltzman's and Plank's constants, respectively.

#### B. Cartesian coordinates for each of the optimized transition states

Geometry of transition states were optimized by Gaussian calculations<sup>2</sup> at DFT wb97xd/6-311g(d,p) level of theory. The corresponding Cartesian coordinates of each structure, denoted as  $TS_i$  (see Scheme 1 in the main document), are presented as follows:

TS1 TS2 Coordinates (Angstroms) Coordinates (Angstroms) Atom Atom symbol symbol Х Y Ζ Х Y Ζ Ν 1.758733 0.386769 1.036967 Ν -1.889674 0.483554 -0.897440

| C | 3.153479  | 0.865096  | 1.091220  |
|---|-----------|-----------|-----------|
| С | 1.425397  | -0.015268 | -0.330899 |
| Η | 3.739095  | 0.221833  | 1.756431  |
| Η | 3.210116  | 1.883068  | 1.486321  |
| С | 3.671015  | 0.769676  | -0.350511 |
| С | 2.787437  | -0.318044 | -0.959824 |
| Η | 0.945063  | 0.787049  | -0.908766 |
| С | 0.529263  | -1.261359 | -0.334767 |
| Η | 4.736461  | 0.538731  | -0.400850 |
| Η | 3.507498  | 1.717449  | -0.873715 |
| Η | 3.115960  | -1.311942 | -0.643905 |
| Η | 2.742700  | -0.310009 | -2.047456 |
| 0 | 0.834429  | -2.058828 | 0.738900  |
| 0 | 0.367439  | -1.877355 | -1.492152 |
| Ν | -1.092977 | -0.922774 | -0.181628 |
| С | -1.850407 | -1.273930 | 1.034510  |
| С | -1.682102 | 0.275007  | -0.766830 |
| Η | -1.313809 | -0.910370 | 1.911128  |
| Η | -1.920455 | -2.358422 | 1.100443  |
| С | -3.219383 | -0.580028 | 0.870998  |
| С | -3.187276 | 0.032684  | -0.540340 |
| Η | -1.410222 | 0.315185  | -1.826335 |
| С | -1.280979 | 1.574111  | -0.074236 |
| Η | -3.332443 | 0.204462  | 1.620685  |
| Η | -4.051327 | -1.275058 | 0.986994  |
| Η | -3.789474 | 0.939309  | -0.630061 |
| Η | -3.535395 | -0.683769 | -1.287527 |
| 0 | -0.919819 | 1.655936  | 1.065342  |
| 0 | -1.427054 | 2.684871  | -0.818521 |
| Η | 1.091682  | 1.051422  | 1.405095  |
| Η | -0.872333 | -1.715263 | -1.081538 |
| Η | -1.690469 | 2.458567  | -1.714334 |
| Η | 1.248446  | -1.444869 | 1.375540  |
|   |           |           |           |

#### TS3

| Atom  | Coordi    | nates (Angs | troms)    |
|-------|-----------|-------------|-----------|
| symbo | I X       | Y           | Z         |
| N     | -1.211564 | -0.482878   | 0.214628  |
| С     | -2.524416 | -1.065533   | -0.073965 |
| С     | -1.188364 | 0.804343    | -0.496583 |
| Η     | -2.753191 | -1.840610   | 0.655608  |
| Н     | -2.500658 | -1.528764   | -1.066354 |
| С     | -3.469411 | 0.153957    | -0.030178 |
| С     | -2.551712 | 1.397573    | -0.175686 |
| Н     | -1.108748 | 0.592185    | -1.574403 |
| С     | 0.047490  | 1.587997    | -0.072719 |
| Н     | -4.014147 | 0.186574    | 0.914039  |
| Н     | -4.208638 | 0.095967    | -0.830170 |
| Н     | -2.484038 | 1.961348    | 0.755719  |
| Н     | -2.884524 | 2.086613    | -0.951150 |
| 0     | 0.011998  | 2.739454    | 0.311583  |
| Ν     | 1.169745  | 0.840337    | -0.169955 |
| С     | 2.471368  | 1.303258    | 0.300093  |
| С     | 1.171469  | -0.564396   | -0.576190 |
| Н     | 2.482243  | 1.322274    | 1.394790  |
| Н     | 2.666411  | 2.312790    | -0.063237 |
| С     | 3.422128  | 0.244990    | -0.255288 |

\_\_\_\_\_

| С | -3.083261 | 1.245428  | -0.541401 |
|---|-----------|-----------|-----------|
| С | -1.332926 | 0.022578  | 0.374498  |
| Н | -3.712579 | 1.411415  | -1.417799 |
| Н | -2.824195 | 2.227179  | -0.116499 |
| С | -3.747109 | 0.359825  | 0.521058  |
| С | -2.573550 | -0.406790 | 1.175056  |
| Н | -0.837959 | 0.839953  | 0.917158  |
| С | -0.300442 | -1.100586 | 0.132322  |
| Н | -4.440102 | -0.338504 | 0.046768  |
| Н | -4.318041 | 0.948972  | 1.240189  |
| Η | -2.710191 | -1.486352 | 1.116959  |
| Η | -2.449481 | -0.169376 | 2.231552  |
| 0 | -0.948983 | -1.935691 | -1.093834 |
| 0 | -0.318532 | -2.134760 | 0.951327  |
| Ν | 0.946163  | -0.604386 | -0.357622 |
| С | 1.922029  | -1.637556 | -0.736376 |
| С | 1.602140  | 0.440576  | 0.409350  |
| Η | 2.188151  | -1.517139 | -1.791510 |
| Η | 1.491030  | -2.626435 | -0.594070 |
| С | 3.123218  | -1.393506 | 0.169918  |
| С | 3.113058  | 0.124744  | 0.306513  |
| Н | 1.312099  | 0.405054  | 1.471802  |
| С | 1.305366  | 1.851599  | -0.098510 |
| Н | 4.059480  | -1.776832 | -0.238990 |
| Η | 2.945530  | -1.860794 | 1.142619  |
| Η | 3.530464  | 0.590384  | -0.591710 |
| Η | 3.675148  | 0.488605  | 1.169917  |
| 0 | 0.623311  | 2.132515  | -1.039363 |
| 0 | 1.895227  | 2.830199  | 0.619769  |
| Η | -1.200038 | 1.035043  | -1.400844 |
| Η | -0.983649 | -2.561745 | -0.134303 |
| Η | 2.416549  | 2.453435  | 1.333603  |
| Η | -1.716966 | -1.393023 | -1.377162 |
|   |           |           |           |

#### TS4

| Atom<br>symbo | Coordi<br>I X | nates (Angs<br>Y | troms)<br>Z |
|---------------|---------------|------------------|-------------|
| <br>N         | -1 208425     | -0 565393        | -0 494953   |
| C             | -2.479649     | -1.091495        | 0.023185    |
| Č             | -1.230228     | 0.903461         | -0.615990   |
| Н             | -2.322166     | -1.374415        | 1.067298    |
| Н             | -2.785650     | -1.969429        | -0.544503   |
| С             | -3.427096     | 0.098568         | -0.109056   |
| С             | -2.511815     | 1.304257         | 0.111365    |
| Н             | -1.291093     | 1.169523         | -1.679872   |
| С             | 0.025725      | 1.569916         | -0.052059   |
| Н             | -4.243184     | 0.050049         | 0.612054    |
| Н             | -3.863260     | 0.128389         | -1.112295   |
| Н             | -2.288206     | 1.434928         | 1.172406    |
| Η             | -2.916559     | 2.242565         | -0.264809   |
| 0             | -0.014150     | 2.642371         | 0.515605    |
| Ν             | 1.164789      | 0.881723         | -0.284952   |
| С             | 2.440090      | 1.262109         | 0.312435    |
| С             | 1.164079      | -0.491183        | -0.778121   |
| Н             | 2.356436      | 1.245608         | 1.405142    |
| Н             | 2.715390      | 2.274162         | 0.013965    |
| С             | 3.391485      | 0.183796         | -0.205620   |

| С | 2.583120  | -1.036351 | -0.219878 | С | 2.503825  | -1.061247 | -0.314741 |
|---|-----------|-----------|-----------|---|-----------|-----------|-----------|
| Н | 0.987851  | -0.633074 | -1.661273 | Н | 1.111849  | -0.500229 | -1.877754 |
| С | 0.094447  | -1.361528 | 0.202234  | С | -0.072904 | -1.217756 | -0.301297 |
| Η | 4.338276  | 0.163319  | 0.330579  | Н | 4.246514  | 0.033846  | 0.454129  |
| Η | 3.698133  | 0.495298  | -1.284235 | Н | 3.772393  | 0.466813  | -1.191305 |
| Н | 2.544543  | -1.442490 | 0.793805  | Н | 2.367402  | -1.526292 | 0.661484  |
| Η | 2.944072  | -1.811140 | -0.896605 | Н | 2.888933  | -1.811773 | -1.003907 |
| 0 | 0.250854  | -1.397798 | 1.513736  | 0 | -0.084399 | -2.526739 | -0.178670 |
| 0 | -0.131515 | -2.606330 | -0.383258 | 0 | 0.184555  | -1.300202 | 1.693039  |
| Η | -0.806811 | -0.588836 | 1.353706  | Н | 0.165148  | -2.448073 | 0.862448  |
| Η | 0.004550  | -2.542138 | -1.331044 | Н | 0.882370  | -0.915975 | 2.224474  |
|   |           |           |           |   |           |           |           |

## C. Electronic energy through the intrinsic reaction coordinate (IRC) for each step of the mechanism

Gaussian calculations<sup>2</sup> to determine the electronic energy from each transition state to both, forward and reverse directions over the corresponding reaction coordinate, were developed. The normalized data is presented, as follows:

|            |            | - 0.015117 | 2.186372 | 0.032934 | 5.018147 |
|------------|------------|------------|----------|----------|----------|
| Intrinsic  | Electronic | 0.015657   | 2.268130 | 0.033473 | 5.108417 |
| Coordinate | Energy     | 0.016197   | 2.350140 | 0.034013 | 5.198965 |
|            | (kJ/mol)   | 0.016737   | 2.432400 | 0.034553 | 5.289794 |
|            |            | - 0.017276 | 2.514909 | 0.035093 | 5.380902 |
| 0.000000   | 0.000000   | 0.017816   | 2.597667 | 0.035633 | 5.472290 |
| 0.000540   | 0.074619   | 0.018356   | 2.680675 | 0.036173 | 5.563965 |
| 0.001080   | 0.149499   | 0.018896   | 2.763935 | 0.036713 | 5.655923 |
| 0.001619   | 0.224635   | 0.019436   | 2.847441 | 0.037253 | 5.748170 |
| 0.002160   | 0.300032   | 0.019976   | 2.931200 | 0.037792 | 5.840703 |
| 0.002699   | 0.375688   | 0.020516   | 3.015211 | 0.038332 | 5.933528 |
| 0.003239   | 0.451602   | 0.021056   | 3.099471 | 0.038872 | 6.026644 |
| 0.003779   | 0.527773   | 0.021596   | 3.183981 | 0.039412 | 6.120048 |
| 0.004319   | 0.604201   | 0.022135   | 3.268745 | 0.039952 | 6.213750 |
| 0.004859   | 0.680889   | 0.022676   | 3.353759 | 0.040492 | 6.307745 |
| 0.005399   | 0.757832   | 0.023215   | 3.439027 | 0.041032 | 6.402038 |
| 0.005938   | 0.835032   | 0.023755   | 3.524547 | 0.041572 | 6.496626 |
| 0.006479   | 0.912490   | 0.024295   | 3.610322 | 0.042112 | 6.591512 |
| 0.007018   | 0.990202   | 0.024835   | 3.696352 | 0.042652 | 6.686697 |
| 0.007558   | 1.068172   | 0.025375   | 3.782637 | 0.043192 | 6.782184 |
| 0.008098   | 1.146396   | 0.025915   | 3.869181 | 0.043731 | 6.877970 |
| 0.008638   | 1.224877   | 0.026455   | 3.955980 | 0.044271 | 6.974055 |
| 0.009178   | 1.303611   | 0.026995   | 4.043039 | 0.044811 | 7.070445 |
| 0.009718   | 1.382599   | 0.027534   | 4.130358 | 0.045351 | 7.167135 |
| 0.010258   | 1.461839   | 0.028074   | 4.217939 | 0.045891 | 7.264128 |
| 0.010798   | 1.541334   | 0.028614   | 4.305783 | 0.046431 | 7.361424 |
| 0.011338   | 1.621083   | 0.029154   | 4.393890 | 0.046971 | 7.459024 |
| 0.011877   | 1.701085   | 0.029694   | 4.482261 | 0.047511 | 7.556924 |
| 0.012418   | 1.781336   | 0.030234   | 4.570901 | 0.048050 | 7.655131 |
| 0.012957   | 1.861842   | 0.030774   | 4.659808 | 0.048591 | 7.753640 |
| 0.013497   | 1.942597   | 0.031314   | 4.748983 | 0.049130 | 7.852450 |
| 0.014037   | 2.023604   | 0.031854   | 4.838432 | 0.049670 | 7.951563 |
| 0.014577   | 2.104863   | 0.032394   | 4.928153 | 0.050210 | 8.050980 |

#### Step 1: $2R \rightarrow TS1 \rightarrow INT1$

| 0.050750  | 8.150697   | 0.083144  | 14.665111 | 0.115538 | 22.294727  |
|-----------|------------|-----------|-----------|----------|------------|
| 0.051290  | 8.250715   | 0.083684  | 14.782660 | 0.116077 | 22.431805  |
| 0.051830  | 8.351035   | 0.084223  | 14.900521 | 0.116617 | 22.569202  |
| 0.052369  | 8.451655   | 0.084764  | 15.018700 | 0.117157 | 22.706920  |
| 0.052910  | 8.552574   | 0.085303  | 15.137197 | 0.117697 | 22.844956  |
| 0.053450  | 8.653790   | 0.085843  | 15.256014 | 0.118237 | 22.983315  |
| 0.053989  | 8.755305   | 0.086383  | 15.375149 | 0.118777 | 23.121991  |
| 0.054530  | 8.857116   | 0.086923  | 15.494604 | 0.119317 | 23.260990  |
| 0.055069  | 8 959225   | 0.087463  | 15 614381 | 0 119857 | 23 400310  |
| 0.055609  | 9.061627   | 0.088003  | 15 734480 | 0 120397 | 23 539949  |
| 0.056149  | 9 164324   | 0.088543  | 15 854904 | 0.120936 | 23.679915  |
| 0.056689  | 0.267314   | 0.0800943 | 15.075653 | 0.120/30 | 23.077713  |
| 0.050089  | 9.207314   | 0.089083  | 16.006725 | 0.121477 | 23.820201  |
| 0.057760  | 9.570590   | 0.009023  | 16 218126 | 0.122010 | 23.900812  |
| 0.037709  | 9.474107   | 0.090102  | 16.220852 | 0.122330 | 24.101740  |
| 0.038308  | 9.376029   | 0.090702  | 10.339632 | 0.123090 | 24.243008  |
| 0.038849  | 9.082182   | 0.091242  | 16.401909 | 0.125050 | 24.584590  |
| 0.059388  | 9.786622   | 0.091782  | 16.584291 | 0.1241/6 | 24.526513  |
| 0.059928  | 9.891348   | 0.092322  | 16.707002 | 0.124/16 | 24.668/5/  |
| 0.060468  | 9.996363   | 0.092862  | 16.830040 | 0.125256 | 24.811332  |
| 0.061008  | 10.101661  | 0.093402  | 16.953413 | 0.125796 | 24.954238  |
| 0.061548  | 10.207246  | 0.093942  | 17.077111 | 0.126335 | 25.097477  |
| 0.062088  | 10.313114  | 0.094481  | 17.201142 | 0.126875 | 25.241050  |
| 0.062628  | 10.419265  | 0.095022  | 17.325504 | 0.127415 | 25.384957  |
| 0.063168  | 10.525698  | 0.095561  | 17.450197 | 0.127955 | 25.529204  |
| 0.063707  | 10.632414  | 0.096101  | 17.575218 | 0.128495 | 25.673788  |
| 0.064247  | 10.739413  | 0.096641  | 17.700572 | 0.129035 | 25.818710  |
| 0.064788  | 10.846694  | 0.097181  | 17.826260 | 0.129575 | 25.963976  |
| 0.065327  | 10.954256  | 0.097721  | 17.952276 | 0.130115 | 26.109584  |
| 0.065867  | 11.062101  | 0.098261  | 18.078626 | 0.130655 | 26.255538  |
| 0.066407  | 11.170224  | 0.098801  | 18.205304 | 0.131195 | 26.401836  |
| 0.066947  | 11.278631  | 0.099341  | 18.332315 | 0.131735 | 26.548484  |
| 0.067487  | 11.387319  | 0.099881  | 18.459657 | 0.132274 | 26.695480  |
| 0.068027  | 11.496287  | 0.100420  | 18.587327 | 0.132814 | 26.842826  |
| 0.068566  | 11.605540  | 0.100961  | 18.715331 | 0.133354 | 26.990523  |
| 0.069107  | 11.715073  | 0.101500  | 18.843662 | 0.133894 | 27.138575  |
| 0.069646  | 11.824890  | 0.102040  | 18.972325 | 0.134434 | 27.286984  |
| 0.070186  | 11 934990  | 0 102580  | 19 101319 | 0 134974 | 27 435748  |
| 0.070726  | 12 045374  | 0.102200  | 19 230638 | 0.135514 | 27.1337.10 |
| 0.071266  | 12.015571  | 0.103660  | 19.360287 | 0.136054 | 27.301000  |
| 0.071806  | 12.1500 11 | 0.104200  | 19.490265 | 0.136593 | 27.884188  |
| 0.072346  | 12.200990  | 0.10/739  | 19.620572 | 0.137133 | 28.03/391  |
| 0.072886  | 12.376240  | 0.105280  | 19.020372 | 0.137673 | 28.054571  |
| 0.072880  | 12.409709  | 0.105280  | 19.751205 | 0.137073 | 28.184955  |
| 0.0739420 | 12.001500  | 0.105319  | 20.013440 | 0.138753 | 28.333879  |
| 0.073903  | 12.713095  | 0.100333  | 20.013449 | 0.130733 | 20.40/1/1  |
| 0.074303  | 12.820095  | 0.100899  | 20.143000 | 0.139293 | 20.030023  |
| 0.075595  | 12.938784  | 0.107439  | 20.270990 | 0.139833 | 28.790847  |
| 0.075585  | 13.051770  | 0.10/9/9  | 20.409256 | 0.1403/3 | 28.943234  |
| 0.076125  | 13.165050  | 0.108519  | 20.541841 | 0.140912 | 29.095985  |
| 0.076665  | 13.278624  | 0.109059  | 20.674749 | 0.141453 | 29.249104  |
| 0.077205  | 13.392497  | 0.109599  | 20.807980 | 0.141993 | 29.402591  |
| 0.077745  | 13.506667  | 0.110139  | 20.941537 | 0.142532 | 29.556445  |
| 0.078285  | 13.621139  | 0.110678  | 21.075411 | 0.143072 | 29.710665  |
| 0.078825  | 13.735912  | 0.111219  | 21.209608 | 0.143612 | 29.865252  |
| 0.079365  | 13.850985  | 0.111758  | 21.344128 | 0.144152 | 30.020206  |
| 0.079904  | 13.966366  | 0.112298  | 21.478966 | 0.144692 | 30.175525  |
| 0.080444  | 14.082053  | 0.112838  | 21.614127 | 0.145232 | 30.331212  |
| 0.080984  | 14.198045  | 0.113378  | 21.749608 | 0.145772 | 30.487264  |
| 0.081524  | 14.314344  | 0.113918  | 21.885407 | 0.146312 | 30.643678  |
| 0.082064  | 14.430956  | 0.114458  | 22.021528 | 0.146851 | 30.800460  |
| 0.082604  | 14.547877  | 0.114997  | 22.157968 | 0.147392 | 30.957601  |

| 0.147931  | 31.115108 | 0.180325  | 41.185428 | 0.212719      | 52.436961   |
|-----------|-----------|-----------|-----------|---------------|-------------|
| 0.148471  | 31.272974 | 0.180865  | 41.363245 | 0.213259      | 52.634822   |
| 0.149011  | 31.431200 | 0.181405  | 41.541388 | 0.213798      | 52.833036   |
| 0.149551  | 31,589785 | 0.181945  | 41.719859 | 0.214339      | 53.031613   |
| 0 150091  | 31 748727 | 0 182485  | 41 898656 | 0.214878      | 53 230547   |
| 0.150621  | 21.008027 | 0.102405  | 42 077781 | 0.215418      | 52 420841   |
| 0.150051  | 31.908027 | 0.185024  | 42.077781 | 0.215418      | 55.429841   |
| 0.1511/0  | 32.06/681 | 0.183564  | 42.257236 | 0.215958      | 53.629497   |
| 0.151711  | 32.227690 | 0.184104  | 42.437015 | 0.216498      | 53.829513   |
| 0.152251  | 32.388050 | 0.184644  | 42.617124 | 0.217038      | 54.029889   |
| 0.152790  | 32.548759 | 0.185184  | 42.797559 | 0.217578      | 54.230629   |
| 0.153330  | 32.709821 | 0.185724  | 42.978322 | 0.218118      | 54.431729   |
| 0.153870  | 32.871226 | 0.186264  | 43.159410 | 0.218658      | 54.633189   |
| 0 154410  | 33 032980 | 0 186804  | 43 340830 | 0 219198      | 54 835014   |
| 0.15/050  | 33 105070 | 0.187344  | 13.510650 | 0.219737      | 55 037100   |
| 0.154950  | 22 257519 | 0.107344  | 43.322372 | 0.219737      | 55 220742   |
| 0.155490  | 33.337318 | 0.10/004  | 43.704043 | 0.220278      | 55.239745   |
| 0.156030  | 33.520302 | 0.188424  | 43.88/041 | 0.220817      | 55.442649   |
| 0.156570  | 33.683424 | 0.188963  | 44.069768 | 0.221357      | 55.645916   |
| 0.157109  | 33.846888 | 0.189503  | 44.252818 | 0.221897      | 55.849539   |
| 0.157650  | 34.010685 | 0.190043  | 44.436196 | 0.222437      | 56.053522   |
| 0.158189  | 34.174821 | 0.190583  | 44.619903 | 0.222977      | 56.257859   |
| 0.158729  | 34,339290 | 0.191123  | 44.803934 | 0.223517      | 56.462554   |
| 0 159269  | 34 504093 | 0 191663  | 44 988292 | 0 224057      | 56 667605   |
| 0.150200  | 24 660220 | 0.102202  | 45 172075 | 0.224037      | 56 872006   |
| 0.159809  | 34.009229 | 0.192203  | 45.172975 | 0.224397      | 50.875000   |
| 0.160349  | 34.834696 | 0.192743  | 45.35/986 | 0.225136      | 5/.0/8/61   |
| 0.160889  | 35.000491 | 0.193282  | 45.543320 | 0.225676      | 57.284866   |
| 0.161428  | 35.166617 | 0.193823  | 45.728985 | 0.226216      | 57.491317   |
| 0.161969  | 35.333071 | 0.194362  | 45.914972 | 0.226756      | 57.698117   |
| 0.162508  | 35.499850 | 0.194902  | 46.101288 | 0.227296      | 57.905258   |
| 0.163048  | 35.666958 | 0.195442  | 46.287933 | 0.227836      | 58.112743   |
| 0 163589  | 35 834391 | 0 195982  | 46 474902 | 0 228376      | 58 320568   |
| 0.16/128  | 36.002150 | 0.196522  | 46 662200 | 0.228916      | 58 528730   |
| 0.164668  | 26 170222 | 0.1000522 | 46.840824 | 0.220710      | 58 727220   |
| 0.104008  | 26.229640 | 0.197002  | 40.049024 | 0.229455      | 50.737229   |
| 0.165208  | 30.338040 | 0.197602  | 47.037778 | 0.229995      | 58.940001   |
| 0.165/48  | 36.50/3/0 | 0.198142  | 47.226060 | 0.230536      | 59.155222   |
| 0.166288  | 36.676426 | 0.198682  | 47.414671 | 0.231075      | 59.364713   |
| 0.166828  | 36.845802 | 0.199221  | 47.603610 | 0.231615      | 59.574527   |
| 0.167367  | 37.015504 | 0.199762  | 47.792882 | 0.232155      | 59.784665   |
| 0.167908  | 37.185526 | 0.200301  | 47.982483 | 0.232695      | 59.995122   |
| 0.168447  | 37.355874 | 0.200841  | 48,172417 | 0.233235      | 60.205894   |
| 0 168987  | 37 526542 | 0 201381  | 48 362684 | 0 233775      | 60 41 69 82 |
| 0.169527  | 37 697533 | 0.201901  | 48 553282 | 0.23/315      | 60 628382   |
| 0.100527  | 27 969940 | 0.201721  | 40.555202 | 0.224855      | 60.020302   |
| 0.170007  | 20 04049  | 0.202401  | 40.744210 | 0.234833      | 00.840089   |
| 0.170607  | 38.040480 | 0.203001  | 48.935484 | 0.235394      | 61.052101   |
| 0.171147  | 38.212446 | 0.203540  | 49.12/091 | 0.235934      | 61.264417   |
| 0.171687  | 38.384731 | 0.204081  | 49.319033 | 0.236474      | 61.477033   |
| 0.172227  | 38.557337 | 0.204620  | 49.511314 | 0.237014      | 61.689943   |
| 0.172766  | 38.730268 | 0.205160  | 49.703936 | 0.237554      | 61.903146   |
| 0.173306  | 38.903522 | 0.205700  | 49.896898 | 0.238094      | 62.116641   |
| 0 173846  | 39 077102 | 0 206240  | 50 090200 | 0 238634      | 62 330425   |
| 0 17/386  | 39 251004 | 0.206280  | 50 283846 | 0.239174      | 62 544490   |
| 0.174026  | 20 425222 | 0.200780  | 50.203040 | 0.220712      | 62.544490   |
| 0.174920  | 39.423233 | 0.207520  | 50.477859 | 0.239713      | 02.738841   |
| 0.1/5466  | 39.399/80 | 0.207860  | 50.6/21/6 | 0.240254      | 62.9/3468   |
| 0.176006  | 39.774663 | 0.208400  | 50.866860 | 0.240793      | 63.188371   |
| 0.176546  | 39.949868 | 0.208940  | 51.061892 | 0.241333      | 63.403549   |
| 0.177086  | 40.125396 | 0.209479  | 51.257272 | 0.241873      | 63.618995   |
| 0.177626  | 40.301252 | 0.210020  | 51.453005 | 0.242413      | 63.834711   |
| 0.178166  | 40.477433 | 0.210559  | 51.649088 | 0.242953      | 64.050690   |
| 0.178705  | 40.653943 | 0 211099  | 51,845525 | 0 243493      | 64,266931   |
| 0 179245  | 40 830778 | 0 211630  | 52 042314 | 0.244033      | 64 483/35   |
| 0 170785  | 11 007030 | 0.212170  | 57 720/61 | 0.244033      | 64 700104   |
| V.1/7/0.) | +1.00/737 | 0.2121/9  | JZ.ZJ7401 | (1,2+4,1,1,1) | 04./00194   |

| 0 245113 | 64 017207    | 0 277506 | 78 370826              | 0.300000 | 02 606578  |
|----------|--------------|----------|------------------------|----------|------------|
| 0.245115 | 04.917207    | 0.277300 | 78.570820              | 0.309900 | 92.090378  |
| 0.245652 | 65.134473    | 0.278046 | /8.602668              | 0.310440 | 92.940723  |
| 0.246193 | 65.351990    | 0.278586 | 78.834783              | 0.310980 | 93.185007  |
| 0.246732 | 65.569754    | 0.279126 | 79.067174              | 0.311520 | 93.429434  |
| 0.247272 | 65.787763    | 0.279666 | 79.299841              | 0.312060 | 93.674007  |
| 0.247812 | 66.006018    | 0.280206 | 79.532780              | 0.312599 | 93.918727  |
| 0 248352 | 66 224512    | 0 280746 | 79 765996              | 0 313140 | 94 163597  |
| 0.248802 | 66 443248    | 0.281286 | 79 999/8/              | 0.313670 | 94 408616  |
| 0.240092 | 66 662220    | 0.281280 | 20 022045              | 0.313079 | 94.408010  |
| 0.249432 | 00.002220    | 0.281825 | 80.233245              | 0.314219 | 94.055/91  |
| 0.249971 | 66.881428    | 0.282365 | 80.46/280              | 0.314/59 | 94.899123  |
| 0.250512 | 67.100870    | 0.282905 | 80.701582              | 0.315299 | 95.144615  |
| 0.251051 | 67.320545    | 0.283445 | 80.936155              | 0.315839 | 95.390267  |
| 0.251591 | 67.540455    | 0.283985 | 81.170995              | 0.316379 | 95.636088  |
| 0.252131 | 67.760592    | 0.284525 | 81.406101              | 0.316919 | 95.882079  |
| 0.252671 | 67.980961    | 0.285065 | 81.641472              | 0.317459 | 96.128240  |
| 0.253211 | 68 201555    | 0.285605 | 81 877102              | 0 317998 | 96 374578  |
| 0.253211 | 68 422378    | 0.286144 | 82 112003              | 0.318538 | 06 621006  |
| 0.253751 | 68 6 42 4 27 | 0.280144 | 82.112333              | 0.310330 | 90.021090  |
| 0.254291 | 68.643427    | 0.286685 | 82.349141              | 0.319078 | 96.86/801  |
| 0.254831 | 68.864702    | 0.287225 | 82.585541              | 0.319618 | 97.114690  |
| 0.255371 | 69.086202    | 0.287764 | 82.822193              | 0.320158 | 97.361776  |
| 0.255910 | 69.307928    | 0.288304 | 83.059095              | 0.320698 | 97.609054  |
| 0.256451 | 69.529877    | 0.288844 | 83.296238              | 0.321238 | 97.856533  |
| 0.256990 | 69.752052    | 0.289384 | 83.533625              | 0.321778 | 98.104218  |
| 0 257530 | 69 974451    | 0 289924 | 83 771248              | 0 322318 | 98 352112  |
| 0.258070 | 70 197075    | 0 290464 | 84 009105              | 0.322858 | 98 600217  |
| 0.258610 | 70.410022    | 0.201004 | 84 247104              | 0.322050 | 08 848542  |
| 0.250150 | 70.419922    | 0.291004 | 04.247174              | 0.323398 | 90.040J42  |
| 0.259150 | 70.642997    | 0.291544 | 84.485508              | 0.323937 | 99.097085  |
| 0.259690 | /0.866296    | 0.292083 | 84.724045              | 0.324477 | 99.345856  |
| 0.260229 | 71.089823    | 0.292624 | 84.962803              | 0.325017 | 99.594856  |
| 0.260770 | 71.313576    | 0.293163 | 85.201773              | 0.325557 | 99.844089  |
| 0.261309 | 71.537558    | 0.293703 | 85.440953              | 0.326097 | 100.093562 |
| 0.261849 | 71.761770    | 0.294243 | 85.680341              | 0.326637 | 100.343276 |
| 0.262389 | 71.986211    | 0.294783 | 85.919931              | 0.327177 | 100.593239 |
| 0.262929 | 72 210886    | 0.295323 | 86 159721              | 0 327717 | 100 843449 |
| 0.262/29 | 72.435791    | 0.295863 | 86 300702              | 0.328256 | 101.003017 |
| 0.203409 | 72.433791    | 0.295805 | 86.620875              | 0.328230 | 101.093917 |
| 0.264009 | 72.000933    | 0.290402 | 80.039873              | 0.328790 | 101.544041 |
| 0.264549 | /2.886311    | 0.296943 | 86.880234              | 0.329336 | 101.595631 |
| 0.265089 | 73.111926    | 0.297482 | 87.120775              | 0.329876 | 101.846884 |
| 0.265629 | 73.337779    | 0.298022 | 87.361493              | 0.330416 | 102.098409 |
| 0.266168 | 73.563874    | 0.298562 | 87.602388              | 0.330956 | 102.350210 |
| 0.266709 | 73.790213    | 0.299102 | 87.843451              | 0.331496 | 102.602287 |
| 0.267248 | 74.016796    | 0.299642 | 88.084685              | 0.332036 | 102.854648 |
| 0.267788 | 74.243626    | 0.300182 | 88.326079              | 0.332575 | 103.107292 |
| 0.268328 | 74 470706    | 0.300722 | 88 567638              | 0.333116 | 103 360227 |
| 0.268868 | 74.608035    | 0.301262 | 88 800352              | 0.333656 | 103.500227 |
| 0.208808 | 74.036033    | 0.301202 | 88.809332              | 0.333030 | 102.013434 |
| 0.269408 | 74.925018    | 0.301802 | 89.051221              | 0.334195 | 103.800980 |
| 0.269948 | /5.153454    | 0.302341 | 89.293242              | 0.334/35 | 104.120806 |
| 0.270488 | 75.381547    | 0.302882 | 89.535413              | 0.335275 | 104.374936 |
| 0.271028 | 75.609897    | 0.303421 | 89.777733              | 0.335815 | 104.629373 |
| 0.271567 | 75.838507    | 0.303961 | 90.020198              | 0.336355 | 104.884125 |
| 0.272107 | 76.067380    | 0.304501 | 90.262805              | 0.336895 | 105.139190 |
| 0.272647 | 76.296515    | 0.305041 | 90.505556              | 0.337435 | 105.394575 |
| 0 273187 | 76 525916    | 0 305581 | 90 748446              | 0 337975 | 105 650283 |
| 0 273727 | 76 755584    | 0 306121 | 90 991/178             | 0.338514 | 105 006300 |
| 0.273727 | 76 095520    | 0.206660 | 01 224640              | 0.220055 | 105.900322 |
| 0.274207 | 10.703320    | 0.300000 | 71.234049<br>01.477057 | 0.339033 | 100.102088 |
| 0.2/480/ | //.215/24    | 0.307201 | 91.4//95/              | 0.339394 | 106.419391 |
| 0.275347 | //.446198    | 0.307740 | 91.721404              | 0.340134 | 106.676436 |
| 0.275887 | 77.676946    | 0.308280 | 91.964990              | 0.340674 | 106.933827 |
| 0.276426 | 77.907966    | 0.308820 | 92.208715              | 0.341214 | 107.191564 |
| 0.276967 | 78.139259    | 0.309360 | 92.452577              | 0.341754 | 107.449656 |

| 0.342294  | 107.708108 | 0.374687 | 124.324727               | 0.407081   | 149.357246  |
|-----------|------------|----------|--------------------------|------------|-------------|
| 0.342833  | 107.966924 | 0.375227 | 124.635510               | 0.407620   | 149.904335  |
| 0.343374  | 108.226108 | 0.375767 | 124.948341               | 0.408161   | 150.453679  |
| 0 343913  | 108 485671 | 0 376307 | 125 263309               | 0 408700   | 151 004819  |
| 0.344453  | 108 745611 | 0.376847 | 125.200009               | 0.409240   | 151.557/21  |
| 0.344003  | 100.745011 | 0.370047 | 125.500450               | 0.400240   | 152 111252  |
| 0.344993  | 109.003940 | 0.377387 | 125.899998               | 0.409780   | 152.111252  |
| 0.345533  | 109.266662 | 0.377927 | 126.221905               | 0.410320   | 152.666159  |
| 0.346073  | 109.527784 | 0.378467 | 126.546314               | 0.410860   | 153.221982  |
| 0.346613  | 109.789315 | 0.379006 | 126.873328               | 0.411400   | 153.778499  |
| 0.347153  | 110.051259 | 0.379547 | 127.203052               | 0.411940   | 154.335360  |
| 0.347693  | 110.313628 | 0.380086 | 127.535590               | 0.412480   | 154.892060  |
| 0.348233  | 110.576424 | 0.380626 | 127.871045               | 0.413019   | 155.447965  |
| 0.348772  | 110.839660 | 0.381166 | 128.209524               | 0.413559   | 156.002332  |
| 0 349313  | 111 103344 | 0 381706 | 128 551120               | 0 414099   | 156 554388  |
| 0.349852  | 111 367488 | 0.382246 | 128 895924               | 0.414639   | 157 103375  |
| 0.347032  | 111.507400 | 0.302240 | 120.073724               | 0.415170   | 157 649504  |
| 0.350392  | 111.052090 | 0.362760 | 129.244016               | 0.415179   | 157.040394  |
| 0.350932  | 111.89/180 | 0.383325 | 129.5954/3               | 0.415/19   | 158.189389  |
| 0.351472  | 112.162754 | 0.383866 | 129.950349               | 0.416259   | 158.725125  |
| 0.352012  | 112.428828 | 0.384405 | 130.308695               | 0.416799   | 159.255116  |
| 0.352552  | 112.695413 | 0.384945 | 130.670568               | 0.417339   | 159.778612  |
| 0.353091  | 112.962521 | 0.385485 | 131.036024               | 0.417879   | 160.294770  |
| 0.353632  | 113.230167 | 0.386025 | 131.405136               | 0.418419   | 160.802675  |
| 0.354171  | 113.498362 | 0.386565 | 131.777993               | 0.418958   | 161.301397  |
| 0 354711  | 113 767124 | 0 387105 | 132 154711               | 0 419498   | 161 789995  |
| 0.355251  | 11/ 036/66 | 0.387645 | 132 535/32               | 0.420038   | 162 267565  |
| 0.355701  | 114.000400 | 0.307045 | 122.000200               | 0.420030   | 162.207303  |
| 0.353791  | 114.500404 | 0.300103 | 132.320303               | 0.420378   | 162.195221  |
| 0.356331  | 114.5/6954 | 0.388724 | 133.309518               | 0.421118   | 163.186096  |
| 0.3568/1  | 114.848137 | 0.389264 | 133.703228               | 0.421658   | 163.625319  |
| 0.357411  | 115.119968 | 0.389804 | 134.101595               | 0.422198   | 164.050001  |
| 0.357951  | 115.392466 | 0.390344 | 134.504748               | 0.422738   | 164.459251  |
| 0.358491  | 115.665654 | 0.390884 | 134.912775               | 0.423277   | 164.852157  |
| 0.359030  | 115.939552 | 0.391424 | 135.325719               | 0.423818   | 165.227801  |
| 0.359571  | 116.214179 | 0.391964 | 135.743572               | 0.424357   | 165.585244  |
| 0.360110  | 116.489562 | 0.392504 | 136.166283               | 0.424897   | 165.923532  |
| 0.360650  | 116 765726 | 0 393043 | 136 593762               | 0 425437   | 166 241685  |
| 0.361190  | 117 0/2692 | 0.393584 | 137 025903               | 0.425977   | 166 538731  |
| 0.361720  | 117.042072 | 0.375504 | 127 462610               | 0.426517   | 166 912719  |
| 0.301730  | 117.520460 | 0.394123 | 137.402010               | 0.420317   | 100.015/10  |
| 0.362270  | 117.599141 | 0.394003 | 137.903807               | 0.427057   | 167.065727  |
| 0.362810  | 11/.8/86/8 | 0.395203 | 138.349481               | 0.42/596   | 167.293909  |
| 0.363350  | 118.159128 | 0.395743 | 138.799699               | 0.428137   | 167.497485  |
| 0.363890  | 118.440524 | 0.396283 | 139.254606               | 0.428676   | 167.675751  |
| 0.364429  | 118.722897 | 0.396823 | 139.714415               | 0.429216   | 167.828075  |
| 0.364969  | 119.006275 | 0.397363 | 140.179367               | 0.429756   | 167.953891  |
| 0.365509  | 119.290695 | 0.397903 | 140.649694               | 0.430296   | 168.052681  |
| 0.366049  | 119.576192 | 0.398443 | 141.125548               | 0.430836   | 168.123948  |
| 0 366589  | 119 862800 | 0 398982 | 141 606954               | 0 431375   | 168 167197  |
| 0.367129  | 120 150554 | 0.399522 | 142 093798               | 0.431916   | 168 181911  |
| 0.367660  | 120.130354 | 0.377322 | 142.075770               | 0.432456   | 168 167513  |
| 0.307009  | 120.439490 | 0.400002 | 142.303027               | 0.432430   | 100.107313  |
| 0.368209  | 120.729001 | 0.400602 | 143.082082               | 0.432995   | 108.123441  |
| 0.368/48  | 121.021097 | 0.401142 | 143.583969               | 0.433535   | 168.049118  |
| 0.369289  | 121.313842 | 0.401682 | 144.089330               | 0.434075   | 167.943996  |
| 0.369828  | 121.607943 | 0.402222 | 144.598512               | 0.434615   | 167.807601  |
| 0.370368  | 121.903448 | 0.402762 | 145.111393               | 0.435155   | 167.639572  |
| 0.370908  | 122.200411 | 0.403301 | 145.628005               | 0.435694   | 167.439653  |
| 0.371448  | 122.498878 | 0.403842 | 146.148492               | 0.436235   | 167.207698  |
| 0.371988  | 122,798909 | 0.404381 | 146.673043               | 0.436774   | 166.943649  |
| 0 372528  | 123 100566 | 0 404921 | 147 201816               | 0 437314   | 166 647500  |
| 0 373068  | 123 /03006 | 0.107921 | 147 73/8/2               | 0 / 27 85/ | 166 310302  |
| 0.373608  | 123.403200 | 0.405401 | 1/8 271004               | 0.437034   | 165 050124  |
| 0.373000  | 123.709002 | 0.400001 | 140.2/1990<br>140.010051 | 0.430374   | 105.757154  |
| U. 7/4148 | 124.010918 | 0.400541 | 140.012921               | 0.4.58954  | 10.3.30/118 |

| 0.439474 | 165.143399 | 0.471867  | 106.230516 | 0.504261 | 64.336940  |
|----------|------------|-----------|------------|----------|------------|
| 0.440014 | 164.688124 | 0.472407  | 105.268979 | 0.504801 | 63.842774  |
| 0.440554 | 164.201432 | 0.472947  | 104.319769 | 0.505341 | 63.353853  |
| 0.441093 | 163.683411 | 0.473487  | 103.382691 | 0.505880 | 62.870139  |
| 0.441633 | 163.134111 | 0.474027  | 102.457462 | 0.506420 | 62.391607  |
| 0 442173 | 162 553579 | 0 474567  | 101 543751 | 0.506960 | 61 918232  |
| 0.442713 | 161 9/1911 | 0.475107  | 100.6/1223 | 0.507500 | 61 // 9993 |
| 0.442713 | 161 200323 | 0.475646  | 00 740570  | 0.507500 | 60.086873  |
| 0.443233 | 160 626107 | 0.475196  | 00 060500  | 0.508590 | 60.528952  |
| 0.443793 | 150.022101 | 0.470180  | 07.008042  | 0.508580 | 60.075010  |
| 0.444333 | 159.925101 | 0.470720  | 97.990042  | 0.509120 | 50 628051  |
| 0.444873 | 159.190744 | 0.477200  | 97.157810  | 0.309000 | 59.028051  |
| 0.445413 | 158.429922 | 0.4778246 | 96.287768  | 0.510199 | 59.185237  |
| 0.445952 | 15/.04143/ | 0.478346  | 95.447758  | 0.510/40 | 58.747453  |
| 0.446493 | 156.826054 | 0.4/8886  | 94.61/635  | 0.511279 | 58.314684  |
| 0.447032 | 155.984471 | 0.479426  | 93.797235  | 0.511819 | 57.886906  |
| 0.447572 | 155.117339 | 0.479965  | 92.986391  | 0.512359 | 57.464090  |
| 0.448112 | 154.225309 | 0.480506  | 92.184954  | 0.512899 | 57.046210  |
| 0.448652 | 153.309070 | 0.481045  | 91.392778  | 0.513439 | 56.633232  |
| 0.449192 | 152.369375 | 0.481585  | 90.609746  | 0.513979 | 56.225119  |
| 0.449732 | 151.407037 | 0.482125  | 89.835741  | 0.514519 | 55.821829  |
| 0.450272 | 150.422926 | 0.482665  | 89.070649  | 0.515059 | 55.423323  |
| 0.450812 | 149.417948 | 0.483205  | 88.314332  | 0.515599 | 55.029551  |
| 0.451351 | 148.393037 | 0.483745  | 87.566634  | 0.516138 | 54.640472  |
| 0.451891 | 147.349180 | 0.484284  | 86.827364  | 0.516678 | 54.256039  |
| 0.452431 | 146.287425 | 0.484825  | 86.096310  | 0.517218 | 53.876208  |
| 0.452971 | 145.208928 | 0.485364  | 85.373239  | 0.517758 | 53.500940  |
| 0.453511 | 144.114937 | 0.485904  | 84.657922  | 0.518298 | 53.130190  |
| 0.454051 | 143.006797 | 0.486444  | 83.950152  | 0.518838 | 52.763923  |
| 0 454591 | 141 885914 | 0 486984  | 83 249766  | 0 519378 | 52 402100  |
| 0.455131 | 140 753703 | 0.487524  | 82 556642  | 0.519918 | 52.044685  |
| 0.455670 | 139 611551 | 0 488064  | 81 870725  | 0.520457 | 51 691642  |
| 0.456211 | 138 460791 | 0.488604  | 81 191999  | 0.520197 | 51 342942  |
| 0.456750 | 137 302691 | 0.480144  | 80 520/80  | 0.520590 | 50 998544  |
| 0.457290 | 136 138/68 | 0.489684  | 70 856180  | 0.521557 | 50 658/10  |
| 0.457830 | 134.060302 | 0.400223  | 79.000109  | 0.522617 | 50 222522  |
| 0.457850 | 134.909302 | 0.490223  | 79.199134  | 0.522017 | 40 000851  |
| 0.436570 | 133.790302 | 0.490704  | 70.349200  | 0.525157 | 49.990631  |
| 0.458910 | 132.020820 | 0.491303  | 77.900577  | 0.523097 | 49.003330  |
| 0.459450 | 131.443870 | 0.491843  | 77.270880  | 0.524257 | 49.339950  |
| 0.459989 | 130.200090 | 0.492383  | 76.642073  | 0.524776 | 49.020658  |
| 0.460530 | 129.090476 | 0.492923  | /6.019964  | 0.525317 | 48./05419  |
| 0.461069 | 127.916432 | 0.493463  | 75.404381  | 0.525856 | 48.394193  |
| 0.461609 | 126.745732 | 0.494003  | 74.795157  | 0.526396 | 48.086933  |
| 0.462149 | 125.579534 | 0.494543  | 74.192138  | 0.526936 | 47.783596  |
| 0.462689 | 124.418950 | 0.495083  | 73.595191  | 0.527476 | 47.484131  |
| 0.463229 | 123.265006 | 0.495622  | 73.004212  | 0.528016 | 47.188495  |
| 0.463769 | 122.118642 | 0.496162  | 72.419122  | 0.528556 | 46.896631  |
| 0.464309 | 120.980698 | 0.496702  | 71.839874  | 0.529096 | 46.608488  |
| 0.464849 | 119.851930 | 0.497242  | 71.266443  | 0.529636 | 46.324015  |
| 0.465389 | 118.733044 | 0.497782  | 70.698823  | 0.530176 | 46.043155  |
| 0.465928 | 117.624710 | 0.498322  | 70.137019  | 0.530715 | 45.765852  |
| 0.466469 | 116.527556 | 0.498862  | 69.581048  | 0.531256 | 45.492052  |
| 0.467008 | 115.442138 | 0.499402  | 69.030917  | 0.531795 | 45.221696  |
| 0.467548 | 114.368883 | 0.499941  | 68.486624  | 0.532335 | 44.954733  |
| 0.468088 | 113.308060 | 0.500481  | 67.948150  | 0.532875 | 44.691103  |
| 0.468628 | 112.259761 | 0.501021  | 67.415457  | 0.533415 | 44.430756  |
| 0.469168 | 111.223965 | 0.501561  | 66.888490  | 0.533955 | 44.173631  |
| 0.469708 | 110.200579 | 0.502101  | 66.367182  | 0.534495 | 43.919679  |
| 0.470247 | 109.189536 | 0.502641  | 65.851449  | 0.535035 | 43.668844  |
| 0.470788 | 108.190819 | 0.503181  | 65.341215  | 0.535575 | 43.421078  |
| 0.471327 | 107.204463 | 0.503721  | 64.836402  | 0.536114 | 43,176324  |

| 0.536654 | 42.934534 | 0.561490 | 34.276139 | 0.779599 | 19.453705 |
|----------|-----------|----------|-----------|----------|-----------|
| 0.537194 | 42.695658 | 0.562029 | 34.129016 | 0.784612 | 19.347055 |
| 0.537734 | 42.459646 | 0.562569 | 33.983277 | 0.789626 | 19.242749 |
| 0.538274 | 42.226449 | 0.563109 | 33.838904 | 0.794639 | 19.140790 |
| 0.538814 | 41.996020 | 0.563649 | 33.695882 | 0.799653 | 19.041158 |
| 0.539354 | 41.768310 | 0.564189 | 33.554200 | 0.804667 | 18.943841 |
| 0.539894 | 41.543273 | 0.564729 | 33.413843 | 0.809680 | 18.848814 |
| 0.540433 | 41.320862 | 0.565269 | 33.274799 | 0.814694 | 18.756055 |
| 0.540974 | 41.101029 | 0.565808 | 33.137100 | 0.819707 | 18.665530 |
| 0.541513 | 40.883732 | 0.574164 | 31.162902 | 0.824721 | 18.577214 |
| 0.542053 | 40.668924 | 0.582520 | 29.465950 | 0.829734 | 18.491068 |
| 0.542593 | 40.456563 | 0.590876 | 28.014568 | 0.834747 | 18.407065 |
| 0.543133 | 40.246599 | 0.599232 | 26.795590 | 0.839760 | 18.325173 |
| 0.543673 | 40.038993 | 0.607587 | 25.790273 | 0.844773 | 18.245369 |
| 0.544213 | 39.833703 | 0.615938 | 24.982746 | 0.849785 | 18.167654 |
| 0.544753 | 39.630686 | 0.624280 | 24.348118 | 0.854796 | 18.091982 |
| 0.545293 | 39.429898 | 0.629283 | 24.037303 | 0.859805 | 18.018541 |
| 0.545833 | 39.231300 | 0.634289 | 23.769494 | 0.864811 | 17.947031 |
| 0.546372 | 39.034852 | 0.639294 | 23.533619 | 0.869813 | 17.878292 |
| 0.546912 | 38.840518 | 0.644301 | 23.320707 | 0.874812 | 17.810465 |
| 0.547452 | 38.648258 | 0.649309 | 23.123346 | 0.879816 | 17.741572 |
| 0.547992 | 38.458033 | 0.654319 | 22.936557 | 0.884826 | 17.677444 |
| 0.548532 | 38.269808 | 0.659331 | 22.757291 | 0.889837 | 17.613201 |
| 0.549072 | 38.083550 | 0.664343 | 22.583805 | 0.894848 | 17.551657 |
| 0.549612 | 37.899224 | 0.669356 | 22.415093 | 0.899857 | 17.491614 |
| 0.550152 | 37.716796 | 0.674369 | 22.250543 | 0.904861 | 17.433346 |
| 0.550691 | 37.536233 | 0.679382 | 22.089757 | 0.909868 | 17.375034 |
| 0.551232 | 37.357507 | 0.684395 | 21.932461 | 0.914877 | 17.319082 |
| 0.551771 | 37.180585 | 0.689409 | 21.778454 | 0.919889 | 17.262886 |
| 0.552311 | 37.005441 | 0.694421 | 21.627614 | 0.924899 | 17.208937 |
| 0.552851 | 36.832047 | 0.699433 | 21.480014 | 0.929907 | 17.155792 |
| 0.553391 | 36.660371 | 0.704439 | 21.335889 | 0.934913 | 17.103709 |
| 0.553931 | 36.490394 | 0.709441 | 21.196693 | 0.939913 | 17.053119 |
| 0.554471 | 36.322086 | 0.714442 | 21.057432 | 0.944920 | 16.999926 |
| 0.555010 | 36.155424 | 0.719445 | 20.920501 | 0.949924 | 16.949346 |
| 0.555551 | 35.990386 | 0.724455 | 20.783067 | 0.954935 | 16.897589 |
| 0.556090 | 35.826948 | 0.729466 | 20.649773 | 0.959945 | 16.847923 |
| 0.556630 | 35.665089 | 0.734478 | 20.519280 | 0.964951 | 16.798519 |
| 0.557171 | 35.504786 | 0.739491 | 20.391400 | 0.969960 | 16.749406 |
| 0.557710 | 35.346022 | 0.744504 | 20.265969 | 0.974968 | 16.701882 |
| 0.558250 | 35.188776 | 0.749517 | 20.142904 | 0.979978 | 16.655056 |
| 0.558790 | 35.033026 | 0.754531 | 20.022189 | 0.984982 | 16.611192 |
| 0.559330 | 34.878759 | 0.759544 | 19.903808 | 0.989989 | 16.567929 |
| 0.559870 | 34.725953 | 0.764558 | 19.787766 | 0.994993 | 16.527578 |
| 0.560410 | 34.574593 | 0.769571 | 19.674063 | 1.000000 | 16.488471 |
| 0.560949 | 34.424661 | 0.774585 | 19.562711 |          |           |
|          |           |          |           |          |           |

#### Step 2: INT1 $\rightarrow$ TS2 $\rightarrow$ INT2 + H<sub>2</sub>O

|            |            | 0.025728 | 0.293838 | 0.072893 | 1.271157 |
|------------|------------|----------|----------|----------|----------|
| Intrinsic  | Electronic | 0.030017 | 0.358966 | 0.077179 | 1.393395 |
| Coordinate | Energy     | 0.034305 | 0.425932 | 0.081465 | 1.527203 |
|            | (kJ/mol)   | 0.038594 | 0.499987 | 0.085747 | 1.662900 |
|            |            | 0.042878 | 0.576140 | 0.090034 | 1.807728 |
| 0.000000   | 0.000000   | 0.047166 | 0.656527 | 0.094325 | 1.960364 |
| 0.004288   | 0.039490   | 0.051458 | 0.746669 | 0.098616 | 2.124988 |
| 0.008573   | 0.081666   | 0.055746 | 0.838522 | 0.102904 | 2.294556 |
| 0.012864   | 0.129461   | 0.060034 | 0.939929 | 0.107187 | 2.473021 |
| 0.017151   | 0.179734   | 0.064316 | 1.042208 | 0.111465 | 2.661173 |
| 0.021442   | 0.236032   | 0.068602 | 1.151001 | 0.115738 | 2.861813 |

| 0 120021 | 3 064494   | 0 238064 | 13 211120 | 0 263500 | 17 847298    |
|----------|------------|----------|-----------|----------|--------------|
| 0.124310 | 3 28/858   | 0.238488 | 13 268067 | 0.263924 | 17.060565    |
| 0.124510 | 3 511013   | 0.230400 | 13.200007 | 0.263324 | 18.075706    |
| 0.120097 | 2.751055   | 0.236912 | 12 292245 | 0.204343 | 18.073790    |
| 0.132887 | 3.751955   | 0.239335 | 13.383245 | 0.264773 | 18.193043    |
| 0.13/1/2 | 3.997770   | 0.239759 | 13.441486 | 0.265197 | 18.312358    |
| 0.141462 | 4.261150   | 0.240184 | 13.500171 | 0.265620 | 18.433796    |
| 0.145749 | 4.530878   | 0.240608 | 13.559305 | 0.266044 | 18.557412    |
| 0.150037 | 4.816614   | 0.241032 | 13.618896 | 0.266468 | 18.683260    |
| 0.154318 | 5.105377   | 0.241456 | 13.678952 | 0.266892 | 18.811398    |
| 0.158605 | 5.408992   | 0.241880 | 13.739483 | 0.267317 | 18.941877    |
| 0.162881 | 5.723359   | 0.242303 | 13.800494 | 0.267741 | 19.074762    |
| 0 167166 | 6 049924   | 0 242727 | 13 861994 | 0 268165 | 19 210109    |
| 0.171444 | 6 385912   | 0.243152 | 13 973998 | 0.268588 | 19.210105    |
| 0.175716 | 6 733116   | 0.243132 | 13.025550 | 0.260012 | 10 / 88 / 20 |
| 0.175710 | 7.002127   | 0.243370 | 13.300311 | 0.209012 | 19.400420    |
| 0.100000 | 7.093127   | 0.244000 | 14.049347 | 0.209450 | 19.031307    |
| 0.184298 | 7.464247   | 0.244424 | 14.113115 | 0.269860 | 19.///301    |
| 0.188591 | 7.849111   | 0.244848 | 14.177230 | 0.270285 | 19.925862    |
| 0.192884 | 8.246076   | 0.245272 | 14.241901 | 0.270709 | 20.077259    |
| 0.197177 | 8.656087   | 0.245695 | 14.307145 | 0.271133 | 20.231552    |
| 0.201471 | 9.079475   | 0.246120 | 14.372972 | 0.271557 | 20.388811    |
| 0.205764 | 9.517338   | 0.246544 | 14.439399 | 0.271980 | 20.549106    |
| 0.210057 | 9.970494   | 0.246968 | 14.506441 | 0.272404 | 20.712504    |
| 0.214349 | 10.440865  | 0.247392 | 14.574111 | 0.272828 | 20.879073    |
| 0 218640 | 10 922868  | 0.247816 | 14 642432 | 0 273253 | 21 048888    |
| 0.222800 | 11 461707  | 0.248240 | 14 711414 | 0.273677 | 21.010000    |
| 0.222000 | 11.401/07  | 0.248663 | 14.791097 | 0.273077 | 21.222017    |
| 0.223224 | 11.499030  | 0.248003 | 14./0100/ | 0.274101 | 21.376337    |
| 0.223048 | 11.55/941  | 0.249088 | 14.801408 | 0.274525 | 21.578522    |
| 0.224072 | 11.577350  | 0.249512 | 14.922594 | 0.274948 | 21.762050    |
| 0.224495 | 11.617767  | 0.249935 | 14.994425 | 0.275372 | 21.949193    |
| 0.224919 | 11.659100  | 0.250359 | 15.067193 | 0.275796 | 22.140033    |
| 0.225343 | 11.701271  | 0.250783 | 15.140434 | 0.276221 | 22.334645    |
| 0.225768 | 11.744213  | 0.251206 | 15.214788 | 0.276645 | 22.533112    |
| 0.226192 | 11.787873  | 0.251630 | 15.289350 | 0.277069 | 22.735515    |
| 0.226615 | 11.832202  | 0.252053 | 15.365088 | 0.277493 | 22.941931    |
| 0.227039 | 11.877161  | 0.252477 | 15.441505 | 0.277916 | 23.152447    |
| 0.227463 | 11.922713  | 0.252901 | 15.519015 | 0.278340 | 23.367139    |
| 0 227887 | 11 968833  | 0 253325 | 15 597463 | 0 278765 | 23 586095    |
| 0.228311 | 12 015493  | 0 253749 | 15 676921 | 0 279189 | 23 809391    |
| 0.228736 | 12.013 193 | 0.254172 | 15 757377 | 0.279613 | 24.037112    |
| 0.220750 | 12.002071  | 0.254506 | 15 939962 | 0.279013 | 24.037112    |
| 0.229100 | 12.110347  | 0.254590 | 15.030002 | 0.280037 | 24.209340    |
| 0.229383 | 12.138307  | 0.233020 | 15.921397 | 0.280401 | 24.306134    |
| 0.230007 | 12.20/136  | 0.255444 | 16.005011 | 0.280884 | 24.747637    |
| 0.230431 | 12.256220  | 0.255869 | 16.089/36 | 0.281308 | 24.993870    |
| 0.230855 | 12.305747  | 0.256292 | 16.175606 | 0.281733 | 25.244931    |
| 0.231279 | 12.355711  | 0.256716 | 16.262652 | 0.282157 | 25.500896    |
| 0.231704 | 12.406104  | 0.257140 | 16.350913 | 0.282581 | 25.761847    |
| 0.232128 | 12.456918  | 0.257564 | 16.440419 | 0.283005 | 26.027857    |
| 0.232552 | 12.508150  | 0.257988 | 16.531214 | 0.283429 | 26.299006    |
| 0.232975 | 12.559791  | 0.258412 | 16.623332 | 0.283853 | 26.575361    |
| 0.233399 | 12.611841  | 0.258837 | 16.716816 | 0.284276 | 26.856996    |
| 0.233823 | 12.664299  | 0.259261 | 16.811701 | 0.284701 | 27.143981    |
| 0 234247 | 12 717158  | 0 259684 | 16 908031 | 0.285125 | 27 436388    |
| 0 234672 | 12.770421  | 0.260108 | 17 005849 | 0 285549 | 27 734278    |
| 0.235006 | 12.770 121 | 0.260532 | 17 105108 | 0.285072 | 28 027717    |
| 0.235070 | 12.024007  | 0.200332 | 17.105190 | 0.205915 | 20.03//1/    |
| 0.233320 | 12.070130  | 0.200930 | 17.20011/ | 0.20037/ | 20.340/0/    |
| 0.233943 | 12.932028  | 0.201380 | 17.308033 | 0.280821 | 28.001489    |
| 0.236367 | 12.98/506  | 0.261805 | 1/.41285/ | 0.28/244 | 28.981936    |
| 0.236791 | 13.042791  | 0.262229 | 17.518775 | 0.287669 | 29.308170    |
| 0.237215 | 13.098486  | 0.262652 | 17.626454 | 0.288093 | 29.640236    |
| 0.237640 | 13.154595  | 0.263076 | 17.735946 | 0.288517 | 29.978190    |

| 0.000011 | 20 222075 | 0.01.4001 | 60 (E 100E | 0.000001  | 100 110010 |
|----------|-----------|-----------|------------|-----------|------------|
| 0.288941 | 30.322075 | 0.314381  | 62.654005  | 0.339821  | 123.418813 |
| 0.289365 | 30.671939 | 0.314805  | 63.396772  | 0.340245  | 124.802722 |
| 0.289789 | 31.027823 | 0.315229  | 64.146746  | 0.340669  | 126.199102 |
| 0.290213 | 31 389772 | 0 315653  | 64 903943  | 0 341094  | 127 607644 |
| 0.200627 | 21 757917 | 0.316077  | 65 669290  | 0.241518  | 120.027061 |
| 0.290037 | 31./3/81/ | 0.310077  | 03.008389  | 0.341318  | 129.027901 |
| 0.291061 | 32.132001 | 0.316501  | 66.440105  | 0.341942  | 130.459486 |
| 0.291485 | 32.512352 | 0.316925  | 67.219130  | 0.342366  | 131.901402 |
| 0.291909 | 32.898907 | 0.317349  | 68.005494  | 0.342789  | 133.352668 |
| 0.292333 | 33.291692 | 0.317773  | 68.799245  | 0.343213  | 134.812063 |
| 0 292757 | 33 690736 | 0 318197  | 69 600443  | 0 343637  | 136 278237 |
| 0.202191 | 34,006066 | 0.218621  | 70 400160  | 0.344062  | 127 740767 |
| 0.293161 | 34.090000 | 0.316021  | 70.409100  | 0.344002  | 137.749707 |
| 0.293605 | 34.507705 | 0.319045  | 71.225499  | 0.344486  | 139.225219 |
| 0.294029 | 34.925677 | 0.319469  | 72.049591  | 0.344910  | 140.703189 |
| 0.294453 | 35.350000 | 0.319893  | 72.881591  | 0.345334  | 142.182330 |
| 0.294877 | 35.780695 | 0.320317  | 73.721664  | 0.345757  | 143.661371 |
| 0 295301 | 36 217780 | 0 320741  | 74 569981  | 0 346181  | 145 139087 |
| 0.205725 | 26 661272 | 0.320741  | 75 426602  | 0.346606  | 146 614261 |
| 0.293723 | 30.001272 | 0.321103  | 75.420095  | 0.340000  | 140.014201 |
| 0.296149 | 37.111185 | 0.321589  | 76.291913  | 0.34/030  | 148.085649 |
| 0.296573 | 37.567531 | 0.322013  | 77.165721  | 0.347454  | 149.551977 |
| 0.296997 | 38.030320 | 0.322437  | 78.048162  | 0.347878  | 151.011928 |
| 0.297421 | 38.499565 | 0.322861  | 78.939257  | 0.348302  | 152.464169 |
| 0 297845 | 38 975274 | 0.323285  | 79.839016  | 0 348726  | 153 907338 |
| 0.207045 | 20 457452 | 0.323203  | P0.747462  | 0.340120  | 155 240069 |
| 0.298209 | 39.437433 | 0.525710  | 80.747405  | 0.549149  | 155.540008 |
| 0.298693 | 39.946106 | 0.324133  | 81.664636  | 0.349574  | 156.760954 |
| 0.299117 | 40.441241 | 0.324557  | 82.590603  | 0.349998  | 158.168564 |
| 0.299541 | 40.942858 | 0.324981  | 83.525454  | 0.350422  | 159.561410 |
| 0.299965 | 41.450969 | 0.325405  | 84.469319  | 0.350846  | 160.937959 |
| 0.300389 | 41 965572 | 0.325829  | 85 422367  | 0 351270  | 162 296648 |
| 0.200912 | 42 486670 | 0.226252  | 96 294910  | 0.351270  | 162.220040 |
| 0.500815 | 42.480079 | 0.520255  | 80.384810  | 0.551094  | 105.055907 |
| 0.301237 | 43.014291 | 0.326678  | 87.356904  | 0.352118  | 164.954210 |
| 0.301661 | 43.548423 | 0.327102  | 88.338933  | 0.352542  | 166.250128 |
| 0.302085 | 44.089082 | 0.327525  | 89.331183  | 0.352966  | 167.522385 |
| 0.302509 | 44.636278 | 0.327949  | 90.333919  | 0.353390  | 168.769886 |
| 0.302933 | 45 190019 | 0 328373  | 91 347357  | 0 353814  | 169 991741 |
| 0.302355 | 45 750322 | 0.328707  | 02 371641  | 0.354238  | 171 187252 |
| 0.303337 | 45.750522 | 0.326797  | 92.371041  | 0.334238  | 171.107232 |
| 0.303/81 | 46.31/196 | 0.329221  | 93.406852  | 0.354662  | 1/2.355862 |
| 0.304205 | 46.890648 | 0.329646  | 94.453024  | 0.355086  | 173.497065 |
| 0.304629 | 47.470689 | 0.330070  | 95.510171  | 0.355510  | 174.610324 |
| 0.305053 | 48.057328 | 0.330493  | 96.578327  | 0.355934  | 175.694976 |
| 0.305477 | 48.650578 | 0.330917  | 97.657597  | 0.356358  | 176.750204 |
| 0.305901 | 49 250442 | 0 331341  | 98 7/8177  | 0 356782  | 177 775026 |
| 0.305701 | 40.956022 | 0.221765  | 00.950400  | 0.350702  | 179.769247 |
| 0.500525 | 49.830932 | 0.551/05  | 99.830409  | 0.557200  | 170.700347 |
| 0.306/49 | 50.470055 | 0.332190  | 100.964739 | 0.357630  | 179.729023 |
| 0.307173 | 51.089820 | 0.332614  | 102.091719 | 0.358054  | 180.655940 |
| 0.307597 | 51.716230 | 0.333038  | 103.231903 | 0.358478  | 181.548066 |
| 0.308021 | 52.349288 | 0.333462  | 104.385784 | 0.358902  | 182.404520 |
| 0 308445 | 52 988994 | 0 333885  | 105 553696 | 0 359326  | 183 224613 |
| 0.308960 | 52 625250 | 0.3333005 | 106 725782 | 0.3597520 | 103.221013 |
| 0.308809 | 53.055552 | 0.334309  | 100.755785 | 0.339730  | 104.007671 |
| 0.309293 | 54.288364 | 0.334/33  | 107.932010 | 0.360174  | 184./54043 |
| 0.309717 | 54.948031 | 0.335158  | 109.142253 | 0.360598  | 185.463080 |
| 0.310141 | 55.614368 | 0.335582  | 110.366416 | 0.361022  | 186.135093 |
| 0.310565 | 56.287396 | 0.336006  | 111.604560 | 0.361446  | 186.770291 |
| 0 310989 | 56 967149 | 0 336429  | 112 856955 | 0 361870  | 187 368905 |
| 0 311/12 | 57 653672 | 0 336853  | 11/ 12/050 | 0 362204  | 187 031110 |
| 0.311413 | 51.033012 | 0.330033  | 114.124030 | 0.302274  | 107.731119 |
| 0.31183/ | 58.547022 | 0.337277  | 115.400550 | 0.362/18  | 188.45/01/ |
| 0.312261 | 59.047267 | 0.337701  | 116.704179 | 0.363142  | 188.946531 |
| 0.312685 | 59.754469 | 0.338126  | 118.017648 | 0.363566  | 189.399440 |
| 0.313109 | 60.468691 | 0.338550  | 119.346471 | 0.363990  | 189.815403 |
| 0.313533 | 61.189995 | 0.338974  | 120.690079 | 0.364414  | 190.194037 |
| 0.212057 | 61 918/21 | 0 339397  | 122 047754 | 0 36/838  | 190 53/990 |

| 0.365262 | 190.838059  | 0.390702 | 167.880217  | 0.416142 | 135.075968 |
|----------|-------------|----------|-------------|----------|------------|
| 0.365686 | 191.103235  | 0.391126 | 167.274764  | 0.416566 | 134.591967 |
| 0.366110 | 191.330763  | 0.391550 | 166.670978  | 0.416990 | 134.109863 |
| 0.366534 | 191.521117  | 0.391974 | 166.069197  | 0.417415 | 133.629651 |
| 0 366958 | 191 674977  | 0 392398 | 165 469583  | 0 417838 | 133 151327 |
| 0.367382 | 191.07 1977 | 0.392822 | 16/ 872132  | 0.117050 | 132 67/888 |
| 0.367806 | 101 876536  | 0.302022 | 164 276700  | 0.418686 | 132.074000 |
| 0.307800 | 191.070330  | 0.393240 | 164.270700  | 0.410000 | 132.200329 |
| 0.368230 | 191.925988  | 0.393070 | 163.083007  | 0.419110 | 131.727044 |
| 0.368654 | 191.942331  | 0.394094 | 163.090985  | 0.419534 | 131.256821 |
| 0.369078 | 191.926282  | 0.394518 | 162.500250  | 0.419958 | 130.787854 |
| 0.369502 | 191.878500  | 0.394942 | 161.910739  | 0.420383 | 130.320723 |
| 0.369926 | 191.799565  | 0.395366 | 161.322435  | 0.420806 | 129.855416 |
| 0.370350 | 191.690021  | 0.395790 | 160.735420  | 0.421230 | 129.391907 |
| 0.370774 | 191.550431  | 0.396214 | 160.149876  | 0.421654 | 128.930176 |
| 0.371198 | 191.381412  | 0.396638 | 159.566031  | 0.422078 | 128.470199 |
| 0.371622 | 191.183688  | 0.397062 | 158.984131  | 0.422502 | 128.011952 |
| 0.372046 | 190.958097  | 0.397486 | 158.404404  | 0.422926 | 127.555410 |
| 0.372470 | 190.705616  | 0.397910 | 157.827028  | 0.423351 | 127,100544 |
| 0.372894 | 190.427336  | 0.398334 | 157.252109  | 0.423775 | 126.647333 |
| 0 373318 | 190 124438  | 0 398758 | 156 679685  | 0 424198 | 126 195752 |
| 0.373742 | 180 7081/3  | 0.300182 | 156 100731  | 0.121190 | 125.745784 |
| 0.373742 | 189.790145  | 0.399102 | 155 542181  | 0.424022 | 125.745784 |
| 0.374100 | 109.449003  | 0.399000 | 153.542101  | 0.425040 | 123.297403 |
| 0.374390 | 189.080101  | 0.400050 | 154.970948  | 0.425470 | 124.830393 |
| 0.375014 | 188.690718  | 0.400454 | 154.413933  | 0.425894 | 124.405342 |
| 0.3/5438 | 188.282334  | 0.400878 | 153.853061  | 0.426319 | 123.961630 |
| 0.375862 | 187.855951  | 0.401302 | 153.294270  | 0.426743 | 123.519446 |
| 0.376286 | 187.412496  | 0.401726 | 152.737533  | 0.427167 | 123.078780 |
| 0.376710 | 186.952955  | 0.402150 | 152.182833  | 0.427590 | 122.639615 |
| 0.377134 | 186.478382  | 0.402574 | 151.630186  | 0.428014 | 122.201942 |
| 0.377558 | 185.989890  | 0.402998 | 151.079616  | 0.428438 | 121.765751 |
| 0.377982 | 185.488579  | 0.403422 | 150.531157  | 0.428863 | 121.331032 |
| 0.378406 | 184.975470  | 0.403846 | 149.984851  | 0.429287 | 120.897774 |
| 0.378830 | 184.451441  | 0.404270 | 149.440735  | 0.429711 | 120.465966 |
| 0.379254 | 183.917241  | 0.404694 | 148.898845  | 0.430135 | 120.035597 |
| 0.379678 | 183.373545  | 0.405118 | 148.359202  | 0.430559 | 119.606658 |
| 0.380102 | 182.821045  | 0.405542 | 147.821820  | 0.430982 | 119.179138 |
| 0.380526 | 182.260527  | 0.405966 | 147.286696  | 0.431406 | 118,753027 |
| 0.380950 | 181.692883  | 0.406390 | 146.753816  | 0.431831 | 118.328313 |
| 0 381374 | 181 119065  | 0 406814 | 146 223153  | 0 432255 | 117 904988 |
| 0 381798 | 180 539998  | 0 407238 | 145 694684  | 0.432679 | 117 483041 |
| 0.382222 | 179 956470  | 0.107250 | 1/15 168382 | 0.132079 | 117.062465 |
| 0.382646 | 170 360050  | 0.407002 | 144 644222  | 0.433527 | 116 643240 |
| 0.382070 | 178 778124  | 0.408510 | 144.044222  | 0.433051 | 116 225385 |
| 0.383070 | 170.770124  | 0.408024 | 144.122191  | 0.433931 | 115 200265 |
| 0.303494 | 177.596220  | 0.400954 | 143.002274  | 0.434374 | 115.000005 |
| 0.383918 | 177.380339  | 0.409558 | 143.084407  | 0.454799 | 113.39308/ |
| 0.384342 | 1/6.985//4  | 0.409782 | 142.568/6/  | 0.435223 | 114.979845 |
| 0.384/66 | 1/6.382461  | 0.410206 | 142.055164  | 0.435647 | 114.56/331 |
| 0.385190 | 175.776899  | 0.410630 | 141.543648  | 0.436071 | 114.156149 |
| 0.385614 | 175.169747  | 0.411054 | 141.034209  | 0.436495 | 113.746293 |
| 0.386038 | 174.561705  | 0.411478 | 140.526826  | 0.436919 | 113.337765 |
| 0.386462 | 173.953411  | 0.411902 | 140.021478  | 0.437343 | 112.930563 |
| 0.386886 | 173.345327  | 0.412326 | 139.518146  | 0.437767 | 112.524690 |
| 0.387310 | 172.737678  | 0.412750 | 139.016804  | 0.438191 | 112.120150 |
| 0.387734 | 172.130453  | 0.413174 | 138.517434  | 0.438615 | 111.716947 |
| 0.388158 | 171.523466  | 0.413598 | 138.020020  | 0.439039 | 111.315083 |
| 0.388582 | 170.916471  | 0.414022 | 137.524546  | 0.439463 | 110.914563 |
| 0.389006 | 170.309269  | 0.414446 | 137.031002  | 0.439887 | 110.515392 |
| 0.389430 | 169.701807  | 0.414870 | 136.539377  | 0.440311 | 110.117576 |
| 0.389854 | 169.094230  | 0.415294 | 136.049669  | 0.440735 | 109.721121 |
| 0.390278 | 168.486876  | 0.415718 | 135.561867  | 0.441159 | 109.326030 |

| 0 441583 | 108 932310 | 0 467021  | 87 574716 | 0 492462 | 70 136449  |
|----------|------------|-----------|-----------|----------|------------|
| 0.111905 | 108.532510 | 0.167445  | 87 252212 | 0.192102 | 60 874505  |
| 0.442007 | 108.339900 | 0.407443  | 87.232312 | 0.492880 | 09.874393  |
| 0.442431 | 108.149000 | 0.46/8/0  | 86.931069 | 0.493310 | 69.613652  |
| 0.442855 | 107.759413 | 0.468294  | 86.610994 | 0.493734 | 69.353620  |
| 0.443279 | 107.371211 | 0.468718  | 86.292091 | 0.494158 | 69.094509  |
| 0.443703 | 106.984394 | 0.469142  | 85.974368 | 0.494582 | 68.836323  |
| 0.444127 | 106.598960 | 0.469565  | 85.657828 | 0.495006 | 68.579066  |
| 0 444551 | 106 214910 | 0 469989  | 85 342473 | 0 495430 | 68 322743  |
| 0.444975 | 105 832238 | 0.109909  | 85 028304 | 0.195150 | 68 067363  |
| 0.445200 | 105.052250 | 0.470929  | 84 715202 | 0.406278 | 67.812020  |
| 0.445399 | 105.430944 | 0.470858  | 84.713323 | 0.490278 | 07.012929  |
| 0.445823 | 105.0/1021 | 0.4/1262  | 84.403529 | 0.496/02 | 67.559442  |
| 0.446247 | 104.692464 | 0.471686  | 84.092919 | 0.497126 | 67.306914  |
| 0.446671 | 104.315263 | 0.472110  | 83.783488 | 0.497550 | 67.055344  |
| 0.447095 | 103.939410 | 0.472534  | 83.475234 | 0.497974 | 66.804734  |
| 0.447519 | 103.564895 | 0.472957  | 83.168150 | 0.498398 | 66.555091  |
| 0.447943 | 103.191707 | 0.473381  | 82.862229 | 0.498822 | 66.306417  |
| 0.448367 | 102.819834 | 0.473806  | 82.557461 | 0.499246 | 66.058712  |
| 0 //8791 | 102 //9260 | 0.474230  | 82 2538/1 | 0.499670 | 65 811975  |
| 0.440215 | 102.449200 | 0.474654  | 81 051354 | 0.477070 | 65 566210  |
| 0.449213 | 102.079970 | 0.474034  | 81.931334 | 0.500094 | 65.201412  |
| 0.449639 | 101./11954 | 0.4/50/8  | 81.649991 | 0.500518 | 05.521415  |
| 0.450063 | 101.345193 | 0.475502  | 81.349742 | 0.500942 | 65.077583  |
| 0.450487 | 100.979673 | 0.475926  | 81.050595 | 0.501366 | 64.834719  |
| 0.450911 | 100.615377 | 0.476350  | 80.752535 | 0.501790 | 64.592816  |
| 0.451335 | 100.252292 | 0.476774  | 80.455552 | 0.502214 | 64.351869  |
| 0.451759 | 99.890406  | 0.477198  | 80.159634 | 0.502638 | 64.111872  |
| 0.452183 | 99.529715  | 0.477622  | 79.864764 | 0.503062 | 63.872823  |
| 0.452607 | 99 170257  | 0.478046  | 79 570931 | 0 503486 | 63 634713  |
| 0.452007 | 98 812021  | 0.478470  | 79.278125 | 0.503400 | 63 30753/  |
| 0.452455 | 90.012021  | 0.478904  | 79.276125 | 0.503910 | 62 161079  |
| 0.455455 | 98.433403  | 0.478894  | 78.980330 | 0.304334 | 03.101278  |
| 0.453878 | 98.099644  | 0.479318  | 78.695532 | 0.504/58 | 62.925939  |
| 0.454302 | 97.746289  | 0.479742  | 78.405724 | 0.505182 | 62.691505  |
| 0.454726 | 97.391513  | 0.480166  | 78.116893 | 0.505606 | 62.457970  |
| 0.455149 | 97.038837  | 0.480590  | 77.829028 | 0.506030 | 62.225321  |
| 0.455573 | 96.686469  | 0.481014  | 77.542118 | 0.506454 | 61.993553  |
| 0.455997 | 96.335571  | 0.481438  | 77.256157 | 0.506879 | 61.762653  |
| 0.456421 | 95.985702  | 0.481862  | 76.971130 | 0.507302 | 61.532612  |
| 0 456845 | 95 636915  | 0.482286  | 76 687032 | 0.507726 | 61 303424  |
| 0.457260 | 95.050915  | 0.482710  | 76.403856 | 0.508150 | 61 075070  |
| 0.457602 | 04 042422  | 0.402710  | 76.121504 | 0.508150 | 60.947567  |
| 0.457095 | 94.942423  | 0.403134  | 70.121394 | 0.506574 | 00.647307  |
| 0.458117 | 94.596699  | 0.483558  | 75.840240 | 0.508998 | 60.620878  |
| 0.458541 | 94.251987  | 0.483982  | 75.559790 | 0.509422 | 60.395012  |
| 0.458965 | 93.908283  | 0.484406  | 75.280234 | 0.509847 | 60.169954  |
| 0.459389 | 93.565581  | 0.484830  | 75.001574 | 0.510271 | 59.945705  |
| 0.459813 | 93.223886  | 0.485254  | 74.723802 | 0.510694 | 59.722254  |
| 0.460237 | 92.883201  | 0.485678  | 74.446914 | 0.511118 | 59.499598  |
| 0.460661 | 92.543527  | 0.486102  | 74.170911 | 0.511542 | 59.277733  |
| 0.461085 | 92 204866  | 0.486526  | 73 895787 | 0.511966 | 59.056653  |
| 0.461500 | 01 867230  | 0.486050  | 73 621543 | 0.512300 | 58 836358  |
| 0.461024 | 01 520610  | 0.480950  | 73.021343 | 0.512590 | 59 616945  |
| 0.401954 | 91.330019  | 0.467374  | 73.348170 | 0.512815 | 50.010045  |
| 0.462358 | 91.195044  | 0.487798  | /3.0/5689 | 0.513239 | 58.398109  |
| 0.462781 | 90.860510  | 0.488222  | 72.804075 | 0.513663 | 58.180153  |
| 0.463205 | 90.527030  | 0.488646  | 72.533339 | 0.514086 | 57.962969  |
| 0.463629 | 90.194613  | 0.489070  | 72.263482 | 0.514510 | 57.746562  |
| 0.464053 | 89.863264  | 0.489494  | 71.994502 | 0.514934 | 57.530927  |
| 0.464477 | 89.533000  | 0.489918  | 71.726402 | 0.515359 | 57.316064  |
| 0.464902 | 89.203828  | 0.490342  | 71.459187 | 0.515783 | 57.101971  |
| 0.465326 | 88 875758  | 0 490766  | 71 192856 | 0 516207 | 56 8886/10 |
| 0.465750 | 88 5/8802  | 0/01100   | 70 927/13 | 0.516631 | 56 676004  |
| 0.466172 | 88 222070  | 0.401614  | 70.662862 | 0.517055 | 56 161205  |
| 0.4001/3 | 00.222770  | 0.471014  | 70.002002 | 0.517055 | 50.404505  |
| 0.40059/ | 01.090212  | 0.4920.58 | /0.599204 | 0.51/4/8 | 50.255280  |

| 0.517902 | 56.043015                       | 0.543343 | 44.696591              | 0.631818 | 19.300392  |
|----------|---------------------------------|----------|------------------------|----------|------------|
| 0.518327 | 55.833510                       | 0.543767 | 44.528047              | 0.639246 | 17.775575  |
| 0.518751 | 55.624759                       | 0.544191 | 44.360138              | 0.646674 | 16.306482  |
| 0.519175 | 55.416759                       | 0.544615 | 44.192860              | 0.654102 | 14.899048  |
| 0 519599 | 55 209508                       | 0 545039 | 44 026209              | 0.661452 | 13 564858  |
| 0.520023 | 55 002999                       | 0 545463 | 43 860180              | 0.668802 | 12 277198  |
| 0.520025 | 54 707225                       | 0.545887 | 43.60/773              | 0.676154 | 11.031768  |
| 0.520447 | 54.797223                       | 0.545007 | 43.074773              | 0.692505 | 0.820122   |
| 0.520870 | 54.392182                       | 0.540511 | 43.329984              | 0.085505 | 9.850152   |
| 0.521295 | 54.38/868                       | 0.546735 | 43.365811              | 0.690856 | 8.664218   |
| 0.521719 | 54.184271                       | 0.547159 | 43.202256              | 0.698207 | 7.533720   |
| 0.522143 | 53.981388                       | 0.547583 | 43.039317              | 0.705558 | 6.441677   |
| 0.522567 | 53.779214                       | 0.548007 | 42.876993              | 0.712909 | 5.388277   |
| 0.522991 | 53.577738                       | 0.548431 | 42.715283              | 0.717262 | 4.781036   |
| 0.523415 | 53.376961                       | 0.548855 | 42.554193              | 0.721615 | 4.184519   |
| 0.523839 | 53.176869                       | 0.549279 | 42.393728              | 0.725969 | 3.598145   |
| 0.524263 | 52.977462                       | 0.549703 | 42.233885              | 0.730322 | 3.024421   |
| 0.524687 | 52.778733                       | 0.550127 | 42.074711              | 0.734676 | 2.462974   |
| 0.525111 | 52,580673                       | 0.550551 | 41,916139              | 0.739030 | 1.912251   |
| 0 525535 | 52 383283                       | 0 550975 | 41 758352              | 0 743383 | 1 371131   |
| 0.525959 | 52 186557                       | 0 551399 | 41 600956              | 0 747737 | 0.840937   |
| 0.526383 | 51 000/00                       | 0.551822 | 41.000990              | 0.747797 | 0.322327   |
| 0.526807 | 51 705070                       | 0.552246 | 41.444.504             | 0.752091 | 0.322327   |
| 0.520807 | 51.795079                       | 0.552240 | 41.200077              | 0.750444 | -0.163630  |
| 0.527251 | 51.000525                       | 0.552070 | 41.132330              | 0.760793 | -0.077823  |
| 0.527655 | 51.406221                       | 0.553094 | 40.977504              | 0.765140 | -1.156155  |
| 0.528079 | 51.212/69                       | 0.553518 | 40.823135              | 0.769488 | -1.635868  |
| 0.528503 | 51.019968                       | 0.553942 | 40.669363              | 0.773838 | -2.097861  |
| 0.528927 | 50.827821                       | 0.554366 | 40.516201              | 0.778191 | -2.558240  |
| 0.529351 | 50.636325                       | 0.554790 | 40.363639              | 0.782544 | -3.004614  |
| 0.529775 | 50.445480                       | 0.555214 | 40.211670              | 0.786897 | -3.443010  |
| 0.530199 | 50.255294                       | 0.555638 | 40.060291              | 0.791248 | -3.870391  |
| 0.530623 | 50.065767                       | 0.556062 | 39.909493              | 0.795599 | -4.288528  |
| 0.531047 | 49.876899                       | 0.556486 | 39.759275              | 0.799946 | -4.694953  |
| 0.531471 | 49.688695                       | 0.556910 | 39.609624              | 0.804293 | -5.091884  |
| 0.531895 | 49.501159                       | 0.557334 | 39.460538              | 0.808636 | -5.480440  |
| 0.532319 | 49.314294                       | 0.557758 | 39.312008              | 0.812982 | -5.863327  |
| 0.532743 | 49.128104                       | 0.558182 | 39.164024              | 0.817329 | -6.240617  |
| 0.533167 | 48.942591                       | 0.558607 | 39.016581              | 0.821679 | -6.609040  |
| 0 533591 | 48 757759                       | 0 559030 | 38 869669              | 0.826029 | -6 968298  |
| 0.534015 | 48 573614                       | 0 559454 | 38 723282              | 0.830381 | -7 318589  |
| 0.534439 | 48.390155                       | 0.559878 | 38 577404              | 0.834733 | -7 660385  |
| 0.524962 | 40.370133                       | 0.560202 | 29 422022              | 0.034735 | 7.004267   |
| 0.534805 | 40.207300                       | 0.500302 | 20 207157              | 0.839085 | -7.334207  |
| 0.555267 | 40.023313                       | 0.500720 | 20.20/13/              | 0.043430 | -0.520590  |
| 0.555711 | 47.643933                       | 0.501150 | 56.142706<br>27.000056 | 0.847784 | -8.039129  |
| 0.536135 | 47.663246                       | 0.561575 | 37.998856              | 0.852130 | -8.950135  |
| 0.536559 | 47.483260                       | 0.561999 | 37.855415              | 0.856478 | -9.260973  |
| 0.536983 | 47.303967                       | 0.562422 | 37.712430              | 0.860829 | -9.559858  |
| 0.537407 | 47.125370                       | 0.562846 | 37.569899              | 0.865181 | -9.856747  |
| 0.537831 | 46.947471                       | 0.563270 | 37.427813              | 0.869532 | -10.144184 |
| 0.538255 | 46.770263                       | 0.563694 | 37.286162              | 0.873881 | -10.424844 |
| 0.538679 | 46.593748                       | 0.564118 | 37.144941              | 0.878232 | -10.703058 |
| 0.539103 | 46.417918                       | 0.564543 | 37.004144              | 0.882579 | -10.972303 |
| 0.539527 | 46.242777                       | 0.564967 | 36.863779              | 0.886929 | -11.238986 |
| 0.539951 | 46.068315                       | 0.572395 | 34.469163              | 0.891278 | -11.499511 |
| 0.540375 | 45.894530                       | 0.579823 | 32.200655              | 0.895627 | -11.754316 |
| 0.540799 | 45.721418                       | 0.587251 | 30.053747              | 0.899977 | -12.005823 |
| 0 541223 | 45 548972                       | 0 594679 | 28 013859              | 0.904328 | -12 252308 |
| 0 541647 | 45 377191                       | 0.602107 | 26.086193              | 0.909520 | -12.252500 |
| 0.542071 | 45 206066                       | 0.600534 | 20.000175              | 0.013074 | 12.792040  |
| 0.542071 | 45 035505                       | 0.007554 | 24.200430              | 0.913024 | -12.127131 |
| 0.542475 | тэ.033373<br>ЛЛ 86 <b>577</b> 0 | 0.010702 | 22.33+334              | 0.91/3/3 | -12.701003 |
| いいけんグーブ  | ++.0UJ//U                       | 0.024370 | 20.002327              | 0.741/44 | -13.100003 |

| 0.926071    | -13.409557                           | 0.952165 | -14.655924 | 0.978258 | -15.779654 |
|-------------|--------------------------------------|----------|------------|----------|------------|
| 0.930422    | -13.627364                           | 0.956515 | -14.850881 | 0.982609 | -15.956434 |
| 0.934769    | -13.840011                           | 0.960862 | -15.042041 | 0.986956 | -16.130085 |
| 0.939118    | -14.050266                           | 0.965211 | -15.231573 | 0.991304 | -16.302289 |
| 0 943467    | -14 255690                           | 0.969560 | -15 416999 | 0 995654 | -16 470200 |
| 0.947816    | -14 456843                           | 0 973909 | -15 599085 | 1 000000 | -16 636229 |
| Stop 3. INT | $2 \rightarrow TS3 \rightarrow INT3$ | 0.975909 | 15.577005  | 1.000000 | 10.03022)  |
| Step 5: INT | $2 \rightarrow 153 \rightarrow 1013$ |          |            |          |            |
|             |                                      | 0.063538 | 1.076279   | 0.133781 | 3.392290   |
| Intrinsic   | Electronic                           | 0.064863 | 1.109313   | 0.135107 | 3.448999   |
| Coordinate  | Energy                               | 0.066188 | 1.142801   | 0.136433 | 3.506234   |
|             | (kJ/mol)                             | 0.067513 | 1.176542   | 0.137759 | 3.564056   |
|             |                                      | 0.068838 | 1.210710   | 0.139084 | 3.622439   |
| 0.000000    | 0.000000                             | 0.070162 | 1.245141   | 0.140410 | 3.681494   |
| 0.001322    | 0.012164                             | 0.071487 | 1.280007   | 0.141736 | 3.741127   |
| 0.002643    | 0.025013                             | 0.072813 | 1.315228   | 0.143060 | 3.801338   |
| 0.003961    | 0.037847                             | 0.074138 | 1.350880   | 0.144384 | 3.861538   |
| 0.005278    | 0.051347                             | 0.075464 | 1.386926   | 0.145708 | 3.922140   |
| 0.006595    | 0.064810                             | 0.076790 | 1.423381   | 0.147033 | 3.983319   |
| 0.007913    | 0.078852                             | 0.078116 | 1.460253   | 0.148358 | 4.045234   |
| 0.009232    | 0.093334                             | 0.079441 | 1.497535   | 0.149684 | 4.107805   |
| 0.010554    | 0.108252                             | 0.080767 | 1.535303   | 0.151010 | 4.170982   |
| 0.011877    | 0.123766                             | 0.082092 | 1.573386   | 0.152336 | 4.234745   |
| 0.013200    | 0.139619                             | 0.083416 | 1.612060   | 0.153662 | 4.299093   |
| 0.014524    | 0.156096                             | 0.084740 | 1.650570   | 0.154989 | 4.364030   |
| 0.015848    | 0.172855                             | 0.086064 | 1.689669   | 0.156315 | 4.429576   |
| 0.017172    | 0.190262                             | 0.087387 | 1.728629   | 0.157641 | 4.495767   |
| 0.018496    | 0.207884                             | 0.088711 | 1.768303   | 0.158967 | 4.562633   |
| 0.019820    | 0.226145                             | 0.090036 | 1.808305   | 0.160292 | 4.630169   |
| 0.021144    | 0.244631                             | 0.091362 | 1.848885   | 0.161617 | 4.698177   |
| 0.022468    | 0.263695                             | 0.092687 | 1.889869   | 0.162941 | 4.766522   |
| 0.023793    | 0.283126                             | 0.094013 | 1.931323   | 0.164266 | 4.835341   |
| 0.025118    | 0.303067                             | 0.095339 | 1.973181   | 0.165591 | 4.904886   |
| 0.026443    | 0.323480                             | 0.096665 | 2.015483   | 0.166916 | 4.975223   |
| 0.027767    | 0.344324                             | 0.097990 | 2.058187   | 0.168242 | 5.046321   |
| 0.029092    | 0.365695                             | 0.099316 | 2.101343   | 0.169569 | 5.118155   |
| 0.030416    | 0.387432                             | 0.100642 | 2.144907   | 0.170895 | 5.190713   |
| 0.031741    | 0.409736                             | 0.101968 | 2.188945   | 0.172221 | 5.264001   |
| 0.033065    | 0.432354                             | 0.103293 | 2.233400   | 0.173547 | 5.338027   |
| 0.034389    | 0.455566                             | 0.104619 | 2.278349   | 0.174873 | 5.412831   |
| 0.035713    | 0.479064                             | 0.105945 | 2.323720   | 0.176200 | 5.488408   |
| 0.037037    | 0.503135                             | 0.107270 | 2.369606   | 0.177526 | 5.564884   |
| 0.038362    | 0.527515                             | 0.108595 | 2.415901   | 0.178851 | 5.641989   |
| 0.039686    | 0.552442                             | 0.109921 | 2.462706   | 0.180176 | 5.720019   |
| 0.041011    | 0.577747                             | 0.111246 | 2.509923   | 0.181501 | 5.798246   |
| 0.042336    | 0.603581                             | 0.112571 | 2.557639   | 0.182827 | 5.877457   |
| 0.043661    | 0.629831                             | 0.113896 | 2.605819   | 0.184152 | 5.957396   |
| 0.044985    | 0.656601                             | 0.115221 | 2.654509   | 0.185478 | 6.038351   |
| 0.046311    | 0.683783                             | 0.116547 | 2.703724   | 0.186804 | 6.120198   |
| 0.047636    | 0.711474                             | 0.117872 | 2.753464   | 0.188130 | 6.202951   |
| 0.048960    | 0.739538                             | 0.119198 | 2.803756   | 0.189456 | 6.286589   |
| 0.050285    | 0.768101                             | 0.120524 | 2.854570   | 0.190782 | 6.371112   |
| 0.051610    | 0.796994                             | 0.121850 | 2.905948   | 0.192109 | 6.456530   |
| 0.052935    | 0.826387                             | 0.123176 | 2.957846   | 0.193435 | 6.542846   |
| 0.054260    | 0.856120                             | 0.124501 | 3.010312   | 0.194761 | 6.630068   |
| 0.055585    | 0.886343                             | 0.125827 | 3.063284   | 0.196087 | 6.718206   |
| 0.056910    | 0.916935                             | 0.127153 | 3.116826   | 0.197414 | 6.807268   |
| 0.058236    | 0.947997                             | 0.128479 | 3.170850   | 0.198740 | 6.897257   |
| 0.059561    | 0.979430                             | 0.129804 | 3.225445   | 0.200066 | 6.988186   |
| 0.060887    | 1.011319                             | 0.131130 | 3.280515   | 0.201393 | 7.080057   |
| 0.062212    | 1.043571                             | 0.132455 | 3,336155   | 0.202719 | 7.172877   |

| 0.204045                                                                                                                                      | 7.266651             | 0.283622  | 14.797250 | 0.363192 | 26.828498       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|-----------|----------|-----------------|
| 0.205371                                                                                                                                      | 7.361380             | 0.284948  | 14.956851 | 0.364519 | 27.074048       |
| 0.206698                                                                                                                                      | 7.457071             | 0.286274  | 15.117682 | 0.365845 | 27.321108       |
| 0.208024                                                                                                                                      | 7.553729             | 0.287601  | 15.279748 | 0.367171 | 27.569669       |
| 0.209350                                                                                                                                      | 7 651350             | 0.288927  | 15 443075 | 0 368497 | 27 819719       |
| 0.210677                                                                                                                                      | 7 749940             | 0.290253  | 15 607676 | 0.369824 | 28.071253       |
| 0.210077                                                                                                                                      | 7.849502             | 0.291579  | 15 773563 | 0.307024 | 28.324256       |
| 0.212005                                                                                                                                      | 7.049302             | 0.201070  | 15.040757 | 0.372476 | 28.524230       |
| 0.213329                                                                                                                                      | 7.930033<br>9.051520 | 0.292900  | 15.940757 | 0.372470 | 20.370720       |
| 0.214033                                                                                                                                      | 8.031339             | 0.294232  | 16.109272 | 0.575805 | 20.001005       |
| 0.215982                                                                                                                                      | 8.154021             | 0.295558  | 16.279124 | 0.375129 | 29.091995       |
| 0.21/308                                                                                                                                      | 8.25/4/6             | 0.296885  | 16.450325 | 0.3/6455 | 29.350/8/       |
| 0.218634                                                                                                                                      | 8.361908             | 0.298211  | 16.622889 | 0.3/7/81 | 29.611009       |
| 0.219960                                                                                                                                      | 8.467319             | 0.299537  | 16.796828 | 0.3/9108 | 29.872650       |
| 0.221287                                                                                                                                      | 8.573715             | 0.300863  | 16.972154 | 0.380434 | 30.135707       |
| 0.222613                                                                                                                                      | 8.681098             | 0.302190  | 17.148876 | 0.381760 | 30.400171       |
| 0.223939                                                                                                                                      | 8.789470             | 0.303516  | 17.327003 | 0.383087 | 30.666040       |
| 0.225266                                                                                                                                      | 8.898838             | 0.304842  | 17.506550 | 0.384413 | 30.933308       |
| 0.226592                                                                                                                                      | 9.009212             | 0.306169  | 17.687513 | 0.385739 | 31.201972       |
| 0.227918                                                                                                                                      | 9.120596             | 0.307495  | 17.869914 | 0.387065 | 31.472031       |
| 0.229244                                                                                                                                      | 9.233001             | 0.308821  | 18.053747 | 0.388392 | 31.743476       |
| 0.230571                                                                                                                                      | 9.346433             | 0.310147  | 18.239049 | 0.389718 | 32.016311       |
| 0.231897                                                                                                                                      | 9.460908             | 0.311473  | 18.425775 | 0.391044 | 32.290531       |
| 0.233223                                                                                                                                      | 9.576432             | 0.312799  | 18.614013 | 0.392370 | 32.566132       |
| 0.234550                                                                                                                                      | 9.693018             | 0.314125  | 18.803534 | 0.393697 | 32.843115       |
| 0.235876                                                                                                                                      | 9.810680             | 0.315450  | 18.994526 | 0.395023 | 33.121481       |
| 0.237202                                                                                                                                      | 9.929423             | 0.316775  | 19.186595 | 0.396349 | 33.401228       |
| 0.238528                                                                                                                                      | 10.049264            | 0.318101  | 19.380147 | 0.397676 | 33.682358       |
| 0.239855                                                                                                                                      | 10 170210            | 0.319427  | 19 574974 | 0.399002 | 33 964878       |
| 0.241181                                                                                                                                      | 10 292272            | 0.320753  | 19 771359 | 0.400328 | 34 248786       |
| 0.242507                                                                                                                                      | 10/115/158           | 0.3220735 | 19 969183 | 0.100520 | 3/ 53/09/       |
| 0.242307                                                                                                                                      | 10.539776            | 0.322070  | 20 168500 | 0.402081 | 3/ 820809       |
| 0.245160                                                                                                                                      | 10.65235             | 0.324730  | 20.100300 | 0.40/207 | 35 108037       |
| 0.245100                                                                                                                                      | 10.701837            | 0.324750  | 20.507251 | 0.405633 | 35 308/08       |
| 0.240480                                                                                                                                      | 10.791057            | 0.320037  | 20.371441 | 0.405055 | 35.590490       |
| 0.247812                                                                                                                                      | 11.049495            | 0.327383  | 20.773049 | 0.400900 | 25 091066       |
| 0.249159                                                                                                                                      | 11.046463            | 0.328709  | 20.980076 | 0.408280 | 33.981900       |
| 0.250465                                                                                                                                      | 11.1/8530            | 0.330035  | 21.180517 | 0.409612 | 30.275909       |
| 0.251791                                                                                                                                      | 11.309738            | 0.331362  | 21.394378 | 0.410938 | 36.5/1354       |
| 0.253117                                                                                                                                      | 11.442089            | 0.332688  | 21.603659 | 0.412265 | 36.868324       |
| 0.254444                                                                                                                                      | 11.575588            | 0.334014  | 21.814366 | 0.413591 | 37.166841       |
| 0.255770                                                                                                                                      | 11.710231            | 0.335340  | 22.026509 | 0.414917 | 37.466927       |
| 0.257096                                                                                                                                      | 11.846014            | 0.336667  | 22.240099 | 0.416243 | 37.768610       |
| 0.258423                                                                                                                                      | 11.982932            | 0.337993  | 22.455137 | 0.417570 | 38.071916       |
| 0.259749                                                                                                                                      | 12.120980            | 0.339319  | 22.671641 | 0.418896 | 38.376863       |
| 0.261075                                                                                                                                      | 12.260153            | 0.340646  | 22.889618 | 0.420222 | 38.683474       |
| 0.262401                                                                                                                                      | 12.400447            | 0.341972  | 23.109079 | 0.421549 | 38.991770       |
| 0.263728                                                                                                                                      | 12.541859            | 0.343298  | 23.330035 | 0.422875 | 39.301769       |
| 0.265054                                                                                                                                      | 12.684381            | 0.344624  | 23.552499 | 0.424201 | 39.613478       |
| 0.266380                                                                                                                                      | 12.828012            | 0.345951  | 23.776475 | 0.425527 | 39.926911       |
| 0.267706                                                                                                                                      | 12.972753            | 0.347277  | 24.001980 | 0.426854 | 40.242068       |
| 0.269033                                                                                                                                      | 13.118600            | 0.348603  | 24.229015 | 0.428180 | 40.558950       |
| 0.270359                                                                                                                                      | 13.265557            | 0.349930  | 24.457588 | 0.429506 | 40.877549       |
| 0.271685                                                                                                                                      | 13.413622            | 0.351256  | 24.687708 | 0.430833 | 41.197857       |
| 0.273012                                                                                                                                      | 13.562800            | 0.352582  | 24.919377 | 0.432159 | 41.519851       |
| 0.274338                                                                                                                                      | 13.713097            | 0.353908  | 25,152597 | 0.433485 | 41.843512       |
| 0.275664                                                                                                                                      | 13.864520            | 0.355235  | 25.387372 | 0.434811 | 42,167531       |
| 0.276990                                                                                                                                      | 14.017077            | 0.356561  | 25.623699 | 0.436127 | 42,496674       |
| 0.278317                                                                                                                                      | 14,170779            | 0 357887  | 25.861577 | 0 443140 | 44 245703       |
| 0 279643                                                                                                                                      | 14 325631            | 0 359214  | 26 101001 | 0.450156 | 46 035370       |
| 0.280969                                                                                                                                      | 14 481654            | 0.357214  | 26 341967 | 0.457174 | 47 8535970      |
| 0.282296                                                                                                                                      | 14 638853            | 0 361866  | 26 584469 | 0 464192 | 49 695249       |
| $\gamma \gamma \omega \omega$ | 1 100000.7.7         | 0         |           | 0.707176 | 1 / 11 / 14 7 7 |

| 0.471209 | 51.560126                           | 0.634950 | 108.841255 | 0.660224 | 138.556830 |
|----------|-------------------------------------|----------|------------|----------|------------|
| 0.478226 | 53.451426                           | 0.635371 | 109.227537 | 0.660645 | 138.958783 |
| 0.485244 | 55.372115                           | 0.635792 | 109.619590 | 0.661066 | 139.344550 |
| 0 492261 | 57 320840                           | 0.636213 | 110 017403 | 0 661487 | 139 713325 |
| 0.492201 | 50 200285                           | 0.636635 | 110.017405 | 0.661008 | 140.064280 |
| 0.499279 | 53.230285                           | 0.030033 | 110.42033  | 0.001908 | 140.004289 |
| 0.506296 | 61.269616                           | 0.637056 | 110.830413 | 0.662330 | 140.396586 |
| 0.513313 | 63.250151                           | 0.63/4// | 111.245730 | 0.662751 | 140.709314 |
| 0.520330 | 65.229626                           | 0.637898 | 111.667065 | 0.663172 | 141.001545 |
| 0.527348 | 67.211338                           | 0.638319 | 112.094541 | 0.663593 | 141.272321 |
| 0.534365 | 69.199970                           | 0.638741 | 112.528279 | 0.664015 | 141.520691 |
| 0.541382 | 71.198535                           | 0.639162 | 112.968339 | 0.664436 | 141.745715 |
| 0.548399 | 73.208652                           | 0.639583 | 113.414682 | 0.664857 | 141.946510 |
| 0 555416 | 75 233296                           | 0 640005 | 113 867160 | 0 665278 | 142 122272 |
| 0.562432 | 77 279447                           | 0.640425 | 11/ 325518 | 0.665699 | 1/2 272287 |
| 0.560448 | 70 350243                           | 0.640847 | 114.323310 | 0.666121 | 142.272207 |
| 0.509446 | 77.3372 <del>4</del> 3<br>91.400550 | 0.040847 | 114.707430 | 0.000121 | 142.393972 |
| 0.5/6464 | 81.490550                           | 0.641268 | 115.258626 | 0.666542 | 142.492848 |
| 0.583479 | 83.698194                           | 0.641689 | 115.732857 | 0.666963 | 142.562531 |
| 0.590492 | 86.015940                           | 0.642111 | 116.212021 | 0.667384 | 142.604686 |
| 0.597505 | 88.488831                           | 0.642532 | 116.696139 | 0.667806 | 142.618977 |
| 0.604516 | 91.176429                           | 0.642953 | 117.185320 | 0.668227 | 142.605007 |
| 0.611525 | 94.159396                           | 0.643374 | 117.679725 | 0.668648 | 142.562324 |
| 0.618525 | 97.570031                           | 0.643795 | 118.179507 | 0.669069 | 142.490369 |
| 0.618943 | 97 790008                           | 0 644217 | 118 684743 | 0 669490 | 142 388513 |
| 0.610364 | 98 01/470                           | 0.611638 | 110 105376 | 0.660012 | 142.256078 |
| 0.610785 | 08 241274                           | 0.044038 | 110.711100 | 0.009912 | 142.230078 |
| 0.019785 | 98.241374                           | 0.045059 | 119./11190 | 0.070353 | 142.092393 |
| 0.620206 | 98.470748                           | 0.045480 | 120.231819 | 0.670754 | 141.890851 |
| 0.620628 | 98.702666                           | 0.645902 | 120.756795 | 0.6/11/5 | 141.668940 |
| 0.621049 | 98.937210                           | 0.646323 | 121.285639 | 0.671596 | 141.408291 |
| 0.621470 | 99.174469                           | 0.646744 | 121.817936 | 0.672018 | 141.114718 |
| 0.621892 | 99.414534                           | 0.647166 | 122.353383 | 0.672439 | 140.788213 |
| 0.622313 | 99.657503                           | 0.647587 | 122.891805 | 0.672860 | 140.428961 |
| 0.622734 | 99.903486                           | 0.648008 | 123.433099 | 0.673282 | 140.037283 |
| 0.623155 | 100.152588                          | 0.648429 | 123.977189 | 0.673703 | 139.613596 |
| 0.623576 | 100 404925                          | 0 648850 | 124 523970 | 0 674124 | 139 158316 |
| 0.623998 | 100 660615                          | 0 649272 | 125 073270 | 0 674545 | 138 671771 |
| 0.624410 | 100.000015                          | 0.640603 | 125.673270 | 0.674066 | 130.071771 |
| 0.024419 | 100.919775                          | 0.049093 | 125.024024 | 0.074900 | 127 (05417 |
| 0.624840 | 101.182525                          | 0.650114 | 120.178285 | 0.075388 | 137.005417 |
| 0.625261 | 101.448984                          | 0.650535 | 126./33221 | 0.6/5809 | 137.025436 |
| 0.625682 | 101.719263                          | 0.650956 | 127.289123 | 0.676230 | 136.413938 |
| 0.626104 | 101.993479                          | 0.651378 | 127.845414 | 0.676651 | 135.770667 |
| 0.626525 | 102.271737                          | 0.651799 | 128.401472 | 0.677073 | 135.095475 |
| 0.626946 | 102.554138                          | 0.652220 | 128.956676 | 0.677494 | 134.388391 |
| 0.627368 | 102.840785                          | 0.652642 | 129.510451 | 0.677915 | 133.649675 |
| 0.627789 | 103.131767                          | 0.653062 | 130.062326 | 0.678336 | 132.879818 |
| 0.628210 | 103.427180                          | 0.653484 | 130.611917 | 0.678757 | 132.079524 |
| 0.628631 | 103 727107                          | 0.653905 | 131 158885 | 0 679179 | 131 249667 |
| 0.629052 | 104 031641                          | 0.654326 | 131 702857 | 0.679600 | 130 391207 |
| 0.620474 | 104.240967                          | 0.654749 | 122 242200 | 0.690021 | 120 505140 |
| 0.029474 | 104.540807                          | 0.034748 | 132.243300 | 0.080021 | 129.303140 |
| 0.629895 | 104.054880                          | 0.055109 | 132.779480 | 0.080443 | 128.592414 |
| 0.630316 | 104.973786                          | 0.655590 | 133.310474 | 0.680864 | 127.653874 |
| 0.630737 | 105.297707                          | 0.656011 | 133.835251 | 0.681285 | 126.690231 |
| 0.631159 | 105.626774                          | 0.656432 | 134.352800 | 0.681706 | 125.702064 |
| 0.631580 | 105.961139                          | 0.656854 | 134.862226 | 0.682127 | 124.689852 |
| 0.632001 | 106.300955                          | 0.657275 | 135.362762 | 0.682549 | 123.654056 |
| 0.632422 | 106.646376                          | 0.657696 | 135.853738 | 0.682970 | 122.595184 |
| 0.632843 | 106.997529                          | 0.658117 | 136.334493 | 0.683391 | 121,513869 |
| 0.633265 | 107.354511                          | 0.658538 | 136.804300 | 0.683812 | 120.410925 |
| 0.633686 | 107 717373                          | 0.658960 | 137 262340 | 0.684233 | 110 287361 |
| 0.63/107 | 107.717575                          | 0.050500 | 137.202340 | 0.004233 | 118 1//240 |
| 0.034107 | 100.000133                          | 0.037301 | 129 120522 | 0.004033 | 116.092042 |
| 0.034329 | 100.400770                          | 0.039802 | 130.137322 | 0.0000/0 | 110.903243 |

| 0.685497 | 115.805410             | 0.710771             | 52.653008 | 0.736045   | 24.845395  |
|----------|------------------------|----------------------|-----------|------------|------------|
| 0.685919 | 114.612283             | 0.711192             | 51.962767 | 0.736466   | 24.560539  |
| 0.686340 | 113.405267             | 0.711614             | 51.282889 | 0.736888   | 24.280044  |
| 0.686761 | 112,185696             | 0.712035             | 50.613192 | 0.737309   | 24.003854  |
| 0.687182 | 110 954838             | 0.712456             | 49 953451 | 0 737730   | 23 731905  |
| 0.687603 | 109 713895             | 0.712130             | 19.993191 | 0.738151   | 23.751703  |
| 0.688025 | 109.715095             | 0.712077             | 48 662842 | 0.738572   | 23.404145  |
| 0.688446 | 107 206367             | 0.713220             | 48.002042 | 0.738004   | 22.040044  |
| 0.000440 | 107.200507             | 0.713720             | 40.051400 | 0.730994   | 22.940944  |
| 0.000007 | 103.942104             | 0.714141<br>0.714562 | 47.409137 | 0.739413   | 22.003394  |
| 0.089288 | 104.072405             | 0.714562             | 40./9500/ | 0.739830   | 22.455805  |
| 0.689709 | 103.398743             | 0.714983             | 46.190744 | 0.740257   | 22.186123  |
| 0.690131 | 102.122299             | 0.715405             | 45.594420 | 0.740679   | 21.942293  |
| 0.690552 | 100.844549             | 0.715826             | 45.006536 | 0.741100   | 21.702260  |
| 0.690973 | 99.566934              | 0.716247             | 44.42/00/ | 0.741521   | 21.465970  |
| 0.691394 | 98.290893              | 0.716668             | 43.855753 | 0.741942   | 21.233369  |
| 0.691816 | 97.017851              | 0.717089             | 43.292702 | 0.742363   | 21.004402  |
| 0.692237 | 95.749173              | 0.717511             | 42.737760 | 0.742785   | 20.779021  |
| 0.692658 | 94.486158              | 0.717932             | 42.190832 | 0.743206   | 20.557169  |
| 0.693080 | 93.230014              | 0.718353             | 41.651796 | 0.743627   | 20.338793  |
| 0.693501 | 91.981851              | 0.718775             | 41.120521 | 0.744049   | 20.123846  |
| 0.693922 | 90.742683              | 0.719196             | 40.596870 | 0.744470   | 19.912270  |
| 0.694343 | 89.513445              | 0.719617             | 40.080697 | 0.744891   | 19.704020  |
| 0.694764 | 88.295035              | 0.720038             | 39.571869 | 0.745312   | 19.499048  |
| 0.695186 | 87.088336              | 0.720459             | 39.070260 | 0.745733   | 19.297302  |
| 0.695607 | 85.894230              | 0.720881             | 38.575755 | 0.746155   | 19.098735  |
| 0.696028 | 84.713590              | 0.721302             | 38.088260 | 0.746576   | 18.903303  |
| 0.696449 | 83.547204              | 0.721723             | 37.607680 | 0.746997   | 18.710962  |
| 0.696870 | 82 395715              | 0 722144             | 37 133940 | 0 747418   | 18 521669  |
| 0.697292 | 81 259566              | 0.722565             | 36 666956 | 0 747839   | 18 335379  |
| 0.697713 | 80 138982              | 0.722987             | 36 206653 | 0.748261   | 18 152053  |
| 0.608134 | 70.034032              | 0.722/08             | 35 752956 | 0.748682   | 17 071653  |
| 0.098134 | 77.034032              | 0.723408             | 35.752950 | 0.740002   | 17.704140  |
| 0.098550 | 76 971090              | 0.723029             | 24 865050 | 0.749105   | 17.794140  |
| 0.098977 | 70.071000              | 0.724231             | 34.803039 | 0.749323   | 17.019476  |
| 0.099398 | 73.013242              | 0.724072             | 34.430702 | 0.749940   | 17.447029  |
| 0.099819 | 74.771404              | 0.725095             | 34.002038 | 0.750307   | 17.112242  |
| 0.700240 | /3./45/90              | 0.725514             | 33.580788 | 0.750788   | 17.112242  |
| 0.700662 | 72.736519              | 0.725935             | 33.1650/4 | 0.751209   | 16.948634  |
| 0.701083 | /1./43544              | 0.726357             | 32.755418 | 0.751631   | 16./8//12  |
| 0.701504 | 70.766598              | 0.726778             | 32.351747 | 0.752052   | 16.629442  |
| 0.701925 | 69.805221              | 0.727199             | 31.953981 | 0.752473   | 16.473792  |
| 0.702346 | 68.858831              | 0.727620             | 31.562049 | 0.752894   | 16.320735  |
| 0.702768 | 67.926836              | 0.728042             | 31.175878 | 0.753316   | 16.170244  |
| 0.703189 | 67.008736              | 0.728463             | 30.795395 | 0.753737   | 16.022290  |
| 0.703610 | 66.104180              | 0.728884             | 30.420534 | 0.754158   | 15.876842  |
| 0.704031 | 65.212993              | 0.729305             | 30.051229 | 0.754580   | 15.733878  |
| 0.704452 | 64.335131              | 0.729726             | 29.687413 | 0.755000   | 15.593370  |
| 0.704874 | 63.470612              | 0.730148             | 29.329030 | 0.755422   | 15.455289  |
| 0.705295 | 62.619440              | 0.730569             | 28.976013 | 0.755843   | 15.319611  |
| 0.705716 | 61.781546              | 0.730990             | 28.628300 | 0.756264   | 15.186312  |
| 0.706138 | 60.956748              | 0.731412             | 28.285832 | 0.756686   | 15.055365  |
| 0.706559 | 60.144741              | 0.731833             | 27.948539 | 0.757107   | 14.926745  |
| 0.706980 | 59.345137              | 0.732254             | 27.616361 | 0.757528   | 14.800427  |
| 0 707401 | 58 557511              | 0 732675             | 27 289226 | 0 757949   | 14 676390  |
| 0 707822 | 57 781445              | 0.733096             | 26 967070 | 0 758370   | 14 554604  |
| 0 708244 | 57 016570              | 0.7335070            | 26.507070 | 0.758707   | 14 /350/0  |
| 0.708665 | 56 7676/2              | 0.733030             | 20.049017 | 0.750792   | 1/ 317700  |
| 0.700000 | 55 510/61              | 0.73737              | 20.337377 | 0.757215   | 14 202525  |
| 0.709080 | JJ.J17401<br>54 706020 | 0.734300             | 20.029/40 | 0./39034   | 14.202333  |
| 0.709307 | J4./00939<br>54.065020 | 0.725202             | 25.120189 | 0./00000   | 14.089323  |
| 0.709928 | 54.005059              | 0.755202             | 23.428430 | 0./004/0   | 13.9/8030  |
| 0./10350 | 22.222/39              | 0.755624             | 23.134681 | U. / 6U898 | 1.3.809889 |

| 0.761319 | 13.763212 | 0.827303 | 9.131796                      | 0.879407 | 8.254076 |
|----------|-----------|----------|-------------------------------|----------|----------|
| 0.761740 | 13.658602 | 0.828171 | 9.115122                      | 0.880275 | 8.240906 |
| 0.762162 | 13.556031 | 0.829040 | 9.098555                      | 0.881144 | 8.227776 |
| 0.762583 | 13.455480 | 0.829908 | 9.082098                      | 0.882012 | 8.214683 |
| 0.763004 | 13.356921 | 0.830777 | 9.065744                      | 0.882881 | 8.201624 |
| 0.763425 | 13.260335 | 0.831645 | 9.049487                      | 0.883750 | 8.188601 |
| 0.763847 | 13.165696 | 0.832514 | 9.033324                      | 0.884618 | 8.175613 |
| 0.764268 | 13.072981 | 0.833382 | 9.017256                      | 0.885486 | 8.162658 |
| 0 764689 | 12.982168 | 0.834251 | 9 001275                      | 0.886354 | 8 149744 |
| 0.765110 | 12.893232 | 0.835119 | 8 985380                      | 0.887222 | 8 136876 |
| 0.765531 | 12.806152 | 0.835988 | 8 969567                      | 0.888090 | 8 124066 |
| 0.765953 | 12.000132 | 0.836856 | 8 953832                      | 0.888957 | 8 111312 |
| 0.765374 | 12.720905 | 0.830850 | 8 038170                      | 0.880824 | 8.008500 |
| 0.766705 | 12.037400 | 0.838504 | 8 022500                      | 0.800601 | 8.090377 |
| 0.767217 | 12.333011 | 0.830462 | 8.007003                      | 0.890091 | 8.003044 |
| 0.767627 | 12.473717 | 0.839402 | 8.907093<br>9.901657          | 0.091336 | 8.073003 |
| 0.767057 | 12.397703 | 0.840330 | 0.091037                      | 0.092420 | 8.000239 |
| 0.768059 | 12.321324 | 0.841199 | 8.8/0290                      | 0.893294 | 8.04/499 |
| 0.768480 | 12.240574 | 0.842068 | 8.860994                      | 0.894162 | 8.034776 |
| 0.768901 | 12.173490 | 0.842936 | 8.845/64                      | 0.895030 | 8.022094 |
| 0.769323 | 12.102051 | 0.843805 | 8.830596                      | 0.895899 | 8.009442 |
| 0.769744 | 12.032220 | 0.844673 | 8.815494                      | 0.896767 | 7.996819 |
| 0.776355 | 11.12/688 | 0.845542 | 8.800453                      | 0.89/636 | 7.984219 |
| 0.782952 | 10.534792 | 0.846410 | 8.785474                      | 0.898505 | 7.971643 |
| 0.789513 | 10.148847 | 0.847279 | 8.770556                      | 0.899373 | 7.959088 |
| 0.796078 | 9.886417  | 0.848147 | 8.755696                      | 0.900242 | 7.946554 |
| 0.796905 | 9.855930  | 0.849016 | 8.740893                      | 0.901110 | 7.934038 |
| 0.797774 | 9.828446  | 0.849885 | 8.726146                      | 0.901978 | 7.921546 |
| 0.798642 | 9.801204  | 0.850753 | 8.711456                      | 0.902847 | 7.909069 |
| 0.799510 | 9.774779  | 0.851621 | 8.696822                      | 0.903716 | 7.896614 |
| 0.800379 | 9.749072  | 0.852490 | 8.682242                      | 0.904584 | 7.884177 |
| 0.801247 | 9.724009  | 0.853358 | 8.667718                      | 0.905453 | 7.871756 |
| 0.802116 | 9.699526  | 0.854227 | 8.653246                      | 0.906321 | 7.859355 |
| 0.802984 | 9.675574  | 0.855096 | 8.638827                      | 0.907190 | 7.846971 |
| 0.803853 | 9.652113  | 0.855964 | 8.624460                      | 0.908058 | 7.834605 |
| 0.804721 | 9.629105  | 0.856833 | 8.610146                      | 0.908927 | 7.822255 |
| 0.805590 | 9.606523  | 0.857701 | 8.595882                      | 0.909795 | 7.809923 |
| 0.806458 | 9.584340  | 0.858570 | 8.581667                      | 0.910664 | 7.797609 |
| 0.807327 | 9.562536  | 0.859438 | 8.567500                      | 0.911533 | 7.785311 |
| 0.808195 | 9.541088  | 0.860307 | 8.553383                      | 0.912401 | 7.773034 |
| 0.809064 | 9.519979  | 0.861175 | 8.539310                      | 0.913269 | 7.760778 |
| 0.809932 | 9.499193  | 0.862044 | 8.525287                      | 0.914137 | 7.748546 |
| 0.810801 | 9.478714  | 0.862912 | 8.511309                      | 0.915006 | 7.736340 |
| 0.811669 | 9.458527  | 0.863781 | 8.497378                      | 0.915874 | 7.724179 |
| 0.812538 | 9 438615  | 0 864649 | 8 483489                      | 0 916741 | 7 712041 |
| 0.813406 | 9 418968  | 0.865518 | 8 469650                      | 0.917608 | 7 699977 |
| 0.814275 | 9 399574  | 0.866387 | 8 455853                      | 0.918475 | 7 687847 |
| 0.815144 | 9 380/15  | 0.867255 | 8 442101                      | 0.9104/3 | 7.675775 |
| 0.816012 | 0 361/88  | 0.868124 | 8 128303                      | 0.919342 | 7.663580 |
| 0.816880 | 9342776   | 0.868992 | 8 /1/730                      | 0.921077 | 7.651466 |
| 0.817740 | 0 32/260  | 0.860861 | 8 /01100                      | 0.921077 | 7.630315 |
| 0.017749 | 9.524209  | 0.809801 | 0.401109                      | 0.921945 | 7.039313 |
| 0.010017 | 9.303901  | 0.870729 | 0.307333                      | 0.922014 | 7.027250 |
| 0.019400 | 7.20/030  | 0.0/1398 | 0.374000                      | 0.923082 | 7 602100 |
| 0.020333 | 7.207072  | 0.0/2400 | 0.300332                      | 0.924330 | 7.003122 |
| 0.821223 | 9.232113  | 0.0/3333 | 0.34/142                      | 0.923418 | 7.391100 |
| 0.822092 | 9.234300  | 0.874201 | 8.333828<br>8.220 <i>C</i> 45 | 0.926287 | 7.579120 |
| 0.822960 | 9.21/038  | 0.8/506/ | ð.320043<br>9.207271          | 0.92/155 | 1.56/153 |
| 0.823828 | 9.199723  | 0.8/5935 | 8.30/2/1                      | 0.928024 | 1.555215 |
| 0.824697 | 9.182547  | 0.876802 | 8.293947                      | 0.928892 | 1.543298 |
| 0.825566 | 9.165505  | 0.877670 | 8.280567                      | 0.929761 | 7.531410 |
| 0.826434 | 9.148592  | 0.878538 | 8.267298                      | 0.930629 | 7.519545 |

| 0.931498 | 7.507709 | 0.954915 | 7.200925 | 0.978315 | 6.923268 |
|----------|----------|----------|----------|----------|----------|
| 0.932366 | 7.495897 | 0.955782 | 7.190008 | 0.979181 | 6.913687 |
| 0.933234 | 7.484122 | 0.956650 | 7.179067 | 0.980049 | 6.904031 |
| 0.934102 | 7.472373 | 0.957517 | 7.168282 | 0.980916 | 6.894524 |
| 0.934971 | 7.460671 | 0.958385 | 7.157575 | 0.981783 | 6.884985 |
| 0.935839 | 7.448998 | 0.959252 | 7.147023 | 0.982651 | 6.875570 |
| 0.936706 | 7.437409 | 0.960118 | 7.136679 | 0.983518 | 6.866158 |
| 0.937573 | 7.425833 | 0.960983 | 7.126295 | 0.984386 | 6.856866 |
| 0.938440 | 7.414378 | 0.961849 | 7.116063 | 0.985253 | 6.847588 |
| 0.939306 | 7.402849 | 0.962715 | 7.105225 | 0.986121 | 6.838438 |
| 0.940172 | 7.391365 | 0.963582 | 7.094563 | 0.986987 | 6.829293 |
| 0.941039 | 7.379803 | 0.964450 | 7.083864 | 0.987854 | 6.820248 |
| 0.941906 | 7.368258 | 0.965318 | 7.073346 | 0.988721 | 6.811182 |
| 0.942774 | 7.356769 | 0.966186 | 7.062921 | 0.989588 | 6.802151 |
| 0.943642 | 7.345314 | 0.967054 | 7.052581 | 0.990455 | 6.793145 |
| 0.944509 | 7.333940 | 0.967922 | 7.042316 | 0.991322 | 6.784171 |
| 0.945377 | 7.322588 | 0.968790 | 7.032129 | 0.992190 | 6.775281 |
| 0.946245 | 7.311316 | 0.969657 | 7.022044 | 0.993058 | 6.766433 |
| 0.947113 | 7.300056 | 0.970523 | 7.012130 | 0.993925 | 6.757680 |
| 0.947980 | 7.288892 | 0.971387 | 7.002300 | 0.994793 | 6.748971 |
| 0.948848 | 7.277736 | 0.972251 | 6.992657 | 0.995661 | 6.740349 |
| 0.949715 | 7.266696 | 0.973116 | 6.982473 | 0.996529 | 6.731764 |
| 0.950582 | 7.255682 | 0.973981 | 6.972616 | 0.997397 | 6.723260 |
| 0.951449 | 7.244750 | 0.974848 | 6.962427 | 0.998264 | 6.714777 |
| 0.952315 | 7.233901 | 0.975714 | 6.952636 | 0.999132 | 6.706372 |
| 0.953181 | 7.222900 | 0.976581 | 6.942712 | 1.000000 | 6.698002 |
| 0.954048 | 7.212028 | 0.977448 | 6.933040 |          |          |

#### Step 4: INT3 $\rightarrow$ TS4 $\rightarrow$ P + H<sub>2</sub>O

|            |            | 0.033353 | 1.635385 | 0.073380 | 5.017987  |
|------------|------------|----------|----------|----------|-----------|
| Intrinsic  | Electronic | 0.034684 | 1.720214 | 0.074716 | 5.171237  |
| Coordinate | Energy     | 0.036011 | 1.804228 | 0.076051 | 5.327801  |
|            | (kJ/mol)   | 0.037338 | 1.888706 | 0.077385 | 5.487744  |
|            |            | 0.038668 | 1.975852 | 0.078721 | 5.651134  |
| 0.000000   | 0.000000   | 0.040001 | 2.065518 | 0.080056 | 5.818029  |
| 0.001334   | 0.050916   | 0.041336 | 2.157216 | 0.081392 | 5.988492  |
| 0.002668   | 0.102980   | 0.042671 | 2.250789 | 0.082726 | 6.162584  |
| 0.004004   | 0.156102   | 0.044007 | 2.346220 | 0.084061 | 6.340354  |
| 0.005339   | 0.210305   | 0.045341 | 2.443537 | 0.085397 | 6.521860  |
| 0.006675   | 0.265606   | 0.046677 | 2.542781 | 0.086732 | 6.707147  |
| 0.008010   | 0.322028   | 0.048012 | 2.643994 | 0.088068 | 6.896262  |
| 0.009344   | 0.379597   | 0.049347 | 2.747226 | 0.089402 | 7.089246  |
| 0.010680   | 0.438325   | 0.050683 | 2.852530 | 0.090737 | 7.286146  |
| 0.012015   | 0.498249   | 0.052017 | 2.959955 | 0.092073 | 7.486997  |
| 0.013351   | 0.559379   | 0.053352 | 3.069559 | 0.093408 | 7.691828  |
| 0.014685   | 0.621779   | 0.054688 | 3.181400 | 0.094742 | 7.900673  |
| 0.016020   | 0.685468   | 0.056023 | 3.295535 | 0.096078 | 8.113562  |
| 0.017355   | 0.750720   | 0.057359 | 3.412029 | 0.097413 | 8.330512  |
| 0.018687   | 0.817134   | 0.058693 | 3.530946 | 0.098749 | 8.551548  |
| 0.020020   | 0.885216   | 0.060028 | 3.652346 | 0.100084 | 8.776687  |
| 0.021349   | 0.952925   | 0.061364 | 3.776299 | 0.101418 | 9.005938  |
| 0.022679   | 1.022367   | 0.062699 | 3.902871 | 0.102754 | 9.239316  |
| 0.024011   | 1.093221   | 0.064035 | 4.032130 | 0.104089 | 9.476824  |
| 0.025345   | 1.165916   | 0.065369 | 4.164145 | 0.105425 | 9.718467  |
| 0.026680   | 1.240142   | 0.066704 | 4.298986 | 0.106760 | 9.964250  |
| 0.028014   | 1.315895   | 0.068040 | 4.436720 | 0.108095 | 10.214166 |
| 0.029350   | 1.393145   | 0.069375 | 4.577415 | 0.109430 | 10.468212 |
| 0.030685   | 1.471971   | 0.070709 | 4.721145 | 0.110765 | 10.726380 |
| 0.032020   | 1.552571   | 0.072045 | 4.867979 | 0.112101 | 10.988665 |

| 0.113436  | 11.255049 | 0.193548  | 33.464166  | 0.273659   | 61.858242  |
|-----------|-----------|-----------|------------|------------|------------|
| 0.114771  | 11.525520 | 0.194883  | 33.910806  | 0.274994   | 62.339334  |
| 0.116106  | 11.800063 | 0.196217  | 34.359044  | 0.276330   | 62.820142  |
| 0.117441  | 12.078657 | 0.197553  | 34.808845  | 0.277664   | 63.300645  |
| 0.118777  | 12.361282 | 0.198888  | 35.260166  | 0.279000   | 63,780820  |
| 0.120111  | 12.647916 | 0.200224  | 35 712973  | 0.280335   | 64 260635  |
| 0.121447  | 12.047710 | 0.200224  | 36 167226  | 0.280555   | 64 740073  |
| 0.121447  | 12.930332 | 0.201333  | 36 622887  | 0.281070   | 65 210100  |
| 0.122762  | 12.233100 | 0.202893  | 30.022007  | 0.283000   | 65 607602  |
| 0.124117  | 13.331012 | 0.204229  | 37.079918  | 0.284540   | 03.09/092  |
| 0.125455  | 13.834019 | 0.205564  | 37.338283  | 0.2850/0   | 00.1/5819  |
| 0.126/8/  | 14.140292 | 0.206900  | 37.997945  | 0.28/011   | 66.653458  |
| 0.128123  | 14.450403 | 0.208234  | 38.458862  | 0.288346   | 67.130577  |
| 0.129458  | 14.764318 | 0.209569  | 38.921005  | 0.289682   | 67.607153  |
| 0.130/93  | 15.082001 | 0.210905  | 39.384333  | 0.291016   | 68.083153  |
| 0.132129  | 15.403415 | 0.212240  | 39.848807  | 0.292352   | 68.558553  |
| 0.133463  | 15.728522 | 0.213576  | 40.314395  | 0.293687   | 69.033327  |
| 0.134799  | 16.057285 | 0.214910  | 40.781059  | 0.295022   | 69.507450  |
| 0.136134  | 16.389663 | 0.216246  | 41.248766  | 0.296357   | 69.980896  |
| 0.137469  | 16.725619 | 0.217581  | 41.717473  | 0.297692   | 70.453641  |
| 0.138805  | 17.065107 | 0.218916  | 42.187151  | 0.299028   | 70.925664  |
| 0.140139  | 17.408089 | 0.220252  | 42.657759  | 0.300363   | 71.396939  |
| 0.141475  | 17.754518 | 0.221586  | 43.129262  | 0.301699   | 71.867449  |
| 0.142810  | 18.104356 | 0.222922  | 43.601626  | 0.303033   | 72.337172  |
| 0.144145  | 18.457554 | 0.224257  | 44.074815  | 0.304368   | 72.806089  |
| 0.145480  | 18.814068 | 0.225592  | 44.548791  | 0.305704   | 73.274179  |
| 0.146815  | 19.173853 | 0.226928  | 45.023521  | 0.307039   | 73,741426  |
| 0.148151  | 19.536865 | 0.228262  | 45,498967  | 0.308375   | 74.207809  |
| 0 149486  | 19 903060 | 0.229598  | 45 975096  | 0 309709   | 74 673316  |
| 0 150822  | 20 272386 | 0.230933  | 46 451871  | 0.311044   | 75 137924  |
| 0.152156  | 20.272300 | 0.232268  | 16,131071  | 0.312380   | 75 601622  |
| 0.152/191 | 21.020252 | 0.232200  | 40.929230  | 0.312500   | 76.06/392  |
| 0.154827  | 21.020252 | 0.23/038  | 47 885720  | 0.315051   | 76.526218  |
| 0.156162  | 21.390097 | 0.234930  | 47.865720  | 0.315051   | 76.0270218 |
| 0.150102  | 21.760087 | 0.230274  | 48.304727  | 0.310383   | 70.387082  |
| 0.15/470  | 22.104370 | 0.237009  | 40.224126  | 0.317720   | 77.440973  |
| 0.158852  | 22.331317 | 0.238944  | 49.524120  | 0.519050   | 77.903879  |
| 0.160167  | 22.941459 | 0.240279  | 49.804449  | 0.520391   | 78.303779  |
| 0.161503  | 23.334155 | 0.241614  | 50.285141  | 0.321/26   | 78.820663  |
| 0.162838  | 23.729560 | 0.242950  | 50.766174  | 0.323061   | /9.2/6516  |
| 0.164174  | 24.127626 | 0.244285  | 51.247510  | 0.324396   | 79.731326  |
| 0.165508  | 24.528301 | 0.245619  | 51.729124  | 0.325/32   | 80.1850/3  |
| 0.166843  | 24.931543 | 0.246955  | 52.210979  | 0.327067   | 80.637748  |
| 0.168179  | 25.337301 | 0.248290  | 52.693050  | 0.328402   | 81.089334  |
| 0.169514  | 25.745532 | 0.249626  | 53.175302  | 0.329737   | 81.539817  |
| 0.170849  | 26.156184 | 0.250961  | 53.657711  | 0.331072   | 81.989180  |
| 0.172184  | 26.569215 | 0.252295  | 54.140246  | 0.332408   | 82.437405  |
| 0.173519  | 26.984574 | 0.253631  | 54.622882  | 0.333742   | 82.884470  |
| 0.174855  | 27.402217 | 0.254966  | 55.105590  | 0.335078   | 83.330361  |
| 0.176190  | 27.822101 | 0.256302  | 55.588349  | 0.336413   | 83.775050  |
| 0.177525  | 28.244179 | 0.257637  | 56.071131  | 0.337748   | 84.218515  |
| 0.178860  | 28.668402 | 0.258972  | 56.553911  | 0.339084   | 84.660734  |
| 0.180196  | 29.094730 | 0.260307  | 57.036669  | 0.340418   | 85.101678  |
| 0.181531  | 29.523117 | 0.261642  | 57.519383  | 0.341754   | 85.541321  |
| 0.182865  | 29.953518 | 0.262978  | 58.002026  | 0.343089   | 85.979635  |
| 0.184201  | 30.385893 | 0.264313  | 58.484583  | 0.344424   | 86.416600  |
| 0.185536  | 30.820196 | 0.265648  | 58.967031  | 0.345760   | 86.852181  |
| 0.186872  | 31.256386 | 0.266983  | 59.449346  | 0.347094   | 87.286360  |
| 0.188207  | 31.694419 | 0.268318  | 59,931511  | 0 348430   | 87 719113  |
| 0 189541  | 32 134253 | 0.269654  | 60 413506  | 0 349765   | 88 150419  |
| 0 190877  | 32 575852 | 0.207034  | 60 895306  | 0.351101   | 88 580261  |
| 0 192212  | 33 019170 | 0 272324  | 61 376891  | 0 352436   | 89 008619  |
| V.I/4414  | JJ.01/1/0 | U.41434-T | 01.0100.11 | 0.55247.00 | 02.000017  |

| 0.353770 | 89.435481  | 0.433883 | 111.588423 | 0.513993 | 122.553239 |
|----------|------------|----------|------------|----------|------------|
| 0.355106 | 89.860836  | 0.435217 | 111.887717 | 0.515327 | 122.518887 |
| 0.356441 | 90.284667  | 0.436552 | 112.184346 | 0.516662 | 122.470071 |
| 0 357777 | 90 706969  | 0 437888 | 112 478295 | 0 517998 | 122 406303 |
| 0 359111 | 91 127729  | 0.439223 | 112 769549 | 0 519333 | 122 326947 |
| 0.360446 | 01 5/603/  | 0.439223 | 113.058004 | 0.520667 | 122.320747 |
| 0.300440 | 91.540954  | 0.440339 | 112.030094 | 0.520007 | 122.251109 |
| 0.301/82 | 91.904373  | 0.441895 | 112.545919 | 0.322003 | 122.11/939 |
| 0.363117 | 92.380643  | 0.443228 | 113.62/001 | 0.523338 | 121.986076 |
| 0.364453 | 92.795118  | 0.444564 | 113.907325 | 0.524674 | 121.834335 |
| 0.365787 | 93.207994  | 0.445899 | 114.184867 | 0.526009 | 121.661519 |
| 0.367122 | 93.619247  | 0.447235 | 114.459599 | 0.527343 | 121.466570 |
| 0.368458 | 94.028867  | 0.448569 | 114.731488 | 0.528679 | 121.248625 |
| 0.369793 | 94.436827  | 0.449904 | 115.000492 | 0.530014 | 121.006966 |
| 0.371129 | 94.843113  | 0.451240 | 115.266565 | 0.531349 | 120.740979 |
| 0.372463 | 95.247700  | 0.452575 | 115.529645 | 0.532685 | 120.450037 |
| 0.373798 | 95.650565  | 0.453910 | 115.789662 | 0.534019 | 120.133441 |
| 0 375134 | 96.051678  | 0 455245 | 116.046530 | 0 535355 | 119 790386 |
| 0.376469 | 96.451014  | 0.155215 | 116 300156 | 0.536690 | 119/1995/  |
| 0.377805 | 06 848546  | 0.457016 | 116 550420 | 0.538025 | 110.021182 |
| 0.377803 | 90.848340  | 0.457910 | 110.330429 | 0.538025 | 119.021102 |
| 0.3/9139 | 97.244240  | 0.459251 | 110./9/232 | 0.539301 | 118.595125 |
| 0.380474 | 97.638063  | 0.460586 | 117.040429 | 0.540695 | 118.134924 |
| 0.381810 | 98.029984  | 0.461921 | 117.279896 | 0.542030 | 117.645880 |
| 0.383145 | 98.419966  | 0.463256 | 117.515500 | 0.543366 | 117.125440 |
| 0.384481 | 98.807970  | 0.464592 | 117.747122 | 0.544701 | 116.573190 |
| 0.385815 | 99.193963  | 0.465926 | 117.974648 | 0.546036 | 115.988796 |
| 0.387150 | 99.577903  | 0.467262 | 118.197988 | 0.547371 | 115.371947 |
| 0.388486 | 99.959758  | 0.468597 | 118.417073 | 0.548706 | 114.722336 |
| 0.389821 | 100.339495 | 0.469932 | 118.631850 | 0.550042 | 114.039648 |
| 0.391156 | 100.717073 | 0.471268 | 118.842281 | 0.551377 | 113.323603 |
| 0 392491 | 101 092470 | 0.472602 | 119 048348 | 0 552712 | 112 573976 |
| 0.393826 | 101.092170 | 0.172002 | 119 250037 | 0.554047 | 111 790624 |
| 0.395162 | 101.405050 | 0.475273 | 119.230037 | 0.555382 | 110.073508 |
| 0.393102 | 101.850015 | 0.475275 | 119.447333 | 0.555562 | 110.973508 |
| 0.390490 | 102.203317 | 0.470008 | 119.040213 | 0.550/18 | 110.122078 |
| 0.397832 | 102.5/1/63 | 0.477944 | 119.828644 | 0.558052 | 109.238249 |
| 0.399167 | 102.935938 | 0.479278 | 120.012563 | 0.559388 | 108.320385 |
| 0.400502 | 103.297843 | 0.480614 | 120.191888 | 0.560723 | 107.369318 |
| 0.401838 | 103.657471 | 0.481949 | 120.366499 | 0.562058 | 106.385365 |
| 0.403172 | 104.014827 | 0.483284 | 120.536256 | 0.563394 | 105.368963 |
| 0.404508 | 104.369913 | 0.484620 | 120.700990 | 0.564728 | 104.320680 |
| 0.405843 | 104.722733 | 0.485954 | 120.860508 | 0.566063 | 103.241195 |
| 0.407179 | 105.073285 | 0.487289 | 121.014612 | 0.567399 | 102.131273 |
| 0.408514 | 105.421573 | 0.488625 | 121.163097 | 0.568734 | 100.991740 |
| 0.409848 | 105.767595 | 0.489960 | 121.305764 | 0.570070 | 99.823490  |
| 0.411184 | 106.111344 | 0.491295 | 121.442418 | 0.571404 | 98.627506  |
| 0 412519 | 106 452809 | 0 492630 | 121 572872 | 0 572739 | 97 404879  |
| 0.413855 | 106 791979 | 0.192050 | 121.696940 | 0.574075 | 96 156832  |
| 0.415100 | 107 128836 | 0.495301 | 121.070740 | 0.575410 | 04 884603  |
| 0.416524 | 107.128850 | 0.495501 | 121.014420 | 0.575410 | 02 500052  |
| 0.410324 | 107.405501 | 0.490030 | 121.923101 | 0.570740 | 95.369632  |
| 0.41/800 | 107.795529 | 0.497971 | 122.028729 | 0.578080 | 92.273702  |
| 0.419195 | 108.125315 | 0.499306 | 122.125012 | 0.5/9415 | 90.93/582  |
| 0.420531 | 108.452694 | 0.500641 | 122.213591 | 0.580/51 | 89.582779  |
| 0.421866 | 108.777637 | 0.501977 | 122.294047 | 0.582086 | 88.210622  |
| 0.423200 | 109.100119 | 0.503311 | 122.365878 | 0.583421 | 86.822610  |
| 0.424536 | 109.420110 | 0.504646 | 122.428517 | 0.584756 | 85.420532  |
| 0.425871 | 109.737588 | 0.505982 | 122.481318 | 0.586091 | 84.006451  |
| 0.427207 | 110.052527 | 0.507317 | 122.523592 | 0.587427 | 82.582545  |
| 0.428541 | 110.364906 | 0.508651 | 122.554622 | 0.588762 | 81.150915  |
| 0.429876 | 110.674705 | 0.509986 | 122.573707 | 0.590097 | 79.713451  |
| 0.431212 | 110.981901 | 0.511322 | 122.580205 | 0.591432 | 78.271865  |
| 0.432547 | 111.286480 | 0.512658 | 122.573539 | 0.592767 | 76.827877  |

| 0.594103 | 75.383409  | 0.674213 | 16.134220  | 0.754324 | -13.463601  |
|----------|------------|----------|------------|----------|-------------|
| 0.595437 | 73.940681  | 0.675548 | 15.508080  | 0.755659 | -13.856869  |
| 0.596773 | 72.502077  | 0.676882 | 14.889423  | 0.756995 | -14.247334  |
| 0 598108 | 71.069930  | 0.678218 | 14 278020  | 0 758329 | -14 635017  |
| 0.599443 | 69 6/6287  | 0.679553 | 13 673572  | 0.759664 | -15 0199/2  |
| 0.57779  | 68 232872  | 0.680880 | 13.075725  | 0.761000 | 15 402133   |
| 0.000773 | 66 831236  | 0.080889 | 12.075725  | 0.762335 | -15.402133  |
| 0.002113 | 65 442071  | 0.062223 | 12.404090  | 0.702555 | -13./01013  |
| 0.603449 | 05.442971  | 0.083338 | 11.898314  | 0.703071 | -10.158419  |
| 0.604/84 | 04.009824  | 0.084894 | 11.518011  | 0.765005 | -10.552574  |
| 0.606119 | 62./13636  | 0.686229 | 10.742858  | 0.766340 | -16.904106  |
| 0.60/455 | 61.3/60/2  | 0.68/565 | 10.172584  | 0.767676 | -17.273049  |
| 0.608789 | 60.058391  | 0.688899 | 9.606964   | 0.769011 | -17.639430  |
| 0.610125 | 58.761315  | 0.690234 | 9.045835   | 0.770346 | -18.003282  |
| 0.611460 | 57.485168  | 0.691570 | 8.489090   | 0.771681 | -18.364632  |
| 0.612795 | 56.230142  | 0.692905 | 7.936663   | 0.773017 | -18.723512  |
| 0.614131 | 54.996606  | 0.694241 | 7.388530   | 0.774352 | -19.079950  |
| 0.615465 | 53.785218  | 0.695575 | 6.844689   | 0.775687 | -19.433967  |
| 0.616800 | 52.596825  | 0.696910 | 6.305157   | 0.777022 | -19.785595  |
| 0.618136 | 51.432132  | 0.698246 | 5.769954   | 0.778357 | -20.134854  |
| 0.619471 | 50.291334  | 0.699581 | 5.239091   | 0.779693 | -20.481770  |
| 0.620805 | 49.173890  | 0.700917 | 4.712581   | 0.781028 | -20.826359  |
| 0.622141 | 48.078547  | 0.702251 | 4.190419   | 0.782362 | -21.168642  |
| 0.623476 | 47.003615  | 0.703586 | 3.672584   | 0.783698 | -21.508639  |
| 0.624811 | 45 947371  | 0 704922 | 3 159038   | 0 785033 | -21 846363  |
| 0.626147 | 44 908421  | 0.706257 | 2 649736   | 0.786369 | -22 181828  |
| 0.627481 | 43 885944  | 0.707592 | 2.144606   | 0 787704 | -22 515054  |
| 0.628816 | 12 879698  | 0.708927 | 1 6/3568   | 0.789038 | -22.846048  |
| 0.620152 | 42.079090  | 0.700927 | 1.045500   | 0.789038 | 22.840048   |
| 0.631497 | 41.009000  | 0.710202 | 0.652205   | 0.790374 | -23.17+029  |
| 0.031407 | 40.910792  | 0.711338 | 0.055575   | 0.791709 | -23.301404  |
| 0.032822 | 39.900004  | 0.712955 | 0.104034   | 0.793043 | -25.825/90  |
| 0.634157 | 39.021326  | 0.714268 | -0.321597  | 0.794380 | -24.148013  |
| 0.635492 | 38.098184  | 0.715603 | -0.803668  | 0.795714 | -24.468072  |
| 0.636828 | 37.190268  | 0./16938 | -1.282260  | 0.797050 | -24./85993  |
| 0.638163 | 36.296385  | 0.718274 | -1./5/4/6  | 0.798385 | -25.101791  |
| 0.639497 | 35.415299  | 0.719608 | -2.229401  | 0.799721 | -25.415491  |
| 0.640833 | 34.545917  | 0.720944 | -2.698124  | 0.801056 | -25.727109  |
| 0.642168 | 33.687415  | 0.722279 | -3.163717  | 0.802390 | -26.036671  |
| 0.643504 | 32.839297  | 0.723614 | -3.626243  | 0.803726 | -26.344199  |
| 0.644838 | 32.001421  | 0.724950 | -4.085758  | 0.805061 | -26.649715  |
| 0.646173 | 31.173932  | 0.726284 | -4.542309  | 0.806397 | -26.953249  |
| 0.647509 | 30.357189  | 0.727620 | -4.995930  | 0.807731 | -27.254825  |
| 0.648844 | 29.551630  | 0.728955 | -5.446644  | 0.809067 | -27.554465  |
| 0.650180 | 28.757663  | 0.730290 | -5.894476  | 0.810402 | -27.852191  |
| 0.651514 | 27.975537  | 0.731626 | -6.339435  | 0.811737 | -28.148030  |
| 0.652849 | 27.205297  | 0.732960 | -6.781525  | 0.813073 | -28.441999  |
| 0.654185 | 26.446730  | 0.734296 | -7.220750  | 0.814407 | -28.734120  |
| 0.655520 | 25.699407  | 0.735631 | -7.657111  | 0.815743 | -29.024406  |
| 0.656854 | 24.962726  | 0.736967 | -8.090596  | 0.817078 | -29.312875  |
| 0.658190 | 24.235998  | 0.738302 | -8.521207  | 0.818413 | -29.599538  |
| 0.659525 | 23.518504  | 0.739636 | -8.948938  | 0.819749 | -29.884402  |
| 0.660861 | 22.809593  | 0 740972 | -9 373781  | 0.821083 | -30 167475  |
| 0.662196 | 22.009393  | 0.742307 | -9 795735  | 0.822419 | -30 448764  |
| 0.663530 | 21 / 15//2 | 0.742507 | -10 21/799 | 0.823754 | -30 728269  |
| 0.66/866 | 21.713772  | 0.74/077 | -10 630972 | 0.825080 | -31 005002  |
| 0.004000 | 20.727320  | 0.746212 | 11 04/255  | 0.025007 | 31 32102772 |
| 0.000201 | 20.030040  | 0.740312 | -11.044233 | 0.020423 | -31.201933  |
| 0.00/33/ | 17.3/7370  | 0.747048 | -11.434032 | 0.02//39 | -31.330093  |
| 0.0088/2 | 10./13208  | 0.748983 | -11.00210/ | 0.829093 | -31.8284/2  |
| 0.670206 | 18.0383/8  | 0.750319 | -12.200809 | 0.830430 | -32.099061  |
| 0.0/1542 | 1/.409454  | 0.751653 | -12.008380 | 0.831/65 | -52.36/8/0  |
| 0.672877 | 16./6/995  | 0.752988 | -13.06/513 | 0.833100 | -32.634891  |

| 0.834435 | -32.900130 | 0.841111 | -34.199766 | 0.847787 | -35.456067 |
|----------|------------|----------|------------|----------|------------|
| 0.835771 | -33.163591 | 0.842447 | -34.454442 | 0.849123 | -35.702284 |
| 0.837106 | -33.425277 | 0.843782 | -34.707393 | 0.850458 | -35.946855 |
| 0.838442 | -33.685197 | 0.845118 | -34.958638 | 0.851794 | -36.189800 |
| 0.839776 | -33.943354 | 0.846452 | -35.208191 | 0.853128 | -36.431128 |
| 0.854463 | -36.670860 | 0.906536 | -44.854822 | 0.954603 | -50.679087 |
| 0.855799 | -36.909006 | 0.907872 | -45.036911 | 0.955938 | -50.821895 |
| 0.857134 | -37.145577 | 0.909206 | -45.217726 | 0.957274 | -50.963764 |
| 0.858470 | -37.380583 | 0.910542 | -45.397279 | 0.958609 | -51.104693 |
| 0.859804 | -37.614031 | 0.911877 | -45.575574 | 0.959944 | -51.244680 |
| 0.861139 | -37.845937 | 0.913212 | -45.752617 | 0.961279 | -51.383718 |
| 0.862475 | -38.076301 | 0.914548 | -45.928418 | 0.962614 | -51.521809 |
| 0.863810 | -38.305131 | 0.915882 | -46.102982 | 0.963950 | -51.658949 |
| 0.865145 | -38.532434 | 0.917218 | -46.276320 | 0.965284 | -51.795139 |
| 0.866480 | -38.758214 | 0.918553 | -46.448437 | 0.966620 | -51.930374 |
| 0.867815 | -38.982476 | 0.919888 | -46.619344 | 0.967955 | -52.064655 |
| 0.869151 | -39.205224 | 0.921224 | -46.789051 | 0.969291 | -52.197980 |
| 0.870485 | -39.426459 | 0.922558 | -46.957566 | 0.970626 | -52.330358 |
| 0.871821 | -39.646189 | 0.923894 | -47.124905 | 0.971960 | -52.461788 |
| 0.873156 | -39.864421 | 0.925229 | -47.291076 | 0.973296 | -52.592273 |
| 0.874492 | -40.081156 | 0.926564 | -47.456094 | 0.974631 | -52.721817 |
| 0.875827 | -40.296400 | 0.927899 | -47.619969 | 0.975967 | -52.850430 |
| 0.877161 | -40.510160 | 0.929234 | -47.782722 | 0.977302 | -52.978116 |
| 0.878497 | -40.722442 | 0.930570 | -47.944361 | 0.978636 | -53.104883 |
| 0.879832 | -40.933254 | 0.931905 | -48.104902 | 0.979972 | -53.230737 |
| 0.881168 | -41.142601 | 0.933241 | -48.264362 | 0.981307 | -53.355687 |
| 0.882503 | -41.350493 | 0.934575 | -48.422756 | 0.982643 | -53.479739 |
| 0.883837 | -41.556939 | 0.935910 | -48.580096 | 0.983978 | -53.602904 |
| 0.885173 | -41.761949 | 0.937246 | -48.736398 | 0.985312 | -53.725186 |
| 0.886508 | -41.965530 | 0.938581 | -48.891678 | 0.986648 | -53.846595 |
| 0.887844 | -42.167693 | 0.939917 | -49.045947 | 0.987983 | -53.967134 |
| 0.889179 | -42.368450 | 0.941251 | -49.199221 | 0.989319 | -54.086812 |
| 0.890513 | -42.567809 | 0.942586 | -49.351508 | 0.990653 | -54.205635 |
| 0.891849 | -42.765780 | 0.943922 | -49.502818 | 0.991988 | -54.323606 |
| 0.893184 | -42.962375 | 0.945257 | -49.653165 | 0.993324 | -54.440727 |
| 0.894520 | -43.157604 | 0.946593 | -49.802556 | 0.994659 | -54.557005 |
| 0.895855 | -43.351479 | 0.947927 | -49.950996 | 0.995995 | -54.672443 |
| 0.897189 | -43.544009 | 0.949262 | -50.098491 | 0.997329 | -54.787041 |
| 0.898525 | -43.735204 | 0.950598 | -50.245044 | 0.998665 | -54.900801 |
| 0.899860 | -43.925072 | 0.951933 | -50.390662 | 1.000000 | -55.013703 |
| 0.901196 | -44.113622 | 0.953268 | -50.535343 |          |            |
| 0.902530 | -44.300865 |          |            |          |            |
| 0.903866 | -44.486808 |          |            |          |            |

#### 0.905201 -44.671457

#### **Bibliographic references**

- A.H. Motagamwala y J.A. Dumesic, Analysis of reaction schemes using maximum rates of constituent steps, Proc. Natl. Acad. Sci. 113 (2016), pp. E2879–E2888.
- (2) M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al., Gaussian 16, revision A. 03, Gaussian Inc., Wallingford CT (2016).