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RESUMEN 

La Deficiencia Combinada de Hormonas de la Pituitaria tipo 1 (CPHD1), también conocida como 

panhipopituitarismo, es una enfermedad causada por mutaciones en el factor de transcripción 

POU1F1. Estos cambios en la secuencia del gen afectan negativamente la capacidad de POU1F1 

para inducir la producción de hormonas desde la hipófisis anterior, lo que impide el desarrollo. 

Diferentes mutaciones en el gen POU1F1 (Pit-1, GHF-1) determinan la severidad de CPHD1. 

Estudiar las mutaciones en POU1F1 ha llevado a importantes avances en la comprensión de 

CPHD1. Sin embargo, no se ha aclarado completamente cómo cada mutación afecta la 

funcionalidad de la proteína y cómo se relacionan con un fenotipo particular, lo que perjudica el 

desarrollo de terapias dirigidas a cada caso. Por lo tanto, el objetivo de este estudio es proponer el 

uso de bioinformática como una herramienta para asociar los cambios funcionales debido a 

mutaciones POU1F1 con el fenotipo clínico. Se realizó una revisión sistemática de la literatura 

(RSL) de Pit-1-β (de 291 aminoácidos) para encontrar las mutaciones descritas en trabajos previos. 

Se encontraron un total de 45 mutaciones patológicas, y se estudiaron a profundidad las 24 

mutaciones sin sentido. Las mutaciones en el exón 4 están relacionadas principalmente con 

pacientes europeos, mientras que las del exón 6 son más comunes en pacientes árabes y asiáticos. 

Se clasificaron las mutaciones sin sentido usando filogenia y así se encontraron cuatro grupos de 

mutaciones. Pit-1-β se modeló utilizando I-TASSER, incluidas las regiones intrínsecamente 

desordenadas: TAD (dominio de transactivación) y la región de enlace para estudiar secuencias 

mutadas. Con base en la estructura original, modelamos las proteínas mutantes y se analizó su 

unión a CBP y ADN a través del acoplamiento molecular. Estos hallazgos proporcionan una mejor 

comprensión de CPHD1 y la posibilidad de desarrollar tratamientos personalizados para el 

paciente. 

Palabras clave: Deficiencia combinada de hormona pituitaria, factor de transcripción, plegamiento 

de proteínas, revisión sistemática de la literatura 
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ABSTRACT 

Combined Pituitary Hormone Deficiency type 1 (CPHD1), also known as panhypopituitarism, is 

a disease caused by mutations in the transcription factor POU1F1. These gene sequence changes 

negatively affect the ability of POU1F1 to induce anterior pituitary hormone production, hindering 

development. Different mutations in the POU1F1 gene (Pit-1, GHF-1) determine the severity of 

CPHD1. Studying mutations in POU1F1 has led to important advances in understanding CPHD1. 

However, it is not fully understood how each mutation affects the functionality of the protein and 

how they are related to a particular phenotype, which hinders the development of therapies directed 

at each case. Therefore, the objective of this study is to propose the use of bioinformatics as a tool 

to associate functional changes due to POU1F1 mutations with the clinical phenotype. A 

systematic literature review (RSL) of Pit-1-β was performed to find the mutations described in 

previous work. A total of 45 pathological mutations were found, and the 24 nonsense mutations 

were studied in depth. Mutations in exon 4 are mainly related to European patients, while those in 

exon 6 are more common in Arab and Asian patients. Missense mutations were classified using 

phylogeny and we found four groups of mutations. Pit-1-β was modeled using I-TASSER, 

including the intrinsically disordered regions: TAD (transactivation domain) and the binding 

region to study mutated sequences. Based on the original structure, we modeled the mutant 

proteins and analyzed their binding to CBP and DNA through molecular coupling. These findings 

provide a better understanding of CPHD1 and the possibility of developing personalized 

treatments for every patient. 

 

Key words: Combined pituitary hormone deficiency, transcription factor, protein folding, 

systematic literature review  
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1. INTRODUCTION 

Mutations hamper POU1F1’s capacity to support development of the anterior pituitary 

gland and activate the production of Growth Hormone (GH), Prolactin (PRL) and Thyroid-

Stimulating Hormone (TSH) (Radovick et al., 1992). CPHD cases may present with short stature 

and/or hypothyroidism and may also be associated with mental retardation (Radovick et al., 1992). 

The clinical features may include a prominent forehead, marked midfacial hypoplasia with 

depressed nasal bridge, deep-set eyes, and a short nose with anteverted nostrils, along with other 

midline abnormalities  and a hypoplastic pituitary gland determined by magnetic resonance 

imaging (MRI) (Aarskog et al., 1997). Different mutations in the POU1F1 (Pit-1) gene have been 

associated with a variety of phenotypes and severity of CPHD1, hence, understanding these 

variations would be important to provide personalized treatment to the patient.  

 

The focus of this systematic literature review (SLR) is to provide a detailed list of the 

mutations in the POU1F1 gene, splice variant β, consisting of 291 aminoacids. As a result, the 

most common variants and associations with specific populations were determined. This research 

aims to identify the most severe mutations of POU1F1 and explain the phenotype through 

structural differences. The naïve protein structure of POU1F1 was obtained guided by 

bioinformatics, to allow future topological analysis. The naïve structure includes the 

Transactivation Domain (TAD) and linker region, both of which have not been previously obtained 

due to their flexibility. The objective, using the SLR and molecular meta-analysis, is to provide a 

better understanding of the origin of CPHD1 and provide information for  the  development of 

innovative and personalized therapeutic approaches. 
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1.1. CPHD symptoms, characterization and treatment 

 

The key  clinical findings of CPHD include short stature with growth hormone (GH) 

deficiency, central hypothyroidism with a low or inappropriately normal TSH,  and a hypoplastic 

pituitary gland. Some patients also present with various degrees of developmental abnormalities 

which may be due to hypoglycemia during the neonatal period due to severe GH deficiency (Fang 

et al., 2016).  CPHD is classified in CPHD1, CPHD2, CPHD3, CPHD4 and CPHD6 based on the 

mutations of key genes associated with hormone deficiency (Baş et al., 2015a), respectively 

POU1F1, PROP1, LHX3, LHX4 and OTX2 (Combined pituitary hormone deficiency - Genetics 

Home Reference - NIH, n.d.). 

 

CPHD is treated with hormonal replacement after the clinical diagnosis is made.  Delay in 

diagnosis results in further accentuation of abnormalities associated with growth and development. 

Treatment of CPHD requires lifelong hormonal replacement.  Earlier treatment with GH or thyroid 

hormone improves patients’ prognosis and development (Sadeghi-Nejad & Senior, 1974).  

 

1.2. Molecular characteristics of POU1F1 and its mutations: 

Missense, nonsense and splicing mutations of POU1F1 may cause CPHD1 (Kinoshita et 

al., 1994). CPHD1 can be sporadic or hereditary (Fang et al., 2016). Cases of families with a 

dominant or a recessive pattern of inheritance have been reported (Combined pituitary hormone 

deficiency - Genetics Home Reference - NIH, n.d.). 90% of patients diagnosed with CPHD had a 

non-hereditary cause and therefore of unknown etiology (De Rienzo et al., 2015).  
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POU1F1 belongs to the POU family of mammalian transcription factors with well 

conserved homeodomains. POU1F1 has two DNA binding regions, the POU-specific and the 

POU-homeodomains, forming a homodimer dimer on DNA. Additionally, similar proteins have 

been reported in other animals, such as: Caenoharbditis elegans (Herr et al., 1988a), Xenopus 

laevis (Cao et al., 2007), Drosophila melanogaster (Johnson & Hirsh, 1990), turkeys (Bastos et 

al., 2006), chickens (Bastos et al., 2006), jellyfish (Hroudova et al., 2012), and various fish species 

(Bastos et al., 2006).  POU1F1 paralogues include: Pit-1, Oct-1, Oct-2 and Unc-86 (Karp, 2009),  

they are transcription factors as well and are responsible for supporting organism development 

especially the nervous system. 

 

 The consensus sequence to which POU1F1 binds is 5'-TAAAT-3' (POU1F1 - Pituitary-

specific positive transcription factor 1 - Homo sapiens (Human) - POU1F1 gene & protein, n.d.). 

Pit-1 has been synthesized and expressed for crystallography; Pit-1wt included residues 1 to 291, 

Pit-1ΔN residues 105–291 (portraying the POUS and POUHD) and Pit-1ΔNΔC residues 124–273 

(POUHD only) (Agarwal & Cho, 2018). Results of its crystallographic image describe the binding 

of the double helix to a 4xCATT palindromic repeat and the  formation of a total of eight helixes. 

In humans, five of these helixes are formed in the POUS and 3 of them in the POUHD (Agarwal & 

Cho, 2018).  

 

The inner side of the helixes is positively charged and hydrophilic, while the outer part 

hydrophobic allowing its movement into the nucleus (POU1F1 - Pituitary-specific positive 

transcription factor 1 - Homo sapiens (Human) - POU1F1 gene & protein, n.d.). The DNA binding 

helixes, POUS and POUHD, are connected by a 15 amino acid linker region, providing the flexibility 
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needed to bind to the DNA sequence found on different promoter regions. Another important 

region of this protein is the TAD which is a transcription factor scaffold domain which is  generally 

acidic and rich in glutamine, proline and isoleucine (Wärnmark et al., 2003). POU1F1 has a 

phosphorylated region as a consequence of its interaction with CBP/p300 (Creb-Binding Protein), 

which allows the activation and functionality of POU1F1 (R. N. Cohen et al., 2006).  

 

1.3. Bioinformatics 

 

Protein modelling allows its visualization and understanding of its functionality. 

Nowadays, there are many tools used to  obtain a protein model and structure. For example, the I-

TASSER tool uses reported structures and recreates new proteins using its homology with known 

sequences, additionally it  also creates them ab initio (J. Yang & Zhang, 2015). The ab initio 

modelling refers to modelling the structure using physical principles rather than the homology. 

The advantage of using I-TASSER is the Residue-Specific Quality (RSQ)  component which 

allows to obtain more efficient  models avoiding errors.  The estimation of the of protein structure 

prediction is made by the RSQ, the B-factor profile (BFP) analyze  all residues along the chain, 

the C-score and the confidence level provides information on each atom’s position (J. Yang et al., 

2016).  The C-score  provides a confident score, considered appropriate between  -5 and 2, and 

therefore we use it to determine which of the obtained models is the most reliable (J. Yang & 

Zhang, 2015).  

 

Another strategy to evaluate how affected is the protein by specific mutations is by using its 

wildtype or normal model and recreate the mutation. This allows the visualization of the rotamers 
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and the different positions that the mutation could induce in the protein. With this strategy it is 

possible to identify if a particular mutation clash with the structure and can be done using the 

program Chimera from UCSF (Z. Yang et al., 2012).  

 

A limitation of using I-TASSER modelling is that some proteins  lack a fixed 3D structure. 

These are often referred to as intrinsically disordered proteins. In this case, POU1F1, as other 

transcription factors, has flexible domains. Meaning that  some domains in POU1F1 can change 

their structure when interacting with other proteins and with the DNA. However, Intrinsically 

Disordered Protein Databases can be used to predict the regions where loops and similar structures 

are more likely to form and it is possible to compare this result to the result from the modelling 

(Linding et al., 2003a). 

 

The mutant modelled protein can have a significantly different structure than the wt. 

However other changes can be induced by missense mutations such as the physical and chemical 

properties which affect the protein’s functionality. Molecular docking can be used to  evaluate 

different protein properties (Cheng et al., 2007). Therefore, with this approach is possible to we 

can study the ability of POU1F1 to interact with CBP and to DNA using molecular docking.  

2. METHODOLOGY 

2.1 Systematic Literature Review and data extraction 

The systematic literature review was the basis for the research. Through it the study gains 

broad perspective about CPHD. Search terms were defined for articles to retrieve information from 

SCOPUS as follows (Annex A contains more detail about search terms and Annex B about the 

article classification): 
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(( TITLE-ABS-KEY (*POU1F1*)) OR ( TITLE-ABS-KEY (GHF-1)) OR ( TITLE-ABS-

KEY (*Pit-1*)))AND (( TITLE-ABS-KEY (human*)) OR ( TITLE-ABS-KEY (homo sapiens)) 

OR ( TITLE-ABS-KEY (person*)) OR ( TITLE-ABS-KEY (people))) AND (( TITLE-ABS-KEY 

( structure)) OR ( TITLE-ABS-KEY ( aminoacid*)) OR ( TITLE-ABS-KEY ( peptid*)) OR ( 

TITLE-ABS-KEY ( Protein AND structure)) OR ( TITLE-ABS-KEY ( *sequence*)) OR ( TITLE-

ABS-KEY (proteom* )) OR ( TITLE-ABS-KEY ( transcript*)) OR ( TITLE-ABS-KEY (exome* 

)) OR ( TITLE-ABS-KEY (exon* )) OR ( TITLE-ABS-KEY ( evolution)) OR( TITLE-ABS-KEY 

( mut*)) OR ( TITLE-ABS-KEY (homolog* )) OR ( TITLE-ABS-KEY ( paralog*)) OR  ( TITLE-

ABS-KEY (gen* )) OR ( TITLE-ABS-KEY (molecular AND modeling )) OR ( TITLE-ABS-KEY 

(splicing )) OR ( TITLE-ABS-KEY (functional AND prediction )) OR ( TITLE-ABS-KEY ( DNA 

AND binding)) 

Later, the articles were screened to extract relevant data for analysis, especially the ones 

referring to the structure and clinical phenotype (classification in Annex B).  

 

Missense mutations show only one amino acid change, and therefore do not radically 

change the protein’s structure. Acknowledging that, the structural, pathological and demographic 

inferences were based on the 24 missense mutations. For the pathological analysis, the data was 

summarized in a pathogenicity matrix. A matrix counting was created, with one occurrence per 

patient and clustering those phenotypes by systems, taking into account developmental process 

and a molecular etiology approach (see classification in Annex C).  In addition, novel mutations 

that cause alternative splicing and premature stop codons are described in SLR results. The 

symptoms consistent with CPHD were described and analyzed for each mutation. If one mutation 
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is reported more than once, then all the symptoms will be described and used for following 

analysis, so that the full spectrum is represented.  

 

2.2 Protein reconstruction and evo-devo-med analysis 

 

For the wild type (wt), the amino acid sequence was retrieved from Uniprot (P28069), using 

the canonical Pit-1-β isoform. Mutants were manually created in MEGA X and sequences 

visualized by the use of ESPript 3.0 (Robert & Gouet, 2014).  Swiss model server was first used 

to predict an initial structure whit linker region between POUS and POUHD (Bertoni et al., 2017; 

Guex et al., 2009; Jasper J. Koehorst, Jesse C. J. van Dam, Edoardo Saccenti, Vitor A. P. Martins 

dos Santos, 2017). This versatile software allows the prediction of the previously unobtained linker 

region from the initial restrained PDB (5wc9) (Agarwal & Cho, 2018). Next, this structure was 

used as a template to obtain the final wt isoform within the TAD region. In this way, the use of 

two different servers allows the  prediction of a final model within previously unreported regions. 

This high-resolution structure was used as a template for all mutant models obtained using I-

TASSER server (J. Yang & Zhang, 2015; Zhang et al., 2017).  

To choose the best model, a DNA was performed to match with the corresponding chains 

of the reference PDB (5wc9) model (Agarwal & Cho, 2018) and dock with the CBP using the 

PyDock server.  From the five resulting models, only model 4 had best fit  with DNA. The structure 

was also verified using DisEMBL (Linding et al., 2003b) and PONDR® (Dunker et al., 2001; 

Garner et al., 1999) VLXT, and VSL2 algorithms to analyze the intrinsically disordered amino 

acids of POU1F1’s structure, described in the DisProt database (Hatos et al., 2020; Piovesan et al., 

2017).  
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Mutant proteins were obtained using two different methods. The first one using I-TASSER 

and the second one with Chimera. First, the model 4 wildtype structure of POU1F1 acted as a 

template to model the mutant proteins through I-TASSER. Secondly, using the wildtype structure 

for POU1F1, we generated each mutation using Chimera. This simulation allows the visualization 

of the possible rotamers for every mutant aminoacid. There was the possibility that the mutations 

caused a clash or contacts within the internal structure, which would affect the protein’s structure 

and could also be used to explain the phenotype (Pettersen et al., 2004). 

To analyze the 24 missense mutants and associate them with their pathological data, first 

the summarized SLR results from pathological matrix were presented into a heat map chart. Then 

we constructed a dendrogram based on model structure predictions. Tree was predicted by the use 

of the DALI server (Holm, 2019), and visualized with Fig Tree software (Rambaut & FigTree, 

2018).  

3. RESULTS 

3.1 Systematic Literature Review 

 

As a result of the SLR we found 1 194 articles.  The clinical reports presented various types of 

mutations that cause CPHD. The following types of mutations were described previously in the 

public HGMD:  missense (20), alternative splicing (4), small deletions (3), small insertions (3), 

gross deletions (2) and regulatory mutations (2), in total 34 mutations (Stenson et al., 2014). 

However, 1 new nonsense and 2 new missense mutations were found through the SLR of clinical 

articles. These are: R143X (Blum et al., 2018a), Q167R (Gavrilova et al., 2017), and I244S (Baş 

et al., 2015a). Four novel mutations in the promotor region were also found in the SLR, including 
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rs300996 (Sun et al., 2006), − 1295C > T (Elizabeth et al., 2018), rs10511134 (T > A) (Elizabeth 

et al., 2018), and rs300982 (C > T) (Elizabeth et al., 2018). One new mutation that affect protein 

splicing were also found in the SRL: c.605-1G > A. Three other novel mutations found were 

c.605delC (Birla et al., 2016), c.1-59T > A (Birla et al., 2016) , and  c. + 8C > T (Birla et al., 2016). 

Therefore, 45 total mutations were reported in humans. Other mutations have been studied since 

they were found in other species, such as Q4R (Pernasetti et al., 1993) and D227Y (Pernasetti et 

al., 1993), or simply reported as a variant like A19V (UniProtKB/SwissProt variant VAR_049361, 

n.d.). Other mutations have been found in healthy individuals such as R113W (De Graaff et al., 

2010) and G89R (Reynaud et al., 2006) which are therefore considered polymorphisms. From the 

25 missense mutations, 8 were dominant (32%) and 17 recessives (68%) (every mutation and 

ethnicity are presented in Annex D).  

 

Missense mutations were first classified according to their corresponding domain, then 

related to the ethnicity of the patient that presented with the mutation (Figure 1). Most mutations 

were reported only once or twice, except for the mutation R271W which has been the most 

reported in this SLR. All the cases presented in the NCBI Clinvar database also included in this 

study.  

To analyze the pathological phenotype, the mutations were mapped according to their 

domain and also per mutation (Figure 2). CPHD can be diagnosed at birth when it presents with 

growth hormone deficiency and hypoglycemia, during newborn screening due to a low thyroid 

hormone levels and low or normal TSH. However, some of the described cases were diagnosed 

later in life, which may affect symptoms identification and correct interpretation. Most patients’ 

symptoms are caused by a deficiency in GH, TSH and PRL, which is why growth is the most 
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affected characteristic of CPHD patients. Some infants may have facial bone structure is also 

affected, such as a prominent forehead, and depressed nose bridge (Pellegrini-Bouiller et al., 

2008). Later in life, children present with short stature and failure to thrive and may at that time 

be noted to have facial characteristics (Lee et al., 2011). It is critical to diagnose children with 

CPHD early as treatment with GH replacement and thyroid hormone is highly effective and most 

beneficial when begun early (Fang et al., 2016). 

 

Once CPHD is suspected, a molecular analysis is carried out using PCR and sequencing 

(Fang et al., 2016). Only one case of a mutation in POU1F1 has been described in Latin America, 

this was R271W in Brazil (Taha et al., 2005), no cases have been described in Central and South 

African countries. Whether this is due to a lack of testing is not clear from the literature.  

As a result of the SLR, structural data was collected to characterize the functional parts of 

the protein represented in the figures. Four main parts of the protein were identified accordingly 

to the literature, the Transactivation domain (TAD) the POU specific domain (POUS) the linker 

region (Linker) and the POU homeodomain (POUHD). 

 

3.1 Protein modelling 

 

Five models were obtained from I-TASSER server, with TM-scores that range from -4.59 

to -3.35. Using these methods, the best model is structure number 1,  however, structure #4 (model 

4) was chosen as the most adequate since Pydock analysis with the DNA sequence from the 5wc9 

model and binding with CBP presented the least problematic topology. These differences are 

denoted by the quantum performance folding of each structural homolog. The TAD is composed 
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of three small helixes and many coiled coil loops. The first one from amino acid (aa) 32 to 34 

(AEC), the next one from aa 38 to 40 (SNH) and the third 68 to 71 (GVMA) and is represented in 

Figure 3. POU1F1 is phosphorylated by  protein kinase A (PKA) on three amino acids; Serine 119, 

Glycine 220, and Threonine 220 (Agarwal & Cho, 2018). 

 

Additionally, other sites were used to analyze the protein’s intrinsically disordered regions. 

First, the blast of POU1F1’s aminoacid sequence in DisProt and obtained 12 results. Among those, 

the one with the lowest E-value was 3e-50, with 0.29 Identity and 0.59 coverage. The most similar 

protein presented in this database was POU2F1 (MobiDB:P14859, UniProtKB:P14859) and 

presented 30.3% of the disordered content. Two regions in POU2F1 showed a disordered structural 

state, the first one a fragment before the POUS and another one between the POU domains. The 

second server was DisEMBL which predicted three regions to be disordered. This server uses three 

criteria: the formation of loops/coils, hot loops, and missing coordinates (Remarks-465). The next 

server used was PONDR® to find the disordered regions in POU1F1, using the VLXT, and VSL2 

algorithms. Results are summarized in Table 1, noting that the I-TASSER model excludes helixes 

corresponding to the POUS and POUHD.  

 

Figure 4 shows the modelled protein with the entire 291 amino acid sequence compared to 

the crystallographic structure which only represents the POU domains. The non-aligned region 

corresponds to the TAD and linker. The alignment was performed with TM-align server where the 

reference protein is the crystallographic structure. 

 

http://mobidb.bio.unipd.it/P14859
https://www.uniprot.org/uniprot/P14859
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3.2 Pathologic structures reconstruction 

 

Reconstructed proteins uploaded to the TM-align present values above 0.98 in every case 

except for R143Q (0.51) The alignment is rated from 0 to 1 where 1 is an identical match, therefore 

the mutant protein structures (obtained through I-TASSER) were almost identical (Annex F, 

protein models are shown in Annex G). 

 

Data from the pathogenic matrix of the 24 mutants is presented as a heat plot showing the 

most pathogenic phenotypic diverse mutants per system (For the complete phenotypic tabulation 

see Annex E). The resulted model showed to be predictive of the thyroid pathology (TH) and 

development and growth delay (DG). Following TH and DG, Growth Hormone Deficiencies (GH) 

is the second most pathogenic predicting. The F233S mutation using the DG classification, is 

predicted to be the most pathogenic. The remainder of the CPDH mutations present a medium or 

low prediction for pathogenicity (Figure 5). For example, DALI server predicts a tree with a well-

established topology.  A basal z-score support of 14.5 divides the dendrogram from the root into 

two large clusters  that present long branches after cluster expansion.  The first one by the R143Q 

mutation that performs as an initial branching and a second group, that is more numerous and 

consist of three subgroups (See Annex H for z-score matrix). As result, the tree presents four main 

clusters, grouped by their folding relationships and sequence homologies (Figure 5). In ascending 

order, the groups are color coded as orange, yellow, green and blue. 
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4. TABLES 

Table 1. Loops predicted for the disordered segments 

Criteria Amino acid number 

Loops/coils 1-105, 117-128, 160-168, 206-218, 231-240 

Hot loops 1-17, 113-130, 202-220, 225-241, 264-291 

I-TASSER 3-8, 32-34, 38-40, 68-71, 85-88, 115-118, 203-206, 272-275, 281-289 
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5. FIGURES 

  

Figure 1. Reported missense mutations as clinical cases.  

These 24 missense mutations represent also the mutations analyzed for the clinical 

phenotype and structural analysis. Figure 1 classifies the number of cases as well, organized 

according to its corresponding domain. Exons 1, 2 and part of exon 3 correspond to the TAD. The 

main difference between them is that exon 3 corresponds to both, TAD and POUs. The POUs 

contains exons 3 and 4. The mutations in exon 5 and 6 are included in the POUHD. We analyze 

31 cases in total. Only one missense mutation was present in exon 5, the K216E mutation in a 

North American patient. The R271W mutation was present in Asia, Europe, North and South 

America. The only mutation presented in the C-terminal (C. Term, part of exon 6) corresponds to 

the R271W mutation. 
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Figure 2A 

  

Figure 2B 

Figure 2. Clinical phenotypes summarized per system affected.  

Figure 2 was constructed based on development and system pathology approach. The 

symptoms consisting with the pathology were classified according to the table in Annex C, all 

symptoms are presented in Annex E. In Figure 2A each mutation was associated with its 

corresponding domain, so it compares the diversity of pathologies by affected systems per domain. 

Figure 2B presents each system affected by each mutation individually. 
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Figure 3. POU1F1 sequence, mutants, and structure.  

The missense mutant sequences were aligned with the wildtype sequence structure as 

topological guide. Every sequence maintains 291 amino acids. Helical structures are portrayed 

above the sequences and protein functional domains bellow. Note mutation differences in black 

and white.  

 

 

Fig 4A       Fig 4B  
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Figure 4. POU1F1 model alignment to crystallographic structure.  

For Figure 4A, the aligned length= 136, Seq_ID=n_identical/n_aligned= 1.000, TM-score= 

0.94949 (normalized by the length of the structure modelled with I-TASSER TM-allign). Structure 

in purple is the one previously modelled by x-ray crystallography (Agarwal & Cho, 2018).The 

chain in blue is the result of modelling the whole sequence. Figure 4B shows the POU1F1 

modelling result binding to the DNA. The colors represent each different domain: Transactivation 

Domain (TAD) in orange (amino acids 8 to 80), the POU specific (POUS) in purple (AA 127 - 

197), linker region (Linker) in turquoise (AA 201 - 209), and POU homeodomain (POUHD) in pink 

(AA 213 - 269). 

 

Figure 5. Mutant POU1F1 structural pathological relationships 

Four main clusters grouped by their folding performance and sequence resemblance were 

grouped by colors (orange, yellow, green, and blue). Branches length represent percentage of 

structural change. The obtained dendrogram was used to infer pathological clusters. In this way 

pathological matrix was ensemble using an Evo–devo and system pathology logic. Heat map is 
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arranged from right to left from the most, to the least affected system. Red gradient present 

pathology diversity range.  TH= thyroid hormone deficiency, DG = delayed growth and 

development, MA= midline abnormalities, PRL = prolactin deficiency, ME= metabolism 

pathology, PA= pituitary abnormalities, and DD = developmental delay. 

  

6. DISCUSSION 

Patients diagnosed with CPHD have variations in their most common clinical 

manifestations. These variations have been well studied and associated with different mutations in 

the POU1F1 gene. Based on these studies and available information, this work contributes with 

the  design of a predictive model that associate the varying phenotype of CPHD with the described 

mutations in groups that would help in the development of better and personalized treatment. The 

use of bioinformatics allowed the comprehension of how affected could be POU1F1 by its 

mutations with a more profound understanding than only sequencing and DNA identification. 

Using bioinformatics allowed us to analyze missense mutations in POU1F1 and study CPHD 

focusing on the protein’s structure and function rather than the DNA sequence. 

 

Naturally, the severity of the patient’s phenotype isn’t only caused by the mutant protein’s 

functionality and structure. The degree of severity involves the environment and it could also be 

related to their heritage. Therefore, knowing the patient’s ethnicity allows us to identify patterns, 

so, presented in Figure 1 how the ethnicity relates to the mutations. Mutations in Caucasian patients 

are mainly shown in exon 4, while exon 6 mutations are mostly present in Asiatic and Arabic 

mutations (Annex D). Association of this trend with the exons where the mutations occur, showed 

no stronger evidence to relate the severity to the ethnicity. Nonetheless, there is an informational 
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bias related to the clinical reports obtained from the SLR regarding the reported cases and how 

detailed was their case description.  

 

The mutations P24L and R271W are remarkable as examples of mutational hotspots found 

in POU1F1’s DNA sequence. The mutation P24L, as well as P14L and P76L are susceptible to 

mutations because the DNA sequence mutates from CCT (phenylalanine) to CTT (leucine) 

(HGMD® gene result, n.d.), which may be caused by UV light damage because it has a YY motif 

(Rogozin & Pavlov, 2003). The mutation P24L has been reported twice, first on a Japanese patient 

and the second time on a Caucasian patient. The second patient is actually a case of familiar CPHD 

where the affected relatives also presented lipedema, a symptom that was not present on the 

Japanese patient (Bano et al., 2010; Ohta et al., 1992). Reports of the same mutation in different 

parts of the world confirm P24L is a mutational hotspot.  

On the other hand, the R271W mutation has a DNA mutation of CGG to TGG.  This 

mutation is similar to the R143L, R143Q, R172Q, and R265W mutations because their arginine 

codon contains a CG dinucleotide (HGMD® gene result, n.d.). The CG dinucleotide which has 

been long reported to have a high mutation rate, around 35% of DNA mutations occur in a CG 

dinucleotide (Cooper & Youssoufian, 1988). The R271W mutation has been reported several 

times, mainly in the United States, but also in Brazil (Birla et al., 2016), Japan (Y. Irie et al., 1995; 

Ohta K, Nobukuni Y, Mitsubuchi H, Fujimoto S, Matsuo N, Inagaki H, Endo F, 1992; Okamoto 

et al., 1994), and various European countries (Birla et al., 2016; L. E. Cohen et al., 1995; De Graaff 

et al., 2010; Holl et al., 1997). In one severe case in particular, the vertical transmission of the 

mutation was reported in a newborn with CPHD that presented with lack of ossification centers, 

hyperbilirubinemia, speech delay and gross motor development delay (Taha et al., 2005). 
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Remarking the importance of genetic testing and prenatal care, especially with dominant mutations 

in the POU1F1. 

Exons 4 and 6, contain several mutational hotspots and also present the most severe 

phenotype (Figure 2). The severity of their pathology is exemplified by the phenotypes 

(symptoms) described and their incidence. Exons 4 and 6 are also part of the DNA binding domain 

of POU1F1, which could explain their most severe phenotype. Interestingly, even though the 

mutations found in exons 4 and 6 are positioned in mutational hotspots, they are all well conserved 

amino acids when compared to POU domains present in different transcription factors (Herr et al., 

1988b). The fact that these mutations occur in conserved amino acids also explains the patient’s 

severe symptoms.  

Mutations that do not occur in the POU domains also impair POU1F1’s function, however 

not as severe but they can be dominant mutations. For example, mutations in the transactivation 

domain, TAD, are dominant because they compromise the homodimer formation. The TAD is a 

flexible region that interacts with CBP, but even if this interaction is compromised, there is a 

greater tolerance for this function, so the phenotype is not as severe. These mutations are also 

presented in Figure 3 and Annex G. Exons 1 and 2 compose the TAD and its structure is much 

more flexible than that of the POUS and POUHD. Exon 5 only presents the K216E mutation  inside 

the linker region. The linker which is a flexible structure (Pine-Twaddell et al., 2013) and  is 

required for dimerization, a critical function of POU1F1. This mutation is a recessive mutation 

and is also causes one of the least severe phenotypes. This leads us to believe that mutations 

occurring in flexible regions cause less severe patho-phenotype.   
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To compare the protein structure obtained in our study with the literature, we show in 

Figure 3 the results obtained from manuscripts showing the DNA binding regions (DisProt, n.d.), 

domains (Aurora & Herr, 1992), and helices (Agarwal & Cho, 2018). The literature has shown 

evidence for a POU1F1 model with 8 helixes (L. E. Cohen, Hashimoto, et al., 1999) and result of 

the modelling with I-TASSER, shows a total of 16 helixes. This is likely due to the previously 

reported structures based on the information provided from the crystallographic x-ray result which 

only models residues Pit-1ΔN residues 105–291 (POUHD ) and Pit-1ΔNΔC residues 124–273 (POUS) 

(Agarwal & Cho, 2018). The POUS has been shown to have four helixes, as does our model. The 

POUHD using x-ray in the crystallography reveals 3 helixes, similar to our model.  An additional 

helix was shown using the crystallographic data and is also seen in our model. also shows a new 

helix from amino acid 281 to 289.  

The three helices we present are present in the TAD, an area of the protein which has not 

previously been modeled before.  Since it is a flexible region, the possible loops that form are 

described in Table 1(Agarwal & Cho, 2018). Further, it is a serine-threonine rich domain which 

makes it an intrinsically disordered protein (Sporici et al., 2005). In recent years, computational 

methods have been developed to predict their structure (Agarwal & Cho, 2018). POU1F1 has a 

disorder content of 30.3% due to the amino acid content of the TAD and linker regions(He et al., 

2009). Using I-TASSER we obtained a structure with three helixes, which are small and may form 

and may also change since this region is likely to change its structure in order to bind to the 

different genes. Although I-TASSER is not one of the servers that predicts disordered proteins, it 

is likely predictive since POU1F1 interaction with p300/CBP is stabilized by the TAD allowing 

binding to the DNA (DisProt, n.d.) and our modelling used POU1F1 binding to the DNA CATT 

motif (Freedman et al., 2003). Using our new model that can account for the TAD region, may 
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allow us to be able to model mutant proteins and predict their DNA binding capacity. Further, both 

I-TASSER and DisEMBL predict that the TAD region is likely to form loops in the described 

regions (Table 1). These may form under differing conditions hence allowing the protein to interact 

with various other proteins. This sequence is highly conserved and integrates a regulatory domain 

and a basal and Ras-responsive region (Agarwal & Cho, 2018), the latter responsible for activating 

POU1F1 by binding to the CBP/300 complex  (Sobrier et al., 2016a).  

Structure matching was performed to show the similarity between the protein structure 

obtained using our modeling  and the result from the x-ray crystallographic assay. In  Figure 4 the 

smaller structure is obtained empirically while the structure shown in blue is our result from the 

server I-TASSER which was performed using the entire 291 amino acid sequence. There were 

only 136 aligned amino acids which present a TM-score of 0.95 but the alignment of the identical 

sequence presented scores 1.00, likely due to the last amino acid sequence forming a helix, unlike 

the crystallographic result. The TM-align modeling result of the mutations when compared with 

the wildtype structure was not relevant and using Chimera to identify  mutations that could present 

clashes with the structure did not lead to an explanation of how the mutations affect the structure.  

Alignment of the mutant proteins with the wildtype template (model 4) showed little 

difference, with a TM-score above 0.98 in all cases except one (mutation R143Q, TM-score = 

0.51). An example of how the modelled wt aligns to the crystallographic structure is shown on 

Error! Reference source not found.a. The difference between the mutant structures and the 

wildtype model is mostly due to the formation of a helical structure in the mutant proteins in amino 

acids 109 to 118. This helical structure is not present in the wildtype that was used as the template. 

However, this helical structure was present on a different wildtype model (model 1) obtained from 
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the initial protein modeling described previously but discarded because of its interaction with the 

DNA. Alignment of R143Q was low because the construction of the TAD resembled the 

previously described wildtype model 1 which had a mirror structure of the chosen model to the 

template.  

PyDock analysis was performed to identify physical and chemical differences between the 

wt and the mutant proteins, using the product of the I-TASSER modelling. Understanding that 

there are two processes about POU1F1 that are well described and are vital to its function, it was 

decided that the interaction on POU1F1 and DNA should be analyzed. However, both modellings 

through PyDock were not successful because they didn’t present what has been described before 

as the normal POU1F1 activity. As presented in Error! Reference source not found.b, POU1F1 

interferes with the DNA, which may cause DNA breakage and it doesn’t happen in nature. A 

similar result was obtained through POU1F1 model interaction with CBP, which naturally binds 

to the TAD region, but it is not what was seen with PyDock. Even when amino acids were specified 

for the interactions, the result was not as previously described. Since molecular docking doesn’t 

consider the full flexibility of POU1F1, these unsuccessful results were obtained. Therefore, the 

binding energies obtained were not further analyzed. A new type of analysis was performed to find 

the DNA binding energy of POU1F1 using the server SAMPDI (results in Annex F), however 

there was no evidence or causality with the described phenotype for each mutation.  

Hence, evo-devo-med analyses were performed (Binart, 2017). As previously mentioned, 

dendrogram presents 4 main clusters of neighboring structures. Groups were reconstructed based 

on differences on folding quantum mechanism and sequence alignment (Figure 5) (Jankowski & 

Jankowski, 2013)). This allow us to group amino acid changes by their total performance and not 

only based on an exact change.  
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Finally, clustering proteins by this quantum relationships presents a more robust 

confidence, since folding fingerprints will correlate structural isoforms and function alterations in 

a more correct way. Therefore,  the canonical state of POU1F1 can be disrupted by mutations that 

impact  the H+ bonds, electrostatic forces, van der Waals contacts and interactions that results 

from hydrophobic effect. 

All the clusters present as base line a TH and DG disorder, involving distinct pathological 

phenotypes mainly characterized by lack of TSH, T4 and T3, whereas for DG the symptoms are 

more varied but generally include musculoskeletal-related pathologies (See Annex E for complete 

phenotypic characteristic). As consequence of this base TH and DG pathology, different patho-

phenotypic patterns arise during development and growth (Figure 5). These patterns allow us to 

correlate the structural degree of change obtained through the dendrogram and patho-phenotypic 

characteristics.  

The orange outgroup member R143Q show the most different structure compared to all. 

This mutation causes a flip in the folding patters. In consequence and comparing it to the wt, this 

structure occurs as an optical isomer conformation, having a mirror image when superimposed 

which gives the 0.54 in similarity with the wildtype (Annex F). As consequence patients presents 

an optic isomer uncapable of executing an appropriate binding and correct recruitment of the whole 

transcription machinery (Holm, 2019). This physical impediment is notable according to the 

chemical-structural dependence of this transcriptional factor (Aykut et al., 2014).  

Yellow group of proteins present a cluster of non-groupable proteins since their only 

relationship to belong is have mutations on non-DNA binding residues neither architectural 

domains of the protein. Being these secondary structural amino acids or residues that doesn’t 



 36 

perturbed the binding dynamic when performed, presenting a minimum change in structure (Figure 

5). 

The rest of the two clusters were formed with more specificity depending on the domain 

affected by the topological changes. Moreover, pathologically both clusters will present 

representatives in all pathogenicity levels. Blue group involves patients with mutations that only 

affect functional structures (POUs & POUHD). All of the mutants on this group will display 

changes centralized on the POUs & POUHD domains (Figure 5). In contrast, Green members are 

affected principally on structural amino acids or secondary functional parts like the TAD. Mutants 

of this last group are represented as the most variable of structure clusters. Being the consequence 

changes that occur on non-catalytical or support structures. In this way, structures with an extreme 

importance that result affected by more drastically changes will present more pathogenic 

phenotypes (Figure 5). 

F233S presents the most pathogenic phenotype of all, their affection is highly spread 

among systems, only DD presents no deficiency, however this is likely due to the early death of 

the patient (Baş et al., 2015b). The localization of this mutation is in the tenth alfa helix, correspond 

to the POU-homeodomain. This par in specific don’t directly bind to the DNA, but the change of 

one highly hydrophobic amino acid, the phenylalanine (F) by a serine (S) with polar uncharged 

side chains makes a big difference on helix.  
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7. CONCLUSION 

In conclusion, a more comprehensive way to interpret pathological phenotypes could be 

based on protein structural changes. This could allow us, and future clinicians on a better 

comprehension of the patient’s evolution trough time. Since, most of these pathologies affect the 

patients thought their lifetime. Our analysis helps us in this way to link this structural dependence 

on the different levels of pathological phenotypes that patients could exhibit. Moreover, structural 

differences are not the only energetic characteristic for base on a final distribution. Therefore, we 

propose that a molecular dynamics analysis of the DNA binding could further explain the clinical 

phenotypes. Dimerization, phosphorylation and CBP binding energies could also be analyzed in 

further researches. 

The published data about each patient and their mutations was generally very detailed 

which allowed the construction of the phylogenetic tree of the mutations. The bioinformatic tools 

used didn’t account for the flexibility of the protein, which could be why we weren’t able to relate 

the protein structure to the pathological phenotypes. Therefore, we suggest that the bioinformatic 

tools used in future studies involve molecular dynamics and take on account the following aspects: 

DNA binding, CBP binding to TAD,  and phosphorylation by PKA.  
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9. ANNEX 

Annex A: Search terms 

Items Search terms 

Protein (( TITLE-ABS-KEY (*POU1F1*)) OR ( TITLE-ABS-KEY (GHF-1)) OR ( 

TITLE-ABS-KEY (*Pit-1*))) 

Population (( TITLE-ABS-KEY (human*)) OR ( TITLE-ABS-KEY (homo sapiens)) 

OR ( TITLE-ABS-KEY (person*)) OR ( TITLE-ABS-KEY (people))) 

Characteristics (( TITLE-ABS-KEY ( structure)) OR ( TITLE-ABS-KEY ( aminoacid*)) 

OR ( TITLE-ABS-KEY ( peptid*)) OR ( TITLE-ABS-KEY ( Protein AND 

structure)) OR ( TITLE-ABS-KEY ( *sequence*)) OR ( TITLE-ABS-KEY 

(proteom* )) OR ( TITLE-ABS-KEY ( transcript*)) OR ( TITLE-ABS-KEY 

(exome* )) OR ( TITLE-ABS-KEY (exon* )) OR ( TITLE-ABS-KEY ( 

evolution)) OR( TITLE-ABS-KEY ( mut*)) OR ( TITLE-ABS-KEY 

(homolog* )) OR ( TITLE-ABS-KEY ( paralog*)) OR  ( TITLE-ABS-KEY 

(gen* )) OR ( TITLE-ABS-KEY (molecular AND modeling )) OR ( TITLE-

ABS-KEY (splicing )) OR ( TITLE-ABS-KEY (functional AND prediction 

)) OR ( TITLE-ABS-KEY ( DNA AND binding))) 

TOTAL (( TITLE-ABS-KEY (*POU1F1*)) OR ( TITLE-ABS-KEY (GHF-1)) OR ( 

TITLE-ABS-KEY (*Pit-1*)))AND (( TITLE-ABS-KEY (human*)) OR ( 

TITLE-ABS-KEY (homo sapiens)) OR ( TITLE-ABS-KEY (person*)) OR ( 

TITLE-ABS-KEY (people))) AND (( TITLE-ABS-KEY ( structure)) OR ( 

TITLE-ABS-KEY ( aminoacid*)) OR ( TITLE-ABS-KEY ( peptid*)) OR ( 

TITLE-ABS-KEY ( Protein AND structure)) OR ( TITLE-ABS-KEY ( 

*sequence*)) OR ( TITLE-ABS-KEY (proteom* )) OR ( TITLE-ABS-KEY 

( transcript*)) OR ( TITLE-ABS-KEY (exome* )) OR ( TITLE-ABS-KEY 

(exon* )) OR ( TITLE-ABS-KEY ( evolution)) OR( TITLE-ABS-KEY ( 

mut*)) OR ( TITLE-ABS-KEY (homolog* )) OR ( TITLE-ABS-KEY ( 

paralog*)) OR  ( TITLE-ABS-KEY (gen* )) OR ( TITLE-ABS-KEY 

(molecular AND modeling )) OR ( TITLE-ABS-KEY (splicing )) OR ( 

TITLE-ABS-KEY (functional AND prediction )) OR ( TITLE-ABS-KEY ( 

DNA AND binding))) 
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Annex B: Article classification 

Category Exclusion criteria 

0. Null entries, duplicates, not in 

the language of interest, abstract 

is reported elsewhere and not in 

the time period of interest 

01 - Null entries 

02 - Duplicates 

03 - Language of interest 

04 - Abstract that is reported elsewhere 

1 - Nature of the study 05 - Treatment expression analysis 

06 - Related articles 

2 - Study population 07 - Not animals  
08 - Not mammals  
09 - Not human beings 

3 - Outcome 10 - No functional link  
11 - Ecological 

4 - Potential 12 - Structure Analysis  
13 - Clinical analysis  
14 - Evo-devo  
15 - Post transcription 

Cannot decide   
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Annex C: Symptom classification 

Category Symptoms 

GH axis  GH 

IGF-1 

IFG-BP3 

 

Thyroid hormone axis TSH 

T4 

T3 

Prolactin Prolactin 

Pituitary abnormality:  Empty sella  

Hypoplastic anterior pituitary 

Midline abnormality: 

 

Facial crowding,  

Prominent forehead 

Low nasal bridge 

Deep set eyes 

Acromicria 

Micrognathia 

Hypertelorism 

Umbilical hernia 

Downturned mouth 

Averted nostrils 

High pitched voice 

Metabolic:  

  

Hypoglycemia,  

Jaundice  

Hyperbilirubinemia  

Constipation 

Hypotonia 

Myxedema 

Delayed growth and development:  Delayed bone maturation 

Microphallus 

Small kidneys 

Polyhydramnios 

Failure-to-thrive 

Short stature 

Late dentition 

Macroglossia 

Calf muscle dystrophy 

Open fontanelle 

Small facial skull 

Developmental delay 

 

Psychomotor deficit 

Hearing loss 
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Annex D: Mutations and ethnicity 

Mutations Inheritance DNA binding 

region 

Country Location Reference 

Q4X Recessive NO Malaysia Exon 1 (Baş et al., 2015a) 

Exon 1-2 del Recessive YES Turkey Exon 1,2 (Baş et al., 2015a) 

P14L Dominant (-) NO Russia Exon 1 (Fofanova et al., 1998) 

P24L Dominant (-) NO Japan Exon 1 (Ohta K, Nobukuni Y, Mitsubuchi 

H, Fujimoto S, Matsuo N, Inagaki 

H, Endo F, 1992) (Bano et al., 

2010) 

P76L Dominant NO French Exon 3 (Sobrier et al., 2016b) (Sobrier et 

al., 2016a) 

F135C Recessive NO Tunisian Exon 3 (Ohta K, Nobukuni Y, Mitsubuchi 

H, Fujimoto S, Matsuo N, Inagaki 

H, Endo F, 1992) 

R143L Recessive YES Australia, 

Japan 

Exon 3 (Ohta K, Nobukuni Y, Mitsubuchi 

H, Fujimoto S, Matsuo N, Inagaki 

H, Endo F, 1992)(McLennan et al., 

2003) 

R143Q Recessive YES Turkey Exon 3 (Aykut et al., 2014) 

R143X Recessive YES India Exon 3 (Blum et al., 2018b) 

K145X Recessive NO Italy Exon 3 (Hashimoto et al., 2003) 

V153F Recessive NO Turkish Exon 4 (Baş et al., 2015b) 

A158P Recessive NO Germany, 

Dutch 

Exon 4 (Pfäffle et al., 1992) 

Q167K Dominant YES Italy Exon 4 (Malvagia et al., 2003) 

Q167R Dominant YES Russia Exon 4 (Gavrilova et al., 2017) 

R172Q Recessive YES Malta, Japan Exon 4 (J. P. G. Turton et al., 2005b)  

R172X Recessive YES Japan, Italian-

America 

Exon 4 (Brown et al., 1998)  

E174G Recessive NO Italian-

American 

Exon 4 (Brown et al., 1998) 

S179R Recessive YES Japan Exon 4 (Miyata et al., 2006) 

W193R Recessive NO India Exon 4 (Augustijn et al., 2001) 

W193X Recessive NO Israel Exon 4 (G. Gat-Yablonski et al., 2005) 

L194Q Recessive NO Australia Exon 4 (McLennan et al., 2003) 

K216E Dominant NO USA Exon 5 (L. E. Cohen, Zanger, et al., 1999) 
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E230K Recessive NO Malta, Russia, 

Israeli-Arab 

Exon 6 (J. P. G. Turton et al., 2005a)(J. P. 

G. Turton et al., 2005b) 

F233L Recessive NO South East 

Asia 

Exon 6 (Rainbow et al., 2005) 

F233S Recessive NO Taiwan Exon 6 (Lee et al., 2011) 

P239S Recessive NO South West 

Saudi Arabia 

Exon 6 (Pernasetti et al., 1998) 

I244S Recessive NO Turkish Exon 6 (Baş et al., 2015a)(Baş et al., 2018) 

E250X Recessive NO Thailand Exon 6 (Yoshifumi Irie et al., 1995) 

F262L Recessive NO Israel Exon 6 (G. Gat-Yablonski et al., 2005) 

R265W Dominant NO Philippines, 

Turkey 

Exon 6 (Bircan et al., 2001) (J. P. Turton 

et al., 2012) 

R271W Dominant NO United 

Kingdom, 

Russia, 

Australia, 

USA, Japan, 

Dutch, 

German, 

Swiss, 

Belgian, 

Norway, 

Canada 

Exon 6 (Taha et al., 2005) (Ohta K, 

Nobukuni Y, Mitsubuchi H, 

Fujimoto S, Matsuo N, Inagaki H, 

Endo F, 1992) (Pine-Twaddell et 

al., 2013) (McLennan et al., 2003) 

(Rainbow et al., 2005)(J. P. G. 

Turton et al., 2005b)  

V272X Recessive NO Turkey Exon 6 (Paper, 2002) 

IVS1A ds +3 A-G NA NO Philippines Intron 1 (J. P. Turton et al., 2012) 

IVS1 as -492 G-A NA NA nd NA (Sun et al., 2006) 

IVS2 ds +1 G-T Recessive NO Japan Exon 1 (Inoue et al., 2012) 

IVS4 ds +1 G-A Recessive NO Thai Exon 4 (Snabboon et al., 2007) 

snp-7057 NA NO China 3' UTR (Sun et al., 2006) 

rs300977 NA NO China 3' UTR (Sun et al., 2006) 

rs300996 NA NO China 3' UTR (Sun et al., 2006) 

New variant (− 

1295C > T) 

NA NO Dutch 3' UTR (Elizabeth et al., 2018) 

rs10511134 (T > A) NA NO Dutch 3' UTR (Elizabeth et al., 2018) 

rs300982 (C > T) NA NO Dutch 3' UTR (Elizabeth et al., 2018) 

Q242R Recessive No Ashkenazi 

Jews 

Exon 6 (G. Gat-Yablonski et al., 2005)  

https://doi.org/10.1515/jpem.2005.18.4.385
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E251NX unk (hetero to 

W193R) 

No India Exon 6 (Hendriks-Stegeman et al., 2001) 

IVS2-3insA Recessive No Italian Exon 2 (Carlomagno et al., 2009) 

c.502insT 

//p.Thr168IlefsX7 

Recessive Yes Israel Exon 4 (Tenenbaum-Rakover et al., 2011) 

ins778A truncated 

at 284 

unknown No Russia Exon 6 (J. P. G. Turton et al., 2005a)  

c.605-1G > A 

mutation - changes 

splicing 

Recessive No India Exon 4-5 (Birla et al., 2016) 

c.605delC - 

premature stop at 

220 

Recessive No India Exon 5 (Birla et al., 2016) 

c.1-59T > A Dominant No India 5' UTR (Birla et al., 2016) 

c. + 8C > T Dominant No India 3' UTR (Birla et al., 2016) 

POU1F1, 

CHMP2B & 

VGLL3 

Recessive Yes Israeli-Arab Exon 1-6 (Galia Gat-Yablonski et al., 2011) 

 



Annex E: Mutations pathology 
M

u
ta

ti
o

n
 

G
H

 

IG
F-

1 

IF
G

-B
P

3
 

G
H

 A
X

IS
 

TS
H

 

T4
 

T3
 

Th
yr

o
id

 H
o

rm
o

n
e 

A
xi

s 

P
R

L 

P
ro

la
ct

in
 

Em
pt

y 
se

lla
 

H
yp

o
pl

a
st

ic
 a

nt
er

io
r 

pi
tu

it
ar

y 
P

it
u

it
a

ry
 a

b
n

o
rm

a
lit

y 

Fa
ci

a
l c

ro
w

di
ng

 

P
ro

m
in

en
t 

fo
re

he
a

d
 

Lo
w

 n
as

al
 b

ri
dg

e
 

D
ee

p 
se

t 
ey

es
 

A
cr

o
m

ic
ri

a
 

M
ic

ro
gn

at
hi

a
 

H
yp

er
te

lo
ri

sm
 

U
m

bi
lic

al
 h

er
ni

a
 

D
ow

nt
ur

n
ed

 m
ou

th
 

A
nv

er
te

d 
no

st
ri

ls
 

H
ig

h 
pi

tc
he

d
 v

o
ic

e
 

M
id

lin
e 

a
b

n
o

rm
a

lit
y 

H
yp

o
gl

ic
em

ia
 

Ja
u

nd
ic

e
 

H
yp

er
b

ili
rr

ub
in

em
ia

 

C
on

st
ip

at
io

n
 

H
yp

ot
o

ne
 

M
yx

ed
em

a
 

M
et

a
b

o
lic

 

U
nd

er
d

ev
el

op
ed

 b
on

es
 

M
ic

ro
ph

al
lu

s 

Sm
a

ll 
ki

dn
ey

s 

P
ol

yh
yd

ra
m

ni
os

 

Fa
ilu

re
 t

o 
th

ri
ve

 

Sh
or

t 
st

at
ur

e
 

La
te

 d
en

ti
ti

on
 

M
ac

ro
gl

os
si

a
 

C
al

f 
m

u
sc

le
 d

is
tr

o
ph

y 

O
p

en
 f

on
ta

ne
lle

 

Sm
a

ll 
fa

ci
a

l s
ku

ll 

D
el

a
ye

d
 g

ro
w

th
 a

n
d

 
d

ev
el

o
p

m
en

t 
P

sy
ch

o
m

ot
or

 d
ef

ic
it

 

H
ea

ri
n

g 
lo

ss
 

D
ev

el
o

p
m

en
ta

l d
el

a
y 

WT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P14L 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

P24L 1 0 0 1 1 1 1 3 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

P76L 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F135C 1 1 0 2 1 0 1 2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

R143L 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

R143Q 1 1 1 3 1 1 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

V153F 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A158P 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

Q167K 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 3 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

Q167R 1 1 0 2 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

R172Q 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

E174G 1 0 0 1 1 1 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 2 0 0 0 

S179R 1 0 0 1 1 1 1 3 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 

W193R 1 1 1 3 1 1 0 2 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 3 0 0 0 0 0 1 0 1 0 1 0 3 0 0 0 

L194Q 0 0 0 0 1 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 
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K216E 1 0 0 1 1 1 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E230K 1 0 0 1 1 1 0 2 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 3 0 0 0 

F233L 1 0 0 1 1 1 0 2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F233S 1 0 0 1 1 0 1 2 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 4 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 7 0 0 0 

P239S 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

I244S 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

F262L 1 0 0 1 1 1 0 2 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 3 0 0 0 

R265W 1 0 0 1 1 1 1 3 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 3 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 4 0 0 0 

R271W 1 0 0 1 1 1 0 2 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 3 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 3 0 1 1 

 

 



 

Annex F: Alignments and clashes 

Mutation C- score Alignment score Clashes  DNA 

binding energy 

P14L 0.46 0.98708 0 - 

P24L 0.58 0.98694 0 - 

P76L 0.56 0.98843 0 - 

F135C 0.6 0.98841 0 0.577721 

R143L 0.47 0.98837 0 1.11551 

R143Q 0.6 0.51022 0 0.798151 

V153F 0.5 0.97957 0 0.655368 

A158P 0.34 0.98912 0 0.601301 

Q167K 0.52 0.98637 0 -0.55777 

Q167R 0.51 0.98696 0 0.323343 

R172Q 0.63 0.99247 0 0.772532 

E174G 0.68 0.99148 0 0.676297 

S179R 0.42 0.98833 0 -0.04331 

W193R 0.66 0.98913 0 0.35194 

L194Q 0.33 0.98748 0 0.579904 

K216E 0.32 0.99068 0 0.811989 

E230K 0.41 0.98854 0 0.276989 

F233L 0.63 0.98793 0 0.653249 

F233S 0.46 0.98888 0 0.574472 

P239S 0.4 0.98441 0 0.47623 

I244S 0.52 0.98729 0 0.424598 

F262L 0.46 0.99207 0 0.39348 

R265W 0.56 0.98763 0 0.942712 

R271W 0.25 0.98724 0 0.814868 

 



 

 

Annex G: Protein models 

 

 

 

Figure 5A Exons 1 
Figure 5C Exons 3 Figure 5B Exons 2 

Figure 5D Domains 1 Figure 5E Domains 2 Figure 5F Domains 3 
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POUF1: exons, domains and missense mutations 

This protein structure was obtained through modeling with I-TASSER Model 4 obtained present a C-score of -3.70. Figures 5A to 5C present 

the six exons that code for POU1F1. Exon 1 in blue (AA 1-47), exon 2 in sky-blue (AA 48-71), exon 3 in olive green (AA 72 – 146), exon 4 in gold 

(AA 147 - 201), exon 5 in red (AA 202 – 222), and exon 6 in pink (AA 223 – 291).  Figure 5D to 5F depict the POU1F1 domains as presented in Figure 

3. The rest of the structure that does not fit into the functional domains is shown in cream color. Figure 5G shows the 3 mutations found in the TAD 

region, Figure 5H displays 10 mutations in the POUS two mutations: R143Q and Q167R are not shown in the figure, however mutations R143L and 

Q167K represent the position where these would occur, meaning in that in total there are 12 mutations described in this domain. Figure 5I exhibits 7 

mutations occurring in the POUHD and 1 mutation in the carboxi terminal (R271W). Mutation F233L is not represented here, instead mutation F233S 

has been displayed.  

 

 

Figure 5G Mutations 1 Figure 5I Mutations 3 Figure 5H Mutations 2 



 

Annex H: Dali scores 

 

 


	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1. CPHD symptoms, characterization and treatment
	1.2. Molecular characteristics of POU1F1 and its mutations:
	1.3. Bioinformatics

	2. METHODOLOGY
	2.1 Systematic Literature Review and data extraction
	2.2 Protein reconstruction and evo-devo-med analysis

	3. RESULTS
	3.1 Systematic Literature Review
	3.1 Protein modelling
	3.2 Pathologic structures reconstruction

	4. TABLES
	5. FIGURES
	6. DISCUSSION
	7. CONCLUSION
	8. BIBLIOGRAPHY
	9. ANNEX
	Annex A: Search terms

