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RESUMEN 

Este documento explora el uso de seis diferentes clasificadores basados en clustering, para 

categorizar dos diferentes eventos sísmico-volcánicos y encontrar posibles señales solapadas 

que pueden ocurrir al mismo tiempo o inmediatamente después de la aparición de eventos 

sísmicos. De acuerdo con el espacio de clasificadores explorado, el spectral-clustering con k=2 

fue escogido como el mejor modelo, alcanzando una precisión del 92%. Este resultado 

representa un desempeño satisfactorio y competitivo en cuanto a clasificación, comparado con 

los métodos señalados en el estado de arte. Además, el clasificador CURE con k=3 alcanzó 

una precisión del 87%, la misma que es considerada también como un desempeño razonable. 

Este modelo fue el más eficiente en la detección de señales solapadas en los eventos sísmico-

volcánicos. Considerando los resultados obtenidos, es posible establecer que la exploración 

propuesta, basada en clustering fue efectiva en proveer modelos competitivos para la 

clasificación de eventos sísmico-volcánicos y la detección de señales solapadas. 

Palabras clave: categorización de eventos sísmico-volcánicos, k-means, BFR, CURE, BIRCH, 

Expectation-maximization, spectral-clustering, métodos de clustering, aprendizaje no 

supervisado. 
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ABSTRACT 

This paper explores the use of six different clustering-based classifiers to categorize two 

different volcanic seismic events and to find possible overlapping signals that could occur at 

the same time or immediately after seismic events occurrence. According to the explored 

classifiers space, only one out of 27 models was selected using the first selection criteria. 

Afterward, the Spectral Clustering classifier with k=2 was chosen as the best model, reaching 

an accuracy score of 92%. This result represents a satisfactory and competitive classification 

performance when compared to the state of art methods. The CURE classifier with k=3 attained 

an accuracy value of 87%, enabling it as the only model to detect seismic events with 

overlapped signals. Therefore, the proposed clustering-based exploration was effective in 

providing competitive models for seismic events classification and overlapped signal detection   

Keywords: volcanic seismic event categorization, k-means, BFR, CURE, BIRCH, Expectation 

Maximization, Spectral Clustering, clustering methods, unsupervised learning. 
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INTRODUCTION 

 Volcanic eruptions have been responsible for thousands of deaths since the year 

1500 (Tilling, 1996). Historical records show that between 1986 and 2019, approximately 7670 

deaths were reported from direct and indirect volcanic activity worldwide. There are many 

highly populated cities around the world where people reside within a 30km radius to volcanoes 

(Siebert, Simkin, & Kimberly, 2011) (Phillipson, Sobradelo, & Gottsmann, 2013) such as 

Quito (Ecuador) near to Cotopaxi (last active in 2012), Guagua Pichincha (last active in 2000), 

and Reventador (last active in 2002) volcanoes, Mexico City (Mexico) near to Popocatepetl 

volcano, Tokyo (Japan) near to Mt. Fuji, Naples (Italy) close to Vesuvius, Seattle (USA) close 

to Mount Rainier among others (Schmincke, 2004). Currently, volcanic observatories 

worldwide use seismic monitoring as the most effective tool for forecasting eruptions 

(Schmincke, 2004). However, most of these methods involve manual classification of seismic 

events which could lead to delays and errors due to human subjectivity.  

 Machine learning classifiers with supervised or unsupervised learning have been 

employed during the last decade to different application contexts. Successfully, supervised 

learning approaches employed to face the problem of seismic events classification are artificial 

neural networks (ANN) (Lara-Cueva et al., 2016), random forest (Rodgers et al., 2016), hidden 

Markov models (Benitez et al., 2007), Gaussian mixture models (Venegas et al., 2019) and 

support vector machine methods (Curilem et al., 2014). On the other hand, unsupervised 

learning methods, which have been applied to different problems as well (Krishna & Murty, 

1999), intend to form structured groups or clusters in datasets without prior knowledge of any 

class labels (Zheng et al., 2017). Some studies reported in the literature include: principal 

component analysis (PCA) (Unglert, Radić, & Jellinek, 2016), mixtures of Gaussian (Hammer, 
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Beyreuther, & Ohrnberger, 2012), hidden Markov models (Bebbington, 2007) and self-

organizing map (SOM) (Kuyuk et al., 2011). 

 Approaches focusing on volcanoes and their seismic activities have been less 

explored, but the SOM models seeing to be the most popular. In (Köhler, Ohrnberger, & 

Scherbaum, 2010), a SOM model focused on volcanic wavefield patterns was used to analyze 

the Mount Merapi (Indonesia), classification errors of 6% and 26% were obtained for volcano-

tectonic and rockfall events, respectively. However, when both events were combined into one 

cluster class, the error value was significantly reduced to 12%. In (Reyes & Mosquera, 2017), 

SOM and k-means models were used to classify volcanic signals recorded from the 

Tungurahua volcano (Ecuador), attaining accuracy (ACC) values of 91 % and 86% for noise 

and infra-sound signals, respectively. In (Messina & Langer, 2011), SOM and clustering-based 

models were integrated to build the KKAnalysis software, a tool that takes less than a minute 

to classify events, reaching an ACC value of 90%. Despite the several developed approaches, 

the problem of volcano seismic event classification remains an open challenge. 

 This paper aims to explore six different clustering-based classifiers in the context 

of volcano seismic events classification and overlapped signals detection. The employed 

models belong to the unsupervised learning models and have the advantage of being trained 

without knowing the output label of input instances, making it a real-life solution. The main 

drawback is that they are less accurate than supervised learning models. 

 The remainder of this paper is organized as follows: The Materials and Methods 

section, presents the experimental volcano seismic event dataset, the selected clustering-based 

classifiers and the experimental setup design used in this work. The Results and Discussion 

section presents an exploratory comparison based on the ACC scores obtained for each method 

and against the state of art-based methods. Finally, Conclusions and future work are drawn in 

the last section.  
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MATERIALS AND METHODS 

Volcano seismic event dataset 

 A public dataset (SeisBenchV1) from the ESeismic repository, which is the first 

annotated Ecuadorian volcano seismic repository with several samples recorded at the 

Cotopaxi volcano (Benítez, et al., 2020), was used for this work. For convenience, the 

SeisBenchV1 dataset was provided by courtesy of the Instituto Geofísico of Escuela   

Politécnica Nacional (IGEPN) and collaborators, available at: 

http://www.igepn.edu.ec/eseismic_web_site/index.php. 

 The SeisBenchV1 dataset is composed of a total number of 668 already computed 

feature vectors distributed in 587 and 81 samples of long-period (LP) and volcanic tectonic 

(VT) event classes, respectively. Each vector contains a set of 84 features, including: 13 

features from the time domain, 21features from the frequency domain, and 50 features from 

the scale domain. Since this dataset is a real-life one, it also contains samples with signal 

overlapped (signals that could occur at the same time or immediately after the event 

occurrence). Thus, some LP and VT events were recorded in conjunction with, for example, a 

rockfall or an icequake occurrence. This effect produced a mixed signal in the seismometer 

used to record the event 

Clustering-based classifiers 

Clustering is a term used for the process of data grouping. Data are represented as points 

in a multidimensional space and are placed in different clusters according to a given metric, 

commonly, distance measures (Pandove & Goel, 2015). We considered six different clustering-

based models instead of PCA or factor analysis, which are unsupervised learning models as 

http://www.igepn.edu.ec/eseismic_web_site/index.php
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well, since clustering-based models are not sensitive to the internal data correlation as could 

be the others. In real-life data, the correlation of features is an inherited problem; thus, the use 

of non-sensitive models is preferred to avoid data preprocessing steps. A brief description of 

selected models is presented below:  

k-Means method 

The k-means algorithm partitions the whole dataset into small number (k) of clusters of 

data in a way that the resulting intra-cluster similarity is high, but the inter-cluster similarity is 

low. The cluster similarity is measured regarding the Euclidean distance to the mean value of 

the samples in a cluster (centroid) (Tamilselvi, Sivasakthi, & Kavitha, 2015). Selecting the 

right value of k is a hard decision due to the unknown class number. Thus, the basic in the k-

means model is to optimize the k value in a range of possible clusters (Pandove & Goel, 2015). 

Additionally, k-means is mainly based on the distance computation (see Equation1) between 

the randomly selected sample (instance to be assigned) and the centroid (cluster mean) of the 

considered clusters (Oliveira Martins et al., 2009). In the last step, the model recomputes the 

cluster centroid in which the sample was assigned (Sharma, Bajpai, & Litoriya, 2012). The 

process is repeated until all the samples are analyzed. 

𝑆 = ∑ ∑ ||𝑥𝑖
𝑗 − 𝑐𝑗||

2𝑛

𝑖=1

𝑘

𝑗=1
 

where ||𝑥𝑖
𝑗   −  𝑐𝑗||

2

 is the distance from any sample 𝑥𝑖
𝑗
 to the centroid cj; k is the total 

number of clusters n is the number of samples in the dataset and S is the similarity value of the 

ith sample respect to the k clusters. 
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BFR method 

BFR stands for Bradley, Fayad, and Reina, who developed a variant of the k-means 

algorithm, which is mainly used for clustering large amounts of data (Pandove & Goel, 2015). 

The BFR algorithm assumes that clusters are typically distributed around centroids in a 

Euclidean space. On its first iteration, the whole data is read and loaded to memory. Then, it 

computes some simple statistic variables such as the number of points N, vector SUM and 

SUMSQ (Daoudi & Meshoul, 2017) that will serve to avoid memory full load in the next 

iterations. The initial k centroids are also estimated in the first iteration, usually by taking a 

random sample, picking up random points (instance of data), and then taking k-1 more points 

(far as possible from the previous ones). There are three classes of points that are using to 

represent the data and to perform the inclusion of a given point to a cluster (Daoudi & Meshoul, 

2017): 

• Discard set (DS): the points that are close to a known centroid can be discarded 

for further iterations. 

• Compression set (CS): the points that are close together, but not really close to 

any k centroid, are summarized but not assigned to any existing cluster. 

• Retained set (RS): the isolated points that do not belong to any cluster and need 

to be retained in the buffer, waiting to be assigned. 

Once the DS, CS, and DS sets are conformed (in the first iteration), the BFR iterates 

over the CS and RS to assign their points to a specific cluster. Before each inclusion, the data 

dispersion (using the Mahalanobis distance) is calculated among the internal elements of the 

cluster with the highest probability of hosting the new point (Aletti & Micheletti, 2017). After 

including a new point, the internal distances of the cluster are recalculated. 
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CURE method 

 CURE (clustering using representatives) is a specialized model used to cluster the 

data in non-spherical shapes (Guha, Rastogi, & Shim, 1998), usually ring or S-shape, and its 

main application is related to process large amounts of data (big data). The clusters formation 

starts by considering a group of representative points instead of centroids like the other methods 

do (Pandove & Goel, 2015). CURE treats each sample in the data as an individual class. Then, 

the closest samples (without taking into consideration the class) are merged until reach the 

number of desired clusters. After that, the samples are multiplied by an appropriate shrinkage 

factor to make them closer to the center of the cluster and to diminish the misleading effect of 

noise (Min & Li, 2015). CURE is the most robust model for outliers and size variances. 

BIRCH method 

 The balanced iterative reducing and clustering using hierarchies (BIRCH) is an 

algorithm designed for clustering large amounts of numerical data by combining hierarchical 

clustering with iterative partitioning (Han & Kamber, 2005). It provides two strengths over 

other agglomerative clustering algorithms, such as solving the size scalability issues of the 

dataset, and it can undo operations that were made in previous steps (Han & Kamber, 2005). 

 BIRCH applies the principles of the clustering feature to summarize the cluster and 

the clustering feature tree to describe the cluster hierarchy (Parimalam & Sundaram, 2017). 

For any given dataset, regardless of the number of features per object, its clustering feature will 

be always a three-dimensional vector that summarizes the information of the objects within the 

dataset. Besides, this vector is used to calculate the centroid, radius, or diameter of the cluster, 

being the radius and diameter two measures of tightness (Han & Kamber, 2005). On the other 

hand, the clustering feature tree principle is a height-balanced tree containing the clustering 
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features according to the hierarchy criterion. This tree has the branching factor and threshold 

parameters to indicate the maximum number of children per internal node (is not leaves) and 

to represent the maximum diameter possible for storing subclusters as leaf nodes of the tree, 

respectively (Han & Kamber, 2005). Particularly, BIRCH performs data exploration by 

assuming they are not uniformly distributed; therefore, data points are not equally important 

(Zhang, Ramakrishnan, & Livny, 1996). 

Expectation-maximization method 

 The Expectation-maximization (EM) method is a class of iterative algorithm to find 

maximum likelihood or maximum a posterior estimation (McLachlan & Krishnan, 2007), 

where the model depends on unobserved latent variables, in clustering problems with unlabeled 

data. (Nigam et al., 2011). The EM algorithm uses an initial conjecture based on a covariance 

matrix to estimate the model parameters iteratively. Each iteration consists of an expectation 

step, which finds the distribution of unobserved variables given the known values of observed 

ones and the currently estimated parameters. The maximization step re-estimates the model 

parameters according to the maximum likelihood of the previously found distribution in the 

expectation step, assuming it is correct. It continuously iterates between the expectation and 

maximization steps until reaching the threshold convergence. These iterations have been 

demonstrated to improve the true likelihood (Neal & Hinton, 1998) (Moon, 1996). 

Spectral-clustering method 

 It is a graph-theory based method which finds connected structures (Jia et al., 

2014). It involves several techniques to extract all the graph structural properties by using the 

eigen decomposition of its associated matrix representation (Thrun, 2018). Thus, it comprises 

several steps, such as finding the affinity matrix of the data that will be clustered, computing 
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the main k-eigenvectors of the affinity matrix, projecting the data into a new space defined by 

the computed k-eigenvectors and the data clustering in the newly transformed space (Han & 

Kamber, 2005). 

 Spectral-clustering method also uses the similarity graph during the data clustering. 

Its final purpose is to find a partition of the graph such that the edges between different groups 

have very low weights, which means that points in different clusters are dissimilar from each 

other. The edges within a group have high weights, which means that points within the same 

cluster are similar to each other (Jia et al., 2014). Due to this, it is effective to analyze high 

dimensional data and to detect arbitrarily shaped clusters (Han & Kamber, 2005). However, it 

lacks scalability and robustness when dealing with little spatial separations from cluster to 

cluster (Han & Kamber, 2005) (Thrun, 2018). 

Experimental setup 

 This section outlines the experimental evaluation carried out with the selected six 

clustering-based models using the SeisBenchV1 dataset containing feature vectors of LP and 

VT seismic events. Dataset normalization, model configuration, assessment metrics, and 

selection criteria are important aspects that are described next. 

Dataset normalization 

All the values of the dataset were normalized using the min-max method (Jain & 

Bhandare, 2011) for bringing them into the range between 0 to1and thus, avoiding data 

dispersion. 
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Model configuration 

The main parameter on clustering-based classifiers is the number of k clusters. For all 

models, the k number was optimized in the range from 2 to10 (empirically selection). Other 

hyperparameters were determined using a brute force-based approach such as random seed, 

which varied between 0t o10000 units, the number of children per node in the range from 0to 

the number of features in the dataset (688) and the threshold value from some of the optimal 

configuration per classifier are briefly described next: 

• k-means: the initialization algorithm for centroid selection and the maximum of 

iterations for each run was set to k-means++ method and 1000 units, respectively. 

• BFR: the merge threshold, which determines the approximation of two clusters was set 

to 2 units, the Mahalanobis factor, which measure the nearness of point and cluster was 

tuned to 3 units, the Euclidean threshold to determine the closeness of two points in the 

retained set was tuned to 3 units and the initial number of iterations was 40 units. 

• CURE: the affinity metric used to compute the distance between sets was set to the 

Euclidean distance algorithm. 

• BIRCH: The maximum number of children per internal node and the maximum 

diameter threshold for sub-clusters were set to 53 and 0.75 units, respectively. 

• Expectation-maximization: the covariance type was set to tied, which means all 

components share the same covariance, the maximum iteration was tuned to 1500 units, 

the converge threshold to 10−5 and the random seed for initial covariance matrix to 25 

units. 

• Spectral-clustering: the random seed for initial eigenvectors decomposition was tuned 

to 3107 units, the affinity matrix construction was set to the nearest neighbor algorithm 

with the number of neighbors and eigenvectors equal to 20 and 16 units, respectively. 
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Assessment metrics 

 The classification performance of all employed models was based on the accuracy 

(ACC) metric. The SeisBenchV1 used in this work is a benchmarking dataset and provides all 

the needed information about the samples, including the class labels required to assess 

classification performance. 

Selection criteria 

Since the considered classifiers explore several k values, it was mandatory to select the 

best model using the following criteria: (1) the highest ACC score and, (2) if there is a tie rating 

in performance, the one with less algorithmic complexity is preferred. Despite not existing a 

universal rule to select the best classifier, we stated the “rule of gold” for the selection based 

on the particularity of the experimental SeisBenchV1 dataset. Thus, we ranked the model 

complexity in an ordered sequence of k-means, BFR, BIRCH, Spectral-clustering, CURE and 

Expectation-maximization classifiers. 

We used the t-SNE (t- Distributed Stochastic Neighbor Embedding) technique (Maaten 

& Hinton, 2008) to visualize the multidimensional feature space presented in the SeisBenchV1 

dataset into a bi-dimensional one. It was always applied after the classification process to avoid 

transforming the data before feeding the classifiers. The implementation of all classifiers was 

done in Python language version 3.7.4 (Python Core Team, 2019)with the scikit-learn (Sklearn) 

library (CURE implementation based on Agglomerative Clustering) (Pedregosa et al., 2011), 

the BFR implementation posted at (Berglund, 2018) and the PyClustering Library (Novikov, 

2019). 
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RESULTS AND DISCUSSION 

According to the experimental setup section, a total of 54 clustering-based models were 

evaluated on the experimental dataset which contains 668 features vectors. The straightforward 

comparison based on the ACC performance highlighted interesting results for the classification 

of LP and VT seismic events, as are described next: 

Performance of explored models 

Regarding the first selection criteria, only one out of 54 models was selected after 

exploring the whole classification space. According to the results shown in Table 1, the 

spectral-clustering classifier with k=2 was able to reach the highest ACC value of 92%. Except 

for the k-means method, the remaining classifiers achieved a slightly less performance when 

compared to the best model, but still obtained more than 85%, which are considered as good 

results as well. The BFR and BIRCH methods with k=2 received the second-best ACC value 

with 88%. The CURE with k=2 and k=3 accomplished the same ACC value of 87%, 

respectively. The k-means classifier obtained the worst performance, but the ACC value 

attained with k=2 was the higher among all the presented results of this classifier. 

The better performances were obtained with k=2 for all classifiers, this was expected 

since the experimental dataset contains only LP and VT seismic events. Beyond this fact, the 

CURE classifier still assigned the same ACC value of 87% to a new cluster (k=3). This 

situation is related to the internal configuration of the SeisBenchV1 dataset, in which some 

samples of LP or VT have signals overlapped. Eventually, this situation leads to an incorrect 

classification when using supervised learning models due to the inaccurate event segmentation 

and, therefore, the calculation of the wrong features used to feed the classifiers (Pérez et al., 

2020). However, the unsupervised learning CURE classifier was able to categorize and 
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understand this particular data behavior. An approximation of the data clustering at k=2 and 

k=3 using the t-SNE technique is shown in Fig.1 and 2, respectively. From Fig.2, it is possible 

to corroborate that the CURE classifier was able to detect most of those samples with 

overlapped signals, enabling it as a non-sensitive model to be use in real-life environments. 

However, the spectral-clustering classifier with k=2 constituted the best model selection for 

the problem under analysis. 

Table 1. ACC-based Performance Results for Explored Models 

Model K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 

K-means 58 24 57 34 14 33 8 26 12 

BFR 88 71 60 80 29 45 57 45 8 

CURE 87 87 85 81 81 16 16 78 81 

BIRCH 88 75 73 54 15 38 37 38 24 

Spectral-clustering 92 72 66 66 64 50 34 13 26 

EM 87 64 10 10 6 7 8 38 4 
Note. ACC - accuracy; All values were rounded to the closest integer and are represented in percent (%) 

 

Figure 1. Data visualization using the t-SNE technique of the cluster with k=2 from left to right: k-means, BFR, CURE (top 

row) and BIRCH, Expectation-maximization, Spectral-clustering (bottom row) classifiers. 

 

 

 

 

 



22 
 

 

Figure 2. Data visualization using the t-SNE technique of the cluster with k=3 from left to right: k-means, BFR, CURE (top 

row) and BIRCH, Expectation-maximization, Spectral-clustering (bottom row) classifiers. 

 

State of the art-based comparison 

Concerning the classification performance, it is not possible to make a statistically 

direct comparison against previously developed methods in the literature. However, we aimed 

to carry out the comparison based on the ACC scores reported by the state of art methods, as 

shown in Table 2. 

From Table 2, it is possible to notice that the ACC value of 92% reached by the spectral-

clustering classifier was better than the SOM (Köhler et al., 2010) and KKAnalysis models 

(Messina & Langer, 2011), and inferior to the PCA method (Unglert et al., 2016). The superior 

performance demonstrated by the PCA method could be linked to the employed datasets; while 

more and better distributed are the samples, better intraclass variation will have the model 

during the training process and, therefore, a more accurate classification can be achieved. 

Nevertheless, in volcano real-life environments, the likelihood of having balanced datasets is 

very low. For example, although LP and VT are the main types of events recorded at Cotopaxi, 

the occurrence of LP events is higher than VT events (Molina et al., 2008). On the other hand, 
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the reported ACC score of 90% by the KKAnalysis model (Messina & Langer, 2011) was 

slightly inferior to our best model, even when this approach is based in the combination of a 

SOM artificial neural network and clustering methods. Therefore, the spectral-clustering 

classifier with k=2 emerges as a generalizable model for further application. 

 

Table 2. Comparison based on the ACC between previous works available in the literature and the selected best model 

Method Number of 

samples 

Balanced 

dataset 

Number of 

features 

ACC* 

(%) 

PCA (Unglert et al., 2016) 672 yes 57 99 

SOM (Köhler et al., 2010) 40 no 26 88 

KKAnalysis (Messina & Langer, 2011) 5464 yes 62 90 

Spectral-clustering 668 no 84 92 

 
Note. ACC – accuracy*; All values were rounded to the closest integer and are represented in percent (%) 
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CONCLUSION AND FUTURE WORK 

 

In this work, we made an ACC based exploration of six different unsupervised learning 

classifiers within the context of volcano seismic events classification. According to the 

experimental setup, the spectral-clustering classifier with k=2 was chosen as the best model, 

reaching an ACC score of 92%. This score represented a satisfactory and competitive 

classification performance when compared to the state-of-the-art methods. The CURE 

classifier with K=3 attained an ACC value of 87%. This performance was slightly lower than 

the selected best model. However, it was the only classifier able to detect LP or VT seismic 

events with overlapped signals. Therefore, the proposed clustering-based exploration was 

effective in providing competitive models to classify LP and VT seismic events and to detect 

signals with overlapping. 

As future work, we plan to experiment with the considered clustering-based classifiers 

in this work on a dataset containing other types of events such as tremors, icequakes, hybrid, 

and lightning, which were not considered in the current experimental dataset. Also, the 

development of a new clustering classifier to improve the classification performance obtained 

in this work. 
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