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RESUMEN

Presentamos experimentos numéricos con matrices aleatorias para modelar ceros de funciones L.
Para este fin, desarrollamos e implementamos un algoritmo que genera matrices aleatorias dis-
tribuidas con la medida de Haar en 3 grupos compactos: U(N), SO(N) y USp(N). Finalmente
comparamos las distribuciones de los argumentos de autovalores de matrices aleatorias con ceros
de twists cuadráticos de funciones L asociadas a formas modulares.

Palabras clave: funciones L, matrices aleatorias, ensambles circulares, ensambles de Ginibre,
medida de Haar, teoŕıa de matrices aleatorias.
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ABSTRACT

We present numerical experiments with random matrices to model zeros of families of L-functions.
In order to do so, we develop and implement an algorithm to draw random Haar distributed matrices
from 3 classical compact groups: U(N), SO(N) and USp(N). Finally, we compare the distributions
of the arguments of the eigenvalues with zeros from quadratic twists of L-functions associated to
modular forms.

Keywords: L-functions, random matrices, circular ensembles, ginibre ensembles, Haar measure,
random matrix theory.
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1 Introduction and motivation

Random matrix theory has proven to be extremely useful in modeling complex phenomena which

involve a degree of randomness. Random matrices are matrices whose entries are random variables;

equivalently, they can be understood as matrix-valued random variables in the sense that they are

random variables which take values in a space of matrices [17]. Since traditional random variables

are used to model a vast variety of phenomena, it should not come as a surprise that random

matrices are a powerful tool with applications to various fields, such as: wireless communications,

finance, nuclear physics, stochastic differential equations, neural networks and in our case in number

theory [11,15,22]. The latter has been developed in the course of the last 30 years. As Keating and

Snaith showed [9], studying certain statistical properties of the characteristic polynomial of random

matrices allows us to get information on the zeros of L-functions associated with random matrices

from different ensembles. (See Section 1.2 for more on L-functions)

Versatility is one of the greatest virtues of random matrices. They are especially useful whenever

imprecise matrices occur [15]. In other words, whenever determining exact values from a matrix

is not possible. Such problems abound, which is what makes random matrices so powerful in di-

verse situations. More explicitly, when the dimensions of the matrices are large, some statistical

properties of the eigenvalues of ensembles of random matrices are independent of the probability

distribution used to define the entries. For example, the GOE conjecture states that the distribu-

tion of spacings between eigenvalues is independent of the probability distribution of the entries of

the matrix [17]. An important fact to remark is that this independence translates to a notion of

universality of the distribution of spacings over the ensemble.
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The aim of this work is to model zeros of families of L-functions using ensembles of random matrices.

We present implementations of the algorithms used to generate random matrices whose eigenvalues

we apply to this aim.

1.1 Nuclear physics

Initially, RMT arose in the context of nuclear physics. Whenever we want to determine the motion

of three particles given their initial position and velocities, we cannot obtain a general closed form

solution. This yields some intuition into the complexity of the problem when considering nuclei that

have hundreds of protons and neutrons, each one interacting with the other. If we could determine

the behavior of particles inside the nucleus, then we would be able to compute the energy levels of

the nucleus. We know that energy levels of a system are supposed to be modeled by the eigenvalues

of a Hermitian operator H. This operator is infinite dimensional and its entries depend on the

physical system. Thus, the equation to find its eigenvalues Ei and eigenfunctions Ψi [15, 17]

HΨi = EiΨi

is unsolvable when the system is a nucleus. In that caseH would be impossible to determine exactly,

so by imposing statistical restrictions on H and making it finite dimensional, you can model certain

characteristics from the nucleus. Even though these finite dimensional approximations of H do not

give an exact description of the system, they provide information that would be otherwise unknown.

This shows one of the initial applications when random matrices arise naturally.

Analogously, in our models we approximate infinitely many zeros by finite matrices and zeros up

to a finite height.
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1.2 L-functions

To define an L-function in general is not trivial. A precise definition requires abundant mathematical

background which is not essential for the present work. Instead, we choose to present specific cases

of L-functions and elaborate further on how deep these mathematical objects are. For our purposes,

it will be sufficient to present the Riemann Zeta function, L-functions associated with elliptic curves

and twisted elliptic curves. To see more precise and general definitions for L-functions see [6].

1.2.1 The Riemann Zeta function ζ(s)

The Riemann Zeta function is, perhaps, one of the most famous L-functions. It is defined as an

infinite sum that can also be expressed as an Euler product as follows [2]:

ζ(s) =

∞!

n=0

1

ns
=

"

p

1

1− p−s
. (1)

The series converges absolutely for ℜs > 1. Furthermore, it has an analytic continuation such that

ζ(s) extends to a meromorphic function, ξ(s) which has a simple pole at s = 1. To this analytic

extension we associate a functional equation, which characterizes the L-function.

ξ(s) = π− s
2Γ

#s
2

$
ζ(s) = ξ(1− s). (2)

Determining zeros of ζ(s) (or at least their real part) constitutes a deep problem which is far from

trivial. The problem in question is one of seven ’Prize Problems’ set by the Clay Mathematics

Institute at the beginning of the millennium: the Riemann Hypothesis.

The Riemann Hypothesis (RH) states that the non-trivial zeros of the zeta function have real part

1
2 . We discuss one of the implications of RH for number theory. The Prime Number Theorem
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(PNT) is a fundamental result which describes the asymptotic behavior of prime numbers:

π(x) ∼ x

log x

where π(x) is the prime counting function. It can be stated in terms of the logarithmic integral

Li(x) =
% x

2
dt

log t with its corresponding error term. For ε > 0, ∃C1, C2 ∈ R such that

|π(x)− Li(x)| ≤ C1x exp(−C2(log x)
3/5−ε)

We need not analyze this deeply, we state this only for comparison purposes. Actually RH is

equivalent to a better error term in the PNT [10]. In other words, the Riemann Hypothesis is

equivalent to the following statement: For ε > 0, ∃ C1 > 0 such that [10]

|π(x)− Li(x)| ≤ C1x
1
2−ε

Remarkably, this assertion connects the zeros of a meromorphic function in the complex plane with

the distribution of prime numbers. Additionally, the Riemann Hypothesis has been extended to the

Generalized Riemann Hypothesis (GRH) which states that the non trivial zeros of general classes

of L-functions (suitably normalized) have real part 1
2 [2].

Furthermore, assuming the Riemann Hypothesis we can study spacings of roots on the line ℜs = 1
2 .

The n-level correlations are statistics that describe behavior of spacings of zeros over the critical

line ℜs = 1
2 . These statistics rely on the infinity of zeros that lie on the critical line. However, these

are invariant under removing finitely many zeros [17]. We did not define this object rigorously since

it is beyond the scope of this work, but it is important to know that they provide information on
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the spacing of zeros and they can be modeled by matrix ensembles.

For L-functions which have infinitely many zeros on the critical line, we can study distribution of

spaces of zeros very far away from the central point using ensembles of matrices. However, the

aforementioned invariance of the n level correlation implies that this quantity is not very useful for

providing information of zeros near the central point.

Rather than studying zeros of L-functions along the critical line (ℜs = 1
2 ) we can think of the

implications of studying zeros near the central point of the critical line. This leads naturally to

another relevant open problem in number theory and also another Clay Prize Problem: the Birch

and Swinnerton-Dyer conjecture (BSD). This conjecture relates the amount of zeros at the central

point of an L-function with the rank of a finitely generated group. We elaborate on this in the

following subsection.

1.2.2 L-functions and Elliptic curves

An elliptic curve E over Q is the curve defined by the following equation:

E : y2 = x3 + ax+ b (3)

where a, b ∈ Q and −16(4a3+27b2) ∕= 0 (this last condition guarantees there are no singularities on

the curve). We also know there is a group structure that can be defined on the rational solutions

for the elliptic curve, i.e. E(Q).

Mordell showed that this group is finitely generated and abelian [21]. This means there is a finite

basis for all rational solutions to an elliptic curve defined over Q. Finitely generated abelian groups

are isomorphic to a direct sum of copies of Z the torsion subgroup which is the finite part. The
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arithmetic rank r ≥ 0 of E(Q) is defined as:

E(Q) ∼= Zr ⊕ E(Q)torsion

We can also associate an L-function to this elliptic curve in the following way [4]:

L(s, E) =

∞!

n=1

a∗n
ns

With an analytical continuation ΦE meropmorphic in the complex plane and its associated func-

tional equation:
&

2π√
N

'−s

Γ(s)L(s, E) = ΦE(s) = wEΦE(1− s)

Where N is the conductor of E (See [6]) and wE = ±1 is known as the sign of the functional

equation. We need a∗n to be normalized coefficients so that the critical strip for this L-function is

also 0 < ℜs < 1. These are defined so that |a∗n| ≤ d(n) where d(n) is the number of positive divisors

of n. Finally, we require that an =
√
na∗n is an integer dependent on the number of solutions mod

p of (3) for p prime divisors of n [4].

Thus we know there exists an L-function L(s, E) associated to an elliptic curve. BSD conjecture

states that the arithmetic rank r is equal to the the analytic rank, the order of vanishing of L(s, E)

at the central point (normalized to be at s = 1
2 ) [23].

Consequently, we could study this conjecture by understanding zeros near the central point. As

opposed to the case of ζ(s), we do not have an infinity of different zeros from which we can rescue

relevant statistical behavior. We need to get data from zeros near the central point. Thus, instead

of getting an infinite number of zeros of a given L-function over a line, we can get a finite number
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of zeros near a point of infinitely many similar L-functions. This is an intuitive way to introduce

families of L-functions and leads us to our last example:

1.2.3 Quadratic twists

For an elliptic curve E over a field K and square-free d, a quadratic twist Ed is a curve isomorphic

to E over K(
√
d) mapped in the following way [12]:

E → Ed

y2 = x3 + ax+ b → dy2 = x3 + ax+ b or equivalently,

y2 = x3 + ax+ b → y2 = x3 + ad2x+ d3b i.e.,

(x, y) ,→
#x
d
,

y

d3/2

$

If d ≡ 1 mod 4 or d = 4k where k ≡ 2, 3 mod 4 (with k square free) then we say d is a fundamental

discriminant [18].

For a fundamental discriminant d, we can define a quadratic character χd(n) using the Kronecker

symbol, i.e. χd(n) =
(
d
n

)
. The Kronecker symbol is an extension of the Legendre symbol

#
q
p

$

for quadratic residues mod p to n not necessarily prime (See [7]). Thus we consider the following

twisted L-function:

L(s, E,χd) =

∞!

n=1

a∗nχd(n)

ns

Which is the associated L-function for the twisted elliptic curve Ed [4]. Additionally it admits the
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following functional equation:

*
2π+
|d|N

,−s

Γ(s)L(s, E,χd(n)) = ΦE(s,χd(n)) = wEχd(−N)ΦE(1− s,χd(n))

Observe that since d can be made arbitrarily large, we thus obtain a family of L-functions associated

to an elliptic curve. We now have an infinite set of L-functions from which we can obtain information

about their zeros near the central point. This statistic is called the 1-level density and we

will discuss it more explicitly because it yields an analogy between L-functions and physics. The

following deduction of the 1 - level density can be found in [17].

We begin by assuming the GRH, so that the non trivial zeros of L(s, f) are of the form 1
2 + iγ

(j)
f

where γ
(j)
f ∈ R. Consider a (test) function h that vanishes rapidly, so let

Df (h) =
!

j

h(cfγ
(j)
f ). (4)

The analytic conductor (cf ) of a given L-function is not going to be addressed but its definition and

further information about this object can be found in [?]. For our purposes, it is important to know

it rescales zeros near s = 1
2 . Observe that since h vanishes rapidly then most of the contribution

of Df (h) comes from zeros near the central point. We take the average over all of the family of

functions F and that is the 1-level density:

DF (h) =
1

|F|
!

f∈F
Df (h) (5)

Note that this statistic depends on the choice of h. The analogy which we seek to point out is that

physicists bombard heavy nuclei with neutrons to study their energy levels in an analogous fashion
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in which we use test functions to study zeros of L-functions. On top of this, both energy levels and

zeros of L-functions behave as eigenvalues of random matrices belonging to some ensemble.

Now we have arrived to the result that motivates the numerical experiment this thesis: since Katz

and Sarnak conjectured [17] that near the central point s = 1
2 the distributions of zeros of families

of L-functions behave like the distributions of eigenvalues near 1 of circular ensembles. In this work

we develop an algorithm to draw random Haar distributed matrices from these groups. We conclude

by comparing the results obtained for matrix ensembles to those obtained from zeros of L-functions

associated to modular forms (these L-functions are very similar to those of elliptic curves).

2 Mathematical background

To understand the core of the present work, the reader should be familiar with some technical

concepts which will be addressed in this section. In the main section, we discuss Haar measure over

compact groups of matrices, so we provide a short introduction to said objects.

2.1 Quaternions H

We denote the quaternion algebra with H, this ring is different from R and C because multiplication

is not commutative, thus it is not a field. However, inverses do exist, so the quaternions are a skew

field. Now, we begin by defining quaternion units as

i21 = i22 = i23 = i1i2i3 = −1

This implies that

i1i2 = −i2i1 = i3
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i2i3 = −i3i2 = i1

i3i1 = −i1i3 = i2

Since these form a basis for the quaternions over R, we can express any number q ∈ H as q =

a + bi1 + ci2 + di3 with a, b, c, d ∈ R. Its conjugate q = a − bi1 − ci2 − di3. And its norm

||q||2 = qq = a2 + b2 + c2 + d2. This in turn justifies the existence of the multiplicative inverse,

namely, q−1 = q
||q||2 for any quaternion q ∕= 0.

2.2 Classical compact groups

A topological group is a topological space (G, τ) equipped with a continuous multiplication and

inverse [1].

G×G → G (x, y) ,→ xy

G → G g−1 ,→ g

We make use of 3 compact groups, U(N), O(N) and USp(2N) which will be defined in general and

further discussed in the context of RMT.

2.2.1 U(N)

We first define the complex general inear group:

GL(N,C) =
-
X ∈ Mn×n(C)

.... det(X) ∕= 0

/
.
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Equipped with the subspace topology from Mn×n(C). It is a group under matrix multiplication

since every matrix is invertible. Now we define the unitary group as subgroup of GL(N,C):

U(N) =

-
X ∈ GL(N,C)

.... XX∗ = X∗X = I

/

where X∗ is the conjugate transpose of X. Important remarks are that | det(X)| = 1 and that both

GL(N,C) and U(N) are compact [1].

2.2.2 SO(N)

Similarly we define the general linear group:

GL(N,R) =
-
X ∈ Mn×n(R)

.... det(X) ∕= 0

/

The invertibility of matrices guarantees GL(N,R) is a group under multiplication. It is equipped

with the subspace topology from Mn×n(R). Now we define the orthogonal group as a subgroup

of GL(N,R):

O(N) =

-
X ∈ GL(N,R)

.... XXT = XTX = I

/

However, in the real case, we will focus on the special orthogonal group SO(N) defined as a

subgroup of O(N):

SO(N) =

-
X ∈ O(N)

.... det(X) = 1

/
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We make the following observations:

GL(N,R) ⊂ GL(N,C)

SO(N) ⊂ O(N) ⊂ U(N)

2.2.3 USp(2N)

Analogously we define the general linear group for quaternions:

GL(N,H) =

-
X ∈ Mn×n(H)

.... det(X) ∕= 0

/

We proceed as in U(N) and O(N) to define the subgroup of GL(N,H) analogue to the unitary and

orthogonal groups. The symplectic group Sp(N) can be defined as:

Sp(N) =

-
X ∈ GL(N,H)

.... X
∗X = XX∗ = I

/

Where X∗ is the quaternionic conjugate transpose. And we define the unitary symplectic group

USp(2N) to be:

USp(2N) =

-
X ∈ U(2N)

.... XJXT = J

/

where

J =

0

112
0 IN

−IN 0

3

445

and IN denotes the identity matrix of order N .
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There exists an isomorphism between Sp(N) and USp(2N) given by identifying quaternionic units

as follows [16]:

1 → I2 =

0

112
1 0

0 1

3

445 , i1 → e1 =

0

112
i 0

0 −i

3

445 , i2 → e2 =

0

112
0 1

−1 0

3

445 , i3 → e3 =

0

112
0 i

i 0

3

445

Observe that any matrix Q ∈ Sp(N) ⊂ GL(N,H) can be written as Q = Q0 + i1Q1 + i2Q2 + i3Q3

where Q0, Q1, Q2, Q3 are N × N matrices with real entries. We can map Q to Q ∈ USp(2N)

isomorphically with the tensor product [16]:

Q = Q0 ⊗ I2 +Q1 ⊗ e1 +Q2 ⊗ e2 +Q3 ⊗ e3 (6)

2.3 Haar measure

A Haar measure over a topological group is a measure that is invariant under group operation. Let

(X,F , µ) be a measure space, where X is a locally compact topological group, F is the σ-algebra

of Borel sets of X and µ a Borel measure.

We say that µ is a (left) Haar measure provided:

µ(xE) = µ(E) ∀x ∈ X and E ∈ F (7)

µ(U) > 0 ∀U open, U ∕= ∅ (8)

µ(K) < ∞ ∀K compact (9)
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Observe that condition (7) means that µ is translation invariant. For compact groups, left and right

Haar measures are equivalent. Furthermore, Von Neumann proved Haar measure’s uniqueness (up

to constant) and existence for locally compact topological groups [8].

Consider the case when X = R under addition equipped with the Lebesgue measure. An interval

I = [a, b] is clearly measurable. So consider

µ(I) = b− a

But note that we could translate this interval anywhere on the real line and its measure is unchanged,

i.e. for x ∈ R

µ(x+ I) = µ([x+ a, x+ b]) = b− a = µ(I)

More generally, for measurable E ⊂ R,

µ(E) =

6

E

dx

Heine Borel guarantees that every compact subset of R has finite Lebesgue measure. And condition

(8) is satisfied for any open set. Thus in R the Lebesgue measure is a Haar measure.

Now let us consider X = R+ equipped with multiplication. We want to find a measure µ such

that it is invariant under scaling of a set, i.e. µ(xE) = µ(E) for measurable E ⊂ R+. Let us first

consider an interval I = [a, b] , 0 < a < b and observe that if we let

µ(I) = log(b)− log(a)
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Thus, for x ∈ R+

µ(xI) = µ([xa, xb]) = log(xb)− log(xa) = log(x) + log(b)− (log(x)− log(a)) = µ(I)

Then we can state this more generally for measurable E and consider

µ(E) =

6

E

dx

x

Note that for c ∈ R+,

dµ =
dx

x
=

cdx

cx
=

d(cx)

cx

Shows that µ is invariant under scaling by c. Thus showing it is an invariant measure under scaling.

An important remark is that these groups are locally compact, however, commutativity shows that

left and right Haar measure are equal. An example for one of the compact groups, U(N) is explained

next:

If we consider, say, U(1) then the elements we get are of the form eiθ so we obtain elements on the

unit circle S1 and multiplication of such elements are rotations. Now, let µ be a Haar measure and

we state its invariance property:

dµ(U) = dµ(UU0) (10)

Observe that if U = eiθ, 0 ≤ θ < 2π then µ(U) measures the perimeter of the circle (i.e. it is

the Lebesgue measure on S1). And if U0 = eiθ0 , then it is obvious that µ(UU0) only experiences

a rotation by θ0 and that does not affect what it measures. This notion of uniformity can be

generalized for greater values of N following the same idea and intuition. And in similar ways to

SO(N) and USp(N).
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3 Random Matrix Groups

In this section we will discuss three ensembles of random matrices from which we seek to draw

matrices to ultimately model zeros of L-functions. An ensemble is a group of matrices equipped

with a probability measure. We aim to obtain Haar distributed random matrices from 3 different

ensembles: Circular Unitary Ensemble (CUE), Circular Orthogonal Ensemble (COE) (to be later

transformed into matrices of positive determinant) and Circular Symplectic Ensemble (CSE).

However, this cannot be done directly. We derive a way to draw these matrices from other ensem-

bles, which are easier to compute and whose probability measure is more intuitive. The Ginibre

ensembles, which are matrices whose entries are normal standard independent identically distributed

random variables. We have these ensembles for real, complex and quaternion entries. Furthermore,

observe that the matrix spaces for each ensemble are their respective general linear groups. Next we

describe the process in which we can obtain random matrices from the circular ensembles starting

with matrices from the Ginibre ensembles.

We describe the process very thoroughly for the CUE, the other two circular ensembles follow a

similar process which is described more generally.

3.1 U(N)

Let Z be an N by N complex matrix with standard normal i.i.d. entries. Then its joint probability

density function can be written as [16]:

P (Z) =
1

πN2 exp(−Tr(Z∗Z)) (11)
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Which leads naturally to a measure:

dµG(Z) = P (Z)dZ (12)

if we denote the entries of Z as zjk = xjk + iyjk, then dZ =
7N

j,k=1 xjkyjk.

Observe that if U ∈ U(N),

P (UZ) =
1

πN2 exp(−Tr(Z∗U∗UZ))

=
1

πN2 exp(−Tr(Z∗Z))

=P (Z)

Thus

dµG(Z) = dµG(UZ) (13)

and we conclude that the measure in the Ginibre ensemble is invariant under left multiplication by

unitary matrices. Right multiplication follows analogously.

An explicit measure for U(N) cannot be established as easily as in the Ginibre ensemble because

entries of the matrices are not independent. However, compactness of U(N) guarantees there exists

a unique (up to a constant) Haar measure in U(N). Thus if we find a way to induce property (13)

to a measure in U(N), this must be the Haar measure.

We aim to induce such a measure by using QR factorization. We need to be careful in doing this.

Observe that

QR : GL(N,C) −→ U(N)× T (N)
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(where T (N) ⊂ GL(N,C) is the set of upper triangular matrices) is a multi-valued map. Consider

Z = QR

Let Λ ∈ T (N) be diagonal unitary and not the identity. Observe that:

Q′ = QΛ R′ = Λ−1R (14)

Thus

Z = QR = Q′R′ (15)

So Z admits many representations under this map. The main idea is to choose an appropriate

subset of U(N)× T (N) so that this map can be made into a uniquely valued one to one mapping.

We know (14) implies (15), we claim the converse is also true. Note that (14) is equivalent to

showing

Q−1Q′ = RR′−1 ∈ Λ(N) (16)

Where Λ(N) is the set of diagonal matrices from U(N). Furthermore if we assume (15) then

Q−1Q′ = RR′−1 (17)

Observe that the LHS of the equality implies the matrix is unitary and RHS implies it is upper

triangular, thus showing it is diagonal. This characterizes equivalent representations of Z under

the multivalued map. Therefore, we consider the group of right cosets Γ(N) = T (N)/Λ(N). And
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define QR factorization as a map

QR : GL(N,C) −→ U(N)× Γ(N)

This is now defined on classes of representatives of Γ(N). If we choose the class of representatives

R such that its diagonal is real and positive, then QR is uniquely valued and one to one in this

class [14].

Thus, Z = QR can be made unique using (14) with Λ chosen so that R′ has positive real diagonal.

Unique factorization implies that for Z ∈ GL(N,C) and U ∈ U(N) then

Z = QR =⇒ UZ = UQR. (18)

It follows from this result that the invariance of the measure in the Ginibre ensemble shown in (13)

is induced on U(N). Since U(N) is compact then it must be the Haar measure.

An important result from Haar measure on the CUE is that eigenvalues of unitary Haar distributed

matrices are uniformly distributed in S1 which further justifies the notion of Haar measure as an

analogue for the uniform distribution. There are, however, other relevant eigenvalue statistics from

this ensemble.(See [5]).

3.2 SO(N)

Let X be a real matrix with standard normal i.i.d. entries, i.e. from the real Ginibre ensemble.

We proceed exactly as with the complex case. We define the probability measure with the joint

probability density function as follows:
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Let

P (X) =
1

πN2 exp(−Tr(XTX)) (19)

If we define the measure as

dµG(X) = P (X)dX (20)

where xjk are the entries of X and dX =
7N

j,k=1 xjk.

Furthermore, it is invariant under left and right multiplication by orthogonal matrices. We proceed

in a similar fashion as in the complex case and factorize X using QR. So we take the multi-valued

map:

QR : GL(N,R) −→ O(N)× T (N)

(where T (N) ⊂ GL(N,R) is the set of upper triangular matrices). We modify this map as we did

with the map for complex matrices, since O(N) is also compact then Haar measure is also induced

by this factorization.

This yields an algorithm to get Haar distributed matrices in O(N). However, our final aim is to

obtain matrices in SO(N). We do this by subjecting output matrices in O(N) to a map that

changes the sign of the first column of a matrix if it has negative determinant and does nothing if

it has positive determinant. This does not affect the previously induced Haar measure.

The intuition behind understanding this proof can be explained with an analogy: assume we have

a subset of the integers, say [−N,N ] ∩ Z for some N > 0. Additionally, assume we have a uniform

probability associated to each integer. Now, if we were to translate our map to this context, it would

mean that if we draw from our subset of integers and we get a negative integer, we multiply by

negative one and count the positive result. The important observation is that this does nothing more

than to double the chances of getting positive numbers, leaving the uniformity of the distribution
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unaffected.

Let J ∈ O(N) such that:

J =

0

112
−1 0

0 IN−1

3

445

Then we observe that we can write O(N) = SO(N) ∪ SO(N)J . Now, say we have a matrix

X ∈ O(N), we define a function

f : O(N) → SO(N)

such that

f(X) =

8
999:

999;

X, if X ∈ SO(N)

XJ, if X ∈ SO(N)J

We know we have a measure space (O(N),F , µ) where µ is the Haar measure. We want to show that

the measure space of SO(N) induced by f has the same measure (up to scalar multiplication and

translation). Let (SO(N),F ′, µ′) be the measure space induced by f , where F ′ = {f(E)|E ∈ F}.

Observe that for measurable E ∈ F ′

µ′(E) = µ(f−1(E)) = µ(E ∪ EJ)

Since µ is invariant under group multiplication and J ∈ O(N), then µ(EJ) = µ(E). Additionally,

since E ∩ EJ = ∅,

µ′(E) = µ(E ∪ EJ) = µ(E) + µ(EJ)

= 2µ(E)

So it holds that the measure is not affected under the algorithm used to obtain matrices in SO(N).
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3.3 USp(2N)

We proceed as in the two previous cases but change the matrix entries to quaternions. Note that for

the quaternionic Ginibre ensemble we get an invariant measure under multiplication by symplectic

matrices. Furthermore, QR decomposition is a multi-valued mapping

QR : GL(N,H) −→ Sp(N)× T (N)

where T (N) ⊂ GL(N,H) is the set of upper triangular matrices. This mapping can be made

into a one to one mapping that induces Haar measure on Sp(N) [16]. At this point we use the

isomorphism given by the tensor product described in (6). Thus getting Haar distributed matrices

from USp(2N).

The algorithm in question requires QR factorization which is available in mathematical packages for

both R and C. However, we stumbled upon the lack of such routines implemented for matrices with

quaternionic entries. This problem is solved by implementing QR decomposition using Householder

reflections.

4 Algorithms

We aim to model low lying zeros of L-functions with ensembles of random matrices. So we need an

algorithm that returns eigenvalues of Haar distributed random matrices from each of the classical

compact groups.

Next, we present the general algorithm, myhaar measure(N) to generate these matrices
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Algorithm 1 Calculate eigenvalues from a matrix in one of the circular ensembles.
myhaar measure(N,F )

Require: N ∈ N and F is R,C or H
Create an N ×N random matrix Z with i.i.d. entries over F
Decompose Z with Householder reflections so that Z = QR.
Create the following matrix:

Λ =

0

12

r11
||r11||

. . .
rNN

||rNN ||

3

45

where the rjj are the diagonal elements of R.
Calculate Q′ = QΛ which is Haar distributed.
if F = R then
if det(Q′) = −1 then
QFinal = Q′J where J is the matrix that changes the sign of the first column of Q′

end if
end if
if F = H then
Map Q′ to a matrix QFinal ∈ USp(2N) using the tensor product in (6).

end if
if F = C then
QFinal = Q′

end if
return Eigenvalues of QFinal

Since QR is required, we used the Householder reflections:

The algorithm takes an invertible N ×N matrix A with entries in R, C or H.

A Householder matrix Hn works depending on an n dimensional vector v. Such a matrix can be

constructed so that v is projected onto e1 = (1, 0, . . . , 0):

Hn(v)v = ||v||e1

This is done by reflecting v over an appropriate vector. Since there are well defined norms in each

of the rings we aim to discuss, we can state the Householder algorithm in general for matrices with

entries in R,C or H. Additionally, we have conjugate transposes in each ring (for the real case
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it is the same as just transposition). So we use norms || · || and conjugate transposes ∗ without

specifying which of the rings we are using. We can find the Householder reflection for a vector

v = (v1, v2, ..., vn) in the following way:

Let v̂ = v
||v|| and let c = v1

||v1|| then

Hn(v̂) = −c(I − 2ûû∗)

where

û =
v̂ + ce1

||v̂ + ce1||

Given a matrix AN×N , we find a Householder matrix depending on its first column vector a1 so

that the product HNA is a matrix where the first column is projected onto e1, i.e. every entry after

the first row in the first column vector of HNA is 0. We repeat this by now taking a Householder

matrix HN−1 which depends on the second column vector of HNA starting at the second row so

it is N − 1 dimensional. We want to be able to multiply this result by HNA and not affect its

structure in the first column. So set up another matrix in the following way:

H̃N−1 =

0

112
1 0

0 HN−1

3

445

Thus H̃N−1HNA has second column vector also 0 after the second row and this repeats until we

get to H1 so the product

H̃1 . . . H̃N−1HNA = R
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is upper triangular and

A = H∗
N H̃∗

N−1 . . . H̃
∗
1R

So

Q = H∗
N H̃∗

N−1 . . . H̃
∗
1

We present implementations for all of the algorithms discussed in the following section along with

their respective timings.

4.1 Implementations

Implementations in Sage 8.7 can be found in the online repository (See [19]). Next we show timings

from running the functions myhaar measureSO(N), myhaar measureU(N) and myhaar measureUSp(N)

1000 times each for different values of N on a 1.4 GHz Quad-Core Intel Core i5 processor.

Table 1: Timings for implementations in Sage.

N SO(N) U(N) USp(2N)
6 2.97s 7.52 s 30.2 s
12 8.08 s 32.1 s 3min 34s
25 33.5 s 3min 10s 36min 35s
50 2min 59s 23min 17s 6h 46min 14s

4.2 Preliminary results

To test the algorithms we ran the implementations over 100000 50 × 50 matrices with randomly

distributed entries over R, C and H. See Figures 1 2 3 for our results:
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Figure 1: Results from running myhaar measureU(50) 100000 times. We obtain a uniform distri-
bution of the argument of the eigenvalues as expected.
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Figure 2: Results from running myhaar measureUSp(50) 100000 times. In this case we see a lower
density near 0. That shows there are less real eigenvalues in USp(2N). The distribution shows that
the frequency of eigenvalues with a non-zero argument is higher for the unitary symplectic group
than the other compact groups.
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Figure 3: Results from running myhaar measureSO(50) 100000 times. In this case there is a higher
density in 0. That shows there are more real eigenvalues in SO(N). The distribution shows that a
real eigenvalue is more frequent for the special orthogonal group than the other compact groups.

5 Modeling families of L-functions

In this section we present experimental results comparing the low lying zeros of modular form L-

functions and eigenvalues of random matrices. See [3,13,20] for more information on modular forms.

We compare the minimum positive argument from eigenvalues of matrices in the three groups with

the minimum positive zero from twists of L-functions.

The zeros of L-functions were computed using PARI/GP, Python, Slurm for parallel computing

and Bucknell University’s cluster BisonNet1. The algorithms in PARI/GP were implemented by

Pascal Molin and Henri Cohen based on this article [3].

First we consider a particular example of modular form of weight 8 and level 3 (see [13, Modular

Form 3.8.a.a])

1This material is based upon work supported by the National Science Foundation under Grant No. 1659397.

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3/8/a/a/
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Its Fourier expansion begins with:

f(q) = q + 6q2 − 27q3 − 92q4 + 390q5 − 162q6 − 64q7 − 1320q8 + 729q9 +O(q10)

We study low lying zeros of quadratic twists L(f, s,χd) for this f .

Figure 4: Minimum positive argument of eigenvalues from matrices in SO(2N) vs minimum positive
zeros from L(f, s,χd)

See Figure 4 for our results; note that we scaled the distributions so that both have mean 1. Further,

the similarity between the graph of the minimum positive argument for matrices in SO(2N) and

the minimum positive zeros for L(f, s,χd) shows that the distributions are very close together.

Now we consider another example of a modular form of weight 3 and level 7 (see [13, Modular Form

7.3.b.a]).

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/7/3/b/a/


39

Its Fourier expansion begins with:

f(q) = q − 3q2 + 5q4 − 7q7 − 3q8 + 9q9 +O(q10)

We study low lying zeros of quadratic twists L(f, s,χd) for this f .

Figure 5: Minimum positive argument of eigenvalues from matrices in USp(2N) vs minimum
positive zeros from L(f, s,χd)

For this case we also scaled the data so that the mean is 1 for both distributions. This shows

similarity between distribution of low lying zeros of L(s, f,χd) and the least positive argument of

eigenvalues from matrices in USp(2N).

Finally we consider a modular form of weight 2 and level 12 (see [13, Modular Form 13.2.e.a]).

The coefficients of the Fourier expansion for this modular form are expressed in terms of a primitive

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/13/2/e/a/
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root of unity ζ6.

f(q) = q+(−1−ζ6)q
2+(−2+2ζ6)q

3+ζ6q
4+(1−2ζ6)q

5+(4−2ζ6)q
6+(−1+2ζ6)q

8−ζ6q
9+O(q10)

We study low lying zeros of quadratic twists L(f, s,χd) for this f .

Figure 6: Minimum positive argument of eigenvalues from matrices in U(2N) vs minimum positive
zeros from L(f, s,χd)

Means were also scaled to 1 for this case. Observe that the distributions are not as similar as

those seen in Figure 4 and Figure 5. Finding zeros from this particular family of L-functions is

computationally intensive, which limited this sample size to one tenth of the sample taken for

the previous cases. This emphasizes the fact that these are finite approximations, which depend

strongly on the sample size.
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6 Conclusions

To summarize, this thesis displayed a connection between random matrices and L-functions. We

developed an algorithm to draw matrices from the circular ensembles starting with an ensemble

which is simpler to compute. Additionally, we showed the distribution of the arguments of eigen-

values our algorithm produces. Finally we compared results obtained from our algorithm with

zeros from L-functions which further justify the correspondence between eigenvalues from random

matrices and zeros from L-functions.

Understanding zeros from L-functions is an unsolved issue with important consequences. Of course,

computing these numerically could yield some intuition on their nature. However, this process can

be computationally complex. Thus, modeling these with random matices can be advantageous since

their computing times are fairly short (See Table 1).

The correspondence of families of L-functions and groups of random matrices allows us to assign

symmetry types to such families, which can help provide new insights into understanding families

of L-functions. Additionally, this connection further suggests a spectral interpretation of zeros.
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