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RESUMEN 

Este trabajo propone un método de reconocimiento de gestos faciales basado 

en arquitecturas de aprendizaje profundo denominadas DCNN1, DCNN2, DCNN3, 

DCNN4 y DCNN + Autoencoder, que maximizan el rendimiento de clasificación en 

conjuntos de datos únicos y mixtos. Validamos las arquitecturas propuestas en tres 

bases de datos diferentes: Jaffe, CK + y la combinación de ambas bases de datos Jaffe y 

CK + en una estrategia de validación cruzada de cinco veces. Las puntuaciones medias 

de precisión obtenidas del 95%, 94% y 96% por los modelos DCNN4, DCNN2 y 

DCNN + Autoencoder se mostraron como el mejor rendimiento para las bases de datos 

Jaffe, CK + y Jaffe & CK +, respectivamente. Además, de acuerdo con la función de 

pérdida de entropía cruzada, los modelos seleccionados no incurrieron en sobreajuste. 

Palabras clave: detección de rostros, clasificación de gestos faciales, modelos de 

aprendizaje profundo, inteligencia artificial, imágenes faciales. 
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ABSTRACT 

This work proposes a face gesture recognition method based on deep learning 

architectures named DCNN1, DCNN2, DCNN3, DCNN4, and DCNN+Autoencoder, that 

maximize the classification performance on single and mixing datasets. We validated the 

proposed architectures on three different databases: Jaffe, CK+, and the combination of 

both databases Jaffe & CK+ over a five-fold cross-validation strategy. The obtained mean 

accuracy scores of 95%, 94%, and 96% by the DCNN4, DCNN2, and 

DCNN+Autoencoder models were raised as the best performance for the Jaffe, CK+, and 

Jaffe & CK+ databases, respectively. Moreover, according to the cross-entropy loss 

function, the selected models did not incur overfitting. 

Keywords: face detection, face gesture classification, deep-learning models, artificial 

intelligence, face images. 
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INTRODUCTION 

The recognition of human gestures is a sub-branch of computer vision that uses 

biometric devices such as cameras to capture human gestures to be interpreted by 

algorithms and thus recognize emotions or movement patterns. Gesture recognition has 

helped, for example, with monitoring of medical patients, control in virtual games, 

navigation of virtual environments, forensics research, body language interpretation, 

among others (Gordillo, 2015). 

 

In the area of neurology, studies on facial expressions are very important to 

analyze people behaviour. For example, the study by Gordillo F, Pérez MA, Arana JM, 

Mestas L, López RM revealed through mathematical algorithms that facial expressions 

help interaction between people (Gordillo,2017). Situations such as abuse, war or stress 

generate expressions of anger or sadness. Likewise, positive experiences provide joy 

expressions. La Universidad de la plata's researched used depth and RGB cameras to 

capture gestures and signs of faces, creating a database with 3200 videos and 64 

different face gestures. This approach used Markovo and feed-forward back-

propagation artificial neural networks models to classify facial signs based on the 

position and gestures of the faces (Ronchetti,2016). Similarly, the research of Léon J. 

M. Rothkrantz classify facial gestures whenever the subject was talking or not. They 

also carried out an experimental study on facial muscle actions typical for speech 

articulation. The later was based by applying a HSV (Hue, Saturation, Value) color-

based segmentation of the face. Then, identifying the zones of interest, which were 

analyzed by a trained Jordan Recurrent Neural Network (JRNN). 
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Convolutional neural networks (CNN) based models have gained popularity in 

computer vision to face image labeling problems. In this regard, several models have 

adapted CNNs for facial emotion recognition (FER) alongside data augmentation and 

data preprocessing techniques. For example, OpenCV, a highly optimized computer 

vision and machine learning software library (OpenCV team, 2020), has used a deep 

CNN for face recognition and emotion classification. Researchers have used OpenCV to 

extract features and for image classification achieving an accuracy of 98 % in the Jaffe 

dataset (Veena & others, 2016).Likewise, OpenCV has been used to get bounding boxes 

around each face of the databases and then have humans doing the cropping and all the 

corrections necessary to feed the CNNs models for feature extraction and classification 

obtaining an accuracy of 65% on the FER2013 dataset.(Goodfellow & others,2015) 

Other approach was using OpenCV in conjunction with a 2-channel deep CNN for 

processing raw images and LBP (Local Binary Pattern) maps, this model achieved an 

accuracy of  96% on an asian dataset  (Jing & others ,2020).  

 

There are other CNNs based extensions such as WDCNN (Wide First-layer 

Kernels) and WMCNN-LSTM (Long short-term memory), which are implemented in 

two different networks for training in combination with two partial VGG16 networks 

for classification. These models obtained an accuracy of 88% on a Caucasian dataset 

(Hepeng, Bin, & Guohui, 2019). Another interesting approach was decontaminating the 

images using the IR (infrared) spectrum. These images were feed into a partial VGG 

DCNN and to a shallow CNN for classification. This model used a confusion matrix 

with an overall ACC of 92% on a Caucasian dataset. In addition, a Discriminative Deep 

multi-task learning CNN (DDMTL) has been used in conjunction with a k-nearest 

neighbor (kNN) model and an optimization module based on softmax and contrastive 
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loss functions. This architecture reached an overall accuracy of 67% and 55% on 

combinations of Caucasian and Asian datasets (Hao, 2020). On the other hand, a deep 

CNN was used as a robust image selection with a CNN model for emotion 

classification; this architecture obtained an accuracy of 59 when combining information 

of two Caucasian datasets (Huadong and Hua, 2020). Moreover, a DCNN with residual 

blocks were implemented to reach an accuracy score of 93% on a dataset of Asian faces 

(Kumar, Pourya and Paramjit, 2019). In (Nacer and Mahdi, 2018), it was created a 

category-based support vector machine (SVM) model using two or more samples of 

different classes or expressions. From each sample, the HOG (histogram of oriented 

gradients) and LBP features were computed to encode the faces. In this feature space 

the SVM classifier reached a maximum accuracy score of 97% on a Caucasian dataset. 

Finally, the combination of different micro-action-pattern modules with a deep CNN 

was used to generate more abstract mid-level semantics. The architecture combined two 

different datasets and achieved accuracy scores of 72.2%, 29.43%, 93.46%, and 25% on 

different combinations of Caucasians and Asian datasets respectively (Mengyi, Shaoxin, 

Shiguang and Xilin,2015).  

 

Despite the evolution and development in FER, most of the previous approaches 

focused on facial recognition on single datasets. Only a few of these works were used 

on mixing datasets, and the obtained results were not successful at all. Therefore, we 

proposed a face gesture recognition method based on deep learning architectures that 

maximize the classification performance on single and mixing datasets in this work.  
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MATERIALS AND METHODS 

Face gesture databases 

 

We considered three publicly databases with samples of different ethnicities, 

poses, sizes and lighting conditions. A brief description of each database is next: 

Jaffe 

Jaffe stands for Japanese Female Facial Expression, is a face database consisting 

of 213 images of 7 facial expressions posed by 10 Japanese women. These expressions 

are labeled by the word: happy, sad, contempt, surprise, fear, anger, and neutral.   

All images are 256 x 256 on gray level, in TIFF format with no compression 

applied. Jaffe is an open access database, published in 1998 by Michael, J. Lyons et.al. 

Some samples of this database are shown in Fig 1 first row. 

CK+ 

CK+ is the second version on the Cohn-Kanade database (CK). However, this 

database includes posed and spontaneous expressions. It was applied to 210 subjects or 

posers between 18 to 50 years of age from different races (Kanade, Chon & Tian, 2000). 

For the posed facial expressions, 123 subjects performed 593 sequences. A sequence is 

defined as the transition of a neutral expression to a peak expression, the peak expression 

is coded with one emotion label (same as in the Jaffe database). On the other hand, the 

spontaneous expressions are counted from 66 subjects who smiled to the camera between 

takes of posed expressions.  

Images are either 640 x 490, or 640 x 480 pixels arrays of 8-bit gray level or 24-

bit color values (Lucey, et.al, 2010). Some samples of this database are shown in Fig. 1 

second row. 
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Deep-Learning Models 

 

Deep learning is composed by a group of algorithms that learn from data. These 

algorithms are based on the structure and function of the brain's neural networks (Deep 

Lizard, 2020). These models are very popular when dealing with the classifcation 

problem. 

The simplest deep learning model is called a feedforward neural network. A fully-

connected architecture, also called deep feed-forward networks, aims to feed multilayer 

peceptrons to approximate the output of a given function like the sigmoid function 

(Gupta,2017). However, fully-connected networks are prone to commit data over-fitting. 

Deep CNNs are one of the many deep-learning models that are used for image 

visualization and classification. These networks are regularized versions of a multilayered 

fully-connected network. Deep CNNs apply hierarchical patterns of data to assemble a 

more complex pattern using smaller samples, rather than the traditional approach used by 

a fully-connected network, that is based in the magnitude measurement of weights to the 

loss function (Deep Lizard,2020). It consists of multiple convolution layers defined by 

different kernel sizes with an activation function that connects the next layer. Pooling 

layers and dropout layers (to avoid overfitting) can also be found. At the end of every 
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CNN or DCNN there is at least one fully-connected layer with an output that matches 

with the number of classes to be classified. The main goal of a CNN is to reduce the 

special variance and extract the important features in an image for classification. 

An autoencoder can be implemented alongside a DCNN architecture. The main 

goal of an autoencoder is to compress data from an input layer (coder), and then 

uncompress the output into a close approximation of the original input (DeepAI, 2014). 

This process reduces the spatial variance and reduces the noise in an image. 

 

Proposed Model 

 

Five different deep CNN models were implemented with one of them using an 

autoencoder scheme. The DCNN1, DCNN2, DCNN3, and DCNN4 are based on the deep 

CNN architecture. The DCNN+Autoencoder is based on the combination of a deep CNN 

architecture and a deep feed-forward network on an autoencoder topology. These models 

were empirically developed to explore their strengths in the facial emotion classification.   

 The proposed models are inspired in the VGG16 architecture (Simonyan, 2015), 

which won the Imagenet competition in 2014. The VGG16 model uses kernels of 3x3 

sizes and max-pooling layers with sizes 2x2 and a stride of 2 units. Then, there are two 

fully-connected layers with a softmax activation function. The proposed models are an 

extension of the VGG16 architecture, including variation of the kernel sizes in different 

layers to 5x5 and 3x3. Also, the number of convolution layers was reduced from 16 to 3 

and 4 layers. 
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For a better understanding of the proposed method, we focused our description 

based on the DCNN3 and DCNN+Autoencoder model, as shown in Fig.2. The DCNN3 

model receives an input image with size (48x48) that transits through a convolution layer 

with six filters and a kernel size of 5x5 where the main features of the input image are 

extracted (see Fig.2 top row). Then, a max-pooling layer of size 2x2 is applied to reduce 

the spatial variance in the features extracted by the first layer. The same process is applied 

two more times but, in this case, we used a convolution layer of 16 filters with a kernel 

size of 5x5 followed by another convolution layer of 64 filters with a kernel size of 3x3. 

Also, there is a max-pooling layer at the end of each convolution layer of the same size 

(2x2). Then, it is flatten the output of the last convolutional layer to use it as an input of 

the fully-connected layer (128,7,1 neurons), which provides the final classification 

(output). 
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On the other hand, the DCNN+Autoencoder model uses first a convolution block, 

as described in the DCNN3 model followed by an autoencoder topology with a deep feed-

forward (fully-connected) model (see Fig.2 bottom row). In this network, after the 

convolution block, the flattened input image passes through an encoder process on the 

first three dense layers with 128, 64, and 32 neurons respectively. After that, the decoding 

process starts with the information in the latent space of the network (code) and feeds 

three more dense layers with 64, 128, and 32 neurons respectively. This generates a 

compressed version of the original data which is passed to a final fully-connected layer 

of (7,1) neurons for the final classification. 

The remaining deep models, DCNN1, DCNN2, and DCNN4 follow the same 

logic of the DCNN3 architecture but with some variations in the convolution layers. The 

core architecture of all the proposed models is summarized in Table I. 

 

Experimental setup 

  

Image Preprocessing 

 

All images were processed to keep only the area of interest inside the image (the 

facial area without ear and hair). Thus, we used the frontal face cascade classifier method 

from the OpenCV library to crop the facial area of each image. Keeping only the facial 



18 
 

information allows us to reduce noise and fed the classification models with relevant 

information. Moreover, all images were resized to meet the required input size (48x48) 

of the proposed models and normalized with the min-max technique to avoid data 

dispersions during the model's learning. 

Additionally, data augmentation techniques were implemented to increase the 

number of samples per class on all databases. Thus, operations such as rescale, shear 

range, zoom range, rotation range, width shift range, and height shift range were applied 

to achieve approximately 6867 images per database. This augmentation helps with the 

learning process of the models and avoids overfitting. 

 

Test and Training partitions  

For all databases, the stratified 5-fold cross-validation method (Gupta, 2017) was 

applied. In this way, samples are divided into disjoint training and test partitions per fold 

with samples representation of each output class. Training and testing the models on 

different partitions guarantee successful learning and further generalization. 

Models configuration 

For all models, we optimized two main hyperparameters, the training iterations 

(epochs) in the range from 1 to 100 epochs, and the batch size was set to 32 and 64. Other 

parameters were used with a standard (fixed) configuration such as the same Adam 

optimizer, which uses the stochastic gradient descent to update the weights of the models 

during the training process (Brownlee, 2017). The learning rate was set to 0.01 and the 

dropouts value to 25% at the end of each convolution layer. 

 Assessment metrics  
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We used the mean of accuracy (ACC) to validate the performance of proposed 

models over five folds. The cross-entropy loss function is also used to assess the 

probability of a given input sample being classified in the correct class. The more the 

loss's score is close to zero, the better classification of the input sample (Koech,2020). 

SELECTION CRITERIA 

The best model will be selected according to the following criteria: (1) The higher 

mean of ACC score among all models and (2) if there is a tied performance score, the 

model with the least algorithm complexity is preferred.  

The implementation of the proposed method was done with Python programming 

language version 3.8.3 (Python Core Team, 2019) using scikit-learn (SKlearn) 

(Pedregosa et al, 2011) and Keras (Chollet et al, 2015) with ImageDataGenerator and 

TensorFlow backend.  
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RESULTS AND DISCUSSION  

Each model will be trained and tested on the datasets indivually and then the 

datasets will be combined into the Jaffe & CK+ dataset for further experimentations. 

The overall values of ACC, datasets and hyperparameters after evaluating each model 

will be summarized on table II. 
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In general, the proposed deep-learning models gave accuracies above 85% which 

is remarkable to deal with the classification problem. The main exception was the 

DCNN1 model that obtained very poor results: the maximum ACC was 55% on the CK+ 

dataset followed by 16% on the Jaffe dataset and 15% on the Jaffe & CK+ dataset. This 

network is the most complex which suggests that it extracts too many irrelevant features 

and thus decreasing the performance of the network. 

 

For the Jaffe dataset, the more optimal results arrived on the DCNN4 model. In 

fact, this model provided 95% ACC on the 100th epoch and a batch size of 64. The 

DCNN4 architecture creates 120 kernels on the last convolution layer. This is the biggest 

convolution layer out of all the architectures allowing the network to extract more 

important features. Due to the low number of 10 subjects in the Jaffe dataset, the network 

is able to recognize and extract more features easily. The DCNN2 and 

DCNN+Autoencoder had similar results (92% and 93%), but the DCNN3 network scored 

a lower ACC of 75% due to a worst feature abstraction from the complexity of this 

architecture.  

 

For the CK+ dataset, the better results appeared on the DCNN2 model. In reality, 

this architecture achieved 94% ACC on the 100th epoch and a batch size of 64. The 

DCNN2 architecture is the least complex network; it only implements three convolution 

layers and one fully connected layer before the output layer. The CK+ dataset has a wide 

variety of subjects that grant the model the ability to generalize features without needing 

too many convolutional layers. The DCNN4 model and the DCNN+Autoencoder had the 
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same ACC. In the other hand, the DCNN3 architecture obtained a worst ACC of 81% 

from the difficulty of extracting relevant features of this model. 

Finally, for the combination of the Jaffe & CK+ datasets, the DCNN+Autoencoder 

reached better results. As a matter of fact, this model scored 96% ACC on the 100th epoch 

and a batch size of 64. When combining both datasets, it is more difficult to extract 

relevant features due to the noise generated by this combination. The autoencoder 

architecture helps reducing the noise and the spatial variance of each image. In this 

context, an autoencoder topology will outperform the rest of the models. The rest of 

architectures (DCNN2, DCNN3 and DCNN4) achieved around 85% ACC on this dataset. 

According to our selection criteria, the DCNN+Autoencoder architecture 

outperformed the rest of the models due to the highest ACC obtained. Moreover, this 

network also achieved high accuracies in the datasets individually: 92% on the Jaffe 

dataset and 90% on the CK+ dataset. In addition, the best architectures for each dataset 

experimentation dealt with the overfitting problem effectively. Following the plots 

presented in Fig.3 the curves of the mean validation loss are very similar to the curves of 

the mean training loss for the Jaffe, CK+ and Jaffe & CK+. The plot for the Jaffe dataset 

indicates the training loss and the validation loss start converging at the 10th epoch on 

the DCNN4 model; the same scenario reproduces for the Jaffe & CK+ dataset on the 

DCNN+Autoencoder architecture. Lastly, the curves start converging on the 75th epoch 

for the CK+ dataset on the DCNN2 network. This shows that our architectures are good 

for generalization on the testing sets distinct from the training sets.  



23 
 

 

 

 

CONCLUSIONS AND FUTURE WORK 

In this work, five different deep CNN architectures were proposed: four DCNNs 

worked better with 1 dataset (DCNN1, DCNN2, DCNN3 and DCNN4) and one 

performed better with two distinct datasets (DCNN+Autoencoder), for the classification 

an ACC test was provided as well as a cross-entropy loss function to measure the 

performance regarding overfitting of our models. The DCNN1 model had the worst 

results overall due to high loss values and thus big overfitting problems, as well as very 

low accuracies in all datasets (55%, 20% and 19%). The best architecture for the Jaffe 

dataset was the DCNN4 network. On the other hand, DCNN scored the best results on 

the CK+ dataset. Lastly, the Jaffe & CK+ dataset achieved better results on the 

DCNN+Autoencoder model. 

As future work, we plan on further exploring our autoencoder architecture with 

more datasets, as well as different hyperparameters such as the number of epochs, 

optimizers and batch sizes. 
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